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Abstract: In this article, we are interested in the study of the following Kirchhoff–Choquard equations:
−
(
a + b

∫
R2 |∇u|2dx

)
∆u+V(x)u = λ(ln |x| ∗ u2)u+ f (u), x ∈ R2, where λ > 0, a > 0, b > 0, V and

f are continuous functions with some appropriate assumptions. We prove that when the parameter λ

is sufficiently small, the above problem has a mountain pass solution, a least energy solution and a
ground state solution by applying the variational methods and building some subtle inequalities.

Keywords: Choquard problem; Kirchhoff-type problems; variational methods; mountain pass solution;
ground state solution
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1. Introduction and Main Results

This paper is dedicated to the study of the existence of solutions to the following
Kirchhoff–Choquard problem in R2:

−
(

a + b
∫
R2
|∇u|2dx

)
∆u + V(x)u = λ(ln |x| ∗ u2)u + f (u), x ∈ R2, (1)

where λ > 0, a, b > 0, V ∈ C(R2,R) and f ∈ C(R,R). Moreover, the following hypotheses
are imposed on V and f :

(V) V ∈ C1(R2, [0, ∞)), V(x) > infx∈R2 V(x) > 0, and there exists m > 0, such that the set
{x ∈ R2 : V(x) < m} is nonempty and has finite measure;

(V1) 6V(x) + (∇V(x), x) > 0;

(V2) for all x ∈ R2, the map t 7→ (∇V(t−1x), t−1x)− 2V(t−1x)
t6|x|6 is nondecreasing on

(0,+∞);
(F1) there exist constants C > 0 and p > 5, such that

| f (t)| 6 C(1 + |t|p−1), ∀ t ∈ R;

(F2) f (t) = o(|t|) as t→ 0;

(F3) lim
|t|→∞

F(t)
|t|5 = ∞;

(F4) there exist constants α0, C > 0 and q > 1, such that f (t)t > 5F(t) for all t ∈ R.

Moreover, there holds:
∣∣∣ f (t)

t

∣∣∣ > α0 implies that
∣∣∣ f (t)

t

∣∣∣q 6 C[ f (t)t− 5F(t)];

(F5) the map t 7→ f (tu)tu−F(tu)
t2u2 is nondecreasing on (0, ∞), for all u ∈ R.

There are some examples of functions V and f :

V(x) = r|x|g, r > 0, g ∈ [0, 2];

f1(u) = |u|p−2u, p ∈ (5, ∞);

f2(u) = |u|p−2u + l|u|q−2u, l > 0, 2 < q < 5 < p < ∞.
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One can easily determine that V1(x) satisfy (V), (V1), (V2). Furthermore, f1(u) satisfies
(F1)− (F5), while f2(u) satisfies (F1)− (F3) and (F5).

Now, we recall the Choquard equation introduced by Pekar [1]:

−∆u + u =

(
1
|x| ∗ |u|

2
)

u in RN , (2)

which was derived from the approximation of Hartree–Fock theory, and this problem can
be viewed as a model of an electron trapped in its own hole. Later, in [2], the author
introduced the above problem as a model of self-gravitating matter. Hence, the Choquard
Equation (2) can also be regarded as the Schrödinger–Newton equation, which is used to
model the coupling of the Schödinger equation of quantum physics and nonrelativistic
Newtonian gravity. We refer to [3–7] for more physical background.

Here, we present some relevant results of Problem (1). In [8], Arora et al. concerned
the Kirchhoff problem as follows:{

−m(
∫

Ω |∇u|ndx)∆nu =
(∫

Ω
F(x,u)
|x−y|µ dy

)
f (x, u), u > 0 in Ω,

u = 0, on ∂Ω,

where Ω is bounded in Rn, n > 2. According to the variational methods, the authors
obtained weak solutions to the above problem. In their study, Chen et al. [9] investigated
the following problem:{ (

a + b[u]p(θ−1)
s,p

)
(−∆s

p)u =
(

Iµ ∗ |u|q
)
|u|q−2u + |u|p∗α−2u

|x|α , u > 0 in Ω,

u = 0, in RN \Ω,

where Ω is bounded in RN , 0 6 α < ps < N with 0 < s < 1, p > 1, 1 < θ 6 p∗α/p. The
authors proved that there exists a positive weak solution to the above problem which uses
the mountain pass theorem and concentration-compactness principle. Böer et al. [10]
studied the following Kirchhoff–Choquard problem:

−M(‖∇u‖2
2)∆u + Q(x)u + µ(V(| · |) ∗ u2)u = f (u) in R2, (3)

where M(t) = a + bt, µ > 0, V is a sign-changing potential and Q, f are continuous
functions. By applying the variational techniques, the authors proved the existence and
multiplicity of solutions to Problem (3). Actually, V(|x|) can be the logarithmic kernel ln |x|
under some special conditions.

Next, we introduce some results with the nonlocal term ln |x| ∗ u2 on the left side of
the problem. Chen et al. in [11] considered the following Schrödinger–Poisson system:{

−∆ϕ + ϕ + φϕ = f (ϕ), x ∈ R2,
∆φ = ϕ2, x ∈ R2.

(4)

Using the Gagliardo–Nirenberg inequality and the Hardy–Littlewood–Sobolev in-
equality, they proved the existence of ground state solution and mountain pass solu-
tion of Problem (4). In 2021, Alves et al. [12] investigated the following Schrödinger–
Poisson system: {

−∆ϕ + λϕ + µ(ln | · | ∗ |ϕ|2)ϕ = f (ϕ), x ∈ R2,∫
R2 |ϕ|2dx = c, c > 0,

(5)

where λ, µ ∈ R. The authors showed the existence of normalized solutions of system (5) by
using the Hardy–Littlewood–Sobolev inequality and the variational methods. For more
related results, we refer to [8,9,12–34] and the references therein.
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To the best of our knowledge, there is no result for the existence of solutions for
Problem (1). In this article, we consider the existence of solutions to Problem (1). And we
can obtain the following corresponding functional for Problem (1):

I(u) =
a
2

∫
R2
|∇u|2dx +

b
4

(∫
R2
|∇u|2dx

)2
+

1
2

∫
R2

V(x)u2dx

−λ

4

∫
R2

∫
R2
(ln |x− y|)u2(x)u2(y)dxdy−

∫
R2

F(u)dx. (6)

Let H1(R2) be the Sobolev space with the following inner product and norm

(u, v) =
∫
R2
(∇u∇v + uv)dx, ‖u‖H1 :=

(∫
R2
(|∇u|2 + u2)dx

) 1
2
.

