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Abstract: This paper presents and analyzes two mathematical models for the human immunodefi-
ciency virus type-1 (HIV-1) infection with Cytotoxic T Lymphocyte cell (CTL) immune impairment.
These models describe the interactions between healthy CD4™ T cells, latently and actively infected
cells, HIV-1 particles, and CTLs. The healthy CD4™ T cells might be infected when they make contact
with: (i) HIV-1 particles due to virus-to-cell (VTC) contact; (ii) latently infected cells due to latent
cell-to-cell (CTC) contact; and (iii) actively infected cells due to active CTC contact. Distributed time
delays are considered in the second model. We show the nonnegativity and boundedness of the
solutions of the systems. Further, we derive basic reproduction numbers g and §f€0, that determine
the existence and stability of equilibria of our proposed systems. We establish the global asymptotic
stability of all equilibria by using the Lyapunov method together with LaSalle’s invariance principle.
We confirm the theoretical results by numerical simulations. The effect of immune impairment, time
delay and CTC transmission on the HIV-1 dynamics are discussed. It is found that weak immunity
contributes significantly to the development of the disease. Further, we have established that the
presence of time delay can significantly decrease the basic reproduction number and then suppress
the HIV-1 replication. On the other hand, the presence of latent CTC spread increases the basic
reproduction number and then enhances the viral progression. Thus, neglecting the latent CTC
spread in the HIV-1 infection model will lead to an underestimation of the basic reproduction number.
Consequently, the designed drug therapies will not be accurate or sufficient to eradicate the viruses
from the body. These findings may help to improve the understanding of the dynamics of HIV-1
within a host.

Keywords: HIV-1; cell-to-cell infection; latently infected cells; immune impairment; global stability;
distributed delays; Lyapunov function

MSC: 34D20; 34D23; 37N25; 92B05

1. Introduction

Human immunodeficiency virus type-1 (HIV-1) is one of the chronic viruses that infects
humans and causes Acquired Immune Deficiency Syndrome (AIDS). HIV-1 attacks the
CD4 7T cells which are essential in the immune system. Adaptive immune responses play
pivotal roles in HIV infection. B cells and cytotoxic T lymphocytes (CTLs) are two potential
components of the adaptive immune response. B cells produce antibodies to neutralize the
HIV-1 particles, while CTLs kill cells infected by HIV-1. Evaluating interactions between
HIV-1 and target cells as well as immune cells can be experimentally expensive. Thus,
mathematical modeling of HIV-1 infection has become an important tool for understanding
the dynamical behavior of the viruses and their interactions with target cells and immune
cells. Nowak and Bangham [1] presented the primary HIV-1 dynamics model which
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involve three components: healthy CD4"T cells (H), infected CD4" T cells (Y) and free
HIV-1 particles (V). In the same paper, the CTL immune response was modeled as:

Healthy CD4 " T cells: H(t) = ® — gH(t) — pHHV() 1)
Production of healthy CD4* T cells  Natural death  Infectious transmission
Actively infected CD4 T cells: Y(t) = o H(H)V(H) — 7tY(t) - YI(1)Y(t) ,
—_—— —— ——

Infectious transmission ~ Natural death  Killing of infected cells by CTLs

HIV-1 particles: V(t) = eY(t) — 0V(t) ,
N ——

“
Burstsize  Natural death

CTLs: I(t)= vY(t)I(t) - w , )

———
CTLs stimulation =~ Natural death

where I(t) is the concentration of the CTLs at time ¢. After introducing this model, several
virus dynamics models were developed and studied. Let us write the population dynamics
of the CTLs as:

() = (Y (1), 1()) - (1),

where (Y, I) is the stimulation rate of CTLs. It has taken many shapes in the literature:

S1. Self-regulating CTL, ©(Y, I) = w, where w > 0 [2],

S2. Linear CTL response, @(Y,I) = AY, where A > 0 [3-6],

S3. Predator-prey-like CTL, ©(Y,I) = vYI, wherev > 0[1,2,7],

S4. Combination of shapes S1-S3, O(Y,I) = w + AY +vYT [2],

S5. Combination of predator-prey-like CTL and self-proliferation CTL: @(Y,I) = vYI +

gI(l — ﬁ), where ¢, Imax > 0 [8].
S6. Saturated CTL response: ©(Y,I) = g—ﬁ, 9 > 0[9-12].

