
Citation: Abudusaimaiti, M.;

Abudukeremu, A.; Sabir, A.

Fixed/Preassigned-Time Stochastic

Synchronization of Complex-Valued

Fuzzy Neural Networks with Time

Delay. Mathematics 2023, 11, 3769.

https://doi.org/10.3390/

math11173769

Academic Editors: Mijanur Rahaman

Seikh and Oscar Castillo

Received: 16 July 2023

Revised: 18 August 2023

Accepted: 23 August 2023

Published: 2 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Fixed/Preassigned-Time Stochastic Synchronization of
Complex-Valued Fuzzy Neural Networks with Time Delay
Mairemunisa Abudusaimaiti 1, Abuduwali Abudukeremu 2,* and Amina Sabir 1

1 School of Mathematics and Statistics, Kashi University, Kashi 844006, China
2 School of Mathematics and Statistics, Yili Normal University, Yining 835000, China
* Correspondence: abudouwali@stu.xju.edu.cn

Abstract: Instead of the separation approach, this paper mainly centers on studying the fixed/
preassigned-time (FXT/PAT) synchronization of a type of complex-valued stochastic fuzzy cel-
lular neural networks (CVSFCNNs) with time delay based on the direct method. Firstly, some
basic properties of the sign function in complex fields and some generalized FXT/PAT stability
lemmas for nonlinear stochastic differential equations are introduced. Secondly, by designing two
delay-dependent complex-valued controllers with/without a sign function, sufficient conditions
for CVSFCNNs to achieve FXT/PAT synchronization are obtained. Finally, the feasibility of the
theoretical results is verified through a numerical example.
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1. Introduction

It is well known that Chua and Yang first introduced a fuzzy neural network in
1988 [1,2]. Since then, fuzzy neural networks (FNNs) have aroused high interest among
researchers due to their widespread applications in many areas, such as visual microproces-
sors, image processing, and other fields [3,4]. In practice, the indeterminacy or ambiguity
of non-linear dynamic systems is unavoidable. To account for ambiguity, Yang et al. further
introduced the so-called fuzzy cellular neural networks (FCNNs) in 1996 [5]. Numerous
experiments have shown that FCNNs are an excellent example of processing and pattern
recognition. Therefore, studying the dynamic behavior of FCNNs is an interesting and
vital research topic in theory and in application. Moreover, researchers have extensively
considered the stability and synchronization of various types of FCNNs and have published
many excellent papers [6–9].

As an extension of real-valued neural networks (RVNNs), complex-valued neural
networks (CVNNs) were developed by substituting real-valued parameters with complex-
valued parameters and, in recent years, have aroused great enthusiasm among scholars.
Facts have proven that they can handle many problems, such as symmetry detection and
electromagnetic wave imaging [10,11], which cannot be solved in RVNNs. As a result, many
scholars have studied the dynamic behavior of CVNNs due to their applications in fields
such as secure communication, signal processing, and control systems [12–14]. For example,
in [14], the FXT synchronization of complex-valued memristive bidirectional associative
memory neural networks (BAMNNs) and applications in image encryption and decryption
was studied. In [15], the authors mainly studied the FXT synchronization for complex-
valued BAMNNs with time delays. Additionally, in [16,17], the finite-time (FNT) and FXT
synchronization of CVNNs was studied by the non-separation method. The papers [18,19]
discuss the performance of a deep belief network and a multilayer long short-term memory
(LSTM)network. However, the networks discussed in these articles are a type of specific
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neural network structure, which is used for unsupervised learning, feature extraction,
and processing sequence data, such as time series or continuous action sequences. In
practical applications, CVNNs can also be considered and studied for similar problems.
Such research can further explore how to use CVNNs to improve the performance of long-
distance iris recognition tasks. Unfortunately, random interference has not been considered
in these works. The availability of many natural renewable resources, such as wind and
sunlight, will be disrupted to an extent by random disturbances [20]. Therefore, the study
of CVNNs with random perturbation has important practical significance.

Additionally, the study of synchronization of nonlinear systems has been highly re-
garded and extensively studied in the last three decades [21–26]. However, in practical
applications, the synchronization of complex-valued fuzzy cellular neural networks (CVFC-
NNs) has broader application prospects than general neural networks (NNs) . For example,
in communication systems, solving synchronization problems can effectively improve the
accuracy and stability of data transmission, thereby improving the performance of commu-
nication systems. Secondly, the synchronization ability of CVFCNNs can be used to achieve
collaborative operations between multiple control systems, improving the accuracy and
robustness of control systems. Therefore, in the context of existing literature and practical
applications, studying the synchronization problem of CVFCNNs is a significant related
research direction. The settling time (ST) in FNT synchronization depends largely on the
initial state; however, in practical applications, we cannot obtain the initial condition in
advance. Therefore, to make up for this deficiency, Polyakov proposed the concept of FXT
stability in 2012 [27], and the FXT synchronization of NNs in the complex field has been
extensively studied [14,15,28,29]. In 2021, Hu et al. introduced an improved FXT stability
method [30]. This method shows that the ST of PAT synchronization is not dependent on
the initial state of the discussed system or on the values of the controller parameters in
question. Nevertheless, up to now, research on the PAT synchronization of CVSFCNNs has
not been reported. This has inspired us to undertake relevant research.

Time delay is an automatic characteristic of many dynamic models. It has been rec-
ognized that time delays often occur in signal transmission between different neurons.
In [15–17,31], the FXT synchronization of CVNNs is studied with or without stochastic
effects. The article [16], involving discontinuous activation and time-varying delays, mainly
studied the problem of synchronization in FNT/FXT for fully complex-variable delayed
NNs. The paper [17] developed a non-separation approach and explored the problem
of FNT/FXT synchronization for fully complex-valued dynamical networks. In [31], the
author mainly studied the FXT/PAT synchronization problem of CVBAM NNs with ran-
dom disturbances and impulsive effects. Nevertheless, the controllers designed in these
articles all contain sign functions. As far as we know, the chattering effect will occur in the
system due to the discontinuity of the sign function when synchronization is implemented.
Therefore, this encourages us to design a controller that does not contain a sign function,
which is also a highlight of this paper.