Moreover, let E = {u ∈ H1(R2) :
∫
R2 V(x)u2dx < +∞} be the Hilbert space with

the norm
‖u‖2 :=

∫
R2
(|∇u|2 + V(x)u2)dx.

From the assumption(V) and the Poincaré inequality, one can deduce that the embed-
ding E ↪→ H1(R2) is continuous. Similar to Lemma 2.2 in [15], we can conclude that I is of
class C1 on E. Moreover, it is evident that the critical points of I correspond to the weak
solutions to Problem (1).

Similar to [35], Lemma 2.4, and [15], Proposition 2.3, we can obtain the Pohožaev
funtional of (1):

P(u) =
1
2

∫
R2
[2V(x) + (∇V(x), x)]u2dx− λ

∫
R2

∫
R2
(ln |x− y|)u2(x)u2(y)dxdy

− λ

4
‖u‖4

2 − 2
∫
R2

F(u)dx. (7)

It is standard to find that P(u) = 0 if u is the solution of (1). Define

J(u) = 2〈I′(u), u〉 − P(u)

= 2a
∫
R2
|∇u|2dx + 2b

(∫
R2
|∇u|2dx

)2
+

1
2

∫
R2
[2V(x)− (∇V(x), x)]u2dx

−λ
∫
R2

∫
R2
(ln |x− y|)u2(x)u2(y)dxdy +

λ

4
‖u‖4

2 − 2
∫
R2
[ f (u)u− F(u)]dx. (8)

Then, we denote the Nehari–Pohožaev manifold of the functional I as follows:

M := {u ∈ E\{0} : J(u) = 0}. (9)

Obviously, all nontrivial solutions of (1) are included inM.
Now, we present the main results of this article.

Theorem 1. Assume that (V), (V1) and (F1)–(F4) hold. There exists λ∗ > 0, such that for
0 < λ 6 λ∗, Equation (1) admits a nontrivial least energy solution in E. Moreover, Equation (1)
admits a solution of mountain pass type in E with positive energy.

Theorem 2. Assume that V satisfies (V), (V2) and f satisfies (F1)–(F3), (F5). There exists
λ∗∗ > 0, such that for 0 < λ 6 λ∗∗, Equation (1) has a ground state solution in E.

Remark 1. Compared with [2], we consider the Problem (1) in which the nonlocal term ln |x| ∗ u2

is on the right-hand side of the equation. Due to the sign-changing property of this nonlocal term,
the approach for the nonlocal term on the left side of the problem does not apply with the present
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article. We tested this situation by introducing some subtle analysis. Moreover, we give a gentle
assumption (V2), compared to [2].

There are two nonlocal terms in this problem, which make the Problem (1) no longer
a pointwise identity. It is worth noting that the approach for situation |x|−1 ∗ u2 is not
often adapted to the Equation (1) since ln |x| ∗ u2 is sign-changing and is neither bounded
from above nor from below. Moreover, compared with the problem where the nonlocal
term ln |x| ∗ u2 is on the left, such as [11,12], we cannot use the Hardy–Littlewood–Sobolev
inequality to determine the boundedness of the Cerami sequence. Also, it is difficult to
show that the energy functional of Equation (1) satisfies the mountain pass geometry.

In this paper, using the variational methods introduced by [15], we investigate the
existence of the least energy solutions. Specifically, we begin by building a Cerami sequence
{un} with P(un) → 0, then, by establishing a contradiction and some subtle analytical
techniques, we verify that the Cerami sequence is bounded in H1(R2). To prove the
existence of ground state solutions, based on the method developed in [36], we construct a
important inequality between the corresponding functional with the Pohožaev identity;
hence, we can determine the boundedness of the Cerami sequence.

This paper is organized as follows. Section 2 shows the preliminaries. Section 3 gives
the proof of Theorem 1, and Section 4 illustrates the proof of Theorem 2.

Throughout this paper, we use the following notations: Lq(R2) denotes the Lebesgue
space equipped with the norm ‖u‖s =

(∫
R2 |u|sdx

)1/s, where 2 6 s < +∞; ‖u‖2
∗ :=∫

R2 ln(1 + |x|)u2(x)dx; Br(z) denotes the open ball centered at z with radius r > 0.

2. Preliminaries

In the first part, we define

(w, z) 7→ χ1(w, z) =
∫
R2

∫
R2

ln(1 + |x− y|)w(x)z(y)dxdy,

(w, z) 7→ χ2(w, z) =
∫
R2

∫
R2

ln
(

1 +
1

|x− y|

)
w(x)z(y)dxdy,

(w, z) 7→ χ0(w, z) =
∫
R2

∫
R2

ln(|x− y|)w(x)z(y)dxdy.

Then, we determine that χ0(w, z) = χ1(w, z) − χ2(w, z). Indeed, all of the above
definitions are limited to measurable functions w, z : R2 → R, such that the double
integral in the right hand is well defined in the sense of Lebesgue. According to the
Hardy–Littlewood–Sobolev inequality [5], we have∣∣∣∣∫R2

∫
R2

ln
(

1 +
1

|x− y|

)
u2(x)u2(y)dxdy

∣∣∣∣
6
∫
R2

∫
R2

1
|x− y| |u

2(x)u2(y)|dxdy 6 C‖u‖4
8/3, ∀u ∈ L

8
3 (R2). (10)

Furthermore, since

ln(1 + |x− y|) 6 ln(1 + |x|+ |y|) 6 ln(1 + |x|) + ln(1 + |y|),

for w, z, u, v ∈ E, one has∣∣∣∣∫R2

∫
R2

ln(1 + |x− y|)w(x)z(x)u(y)v(y)dxdy
∣∣∣∣

6
∫
R2

∫
R2
[ln(1 + |x|) + ln(1 + |y|)]|w(x)z(x)||u(y)v(y)|dxdy

6 ‖w‖∗‖z‖∗‖u‖2‖v‖2 + ‖w‖2‖z‖2‖u‖∗‖v‖∗. (11)
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Next, to obtain the solutions of (1), the minimax principle (see [37], Proposition 2.8) is
presented here.