Some important biological factors were not included in models (1) and (2), such as:

Latently infected cells: these cells are considered one of the main obstacles for elimi-
nating the HIV-1 by current antiviral drug therapies. Such cells contain the HIV-1 virions
but do not generate them until they are activated. HIV-1 infection models with CTL immu-
nity and latently infected cells were introduced in other research papers (see, e.g., [7,13]).

Time delay: in [14], it was estimated that the time between the HIV-1 entering
a CD4™T cell until generating new HIV-1 particles is about 0.9 days. Viral infection
models with both CTL immunity and time delays were introduced in several works (see,
e.g., [15-18]).

Cell-to-cell (CTC) transmission: the above model assumes that the infection occurs
via virus-to-cell (VTC) contact. However, several research works reported that HIV-1 can
be directly transferred from an infected CD4 ™ T cell to a healthy CD4" T cell through the
formation of virological synapses (see, e.g., [19-24]). CTC has great influence on HIV-1
infection, which might be 100-1000 times faster than VTC virus spread [25]. In [26,27], viral
infection models with latently infected cells and CTC transmission were studied.

Immune impairment: models (1) and (2) assume that the presence of an antigen can
only simulate the immune CTL response, and neglect the CTL immune impairment. In fact,
HIV-1 is one of the viruses that has the ability to suppress the CTL response and cause CTL
immune impairment [28]. In this case, the pollution dynamics of the CTLs can be written
as follows (see, e.g., [28-35]):

I(t) = AY(t) = 61(t)Y () — 7I(t),

where, AY is the stimulation of CTL immunity and 61Y is the CTL immune impairment.
Modeling the latently infected cells and CTL immune impairment was studied in [36,37].
Intracellular time delay was considered in [36], while CTL immune response delay was
considered in [37].
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A viral infection model with CTL immune impairment, latently infected cells and CTC
transmission can be written as [38—40]:

H(t) =« —yH(t) — ptH(t)V () — p3H(t)Y (t), ®)
5(t) = p ()V( ) +p3H(E)Y () — (0 + pu)S(t), 4)
Y(t) = oS(t) — TY(t) =y I(1)Y(H), )
V(t) =eY(t) -0V (t), (6)
I(t) = AY(t) — mI(t) — SI(t)Y(t), )

where, S(f) is the concentration of the latently infected cells at time t. The healthy CD4*T
cells become infected by two modes: the VTC infection mode via HIV-1, p; HV and the
CTC infection mode via actively infected cells, p3HY. Latently infected cells are activated
at rate ¢S and die at rate uS. Elaiw et al. [41] studied a virus dynamics model with CTC
infection, immune impairment and intracellular time delay. In [40], CTL immune response
delay was included. Alofi and Azoz [39] studied a viral infection model with general VTC
and CTC infection rates.

We noted that the models presented in [38-40] assume that the CTC transmission is
only due to the actively infected cells. However, it was reported in Ref. [42] that latently
infected cells can also infect the healthy CD4™ T cells through the CTC mechanism. In
Refs. [43-49], some virus dynamics models were developed by assuming that both latently
and actively infected cells contribute to the CTC mechanism. However, the immune
impairment was not considered in these papers.

The aim of the present work is to study two within-host HIV-1 dynamics models by
involving latently infected cells, CTL immune impairment and CTC transmission. Both
latently and actively infected cells contribute in CTC infection. In the second model, we
included three types of distributed time delays. For both models we are investigating the
non-negativity and boundedness of solutions, calculating the basic reproduction number,
finding the model’s equilibria, establishing the global stability of equilibria, confirming the
theoretical results by numerical simulation and discussing the obtained results.

2. Model with Latent CTC Transmission and CTL Immune Impairment
2.1. System Description

We propose an HIV-1 dynamics model with immune impairment, latently infected
cells and two modes of transmissions, namely VIC and CTC. Both latently and actively
infected cells contribute to CTC infection. Under these assumptions, we present the
following model:

H(t) =a—nH(t) —ptH(V () — p2H(1)S(t) — psH(£)Y (t),
S(t) = prH(HV(t) + p2H(6)S(t) + psH()Y (t) — (o + p)S(t),
= S(t) — TY(t) — Y I(H)Y(t), ®)
= eY(t) - 0V(t),
I(t) = AY(t) - 7l(t) — SI(E)Y(b).

In our proposed model we assume that the healthy CD4" T cells become infected by
three rates: the VTC infection rate via HIV-1 particles, p; HV, the CTC infection rate via
latently infected cells, po HS, and the CTC infection rate via actively infected cells, p3HY.