Considering the above discussions, for CVSFCNNs with time delay, FXT/PAT syn-
chronization has not been fully resolved. Therefore, this paper will deeply explore the
FXT/PAT synchronization of CVSFCNNs. The innovations of this paper can be summa-
rized as: (i) Considering the universality of stochastic and time-delay effects in real life, this
paper first investigates the stochastic synchronization problem of CVNNs with time delay;
(ii) unlike previous works [14,15,32], this paper studies the synchronization of the SFCNNs
by using the direct method instead of the separation method. Moreover, the controllers
constructed in this article do not contain the sign function, thus effectively avoiding the
vibrations caused by the sign function.

The remaining parts of this article are structured as follows. The relevant definitions,
assumptions, and essential lemmas are given in Section 2. The primary research process
and results of this paper are shown in Section 3. In Section 4, a numerical example is used
to prove the correctness of the theoretical results. Finally, Section 5 summarizes this paper
and provides the future research directions.
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Notations. The symbolsR, C,Rn, and Cn denote all real numbers, complex numbers,
all n-dimensional real vectors, and all n-dimensional complex vectors. For any s ∈ C, s̄
denotes the conjugate of s, and Re(s) and Im(s) denote the real and imaginary parts of s,
respectively. |s|2 =

√
ss̄, while i denotes the imaginary unit with i2 = −1.

2. Problem Formulation and Preliminary Description

In the following, we study the case of m-dimensions of CVSFCNNs:

dxi(t) =
[
− aixi(t) +

m

∑
`=1

pi` f`(x`(t)) +
m

∑
`=1

bi` f`(x`(t− τ`(t)))

+
m

∑
`=1

ri`v` +
m∧
`=1

αi` f`(x`(t− τ`(t))) +
m∧
`=1

Ti`v`

+
m∨
`=1

βi` f`(x`(t− τ`(t)))) +
m∨
`=1

Si`v` + Ii

]
dt

+ σi(xi(t), t)dω(t),

xi(t) =x0
i ∈ C, i = 1, 2, . . . , m,

(1)

wherein xi(t) ∈ C represents the state variables of the ith neuron; ai ∈ C is the self-
inhibition of the ith neuron; f`(·) ∈ C represents the activation functions; τ`(t) is the
time-varying delay, which satisfies τ́`(t) < τ1 < 1; pi` ∈ C, bi` ∈ C represent the connection
weights; and ri`, Ti`, Si`, αi`, and βi` are the elements of the feed-forward template, fuzzy
feed-forward minimum template, fuzzy feed-forward maximum template, fuzzy feedback
minimum template, and fuzzy feedback maximum template, respectively.

∧
and

∨
corre-

spond to the fuzzy AND and OR operations; Ii ∈ C and v` ∈ C are the inputs and bias of
the ith neuron; σi(·, t) : C × R+ → C denotes the noise intensity functions; and ω(t) ∈ C
represents the one-dimensional Brownian motion defined on a complete probability space
(Ω, F, P) with a natural filtration {Ft}t ≥ 0 generated by ω(e) : 0 ≤ e ≤ t.

Remark 1. In CVSFCNNs (1), fuzzy AND and fuzzy OR operations are defined as follows:

m∧
`=1

αi` f`(x`(t)) ≤ min
1≤`≤m

{αi` f`(x`(t))},

m∨
`=1

βi` f`(x`(t)) ≤ max
1≤`≤m

{βi` f`(x`(t))},

and for fuzzy AND and OR operations, the upper and lower limits are defined as follows [33]:

sup(A
∧

B) = min(A, B),

in f (A
∧

B) = A ∗ B,

sup(A
∨

B) = max(A, B),

in f (A
∨

B) = A + B− A ∗ B.

In this article, we investigate drive–response synchronization. The response system
corresponding to the drive system (1) is:
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dyi(t) =
[
− aiyi(t) +

m

∑
`=1

pi` f`(y`(t)) +
m

∑
`=1

bi` f`(y`(t− τ`(t)))

+
m

∑
`=1

ri`v` +
m∧
`=1

αi` f`(y`(t− τ`(t))) +
m∧
`=1

Ti`v`

+
m∨
`=1

βi` f`(y`(t− τ`(t)))) +
m∨
`=1

Si`v` + Ii + ui(t)
]

dt

+ σi(yi(t), t)dω(t),

yi(t) =y0
i ∈ C, i = 1, 2, . . . , m,

(2)

wherein yi(t) represents the state variable of the response system (2), ui(t) represents the
control scheme, and y0

i ∈ C represents the initial state of system (2).
If we set ei(t) = yi(t)− xi(t), then we can obtain the following error system:

dei(t) =
[
− aiei(t) +

m

∑
`=1

pi` f`(e`(t)) +
m

∑
`=1

bi` f`(e`(t− τ`(t)))

+
m∧
`=1

αi` f`(e`(t− τ`(t))) +
m∨
`=1

βi` f`(e`(t− τ`(t)))) + ui

]
dt

+ σi(ei(t), t)dω(t),

ei(t) =e0
i ∈ C, i = 1, 2, . . . , m,

(3)

where f (e`(t)) = f`(y`(t))− f`(x`(t)).
Below, we introduce the relevant presuppositions and then use these methods to

derive the main results of the system studied in this article.

Assumption 1. Noise function σi(t, ·) has a positive number ηi, making the following inequality
hold true:

1
2

σi(t, f (t))σi(t, f (t)) ≤
m

∑
i=1

ηi| f (t)|22.