Lemma 1. Let Y be a Banach space, and Ω0 be the closed subspace of the metric space Ω, Λ′ ⊂
C(Ω0, Y). Denote

Λ̄ := {θ ∈ C(Ω, Y) : θ|Ω0 ∈ Λ′}.

If Ψ ∈ C1(Y,R) satisfies

c′ := sup
θ′∈Λ′

sup
u∈Ω0

Ψ(θ′(u)) < c := inf
θ∈Λ

sup
u∈Ω

Ψ(θ(u)) < ∞,

then, for δ ∈ (0, (c− c′)/2), ξ > 0 and θ ∈ Λ̄ such that

sup
Ω

Ψ ◦ θ 6 c + δ,

there is u ∈ Y, such that

(i) c− 2δ 6 Ψ(u) 6 c + 2δ;
(ii) dist(u, θ(Ω)) 6 2ξ;
(iii) ‖Ψ′(u)‖ 6 8δ

ξ .

Inspired by [35] (Lemma 3.2), we find that there exists a Cerami sequence for func-
tional I.

Lemma 2. Suppose that (V) and (F1)− (F3) hold. Then, there exists λ∗ > 0, {un} ⊂ E such
that, for λ 6 λ∗,

I(un)→ c > 0, ‖I′(un)‖E∗(1 + ‖un‖E)→ 0, J(un)→ 0, (12)

here,
c := inf

γ∈Γ
max
t∈[0,1]

I(γ(t)), Γ := {γ ∈ C([0, 1], E) : γ(0) = 0, I(γ(1)) < 0}.

Proof. We certify that 0 < c < ∞ first. For any t > 0, set ut := u(tx) here and in what
follows. Then,

I(t2ut) =
a
2

t4‖∇u‖2
2 +

b
4

t8‖∇u‖4
2 +

t2

2

∫
R2

V(t−1x)u2dx

−λt4

4

∫
R2

∫
R2
(ln |tx− ty| − ln t)u2(tx)u2(ty)d(tx)d(ty)− 1

t2

∫
R2

F(t2u)dx

=
a
2

t4‖∇u‖2
2 +

b
4

t8‖∇u‖4
2 +

t2

2

∫
R2

V(t−1x)u2dx− λt4

4

∫
R2

∫
R2

ln(|x− y|)u2(x)u2(y)dxdy

+
λt4 ln t

4
‖u‖4

2 −
1
t2

∫
R2

F(t2u)dx, ∀t > 0. (13)

It follows from (F1)–(F3) and (13) that

lim
t→0

I(t2ut) = 0, sup
t>0

I(t2ut) < ∞, lim
t→∞

I(t2ut) = −∞.

Then, we may choose T > 0 that is sufficiently large, satisfying I(T2uT) < 0. Now, we
define γT(t) = (tT)2utT for t ∈ [0, 1]; thus, we can deduce that γT(0) = 0, I(γT(1)) < 0,
γT ∈ C([0, 1], E) and maxt∈[0,1] I(γT(t)) < ∞. Consequently, Γ 6= 0, c < ∞.

According to (F1) and (F2), for any ε > 0, s ∈ R, there exists a constant Cε > 0, such
that

f (s)s 6 εs2 + Cε|s|p, F(s) 6 εs2 + Cε|s|p, ∀s ∈ R. (14)
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Fix ε = a/4, then let λ∗ > 0 be sufficiently small such that, for λ 6 λ∗,

1
16

min
{

min{a, 1}‖∇un‖2
2, b‖∇un‖4

2

}
− λ

8

∫
R2

∫
R2

ln(1 + |x− y|)u2(x)u2(y)dxdy− λ

16
‖u‖4

2 > 0. (15)

Then, from (6), (10), (14), (15) and the Sobolev imbedding inequality, we know

I(u) >
a
2
‖∇u‖2

2 +
b
4
‖∇u‖4

2 +
1
2

∫
R2

V(x)u2dx− λ

4

∫
R2

∫
R2

ln(|x− y|)w(x)z(y)dxdy

− a
4
‖u‖2

2 − C‖u‖p
p

> min{a, 1}1
4
‖u‖2 − C‖u‖p, ∀u ∈ E.

We can conclude that ê > 0 and d > 0, fulfilling

I(u) > 0 for ‖u‖ 6 ê, I(u) > l for ‖u‖ = ê. (16)

For any γ ∈ Γ, we have γ(0) = 0 and I(γ(1)) < 0. Thus, it follows from (16) that
‖γ(1)‖ > ê holds. Since γ(t) is continuous, by applying the intermediate value theorem,
we can deduce that there is t0 ∈ (0, 1) satisfying ‖γ(t0)‖ = ê. Thus,

sup
t∈[0,1]

I(γ(t)) > I(γ(t0)) > l > 0, ∀γ ∈ Γ,

which means
0 < l 6 inf

γ∈Γ
max
t∈[0,1]

I(γ(t)) = c < ∞. (17)

Set X as the Banach space endowed with norm

‖(t, w)‖X := (|t|2 + ‖w‖2)
1
2 .

Next, let X := R× E; we define

P : X → E, P(t, w)(x) := e2tw(etx) for t ∈ R, w ∈ E, x ∈ R2,

Then,

Ψ(t, w) = I(P(t, w)) =
a
2

∫
R2
|∇P(t, w)|2dx +

b
4

(∫
R2
|∇P(t, w)|2dx

)2
+

1
2

∫
R2

V(x)|P(t, w)|2dx

−λ

4

∫
R2

∫
R2

ln(|x− y|)P2(t, w(x))P2(t, w(y))dxdy−
∫
R2

F(P(t, w))dx

=
a
2

e4t
∫
R2
|∇w|2dx +

b
4

e8t
(∫

R2
|∇w|2dx

)2
+

e2t

2

∫
R2

V(e−tx)w2dx

−λe4t

4

∫
R2

∫
R2

ln(|x− y|)w2(x)w2(y)dxdy +
λte4t

4

(∫
R2

w2d
)2
− 1

e2t

∫
R2

F(e2tw)dx.