2.2. Basic Properties
2.2.1. Nonnegativity and Boundedness of the Solutions

Lemma 1. Consider system (8), then there exists a positively invariant compact set

Q= {(H,S,Y,V,I) €R3,:0 < H(t),S(), Y(£) < A, 0 < V(E) < Ay, 0 < I(£) §A3}.
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Proof. We have

H |g—o=a >0,
S |s—o= p1HV + p3HY >0, forall H,V,Y >0,
Y |y—o=0S >0, forall S >0,
V |y—o=¢Y >0, forallY >0,
Ij—o=AY >0, forall Y > 0.

Therefore, (H(t),S(t),Y(t),V(t),I(t)) € R520f for all + > 0 when
(H(0),5(0),Y(0),V(0),1(0)) € RY,. Now, we define

T(t) = H(t) + S(E) + Y (t) + zleva) + ﬁl(t).

Then, we have

T(t) = F(t) + S(E) + Y (£) + Z%V(t) + (1)
— o H() - S0~ Y0~ (7 I3 ) HOY0) - 32V - TH100)
<@ yH(H) — pS(0) ~ TY ()~ V(1) ~ X1
Sa—¢(H(E)+ SO +Y (1) + V() + 151(D) =« = ¢T(),

where ¢ = min{#, 1, §,6, 7}. Hence,

T(t) < e ¥ (T(O) - f;) + %

This yields 0 < T(¢) < A1 if T(0) < A1, where A = % Since all state variables are

nonnegative, then 0 < H(#),5(t),Y(t) < A1, 0 < V() < Ap,and 0 < I(t) < Ag, for all
2eA 4AN

t > 0if H(0) + S(0) + Y(0) + %V(O) + 51(0) < Ay, where A, = % and Az = L,

T
Therefore, H(t),5(t),Y(t),V(t) and I(t) are all bounded, which implies that ) is a positively
invariant compact set with respect to system (8). O

2.2.2. Reproduction Number and Equilibria

Lemma 2. For system (8), there exists a positive basic reproduction number R such that

(i)  there exists only one equilibrium point Qg when R < 1, and
(ii)  there exists two equilibria Qg and Q1 when Ry > 1.

Proof. It is clear that system (8) always admits an infection-free equilibrium

Qo = (Ho,0,0,0,0), where Hy = E. Now, we apply the method of the next-generation

matrix proposed in [50] to determine the basic reproduction number of system (8) based on
the infected compartments in model (8), ordered (S, Y, V). The nonlinear terms with new
infection T'; and the outflow term A; are given by the following matrices:

A p1HV + poHS + psHY A (c+u)S
I = 0 , M= —oS+TY+9IY |.

0 —eY + 60V
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We compute the derivative of I’y and A; at the equilibrium Qg to obtain the follow-
ing matrices:

p2Hy p3Hy p1Ho c+u 0 0
r=| o 0 o |, A= =« 1 o}
0 0 0 0 —& 6

Note that the next generation matrix is in the following form:

Hy(p160+p20T+p300)  Ho(p1e+p30)  p1Ho
1 (o+n)bt ot [4
A = 0 0 0

0 0 0

The basic reproduction number ¥ is the spectral radius of the matrix I'1A; Land is
given as:

H, €0 + 0207 + p300
Ro = ol G fit)@r p300) _ o1 + Roz + RNos, )
where
. H()E(Tpl R H0p2 %03 _ HQU'p3

(e +p)

Note that the parameter Jtj; measures the average number of secondary infected cells
caused by the contact between the virus particles and the healthy cells, while R, and Rg3
measure the average number of secondary infected cells caused by surviving latently and
actively infected cells, respectively. To find the other equilibrium in addition to Qg, we let
(H,S,Y,V,I) be any equilibrium satisfying the following equations:

Rot = 0P gy = 0P
o1 0t(c+u) 02 o+

0=a—yH—pHV — p2HS — p3HY, (10)
0= p1HV 4+ poHS 4+ p3HY — (0 + 1)S, (11)
0=0S—1Y—1IY, (12)
0=¢ey -0V, (13)
0=AY —ml—JIY. (14)

From Equations (13) and (14), we obtain

eY AY
V=" I_n+(5Y' (15)

Substituting from Equation (15) into Equation (12), we obtain

TY + (YA + ) Y?