Definition 1 ([34]). System (1) is said to be synchronized with system (2) in FXT if there
exists a fixed settling time T0 that is independent of the initial synchronization error such that
limt→T0 E(ei(t)) = 0, and ei(t) ≡ 0 for t > T0, i = 1, 2, . . . , m.

Definition 2 ([35]). For any κ ∈ C, [κ] = sign(Re(κ)) + isign(Im(κ)) is said to be the sign
function of κ.

Definition 3 ([36]). For any suitable cone Ξ ∈ Rn, the partial ordering relation derived by Ξ in
Rn can be defined as follows:

(i) f � h⇔ f − h ∈ Ξ,
(ii) f � h⇔ f − h ∈ intΞ,

where the interior of Ξ is represented by intΞ.

Remark 2. The above method can conveniently determine the “size” of any two vectors. Since
a complex vector can be regarded as a two-dimensional real vector, Definition 3 can also be used
to compare the "size" of complex numbers. For instance, for any two different complex numbers
z1 = a + bi, z2 = c + di, define the following relationships:

(i) If a > (<)c and b 6= d, then z1 � (≺)z2,
(ii) If a > (<)c, b = d, or a = c, b > (<)d, then z1 � (�)z2,
(iii) If a = c and b = d, then z1 = z2.
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Lemma 1 ([35]). If there exists a C-regular function V(z(t)) : Rn → R, and the inequality

£V(z(t)) ≤ kV(z(t))− χV$(z(t))− ψVρ(z(t)), z(t) ∈ Rn\{0}

holds true, where χ > 0, ψ > 0, 0 ≤ ρ < 1 < $, then the origin of system (3) is FXT stable in
probability, and its ST can be reckoned as E[T(e0, ω)] < Tmax, where

Tmax ,



T1
max =

1
kλ(1− $)

ln

(
1− k

ψ

(
ψ

χ

)λ
)

, k < 0,

T2
max =

π

($− ρ)ψ

(
ψ

χ

)λ

csc(λπ), k = 0,

T3
max =

πcsc(λπ)

χ($− ρ)

(
χ

ψ− k

)1−λ

I
(

χ

γ
, λ, 1− λ

)
+

πcsc(λπ)

ψ($− ρ)

(
ψ

χ− k

)λ

I
(

ψ

γ
, 1− λ, λ

)
, 0 < k < min{χ, ψ},

and where λ = (1−ρ)
($−ρ)

, γ = χ + ψ− k. In particular, when $ + ρ = 2, ST can be more accurately

estimated as T(z0, ω) < T̃max, where

T̃max ,



T4
max =

1
$− 1

2√
ϑ

(
π

2
+ arctan

(
k√
ϑ

))
, −2

√
χψ < k < 2

√
χψ

T5
max =

2
k($− 1)

, k = −2
√

χψ,

T6
max =

1
($− 1)

√
−ϑ

ln
k +
√
−ϑ

k−
√
−ϑ

, k < −2
√

χψ,

and where ϑ = 4χψ− k2.

Lemma 2 ([35]). If there exists a C-regular function V(z(t)) : Rn → R satisfying the inequality

£V(z(t)) ≤ T̄
Tp

(kV(z(t))− χV$(z(t))− ψVρ(z(t))), z(t) ∈ Rn\{0},

then the error system (3) is PAT stable in probability within a PAT Tp > 0, where

T̄ ,
{

Tmax, if $ + ρ 6= 2,
T̃max, if $ + ρ = 2.

Lemma 3 ([17]). For any κ ∈ C, h(t) ∈ co([r(t)]), the following inequality holds:

(1) κ + κ̄ = 2Re(κ) ≤ 2|κ|2,
(2) [r(t)]r(t) + [r(t)]r(t) ≥ 2|r(t)|2,
(3) r(t)h(t) + r(t)h(t) ≥ 2|r(t)|2.

Lemma 4 ([37]). If e1, e2, · · · , em ≥ 0, 0 < ε ≤ 1, ε > 1, then

m

∑
s=1

eε
s ≥

( m

∑
s=1

es

)ε
,

m

∑
s=1

eε
s ≥ m1−ε

( m

∑
s=1

es

)ε
.

Lemma 5. Let αi`, βi` ∈ C, f` : C → C be continuous functions, i, ` = 1, 2, . . . , m, then

ei(t)
m∧
`=1

αi` f`(e`(t)) + ei(t)
m∧
`=1

αi` f`(e`(t)) ≤ |ei(t)|22 +
m

∑
`=1
|αi`|22| f`(e`(t)|

2
2,
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ei(t)
m∨
`=1

βi` f`(e`(t)) + ei(t)
m∨
`=1

βi` f`(e`(t)) ≤ |ei(t)|22 +
m

∑
`=1
|βi`|22| f`(e`(t)|

2
2.

In particular,
| f`(e`(t− τ`(t)))|22 ≤ L2`|e`(t− τ`(t))|22,

where L2` is a constant number.

Proof. For ` = 1, 2, . . . , m, let the function take its maximum value fk(ek(t)) when ` = k;
its conjugate value is fk(ek(t)). Then, based on (1) of Lemma 3, we have

ei(t)αik fk(ek(t)) + ei(t)αik fk(ek(t)) ≤ 2
∣∣∣ei(t)αik fk(ek(t))

∣∣∣
2

≤ |ei(t)|22 + |αik fk(ek(t))|22
≤ |ei(t)|22 + |αik|22| fk(ek(t))|22

for k ∈ ` = {1, 2, . . . , m}, and the fuzzy AND operation
∧

satisfies

ei(t)
m∧
`=1

αi` f`(e`(t)) + ei(t)
m∧
`=1

αi` f`(e`(t)) ≤ |ei(t)|22 +
m

∑
`=1
|αi`|22| f`(e`(t)|

2
2.