Hence, we get
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∂tΨ(t, w) = 2ae4t
∫
R2
|∇w|2dx + 2be8t

(∫
R2
|∇w|2dx

)2
+ e2t

∫
R2

V(e−tx)w2dx

− e2t

2

∫
R2
(∇V(e−tx), (e−tx))w2dx− λe4t

∫
R2

∫
R2

ln(|x− y|)w2(x)w2(y)dxdy

+λ

(
te4t +

e4t

4

)(∫
R2

w2dx
)2

+
2

e2t

∫
R2

F(e2tw)dx− 2
e2t

∫
R2

f (e2tv)e2twdx

= 2a‖∇P(t, w)‖2
2 + 2b‖∇P(t, w)‖4

2 +
∫
R2

V(x)|P(t, w)|2dx− 1
2

∫
R2
(∇V(x), x)|P(t, w)|2dx

−λ
∫
R2

∫
R2

ln(|x− y|)P2(t, w(x))P2(t, w(y))dxdy +
λ

4

(∫
R2
|P(t, w)|2dx

)2

−2
∫
R2
[ f (P(t, w))P(t, w)− F(P(t, w))]dx

= J(P(t, w)), ∀t ∈ R, w ∈ E, (18)

which shows that Ψ is of class C1 on X. In addition, as the map w 7→ P(t, w) is linear, for
any t ∈ R, w, z ∈ E, one has

∂wΨ(t, w)z = I′(P(t, w))P(t, w), (19)

Now, define
c̃ = inf

γ̃∈Γ̃
max
t∈[0,1]

I(γ̃(t)),

where
Γ̃ = {γ̃ ∈ C([0, 1], X) : γ̃(0) = 0, I(γ̃(1)) < 0}.

Due to Γ = {P ◦ γ̃ : γ̃ ∈ Γ̃}, we have c = c̃. With the definition of c, for any n ∈ N,
choosing γn ∈ Γ such that

max
t∈[0,1]

Ψ(0, γn(t)) = max
[0,1]

I(γn(t)) 6 c +
1
n2 .

From Lemma 1, let Ω = [0, 1], Ω0 = {0, 1} and X, Γ̃ in place of Y, Γ. Fix γ̃n(t) =
(0, γn(t)), εn = 1

n2 and ξn = 1
n . Using (17), for n ∈ N large, εn = 1

n2 ∈ (0, c
2 ). Consequently,

in terms of Lemma 1, we deduce that, as n→ ∞, there is (tn, wn) ∈ X satisfying

Ψ(tn, wn)→ c, (20)

‖Ψ′(tn, wn)‖X∗(1 + ‖(tn, wn)‖X)→ 0, (21)

dist((wn, wn), {0} × γn([0, 1]))→ 0. (22)

By (22), we have
tn → 0. (23)

Noticing that

〈Ψ′(tn, wn), (ν, z)〉 = 〈I′(P(tn, wn)), P(tn, wn)〉+ J(P(tn, wn))µ, ∀(ν, z) ∈ X. (24)

Then, from (18) and (19), fix ν = 1 and z = 0 in (24), we have

J(P(tn, wn))→ 0, as n→ ∞. (25)

Define un := P(tn, wn); combining (20) with (25), one has

I(un)→ c, J(un)→ 0 as n→ ∞.
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Set τn = e−2tn w(e−tn x) ∈ E for w ∈ E. Using (21) and (24), we have

(1 + ‖un‖)|I′(un)w| = (1 + ‖un‖)|I′(un)P(tn, wn)| = o(1)‖τn‖, as n→ ∞.

Furthermore, from (23), one has

‖τn‖2 = ‖∇τn‖2
2 +

∫
R2

V(x)τ2
ndx

= e−4tn‖∇w‖2
2 + e−2tn

∫
R2

V(etn x)w2dx

= [1 + o(1)]‖∇w‖2
2 + [1 + o(1)]

∫
R2

V(x)w2dx

= [1 + o(1)]‖w‖2
E, as n→ ∞.

Hence,
(1 + ‖un‖E)‖I′(un)‖E∗ → 0, as n→ ∞.

Now, we complete the proof. �

Next, we prove that the Cerami sequence is bounded.

Lemma 3. Suppose that (V), (V1) and (F1)–(F4) hold. Let {un} ⊂ E, such that (12) holds.
Then, there is λ∗ > 0, such that for 0 < λ 6 λ∗, {un} is bounded in H1(R2).

Proof. Using (F4), (V1), (12), (15), the Gagliardo–Nirenberg inequality (see [38], Theorem
1.3.7), we have

c + o(1) = I(un)−
1
8

J(un)

=
a
4
‖∇un‖2

2 +
3
8

∫
R2

V(x)u2
ndx +

1
16

∫
R2
(∇V(x), x)u2

ndx

−λ

8

∫
R2

∫
R2

ln(|x− y|)u2(x)u2(y)dxdy− λ

32
‖un‖4

2 +
1
4

∫
R2
[ f (un)un − 5F(un)]dx

>
a
4
‖∇un‖2

2 +
3
8

∫
R2

V(x)u2
ndx +

1
16

∫
R2
(∇V(x), x)u2

ndx +
λ

32
‖un‖4

2

−λ

8

∫
R2

∫
R2

ln(1 + |x− y|)u2(x)u2(y)dxdy− λ

16
‖un‖4

2 +
1
4

∫
R2
[ f (un)un − 5F(un)]dx

>
λ

32
‖un‖4

2, (26)

which shows
‖un‖2 6 C,

∫
R2
[ f (un)un − 5F(un)]dx 6 C. (27)

Now, we illustrate that {‖un‖} is bounded. With reduction to absurdity, we suppose
that ‖un‖ → ∞. Defining zn := un/‖un‖, by (27), one has ‖zn‖ = 1, ‖zn‖2 → 0. Set
r = q/(q− 1); then, by applying the Gagliardo–Nirenberg inequality, one has

‖zn‖2r
2r 6 C‖zn‖2

2‖∇zn‖2r−2
2 = o(1). (28)

Let

An :=
{

x ∈ R2 :
∣∣∣∣ f (un)

un

∣∣∣∣ 6 α0

}
.