5= o(m+0Y) (16)
From Equations (10) and (11), we obtain
a—nyH = (c+pu)S. (17)
Substituting from Equation (16) into Equation (17), we obtain
Y A+ T1)Y?
o1 “7(a+y)(7n + (YA + T6)Y?) . a8)
7 o(m+9Y)
Substituting from Equations (15), (16) and (18) into Equation (11), we obtain
oY
— (AY3 +BY2+CY + D) —0, (19)
o(m+9Y)
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where

A= (0+pu)(yA+07)(0p2(6T + YA) + b0 (ep1 + 6p3)),

B = onf(o + pu) (YA +01) + (7(0 + 1) — ad) (60 (gp1 + 0p3) + O(YA + 67T)p2)
+ 710+ u)(yA + 07)(e0p1 + 6(Tp2 + 0p3)),

C =nb7m(o+ ) (26T +vA) — am(do (g1 + 6p3) + 6(yA +67)p2)
+ (T (o + ) — ad)(ecpy + 0(Tp2 + 0p3)),

D = notr?(c + u)(1 - Ro),

where Ry is defined by Equation (9). From Equation (19), we have

1. IfY =0, then from Equations (15), (16) and (18) we obtain the infection-free equilib-
rium Qp.
2. IfY #0, then we have AY3 4+ BY2 + CY + D = 0. In this case, let us define a function
¥(Y) on [0, 00) as:
¥(Y) = AY> + BY> + CY + D.
We have ¥(0) = #0t7?(0 + 1) (1 — %) < 0 when Ry > 1and 1}520 Y(Y) = oo, which

implies that ¥ has a positive real root Y;. Then, by substituting from Equations (15)
and (16) into Equation (10), we obtain

H o 4
Lt oI+ a5 + 31y’

where
Y1 + (YA +67)Y? Y AY;

-1 = .
o(m+ovy) ' 0 ' m+n
Itis clear that the infected equilibrium Q1 = (Hy, S1, Y1, V4, 1) exists when fg > 1. O

S1 =

2.2.3. Stability of Equilibria Qp and Q1

Theorem 1. If %y < 1, then the Qg of system (8) is locally asymptotically stable (L.A.S), and
unstable when Ry > 1.

Proof. Following the work by Willems [51], local asymptotic stability of equilibrium Qy is
determined by the eigenvalues of its corresponding Jacobian matrix which is given by

=1 —=p1V = p25 — p3Y —2H -psH  —p1H 0
01V + 025 + p3Y p2H — (04 ) o3H 01 H 0
1 = 0 o —(t+7I) 0 —7Y . (20)
0 0 € —0 0
0 0 A=l 0 —(m+6Y)
For matrix (20), the characteristic equation |J; —xIs|] = 0 is solved as

(x + ) (x +1)K(x) = 0, where
K(x) = x> + mox? 4+ myx + my, (21)
and

my = 0t(o+p1)(1—RNy) >0,
my =0T +0(c+u)(1—Rep) +7(0 + 1) (1 — (Roz + Ros)) >0,
my=0+71+ (c+pu)(1—RNp) >0,

TIOL (14 (0 + 1) (1~ R2) ) (6(8 + 7) + 0(0 + 1) (1 — Ron)

mimy — My =

+1(o+p)(1 = (Ro2 + Re3))) >0,



Mathematics 2023, 11, 3743 7 of 29

where $y < 1. Itis clear that the Jacobian matrix J; has two negative eigenvalues, —7r and
—1. Other eigenvalues are calculated as the roots of the cubic equation presented in (21).
All roots of Equation (21) have negative real parts based on Routh-Hurwitz criteria [51].
Therefore, the infection-free equilibrium Qg is L.A.S when Ry < 1. Let Ry > 1, then we
have my < 0. This means that Equation (21) has at least one positive real root. Hence, Q is
unstable when $p > 1. O

In the following theorems, global stability of equilibria will be discussed. Let a function
I be defined as F (z) = z—1—In(z). Denote (H,S,Y,V,I) = (H(t),S(t),Y(t), V(t),I(t)).

Theorem 2. For system (8), if Ry < 1, then Qy is globally asymptotically stable (G.A.S).

Proof. We define a Lyapunov function candidate as:

0 = Hor () 454 @HHA=Reo)y  piHo,  Tletp)-R),
Hy o 0 Ao

Clearly, ©®y(H,S,Y,V,I) > 0 forall H,S,Y,V,I > 0, and ®y(Hy,0,0,0,0) = 0. We
calculate d[% along the solutions of model (8) as:

Hy\ dH ds ((T+ ‘14)(1 — ?R()z) dl leO dl i T(U'+ }l) (1 — %0) ﬂ
at  dt o dt 0 dt Ao dt

0) ((X —nH —-p1HV *szS — ngY) +p1HV+p2HS +p3HY — (0'+ pt)S

Yy o pifo .\ (o +u) (1 = Ro)
- (0§ — 7Y —7IY) + 0 (Y —0V) + o

)(a—nH) - (p2Ho — (0 + 1) + (0 + 1) (1 — Rea))S

(AY — 7l — 5IY)

(ngo _T(o+ V)(Sl — Ro2) n pﬂe-loe . (0 + sz(l _ éRO))Y
nt(o +p)(1—Ro) Yo+ 1) (1= Roa)  oT(+ ) (1 — Ro)
_ I;m 0 1_< - 02) | A 0 )IY.