Similarly, it can be proven that

ei(t)βik fk(ek(t)) + ei(t)βik fk(ek(t)) ≤ 2
∣∣∣ei(t)βik fk(ek(t))

∣∣∣
2

≤ |ei(t)|22 + |βik fk(ek(t))|22
≤ |ei(t)|22 + |βik|22| fk(ek(t))|22

for k ∈ ` = {1, 2, . . . , m}, and the fuzzy OR operation
∨

satisfies

ei(t)
m∨
`=1

βi` f`(e`(t)) + ei(t)
m∨
`=1

βi` f`(e`(t)) ≤ |ei(t)|22 +
m

∑
`=1
|βi`|22| f`(e`(t)|

2
2.

3. Main Results
3.1. FXT Synchronization

In this part, based on the above descriptions, we obtain sufficient conditions for FXT
synchronization with the error system (3). For this, the control scheme in the response
system (2) is constructed as follows:

ui(t) = −[ei(t)]
(

ξi|ei(t)|θ1
2 + ζi|ei(t)|θ2

2

)
, (4)

where ξi, ζi, di` > 0, θ1, and θ2 are real numbers such that 0 ≤ θ2 < 1 < θ1.
Denote

ki = 2 + ηi − Re(ai) +
1
2

m

∑
`=1

(
|p`i|22L2i +

2di`
1− τ1

)
,

and then we have the following results.

Theorem 1. Under Assumption 1, if the following inequality holds,
k < min{χ, ψ},
1
2
(|bi`|22 + |αi`|22 + |βi`|22)L2` ≤ di`,

(5)
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then under the controller (4), the drive–response systems (1) and (2) achieve FXT synchronization
in probability, and the ST is estimated by:

T3
max =

πcsc(λπ)

χ(θ1 − θ2)

(
χ

ψ− k

)1−λ

I
(

χ

γ
, λ, 1− λ

)
+

πcsc(λπ)

ψ(θ1 − θ2)

(
ψ

χ− k

)λ

I
(

ψ

γ
, 1− λ, λ

)
,

where the parameters χ = mini{ξi}2
θ1+1

2 m
1−θ1

2 , λ = 1−θ2
θ1−θ2

, ψ = mini{ζi}2
1+θ2

2 , and k =

maxi{ki}, γ = χ + ψ− k.

Proof. Due to the discontinuity of the controller (4), according to the theory of non-smooth
analysis [16],

ui(t) ∈ −co([ei(t)])
(

ξi|ei(t)|θ1
2 + ζi|ei(t)|θ2

2

)
.

Similar to [38], there exists δi(t) ∈ co([ei(t)]), and (4) equals

ui(t) = −δi(t)
(

ξi|ei(t)|θ1
2 + ζi|ei(t)|θ2

2

)
.

Next, construct the Lyapunov function as

V(t) =
1
2

m

∑
i=1

ei(t)ei(t) +
m

∑
i=1

m

∑
`=1

di`
(1− τ1)

∫ t

t−τ`(t)
ei(s)ei(s)ds.

Along the orbit of the error system (3), £V(t) is obtained as:

£V(t) ≤
m

∑
i=1

(
− Re(ai)

)
|ei(t)|22 +

1
2

m

∑
i=1

(
ei(t)

m

∑
`=1

pi` f`(e`(t))

+ ei(t)
m

∑
`=1

pi` f`(e`(t))
)
+

1
2

m

∑
i=1

(
ei(t)

m

∑
`=1

bi` f`(e`(t− τ`(t)))

+ ei(t)
m

∑
`=1

bi` f`(e`(t− τ`(t)))
)
+

1
2

m

∑
i=1

(
ei(t)

m∧
`=1

αi` f`(e`(t− τ`(t)))

+ ei(t)
m∧
`=1

αi` f`(e`(t− τ`(t)))
)
+

1
2

m

∑
i=1

(
ei(t)

m∨
`=1

βi` f`(e`(t− τ`(t))))

+ ei(t)
m∨
`=1

βi` f`(e`(t− τ`(t)))
)
− 1

2

m

∑
i=1

ξi

(
ei(t)δi(t) + ei(t)δi(t)

)
|ei(t)|θ1

2

− 1
2

m

∑
i=1

ζi

(
ei(t)δi(t) + ei(t)δi(t)

)
|ei(t)|θ2

2

+
m

∑
i=1

m

∑
`=1

di`
1− τ1

ei(t)ei(t)−
m

∑
i=1

m

∑
`=1

di`
1− τ1

ei(t− τ`(t))ei(t− τ`(t))(1− τ́`(t))

+
1
2

trace
[
σT

i (t, ei(t))σi(t, ei(t))
]
.

(6)
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Based on Lemma 5, we obtain:

1
2

m

∑
i=1

(
ei(t)

m

∑
`=1

pi` f`(e`(t)) + ei(t)
m

∑
`=1

pi` f`(e`(t))
)

≤ 1
2

m

∑
i=1

(
|ei(t)|22 +

m

∑
`=1
|pi`|22| f`(e`(t))|22

)

≤ 1
2

m

∑
i=1

(
|ei(t)|22 +

m

∑
`=1
|pi`|22L2`|e`(t)|22

)

≤ 1
2

m

∑
i=1

(
|ei(t)|22 +

m

∑
`=1
|p`i|22L2i|ei(t)|22

)
,

(7)

1
2

m

∑
i=1

(
ei(t)

m

∑
`=1

bi` f`(e`(t− τ`(t))) + ei(t)
m

∑
`=1

bi` f`(e`(t− τ`(t)))
)

≤ 1
2

m

∑
i=1

(
|ei(t)|22 +

m

∑
`=1
|bi`|22| f`(e`(t− τ`(t)))|22

)

≤ 1
2

m

∑
i=1

(
|ei(t)|22 +

m

∑
`=1
|bi`|22L2`|e`(t− τ`(t))|22

)
.