Thus, ∫
An

∣∣∣∣ f (un)

un

∣∣∣∣z2
ndx 6 α0‖zn‖2

2 = o(1). (29)
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Moreover, it follows from (F4), (27), (28) and the Hölder inequality that∫
R2\An

∣∣∣∣ f (un)

un

∣∣∣∣z2
ndx

6
(∫

R2\An

∣∣∣∣ f (un)

un

∣∣∣∣qdx
) 1

q
(∫

R2\An
|zn|2rdx

) 1
r

6 C
1
q

(∫
R2\An

[ f (un)un − 5F(un)]dx
) 1

q
‖zn‖2

2r = o(1). (30)

Thus, from (6), (12), (29) and (30), for λ 6 λ∗, we have

1
2

min{a, 1}+ o(1) =
1
2 min{a, 1}‖un‖2 − 〈I′(un), un〉

‖un‖2

6
min{a, 1}‖un‖2 − a‖∇un‖2

2 −
∫
R2 V(x)u2

ndx
‖un‖2

−
1
2 min{a, 1}‖un‖2 − λ

∫
R2

∫
R2 ln(1 + |x− y|)u2(x)u2(y)dxdy
‖un‖2

+
−λ
∫
R2

∫
R2 ln

(
1 + 1

|x−y|

)
u2(x)u2(y)dxdy +

∫
R2 f (un)undx

‖un‖2

6
∫

An

∣∣∣∣ f (un)

un

∣∣∣∣z2
ndx +

∫
R2\An

∣∣∣∣ f (un)

un

∣∣∣∣z2
ndx

= o(1),

which is a contradiction. Then, {un} is bounded in H1(R2). �

In order to obtain the existence of nontrivial solutions for (1), now we show the
following lemma.

Lemma 4 ([15] Lemma 2.1). Let {un} be a sequence in L2(R2) satisfying un → u ∈ L2(R2)\{0}
a.e. on R2. If {wn} is a bounded sequence in L2(R2), such that

sup
n∈N

∫
R2

∫
R2

ln(1 + |x− y|)u2
n(x)w2

n(y)dxdy < ∞,

then {‖wn‖∗} is bounded. If, moreover,∫
R2

∫
R2

ln(1 + |x− y|)u2
n(x)w2

n(y)dxdy→ 0, ‖wn‖2 → 0 as n→ ∞,

then ‖wn‖∗ → 0 as n→ ∞.

3. Proof of Theorem 1

In this section, we give the proof of Theorem 1.
First of all, in view of Lemmas 2 and 3, for some constant ρ > 0, there is a sequence

{un} ⊂ E that satisfies ‖un‖2 6 ρ and (12). Here, we claim

δ := lim sup
n→∞

sup
y∈R2

∫
B2(y)

|un|2dx > 0.

Actually, if δ = 0, using the Lions’ concentration compactness principle (see [39],
Lemma 1.21), one has un → 0 as n→ ∞ in Ls(R2), s ∈ (2, ∞). Thus, from (10), we have∫

R2

∫
R2

ln
(

1 +
1

|x− y|

)
u2

n(x)u2
n(y)dxdy→ 0 as n→ ∞.
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From (14), fix ε = c/(3ρ), we have∫
R2

∣∣∣∣12 f (un)un − F(un)

∣∣∣∣dx 6
3
2

ε‖un‖2
2 + Cε‖un‖p

p 6
c
2
+ o(1). (31)

Using (6), (12), (15) and (31), one has

c + o(1) = I(un)−
1
2
〈I′(un), un〉

= − b
4
‖∇un‖4

2 +
λ

4

∫
R2

∫
R2

ln
(

1 +
1

|x− y|

)
u2(x)u2(y)dxdy

−λ

4

∫
R2

∫
R2

ln(1 +
1

|x− y| )u
2(x)u2(y)dxdy +

∫
R2

[
1
2

f (un)un − F(un)

]
dx

6
c
2
+ o(1),

which yields a contradiction; then, δ > 0.
Passing to a subsequence if necessary, we suppose that there is yn ∈ R2, satisfying∫

B1(yn)
|un|2dx >

δ

2
.

Define ûn(x) := un(x + yn), then∫
B1(0)
|ûn|2dx >

δ

2
. (32)

From (12), we conclude that

I(ûn)→ c > 0, 〈I′(ûn), ûn〉 → 0, as n→ ∞. (33)

Passing to a subsequence if necessary, we have ûn ⇀ û in H1(R2), ûn → û in Ls
loc(R

2)
for 2 6 s < +∞, ûn → û a.e. on R2 as n → ∞. And then, using (32), one has û 6= 0. By
using the boundedness of {‖ûn‖} in E, going to a subsequence if necessary, we deduce

ûn ⇀ û in E, ûn → û in Lq(R2) for 2 6 q < +∞, ûn → û a.e. on R2 as n→ ∞. (34)

Next, we certify that I′(û) = 0. To this end, we claim

〈I′(û), w〉 = lim
n→∞
〈I′(ûn), w〉 = lim

n→∞
〈I′(un), w(x− yn)〉 = 0, ∀w ∈ E. (35)

Actually,∣∣〈I′(ûn), w〉
∣∣ = ∣∣〈I′(un), w(x− yn)〉

∣∣ 6 ‖I′(un)‖E∗‖w‖E = o(1), ∀w ∈ E. (36)

Thus,
〈I′(ûn), û〉 = o(1). (37)

From (F1), (F2), (34) and the Lebesgue’s dominated convergence theorem, one can
conclude that ∫

R2
f (ûn)(ûn − û)dx = o(1). (38)

Furthermore, by (10) and (34), one has

∫
R2

∫
R2

ln
(

1 +
1

|x− y|

)
û2

n(x)(ûn(y)− û(y))ûn(y)dxdy 6 C‖ûn‖3
8/3‖ûn − û‖8/3 = o(1). (39)
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Analogously to [15], Lemma 2.6, we have∫
R2

∫
R2

ln(1 + |x− y|)û2
n(x)(ûn(y)− û(y))w(y)dxdy = o(1), ∀w ∈ E. (40)

Setting w = ûn − û, we have∫
R2

∫
R2

ln(1 + |x− y|)û2
n(x)(ûn(y)− û(y))2dxdy = o(1). (41)