After direct calculation and using Hy = «/#, we obtain

a0y _ _ Hp _ 77‘(’((0'—%-}{)(1—5}%0) ot _ _
= (1= 32 ) oo = nt) A=)y T E (301 — ) + 781 — R)) 1Y

_ _n(H-H)’ mt(e+p)(1-Ro), o+p

T e o (YA(1 = Roz) +76(1 — ) ) IY.

Clearly, % < 0when ®y < 1 with equality holding when H = Hyand Y = I = 0. Let
Dy = {(H ,S,Y,V,I): % = 0}, and <1>6 be the largest invariant subset of ®y. Therefore,
all solutions converge to <I>E) [52]. All elements in CDE) satisfy H(t) = Hpand Y (t) = I(t) = 0.

Then, the third equation of system (8) gives
0=Y(t)=0S(t) = S(t) =0, forall t.
Moreover, the first equation of model (8) yields
0=H(t) =a—nHy—p1HoV(t) = V(t) =0, forall t.

Therefore, ®, = {(H,S,Y,V,I) € ®y: H=Hy,S =Y =V = = 0} = {Qo}. Hence,
we obtain that when Ry < 1, then Qg is G.A.S according to the LaSalle’s invariance principle
(LIP)[52]. O
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Theorem 3. For system (8), if g > 1, then Qq is G.A.S.
Proof. Define
H S H1(p1€+p39)Y1 ( Y) p1H1V1 ( V)
®1 = HiF +S1F = | +———————F| = |+ F|—
e < ) ! (51) 0(t+h) Y, 0 i

THi (1€ + p3b) (I— 1)
20(T + vL) (A — 0L) 1

+

It is noted from the equilibrium condition Equation (14) that A — 6]y = — > 0.

Clearly, O is positive definite. We calculate d®1 as:

d@l $1\4S | Hi(pie+p30) Y1 p1H;
( > (1 >dt+ 6(t+yh) dt+ g\~

YHi (p1€ + p36) (-1 )dI

r+711)(A L) Vdr

51
( >a—77H p1HV — poHS — p3HY) + <1—>(p1HV+p2HS+p3HY

Hi(pre+p59) (1 M1 g
8t +70) 1- v (oS — 1Y —9IY)
pHL (VY YHi(pie+p030) ol
+ 55 (1 V)(sy 9v>+9(T+711)(A_511)(1 L)(AY — 7l — 81Y)
oHi(p1€ + p30) >
—— =S HY
0(t+ L) et
_ 51 _ oHi(pe+p36) (ST
TH1(p1€ + p36) YHi1(p1€ + p30) p1He
- PP Y —Y) - — (Y -, Y
0(t + 1) ( ) 0(t+ ) ( 0 0
_ pHie (YW YHi (p1€ + p30)
9 \V 0(t+ L) (A —oL)

av
dt

+

—(c+u)sS)+

= <1—Ig>(a—in)+(sz1—(‘7+V)+

)+le Vi + (I—I)(AY — 7l — 8TY). (22)

Using the following equilibrium conditions for Q4

a =nHy +p1H1 Vi + p2H151 + p3Hi Y,
p1H1Vi + p2H1S1 + psHi Y1 = (0 + 1)Sy,

0'51

cS1 = (1 LY, = Y, = ,

1= (t+7h)n A
Y

Vlz%, AY, — il — 6LY; =0,

We obtain
Hl(p18+P39)Y1 _ 0’H1(p1€—|—p39)51
0 O(t+~L) 7

aHl(p1s+p39))S —0
(T + L) e

p1H1V1 +p3H1 Y, =

(PzHl —(c+u)+

Therefore, Equation (22) will take the following form:

do H H;
Ttl = (1 - *1) (nHy —nH) + (01 H1 V1 + p2H1S1 + p3H Y1) (1 - ﬁ) +psH1Y

HVS, H HYS,
— 01H1 V; — 0oH — | —o03H 1Y HqV; H
p1H1 1(H1V1S> P2 151<H1> p3H1 1(H1Y15)+p1 1V1 +p2H151
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ocHi(p1e+p30)S1 [ SY; TH1(p1e + p30
©osHyY, — 1(p1 P3)1(71)_ 1(01 pS)(Y—Yﬂ