(8)

Additionally, we have:

1
2

m

∑
i=1

(
ei(t)

m∧
`=1

αi` f`(e`(t− τ`(t))) + ei(t)
m∧
`=1

αi` f`(e`(t− τ`(t)))
)

≤ 1
2

m

∑
i=1
|ei(t)|22 +

1
2

m

∑
i=1

m

∑
`=1
|αi`|22| f`(e`(t− τ`(t)))|22,

≤ 1
2

m

∑
i=1
|ei(t)|22 +

1
2

m

∑
i=1

m

∑
`=1
|αi`|22L2`|e`(t− τ`(t))|22.

(9)

The following inequality is obtained in the same way:

1
2

m

∑
i=1

(
ei(t)

m∨
`=1

βi` f`(e`(t− τ`(t))) + ei(t)
m∨
`=1

βi` f`(e`(t− τ`(t)))
)

≤ 1
2

m

∑
i=1
|ei(t)|22 +

1
2

m

∑
i=1

m

∑
`=1
|βi`|22L2`|e`(t− τ`(t))|22.

(10)

Based on Assumption 1, one has:

1
2

trace
[
σT

i (t, ei(t))σi(t, ei(t))
]
≤

m

∑
i=1

ηi|ei(t)|22. (11)

Inserting the above inequalities (7)–(11) into (6), we can obtain:

£V(t) ≤
m

∑
i=1

[
2 + ηi − Re(ai) +

1
2

m

∑
`=1

(
|p`i|22L2i +

2di`
1− τ1

)]
|ei(t)|22

+
1
2

m

∑
i=1

m

∑
`=1

[
(|bi`|22 + |αi`|22 + |βi`|22)L2` −

1− τ́`(t)
1− τ1

2di`

]
|e`(t− τ`(t))|22

−
m

∑
i=1

ξi|ei(t)|θ1+1
2 −

m

∑
i=1

ζi|ei(t)|θ2+1
2 .

(12)
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Further, from Lemma 4, we have:

m

∑
i=1
|ei(t)|θ1+1

2 ≥ m
1−θ1

2

(
m

∑
i=1
|ei(t)|22

) 1+θ1
2

= 2
1+θ1

2 m
1−θ1

2 V
1+θ1

2 (t). (13)

m

∑
i=1
|ei(t)|θ2+1

2 ≥
(

m

∑
i=1
|ei(t)|22

) θ2+1
2

= 2
θ2+1

2 V
θ2+1

2 (t). (14)

From (13)–(14), we can obtain:

£V(t) ≤
m

∑
i=1

ki|ei(t)|22 −min
i
{ξi}2

θ1+1
2 m

1−θ1
2 V

θ1+1
2 (t)−min

i
{ζi}2

1+θ2
2 V

1+θ2
2 (t)

= kV(t)− χV
θ1+1

2 (t)− ψV
1+θ2

2 (t),

where k = maxi{ki}, χ = mini{ξi}2
θ1+1

2 m
1−θ1

2 , and ψ = mini{ζi}2
1+θ2

2 . Therefore, ac-
cording to Definition 1 and Lemma 1, drive–response systems (1) and (2) realize the FXT
synchronization in probability, and the settling time is defined in Lemma 1.

Corollary 1. Under Assumption 1, assume that θ1 + θ2 = 2 in control scheme (4). If k < 2
√

χψ,
where the χ and ψ have been defined in Theorem 1, then the FXT synchronization between drive–
response systems (1) and (2) can be achieved within T̃max under the delay-dependent controller (4),
where T̃max is defined in Lemma 1.

As we can see, controller (4) contains the sign function but, to our knowledge, the
sign function in the control strategy will lead to unexpected flutter, which will affect the
settling time of synchronization errors. Therefore, in the following, we can achieve FXT
synchronization by constructing a novel controller without the sign function:

ui(t) =

− ei(t)
(

ξi
|ei(t)|2θ1

2
|ei(t)|22

+ ζi
|ei(t)|2θ2

2
|ei(t)|22

+
∑m
`=1 di`|e`(t− τ`(t))|22

|ei(t)|22

)
, |ei(t)|2 6= 0,

0, |ei(t)|2 = 0,

(15)

where ξi, ζi, di` > 0, and θ1 and θ2 are real numbers such that 0 ≤ θ2 < 1 < θ1. Then, we
can draw a corollary similar to Theorem 1.

Corollary 2. Under Assumption 1, presuming the inequality (5) in Theorem 1 holds, then the error
system between the drive–response systems (1) and (2) can achieve FXT synchronization under a
delay-dependent controller (15).

Proof. Construct the Lyapunov function as follows:

V(t) =
1
2

m

∑
i=1

ei(t)ei(t).

Following the trajectory of the error system (3), £V(t) is obtained as:
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£V(t) =
m

∑
i=1

(
− Re(ai)

)
|ei(t)|22 +

1
2

m

∑
i=1

(
ei(t)

m

∑
`=1

pi` f`(e`(t))

+ ei(t)
m

∑
`=1

pi` f`(e`(t))
)
+

1
2

m

∑
i=1

(
ei(t)

m

∑
`=1

bi` f`(e`(t− τ`(t)))

+ ei(t)
m

∑
`=1

bi` f`(e`(t− τ`(t)))
)
+

1
2

m

∑
i=1

(
ei(t)

m∧
`=1

αi` f`(e`(t− τ`(t)))

+ ei(t)
m∧
`=1

αi` f`(e`(t− τ`(t)))
)
+

1
2

m

∑
i=1

(
ei(t)

m∨
`=1

βi` f`(e`(t− τ`(t)))

+ ei(t)
m∨
`=1

βi` f`(e`(t− τ`(t)))
)
− 1

2

m

∑
i=1

ξi

(
ei(t)ei(t) + ei(t)ei(t)

) |ei(t)|2θ1
2

|ei(t)|22

− 1
2

m

∑
i=1

ζi

(
ei(t)ei(t) + ei(t)ei(t)

) |ei(t)|2θ2
2

|ei(t)|22

− 1
2

m

∑
i=1

m

∑
`=1

(
ei(t)ei(t) + ei(t)ei(t)

)di`|e`(t− τ`(t))|22
|ei(t)|22

+
1
2

trace
[
σT

i (t, ei(t))σi(t, ei(t))
]
.