From (33), (34), (37)–(39) and (41), we know

o(1) = 〈I′(ûn), ûn − û〉

= a‖∇ûn‖2
2 − a‖∇û‖2

2 + b‖∇ûn‖4
2 − b‖∇û‖4

2 +
∫
R2

V(x)û2
ndx−

∫
R2

V(x)û2dx

−λ
∫
R2

∫
R2

ln(1 + |x− y|)û2
n(x)(ûn(y)− û(y))2dxdy

−λ
∫
R2

∫
R2

ln(1 + |x− y|)û2
n(x)(ûn(y)− û(y))û(y)dxdy

+
∫
R2

∫
R2

ln
(

1 +
1

|x− y|

)
û2

n(x)(ûn(y)− û(y))ûn(y)dxdy−
∫
R2

f (ûn)(ûn − û)dx

= a‖∇ûn‖2
2 − a‖∇û‖2

2 + b‖∇ûn‖4
2 − b‖∇û‖4

2

−λ
∫
R2

∫
R2

ln(1 + |x− y|)û2
n(x)(ûn(y)− û(y))2dxdy + o(1),

then, we deduce that as n→ ∞
‖ûn − û‖ → 0

since ûn ⇀ û in H1(R2). In terms of Lemma 4, we have ‖ûn − û‖∗ → 0. Then,∣∣∣∣∫R2

∫
R2

ln(1 + |x− y|)(û2
n(x)− û2(x))û(y)w(y)dxdy

∣∣∣∣
6

∫
R2

∫
R2
[ln(1 + |x|) + ln(1 + |y|)]|û2

n(x)− û2(x)| · |û(y)w(y)|dxdy

6 ‖ûn − û‖∗‖ûn + û‖∗‖û‖2‖w‖2 + ‖ûn − û‖2‖ûn + û‖2‖û‖∗‖w‖∗
= o(1), ∀w ∈ E. (42)

Similar to (38) and (39), one has∫
R2

∫
R2

ln
(

1 +
1

|x− y|

)
û2

n(x)(ûn(y)− û(y))w(y)dxdy = o(1), (43)∫
R2

∫
R2

ln
(

1 +
1

|x− y|

)
(û2

n(x)− û2(x))û(y)w(y)dxdy = o(1) (44)

and ∫
R2
[ f (ûn)− f (û)]wdx = o(1), ∀w ∈ E. (45)

From (34), (40)–(45), we have
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〈I′(ûn)− I′(û), w〉
= a(∇ûn −∇û,∇w) + b‖∇ûn‖2

2(∇ûn,∇w)− b‖∇û‖2
2(∇û,∇w)

+
∫
R2

V(x)ûnwdx−
∫
R2

V(x)ûwdx− λ
∫
R2

∫
R2

ln(1 + |x− y|)û2
n(x)(ûn(y)− û(y))w(y)dxdy

−λ
∫
R2

∫
R2

ln(1 + |x− y|)(û2
n(x)− û2(x))û(y)w(y)dxdy

+λ
∫
R2

∫
R2

ln
(

1 +
1

|x− y|

)
û2

n(x)(ûn(y)− û(y))w(y)dxdy

+λ
∫
R2

∫
R2

ln
(

1 +
1

|x− y|

)
(û2

n(x)− û2(x))û(y)w(y)dxdy−
∫
R2
[ f (ûn)− f (û)]wdx

= o(1), ∀w ∈ E. (46)

Thus, based on (36) and (46), we can deduce that (35) is true. Consequently, û ∈ E is a
nontrivial solution to (1) and I(û) = c > 0.

Now, we define
N := {u ∈ E\{0} : I′(u) = 0}.

Note that û ∈ N , one has N 6= ∅. From (F1) and (F2), one has

| f (u)u| 6 1
2

min{a, 1}u2 + C|u|p, ∀u ∈ R. (47)

For u ∈ N , 〈I′(u), u〉 = 0, in terms of (15), (47) and the Sobolev embedding inequality,
we obtain

min{a, 1}‖u‖2 6 a‖∇u‖2
2 + b‖∇u‖4

2 +
∫
R2

V(x)u2dx− λ
∫
R2

∫
R2

ln(1 + |x− y|)u2(x)u2(y)dxdy

+λ
∫
R2

∫
R2

ln
(

1 +
1

|x− y|

)
u2(x)u2(y)dxdy

=
∫
R2

f (u)udx

6
1
2

min{a, 1}‖u‖2 + C̄‖u‖p, ∀u ∈ N , (48)

which implies

‖u‖ > δ0 :=
(

1
2C

min{a, 1}
) 1

p−2
> 0, ∀u ∈ N . (49)

We can conclude that infN I > −∞. Choosing {un} ⊂ N such that I(un) → infN I.
Then, (12) holds. By applying Lemma 3, {un} is bounded in H1(R2). Now, we claim that
{un} does not vanish. If not, using the Lions’ concentration compactness principle (see, for
example, [5]), we have un → 0 in Ls(R2) for s ∈ (2, ∞). Hence, it follows from (10) and (14)
that ∫

R2

∫
R2

ln
(

1 +
1

|x− y|

)
u2

n(x)u2
n(y)dxdy = o(1),

∫
R2

f (un)undx = o(1),

which contradicts (48) and (49). Consequently, by applying the same argument as above,
we obtain that there exists u0 ∈ N that satisfies I(u0) = infN I > −∞. Therefore, u0 ∈ E is
the least energy solution to Problem (1). �

Remark 2. It is natural to ask whether the nontrivial solution û of Problem (1) is equal to the least
energy solution u0. This would be an interesting question to explore in the following work.
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4. Proof of Theorem 2

To prove the existence of ground state solutions for Equation (1), we firstly illustrate
some important lemmas.