9(T+’)/11) 51Y 9(T+’)/11)

YHi (p1€ + p3f) YHi (p1¢ + p3f)
_ e T 3T TEUNOET ) 1y vy —
O(t+vh) O(t+vh) i 1)

prHieYr (Y piHieYy (YV)
o (yl o \yv) el

—AY1 + th +6LYy +6LY —5LY)
H—H;)? H
= 7% + (p1H1V1 + p2H1 54 +,03H1Y1) (2 — ﬁl) +p3HY
HV S, H HYSq SYq
o (5] (1) o (55) (2
_ Hi(p1e+ p3b)
6(t+vh)
B Vi ’)/AHl(pls-‘rP?,@)
e (533 )+ i+ LSS

YHi(p1€ + p36) (70 + 6Y) 2 SyHi(pre+p30)h
RTCE A Ty G VT T o ) SO L

7H1(P18+P39)1
0(t+h)
YHi (1€ + p30) (I—

O(t+yhL)(A—4dL)

(Y-Y1)+ 1Y =)

L)(AY — 7l — 8IY

(v rh)(x =) = TRHEEERE v vy 4 ()

(I-h)(Y—-Y)

This implies that

d® H— Hi)? i
anl - _¥ + (p1H1Vi + p2H1 S +P3H1Y1)(2— g) +psH1Y

HVSq H HYSq
—p1H1V1 (H1V15> —p2H151 (ﬁl) —psH1Yp (7H1Y15)

SY; H €+ p30
= (p1H1Wy +P3H1Y1)(S ;) - M(Y—Yﬂ

_ vHi(p1e +p30) (1—
O(t+7h)
YHi (o1 + p36)

0(t+vh)(A—4dL)
n(H — Hy)?

Hq
= B — + (p1H1V1 +p2H151 +P3H1Y1) (2 — ﬁ) +p3H1

HVS, H HYS,
_ p1H1V1 (H1V15> — p2H151 (E) — p3H1Y1 (7H1Y15)
Y1\ Hi(pme+ps)Va (Y Y
—(p1Hh\h +P3H1Y1)<S Y) 0 Y, 1) +p1H1Vh Y

’)/Hl (plE + P39)(7T + (SY)
0(t+vhL)(A—9dL)

Y YV,
(Y -"1) +PlH1V1(71) —PlH1V1(Y V) +p01H1

’)/Hl (p1€ + P39) (7'[ + (SY)

2
0(t+ L) (A —6I7) (I=h)

(A=oL)(I=I)(Y —-Yq) —

(I-n)?

YV
— 01 H1 V; HqV;
p1Hy 1(YV>+p1 11—

n(H — Hy)?

Hy
=———x T (p1H1Vi + p2H1 S +P3H1Y1)<2* g) +p3H1Y

HV S, H HYSq
— o HVi| ——— ) —poH{51| — | — p3H{Y
P11 1(H1V15> 02111 1(H1) Q3 1(H1Y15)

sY; Y
= (p1H1Vi +p3H1 Y1) (S Y) = (p1H1V1 + p3H1 Y1) (7 - 1)
1

Y YV YHi(p1e+p30)(t+6Y) o
+PlH1V1(Y1> PlHlvl(Yv>+PlHV1 8t +71) (A —oL) (I-1)~

Finally, we obtain

de + 0251)(H — Hp)?
T;:_(U 02 1;5 1) +P1H1Vl<4____

(3 H; HYS 5Y1>_7H1(P18+P39)(7T+5Y)

 H HY{S SY 0(t + L) (A —oL)

H HVS; Sy, YW
H HVS SY 1V

(1-

")

L)2.
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&

The geometrical and arithmetical means relationship implies

(M HVS sn
- H H,»1S 51Y Y1V’
s, HYS | S%
- H H1Y;S 51Y

Hence, if 3y > 1, then d®1 <O0forallH,S,Y,V,I > 0. Additionally, — ®1 = 0 when
H=H,S=5,Y=Y,V=Viand I = [;. Let <I> be the largest 1nvar1ant subset of
P, = {(H S,Y,V,I): d& = 0} Therefore, qDl = {Q1}. Applying L.I.P, we obtain that if
Ro > 1, then Q is G.A.S [52]. O

3. Model with Distributed Time Delays
3.1. System Description

In the following model, we consider the distributed time delays in system (8) to
become represented by delay differential equations (DDEs):

H(t) =a—gH(t) — ptH(OV(E) — p2H(E)S(E) — p3H(1)Y(E),

$(t) = Jy" fulo)e MCH(t — 0) (01 V(t — @) + p2S(t — )
+o3Y (t —0))do — (o + pu)S(t),

B =0 [y falo)e 208 (t — g)do — TY(t) — Y I()Y(t),

B =e [y fale)e 50X (t — g)dg — OV(t),

I(t) = AY(t) = 7wI(t) — 6I(t)Y(t).