(16)

From (3) of Lemma 3 and inequalities (8)–(12), we can obtain:

£V(t) ≤
m

∑
i=1

[
2 + ηi − Re(ai) +

1
2

m

∑
`=1
|p`i|22L2i

]
|ei(t)|22

+
1
2

m

∑
i=1

m

∑
`=1

[
(|bi`|22 + |αi`|22 + |βi`|22)L2` − 2di`

]
|e`(t− τ`(t))|22

−
m

∑
i=1

ξi|ei(t)|2θ1
2 −

m

∑
i=1

ζi|ei(t)|2θ2
2 .

(17)

According to Lemma 4, we can obtain:

£V(t) ≤
m

∑
i=1

ki|ei(t)|22 −min
i
{ξi}2θ1m1−θ1 Vθ1(t)−min

i
{ζi}2θ2 Vθ2(t)

= kV(t)− χVθ1(t)− ψVθ2(t),

where k = maxi{ki}, χ = mini{ξi}2θ1m1−θ1 , and ψ = mini{ζi}2θ2 .

Remark 3. As shown in [14–17,28–31], the authors consider the FNT/FXT synchronization of
CVNNs. However, we found that the above literature did not consider random phenomena. In the
realization of the FNT/FXT synchronization of the system under consideration, random influence is
inevitable. Therefore, this paper investigates the FXT/PAT synchronization problem for a type of
CVFCNNs with random perturbations.

Remark 4. The FXT synchronization of CVNNs without time delay was extensively explored
in [17,31,35,39]. However, in many artificial or natural systems, time delay is inevitable due to
factors such as communication distance. Therefore, considering the inevitability of time delay in
practice, we mainly discuss the FXT/PAT synchronization of the system with time delay by designing
a more straightforward controller. The first and second items in the controllers are designed to
ensure that the system achieves FXT/PAT synchronization. In contrast, the third item is designed to
skillfully deal with the time delay appearing in the system under consideration.
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3.2. PAT Synchronization

In this section, in order to achieve PAT synchronization between drive–response
systems (1) and (2), we construct the following new controller based on control scheme (4):

ui(t) = −
T̄
Tp

[ei(t)]
(

ξi|ei(t)|θ1
2 + ζi|ei(t)|θ2

2

)
, (18)

where ξi, ζi > 0, Tp is PAT given in advance, and θ1 and θ2 are real numbers such that
0 ≤ θ2 < 1 < θ1, with T̄ defined in Lemma 1.

Theorem 2. Under the basic Assumption 1, presuming that the control parameters ξi, ζi, and di`
satisfy inequality (5), then drive–response systems (1) and (2) can achieve PAT synchronization in
portability within Tp through the delay-dependent controller (18).

Proof. First, the construction of the Lyapunov function is as follows:

V1(t) =
1
2

m

∑
i=1

ei(t)ei(t) +
m

∑
i=1

m

∑
`=1

di`
(1− τ1)

∫ t

t−τ`(t)
ei(s)ei(s)ds.

Then, using the proof of Theorem 1, we can easily obtain the following inequality:

£V(t) ≤
m

∑
i=1

[
2 + ηi − Re(ai) +

1
2

m

∑
`=1

(
|p`i|22L2i +

di`
1− τ1

)]
|ei(t)|22

+
1
2

m

∑
i=1

m

∑
`=1

[
(|bi`|22 + |αi`|22 + |βi`|22)L2` −

1− τ́`(t)
1− τ1

2di`

]
|e`(t− τ`(t))|22

− T̄
Tp

( m

∑
i=1

ξi|ei(t)|θ1+1
2 +

m

∑
i=1

ζi|ei(t)|θ2+1
2

)
.

From Lemma 4, it is not difficult to obtain

£V(t) ≤
m

∑
i=1

ki|ei(t)|22 −
T̄
Tp

(
min

i
{ξi}m

1−θ1
2 2

1+θ1
2

( m

∑
i=1
|ei(t)|22

) θ1+1
2

+ min
i
{ζi}2

1+θ2
2

( m

∑
i=1
|ei(t)|22

) θ2+1
2
)

≤kV(t)− χ
T̄
Tp

[
V(t)

] θ1+1
2 − ψ

T̄
Tp

[
V(t)

] θ2+1
2

≤


T̄
Tp

[
− χV$(t)− ψVρ(t)

]
, when k ≤ 0,

T̄
Tp

[
kV(t)− χV$(t)− ψVρ(t)

]
, when k > 0 and Tp ≤ T̄,

where χ = mini{ξi}m
1−θ1

2 2
1+θ1

2 , k = maxi ki, ψ = mini{ζi}2
1+θ2

2 , $ = θ1+1
2 , and

ρ = θ2+1
2 .

Therefore, based on Lemma 1, drive–response systems (1) and (2) achieve PAT syn-
chronization specified by a probability within Tp through a delay-dependent controller (18).