Lemma 5. Assume that (F1), (F2) and (F5) hold. Then

g(t, u) :=
1− t8

4
f (u)u +

t8 − 5
4

F(u) +
1
t2 F(t2u) > 0, ∀t > 0, u ∈ R. (50)

Proof. It is clear that (50) holds for u = 0. For u 6= 0, by (F5), we have

d(g(t, u))
dt

= 2t7u2
[

f (t2u)t2u− F(t2u)
t4u2 − f (u)u− F(u)

u2

]
{
> 0, t > 1,

6 0, 0 < t < 1,

then, g(t, u) > g(1, u) = 0 for t > 0. �

Lemma 6. Suppose that (V) and (V2) hold. Then,

h(t) :=
1
2

V(x)− 1
2

t2V(t−1x)− 1− t8

8
V(x) +

1− t8

16
(∇V(x), x) > 0, ∀t > 0. (51)

Proof. Based on the calculation,

h′(t) =
1
2

t7x6
[
(∇V(t−1x), t−1x)− 2V(t−1x)

t6x6 − (∇V(x), x)− 2V(x)
x6

]
{
> 0, t > 1,

6 0, 0 < t < 1,

then, h(t) > h(1) = 0 for t > 0. �

Lemma 7. Assume that (V), (V2), (F1), (F2) and (F5) hold. Then, there exists λ∗∗ > 0 such
that, for λ 6 λ∗∗,

I(u) > I(t2ut) +
1− t8

8
J(u), ∀u ∈ E, t > 0, (52)

I(u) >
1
8

J(u) +
λ

32
‖u‖4

2, ∀u ∈ E. (53)

Proof. Choosing λ∗∗ > 0 to be sufficiently small such that, for λ 6 λ∗∗,

4a(1− t4)2‖∇u‖2
2 − λ(1− t8)‖u‖4

2 − 8λt4 ln t‖u‖4
2 − 4λ(1− t4)2

∫
R2

∫
R2

ln(|x− y|)u2(x)u2(y)dxdy > 0 (54)

holds. By (50), (51), (54), (8) and (13), one has
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I(u)− I(t2ut) =
a
2

∫
R2
(1− t4)|∇u|2dx +

b‖∇u‖2
2

4

∫
R2
(1− t8)|∇u|2dx

+
1
2

∫
R2
[V(x)− t2V(t−1x)]u2dx− λ

4
(1− t4)

∫
R2

∫
R2

ln(|x− y|)u2(x)u2(y)dxdy

−λt4 ln t
4
‖u‖4

2 +
∫
R2

[
1
t2 F(t2u)− F(u)

]
dx

=
1− t8

8
J(u) +

(1− t4)2

4
a‖∇u‖2

2 −
λ(1− t8)

32
‖u‖4

2 −
λt4 ln t

8π
‖u‖4

2

−λ(1− t4)2

8

∫
R2

∫
R2

ln(|x− y|)u2(x)u2(y)dxdy +
1
2

∫
R2

V(x)u2dx

−1
2

t2
∫
R2

V(t−1x)u2dx− 1− t8

8

∫
R2

V(x)u2dx +
1− t8

16

∫
R2
(∇V(x), x)u2dx

+
∫
R2

[
1
t2 F(t2u) +

1− t8

4
f (u)u +

t8 − 5
4

F(u)
]

dx

>
1− t8

8
J(u), ∀u ∈ E, t > 0,

then, (52) holds. Furthermore, in terms of Lemmas 5 and 6, we have

lim
t→0

g(t, u) =
1
4

f (u)u− 5
4

F(u) > 0, u ∈ R (55)

and
lim
t→0

h(t) =
3
8

V(x) +
1
16

(∇V(x), x) > 0, x ∈ R. (56)

Moreover, let t→ 0 in (54); one has

4a‖∇u‖2
2 − λ‖u‖4

2 − 4λ
∫
R2

∫
R2

ln(|x− y|)u2(x)u2(y)dxdy > 0. (57)

Hence, using (55), (56), (57) and (15), we have

I(u)− 1
8

J(u) =
a
4
‖∇u‖2

2 +
3
8

∫
R2

V(x)u2dx +
1

16

∫
R2
(∇V(x), x)u2dx

−λ

8

∫
R2

∫
R2

ln(|x− y|)u2(x)u2(y)dxdy +
λ

32
‖u‖4

2 +
1
4

∫
R2
[ f (u)u− 5F(u)]dx

>
λ

32
‖u‖4

2, ∀u ∈ E.

Thus, (53) holds. �

By virtue of Lemma 7, we deduce the following corollary.

Corollary 1. Assume that (V), (V2), (F1), (F2) and (F5) hold. Then, there is λ∗∗ > 0 such
that, for λ 6 λ∗∗,

I(u) = max
t>0

I(t2ut), ∀u ∈ M. (58)

Lemma 8. Assume that (V), (V2), (F1)–(F3) and (F5) hold. Then, for u ∈ E\{0}, there is a
constant t(u) > 0, such that [t(u)]2ut(u) ∈ M.

Proof. Let u ∈ E\{0}, define η(t) := I(t2ut) for t ∈ (0, ∞), then we have
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η′(t) = 0 ⇔ 2at3‖∇u‖2
2 + 2bt7‖∇u‖4

2 + t
∫
R2

V(t−1x)u2dx− 1
2

∫
R2
(∇V(t−1x), x)u2dx

−t3λ
∫
R2

∫
R2

ln(|x− y|)u2(x)u2(y)dxdy +
4t3 ln t + t3

4
λ‖u‖4

2 +
2
t3

∫
R2

F(t2u)dx

−2
t

∫
R2

f (t2u)udx = 0

⇔ J(t2ut) = 0

⇔ t2ut ∈ M, ∀t > 0.

From (F1)–(F3), one can easily determine that lim
t→0

η(t) = 0, η(t) > 0 for t sufficiently

small and η(t) < 0 for t large enough. Therefore, there is a constant t(u) > 0, such that
η(t(u)) = maxt>0 η(t). Hence, η′(t(u)) = 0, and then, t(u)2ut(u) ∈ M. �

By applying Corollary 1 and Lemma 8, we obtain the following lemma.

Lemma 9. Assume that (V), (V2), (F1)–(F3) and (F5) hold. Then,

inf
u∈M

I(u) := m1 = inf
u∈E\{0}

max
t>0

I(t2ut).

Lemma 10. Assume that (V2), (F1)–(F3) and (F5) hold. Then,

(i) there is a constant $ > 0 that satisfies ‖u‖ > $, ∀u ∈ M;
(ii) m1 = inf

u∈M
I(u) > 0.