Here, f1(0)e ¢ demonstrates the probability that healthy CD4*T cells contacted
by HIV-1 particles or infected cells at time t — ¢ and after surviving ¢ time units become
latently infected cells at time ¢. The factor f»(0)e "2¢ is the probability that latently infected
cells after surviving ¢ time units turned to actively infected cells at time ¢. Further, the
factor f3(0)e~"3¢ represents the probability of new HIV-1 particles after surviving o time
units and maturing at time ¢. Here, h; > 0,1 = 1, 2,3 are constants. ¢ is the delay parameter
taken from a probability distribution function f;(0) over the interval [0,k;], i = 1,2,3,
where k; is the limit superior of the delay period. Function f;(e), i = 1,2,3 satisfies the
following conditions:

(23)

fi(o) >0, foki fi(o)do=1, and fok"fi(g)efﬁgdg < oo, where B>0.

Let F;(0) = fi(0)e ¢ and F;, = fokf Fi(¢)do,i =1,2,3. Therefore, 0 < F; < 1,i=1,2,3.
The initial conditions of system (23) are:

NS =wb), Y()=a(), V) =al), 1) =as(r), o

= (
r) >0, j=12,.,5 re[-k0], k=max{ky, ks ks},

where a;(r) € C([~k,0],R>0),j =1,2,..,5and C = C([—k,0],R>0) is the Banach space of
continuous functions with norm Ha] H = sup |a] )| for all aj € C. Therefore, system (23)
k<

with initial conditions (24) has a unique solut10n [52,53]. The biological meaning of all
remaining variables and parameters follow the same identifications as given in Section 2.

3.2. Basic Properties
3.2.1. Nonnegativity and Ultimate Boundedness of the Solutions

Lemma 3. For system (23) together with initial conditions (24), there exists a compact set Q) that
is positively invariant, where

Q= {(HS,Y,V,I) € C: [[HB) < Ay, SO < ALY < Ag, 1) < As, [V(H)]| < Ag}.
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Proof. In the beginning we show the nonnegativity of solutions. From the first equation
of system (23), we have H |—o= a > 0, then H(t) > 0, for all f > 0. In addition, from the
remaining equations of system (23) we have

S(t)+ (0 +mu)S(t) = /Okl Fi(o)H(t —0)(m1V(t — @) +p25(t — @) + p3Y (t — ¢))de

t k
—> S(1) = ap(0)e~ "M 1 [t [TE (g)H e — )1V (¢ — o)

+025(5 — @) + p3Y (5 — @) )dod> = 0.
V) + (i)Y (0 =0 [ Bo)s(t - o)de

. t . k
— Y(t) = a3(0)e~ o (THr1)du 4 & / o LTl du / " F3(0)S (5 — 0)dadse > 0.
0 0

. ks _
Vi +ov(e) =e [ Elo)Y(t—o)de
t ks

s V(1) = ag(0)e® + ¢ /O ¢~0=) /O E3(0)Y (5 — o)dodse > 0.
I(t) + (m+6Y (1) I(t) = AY(t)
— I(t) = a5(0)e~ Jo(T+eY(w)du 4. /\/t e~ [ mrYW)dny (9)40 > 0,

0

for all t € [0, k]. Then, by a recursive argument we have H(t),S(t),Y(t), V(t) and I(t) are

nonnegative for all + > 0. Therefore, the solutions of system (23) satisfy
(H(t),S(t),Y(t),V(t),I(t)) € ]R520, for all t > 0. Next, we prove the ultimate bound-

edness of all solutions. From the first equation of system (23), we have tlim sup H(t) < z
— 00

Next, we define
ky _
Tt = [ R(e)H(t - )do+S(1)
Then

. ki _ ) .
= [ BH(E - odo+5()

= [ B0~ yH( - @))do (o4 w)S()
= ek~ [ Fi@)H( - o)do— (o+ )50

w0 ([ B@H(E- e +50)) =a- i),

IN

where ¢; = min{s,c + u}. This implies that tlim sup Ty (f) < = A;. Since
— 00

o=

Okl Fi(0)H(t — 0)do and S(t) are nonnegative, then tlg?o sup S(t) < Ay.In addition, we let

To(t) = Y(t) + %I(t).