Corollary 3. Under the basic Assumption 1, if Tp ≤ T̄ and control parameters ξi, ζi, and di`
satisfy inequality (5), then under the controller
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ui(t) =



− T̄
Tp

(
ξi

ei(t)|ei(t)|2θ1
2

|ei(t)|22
+ ζi

ei(t)|ei(t)|2θ2
2

|ei(t)|22

)

− ei(t)
∑m
`=1 di`|e`(t− τ`(t))|22

|ei(t)|22
, |ei(t)|2 6= 0,

0, |ei(t)|2 = 0,

(19)

the drive–response systems (1) and (2) can achieve PAT synchronization in Tp, where T̄ is defined
in Lemma 1.

Remark 5. Papers [14,15,32] investigated FXT/exponential synchronization of a class of CVNNs.
Unfortunately, these papers divided the whole system into two real-valued systems, which not
only complicates the computations but also increases the dimensions of the system, making it
particularly challenging for quaternion-valued neural networks. Therefore, in this paper, to avoid
these difficulties, we adopted a direct approach. It is evident from the computation process that
this method brings more convenience to our calculations. Additionally, the controllers designed
in these papers all involve the sign function, which is known to introduce chattering effects to our
system during the synchronization process. Although the paper [40] uses a non-separable method to
realize the FXT/PAT synchronization with time-varying delay by designing a controller with an
unsigned function, their controller consisted of four components. In this paper, we cleverly avoid the
chattering effect induced by the sign function by designing a continuous controller comprised of only
three terms to achieve FXT/PAT synchronization. From this perspective, our paper demonstrates
more innovation.

4. Numerical Results

In this section, we demonstrate the feasibility of the theoretical results of the previous
section by numerical simulation with MATLAB 2023. The code used in this paper can be
found in Appendix A.

Example 1. For m = 3, consider the following CVSFCNNs with time delay:

dxi(t) =
[
− aixi(t) +

3

∑
`=1

pi` f`(x`(t)) +
3

∑
`=1

bi` f`(x`(t− τ`(t))) +
3

∑
`=1

ri`v`

+
3∧

`=1

αi` f`(x`(t− τ`(t))) +
3∧

`=1

Ti`v` +
3∨

`=1

βi` f`(x`(t− τ`(t)))

+
3∨

`=1

Si`v` + Ii

]
dt + σi(xi(t), t)dω(t),

(20)

where f1(u) = f2(u) = f3(u) = 0.06 ∗ (tanh(Re(u)) + itanh(Im(u))). Other parameters
of system (20) are as follows: p11 = 0.1 + 0.21i, p12 = −0.52 + 1.25i, p13 = 1.52 − 1.4i,
p21 = −0.45 + 3.15i, p22 = −0.42 + 0.16i, p23 = 0.94 − 1.56i, p31 = −0.41 + 1.51i,
p32 = −2.05 + 2.15i, p33 = 1.55 − 1.96i, b11 = −0.4 − 0.75i, b12 = 1.67 + 1.92i, b13 =
2.07− 1.72i, b21 = −1.08+ 5.15i, b22 = 0.19+ 0.36i, b23 = 1.31− 1.36i, b31 = −1.04+ 1.51i,
b32 = −1.48 + 3.15i, b33 = −0.35 + 0.81, α11 = 0.35 + 1.51i, α12 = −1.69 + 0.1i, α13 =
0.3 + 0.16i, α21 = −1.86 + 0.7i, α22 = −0.62 + 0.36i, α23 = 0.21− 1.32i, α31 = 0.1− 0.26i,
α32 = −1.66 + 1.4i, α33 = 0.37 − 1.21i, β11 = 0.67 − 1.92i, β12 = 0.57 − 0.56i, β13 =
0.78− 0.61i, β21 = 0.38− 4.03i, β22 = 0.97− 1.48i, β23 = 0.87− 0.16i, β31 = 0.25− 0.46,
β32 = 0.64− 0.19i, β33 = 0.82− 0.32i, a1 = 1.68− 0.9i, a2 = 1.48− 0.67i, a3 = 1.54− 0.45i,
and Ii = 1, σi = 2 + 0.26i for i = 1, 2, 3. The initial condition of system (20) is taken as
x1(θ) = 0.6− 0.3i, x2(θ) = −1.2 + 0.8i, and x3(θ) = −0.4 + 0.8i. The MATLAB numerical
simulation of system (20) under the above parameters is shown in Figure 1. It is not difficult to find
that system (20) has a chaotic attractor.
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Figure 1. The chaotic attractor of real and imaginary parts of system (20).

The response system corresponding to CVSFCNNs (20) is:

dyi(t) =
[
− aiyi(t) +

3

∑
`=1

pi` f`(y`(t)) +
3

∑
`=1

bi` f`(y`(t− τ`(t))) +
3

∑
`=1

ri`v`

+
3∧

`=1

αi` f`(y`(t− τ`(t))) +
3∧

`=1

Ti`v` +
3∨

`=1

βi` f`(y`(t− τ`(t)))

+
3∨

`=1

Si`v` + Ii + ui(t)
]

dt + σi(yi(t), t)dω(t),

(21)

where ai, pi`, bi`, f`, αi`, βi`, σi, and Ii are defined as in system (20).
First, consider the FXT synchronization of the drive–response systems (20) and (21)

under the controllers (4) and (15). Through simple calculation, we can obtain Li = 1,
ηi = 2.8. Therefore, the basic Assumption 1 is satisfied. By choosing d11 = 2.37, d12 = 4.51,
d13 = 3.21, d21 = 9.37, d22 = 1.54, d23 = 1.16, d31 = 1.3, d32 = 8.34, d33 = 1.17, ξ1 = 9.1,
ξ2 = 13.8, ξ3 = 14.4, ζ1 = 7.1, ζ2 = 11.2, ζ3 = 12.7, θ1 = 1.4, and θ2 = 0.7, it is not
difficult to calculate k = max{ki} = 10.1899, and then the inequality (5) in Theorem 1 is
also satisfied. Hence, according to Theorem 1, the drive–response systems (20) and (21)
realize FXT synchronization in ST T3