Proof. (i) It follows from (F1) and (F2) that

| f (u)u|+ |F(u)| 6 min{a, 1}
4

u2 + C|u|p, ∀u ∈ R. (59)

For any u ∈ M, we have J(u) = 0. From (54), (8), (59), Hardy–Littlewood–Sobolev
inequality and Sobolev emmbedding inequality, we know

min{a, 1}‖u‖2 6 2a‖∇u‖2
2 + 2b‖∇u‖4

2 +
5
2

∫
R2

V(x)u2dx− 1
2

∫
R2
(∇V(x), x)u2dx

−λ
∫
R2

∫
R2

ln(|x− y|)u2(x)u2(y)dxdy +
λ

4
‖u‖4

2

= 2
∫
R2
[ f (u)u− F(u)]dx

6
1
2

min{a, 1}‖u‖2 + C‖u‖p, ∀u ∈ M,

which implies

‖u‖ > $ :=
(

1
2C

min{a, 1}
) 1

p−2
, ∀u ∈ M. (60)

(ii) We may choose {un} ⊂ M, satisfying I(un)→ m1. There are two cases that need
to be distinguished: inf

n∈N
‖un‖2 > 0 and inf

n∈N
‖un‖2 = 0.

Case 1: inf
n∈N
‖un‖2 := $1 > 0, from (53), one has

m1 + o(1) = I(un) >
λ

32
‖un‖4

2 >
λ

32
$4

1.
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Case 2: inf
n∈N
‖un‖2 = 0, by (60), passing if necessary to a subsequence, one has

‖un‖2 → 0, ‖∇un‖2 > $. (61)

Then,
| ln(‖∇un‖2)|
‖∇un‖2

2
6 C. (62)

Set tn = ‖∇un‖
− 1

2
2 , for any un ∈ M, by (10), (13) and (14) in Lemma 2, together with

(57), (58), (61), (62) and the Gagliardo–Nirenberg inequality, we have

m1 + o(1) = I(un) > I(t2
n(un)tn)

=
a
2

t4
n‖∇un‖2

2 +
b
4

t8
n‖∇un‖4

2 +
t2
n
2

∫
R2

V(t−1
n x)u2

ndx

−λt4
n

4

∫
R2

∫
R2

ln(|x− y|)u2
n(x)u2

n(y)dxdy +
λt4

n ln tn

4
‖un‖4

2 −
1
t2
n

∫
R2

F(t2
nun)dx

>
a
2

t4
n‖∇un‖2

2 +
λt4

n ln tn

4
‖un‖4

2 − t2
n‖un‖2

2 − Ct2p−2
n ‖un‖2

2‖∇un‖p−2
2 + o(1)

=
a
2
− λ ln(‖∇un‖2)

8‖∇un‖2
2
‖un‖4

2 −
‖un‖2

2
‖∇un‖2

− C
‖un‖2

2
‖∇un‖2

+ o(1)

=
a
2
+ o(1).

Combining the above two cases, we conclude that m1 = inf
u∈M

I(u) > 0. �

Motivated by [11] (Lemma 4.7), we verify that the Cerami sequence given in Lemma 2
is also a minimizing sequence.

Lemma 11. Suppose that (F1)–(F3) and (F5) are satisfied. Then, there exists a sequence {un} ⊂
E, such that

I(un)→ c ∈ (0, m1], ‖I′(un)‖E∗(1 + ‖un‖)→ 0, J(un)→ 0. (63)

Proof. By means of Lemmas 9 and 10, we choose vn ∈ M, such that

0 < m1 6 I(vn) < m1 +
1
n

, ∀n ∈ N. (64)

In terms of Lemma 2, there is a sequence {un} ⊂ E that satisfies (12) for n ∈ N.
And then, we can choose Tn > 0, such that I(T2

n(vn)Tn) < 0. Next, we define γn(t) =
(tTn)2(vn)tTn for t ∈ [0, 1]. Then, γn ∈ Γ. Moreover, according to (16), one has

c ∈ [d, sup
t>0

I(t2(vn)t)].

According to Corollary 1, one has

I(vn) = sup
t>0

I(t2(vn)t).

Hence, using (64), one has

c 6 sup
t>0

I(t2(vn)t) < m1 +
1
n

, ∀n ∈ N. (65)

Let n→ ∞ in (65); in terms of Lemma 2, we obtain the desired conclusion. �
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Proof of Theorem 2. By virtue of Lemma 11, there is a sequence {un} ⊂ E that satisfies
(63). From (53) and (63), one has

c + o(1) = I(un)−
1
8

J(un) >
λ

32
‖un‖4

2, (66)

which yields the boundedness of {‖un‖2}. And then, we verify that {‖∇un‖2} is bounded.

With reduction to absurdity, we suppose ‖∇un‖2 → ∞. Set tn =
(

4
√

m1√
a‖∇un‖2

) 1
2 , we have

tn → 0 and t4
n ln tn → 0 as n → ∞. Then, according to (10), (13) and (14) in Section 2,

together with (52), (54), (63), (66) and the Gagliardo–Nirenberg inequality, one has

m1 + o(1) > c + o(1) = I(un)

> I(t2
n(un)tn) +

1− t8
n

8
J(un)

=
a
2

t4
n‖∇un‖2

2 +
b
4

t8
n‖∇un‖4

2 +
t2
n
2

∫
R2

V(t−1
n x)u2

ndx

−λt4
n

4

∫
R2

∫
R2

ln(|x− y|)u2
n(x)u2

n(y)dxdy +
λt4

n ln tn

8π
‖un‖4

2 −
1
t2

∫
R2

F(t2
nun)dx

>
a
4

t4
n‖∇un‖2

2 − t2
n‖un‖2

2 − Ct2p−2
n ‖un‖p

p + o(1)

>
a
4

t4
n‖∇un‖2

2 − t2
n‖un‖2

2 − Ct2p−2
n ‖un‖2

2‖∇un‖p−2
2 + o(1)

= 4m1 −
4
√

m1√
a‖∇un‖2

‖un‖2
2 −

C(
√

m1)
p−1

(
√

a)p−1‖∇un‖2
‖un‖2

2 + o(1)

= 4m1 + o(1),

which is impossible; hence, {‖∇un‖2} is bounded. Consequently, {un} is bounded in
H1(R2). By applying the similar arguments as those in the proof of Theorem 1, we conclude
that there exists ũ ∈ E\{0}, such that

I′(ũ) = 0, I(ũ) = c ∈ (0, m1].

Moreover, from ũ ∈ M, one has I(ũ) > m1. Thus, ũ ∈ E is a ground state solution
of (1). This completes the proof. �
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