max = 1.8046. The time evaluation of synchroniza-
tion error between systems (20) and (21) is shown in Figure 2. For controller (15), if we
choose Li = 1, ξ1 = 10.5, ξ2 = 11.6, ξ3 = 13.7, ζ1 = 6.1, ζ2 = 10.7, ζ3 = 11.9, θ1 = 1.3,
and θ2 = 0.9, then the drive–response systems (20) and (21) also realize FXT synchro-
nization in ST T3

max = 1.65202. The time evaluation of synchronization error between
systems (20) and (21) under controller (15) is shown in Figure 3.
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Figure 2. Evaluation of real and imaginary parts of synchronization errors under controller (4) with
(θ1, θ2) = (1.4, 0.7).
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Figure 3. Evaluation of real and imaginary parts of synchronization errors under controller (15) with
(θ1, θ2) = (1.3, 0.9).

Next, consider the PAT synchronization of systems (20) and (21) under controllers (18)
and (19). Choosing Tp = 1.5, θ1 = 1.1, and θ2 = 0.9, inequality (5) is also satisfied.
Hence, according to Theorem 2, the drive–response systems (20) and (21) realize PAT
synchronization at Tp = 1.5. The time evaluation of synchronization errors between
systems (20) and (21) is shown in Figure 4. It is not difficult to see that when θ1 + θ2 = 2, the
system achieves synchronization within the predefined time Tp = 1.5, which is even smaller
than the fixed-time T4

max = 2.57327. For controller (19), if we choose Tp = 1.2, θ1 = 1.1,
and θ2 = 0.9, then the drive–response systems (20) and (21) realize PAT synchronization at
Tp = 1.2. Figure 5 shows the time evaluation of synchronization error between systems (20)
and (21) under controller (19). It is not difficult to see from Figure 5 that when θ1 + θ2 = 2,
the system achieves synchronization within the predefined time Tp = 1.2, which is even
smaller than the fixed-time T4

max = 1.43329.

Remark 6. In the above Example, since FXT/PAT synchronization is not affected by the system’s
initial condition and controller parameters, parameter values can be randomly selected as needed
to meet the conditions of the theorem. Therefore, in this example, we first select specific parameter
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values as initial values based on previous research or literature. Then, through repeated experiments
and optimization, these parameter values are adjusted to achieve the best simulation effect.

Remark 7. By comparing Figure 1 and Figures 2–5, it can be seen that, without a controller, the
system will not reach a synchronous state (as shown in Figure 1, which presents a chaotic state).
However, after adding a controller, the drive–response system reaches the same state after a period of
time (see Figures 2–4). Therefore, the controller designed in this article plays an important role in
achieving FXT/PAT synchronization.

Figure 4. Evaluation of real and imaginary parts of synchronization errors under controller (18) with
(θ1, θ2) = (1.1, 0.9).
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Figure 5. Evaluation of real and imaginary parts of synchronization errors under controller (19) with
(θ1, θ2) = (1.1, 0.9).

Remark 8. In [41], Pang et al. realized the FXT synchronization of CVNNs in FXT Tmax = 2.7662
by designing a controller without the sign function; however, the controller designed in [41] consists
of a linear term and three nonlinear terms. In this article, by removing the linear term, we construct
controller (15), which is composed of only three nonlinear terms without the sign function, and
which realizes the FXT synchronization of the studied system within T3

max = 1.65202 (see Figure 3).
Obviously, the convergence time obtained in this article is much faster than [41]. Therefore, the
controller constructed in this paper has more advantages than [41].
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Remark 9. The solid blue and red circles in the numerical figures represent time intervals during
which the system achieves synchronization. For example, from Figures 2 and 3, it can be observed
that the system achieves synchronization within T3

max. From Figures 4 and 5, it can be inferred that
the system achieves synchronization within a specified time interval Tp. In particular, it can be seen
that when θ1 + θ2 = 2, Tp is smaller than T4

max (see Figures 4 and 5). This representation allows
us to easily determine whether the system achieves synchronization within a certain time interval
and identify the specific time periods of synchronization.

5. Conclusions and Prospect

This paper investigates the synchronization problem of CVSFCNNs with time delays
and adopts a non-separation approach for the study. Unlike previous research [14,15,32,40,41],
the constructed controllers in these studies do not include the sign function, thus effectively
avoiding the occurrence of chattering phenomena. Through theoretical analysis and system
simulation, the effectiveness and superiority of the non-separable control method are validated.
Experimental results demonstrate that our proposed approach achieves faster synchronization
time compared to previous studies [41]. Therefore, this research provides a novel method
for addressing the synchronization problem of CVFNNs with time delays, with significant
theoretical and practical implications.

Prospect: In practical production and in life, many problems require processing
higher-dimensional data, not limited to 2D or 3D. For example, fields such as autonomous
driving, color image classification and forensics, and human motion recognition require
processing of four-dimensional or higher-dimensional data. Therefore, we need to explore
how to use four-dimensional or higher-dimensional data to solve these problems. This
may involve the development of new mathematical models and algorithms, as well as the
expansion and improvement of existing technologies. By studying and exploring these new
research directions, we can better solve practical problems and promote the development
of mathematics and neural networks. Therefore, in the future, we will focus on researching
how to process and analyze four-dimensional or higher-dimensional data to solve practical
production and life problems.
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Appendix A

To enhance the transparency and reproducibility of the numerical results, the code
for obtaining the numerical results is provided in the appendix below: https://pan.baidu.
com/s/1FAhxEONqOjKRlXyBej-dRw?pwd=7vva (accessed on 17 August 2023).
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