This yields
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To(t) = Y(£) + %f(t)

ky _
=0 [ B(@)s(t - oo~ ()~ 11(1)Y (1)

n %(/\Y(t) — l(t) = S1(1)Y(1))

= [ B@)s( -~ oo~ ()~ 1)~ (v + 2)1yv(
<o ["B@st - oo~ Sy~ i)
<A - (Y(f) + %Hﬂ) = 0cA1 — ¢ (1),

where ¢ = min{$,r}. Hence, tlim sup T (t) < ‘%1 = A,. Since Y(t) and I(t) are
— 00

nonnegative, then tlim sup Y(t) < Ay, and tlim supI(t) < 248 _
—r00 —0

T

As. Finally, from the

fourth equation of system (23), we obtain

V() = e/ok3 By (0)Y(t — 0)do — 8V(t) < eFsAs — 8V (1) < eAs — OV (1).

Therefore, tlim sup V() < 8’;2 = A4. We conclude that H(t),S(t),Y(t), V(t) and
—00
I(t) are ultimately bounded. Thus, the compact set () is positively invariant with respect

to system (23). O

3.2.2. Reproduction Number and Equilibria
Lemma 4. For system (23), there exists a positive basic reproduction number Ry such that

(i)  there exists only one equilibrium point Qo when Ry < 1, and
(ii)  there exists two equilibria Qg and Q1 when o > 1.

Proof. It is clear that system (23) always has an infection-free equilibrium
Qo = (Hy,0,0,0,0), where Hy = % In the following, we will apply the method of next

generation matrix to determine the basic reproduction number of system (23). Based on
the infected compartments in model (23), ordered (S, Y, V). The nonlinear terms with new
infection I'; and the outflow term A, are given by the following matrices:

Fi(p1HV + p2HS + p3HY) A (0 +u)S
I = 0 , M= —oBS+TY+9IY |.

0 —€F3Y + 0V

We compute the derivative of I'; and A, at the equilibrium Qo to obtain the follow-
ing matrices:

FipoHy  FipsHy Fip1H c+u 0 0
1"2 = 0 0 0 ’ A2 = —0 Fz T 0 .
0 0 0 0 —eF3 0
Note that the next generation matrix is in the following form:

FHy(Foo(Fsp1e+030)+p20T)  FiHo(Fspie+p36)  FiHg

9 (o+u)bt 0T [4
A, = 0 0 0
0 0 0
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The basic reproduction number Ry is the spectral radius of the matrix [,A; Land is
given as:
FHy(Fo(F3p1€ 4 p360) + 0207)

o = (0 +p)ét

= Ro1 + Roz + Ros, (25)

where . . .
&5 F1F2F3H0£(7p1 §}~% N FlHOPZ ?fﬁ o F1F2H0(7p3

Rop = 23008001 - , - .
o1 0t(o+ ) 02 c+u 03 T(o+u)

Note that all parameters Roi, i = 1,2,3 have the same biological meaning as the
parameters Ry;, i = 1,2, 3 that are explained in Section 2. To find the other equilibrium in
addition to Qg, we let (H,S,Y,V,I) be any equilibrium satisfying the following equations:

0=a—-—yH—p HV — poHS — p3HY, (26)
0= F(p1HV 4+ p2HS + p3HY) — (0 + 1)S, (27)
0=0FKS —1tY —~lY, (28)
0=eRY -0V, (29)
0=AY —ml—46IY. (30)

From Equations (29) and (30), we obtain

_ eRY _AY
V=" = aiey (1)

Substituting from Equation (31) into Equation (28), we obtain

nTY + (YA + T6)Y?

5= oF (7 + 6Y) (32)
From Equations (26) and (27), we obtain
«—nH= (U—;i‘u)s. (33)
1
Substituting from Equation (32) into Equation (33), we obtain
Y A+T6)Y?
go L, lerm(aey+(vA +10)Y?) 34)
n ch k (7'[ + (5Y)
Substituting from Equations (31), (32) and (34) into Equation (27), we obtain
Y . (AY3 +BY2 4+ CY + D) -0, (35)
17002F2 (7t 4 6Y)

where

A= (0 +p)(yA +710)(6p2(YA + T6) + 60 (eF3p1 + Bp3)),
B = (0 + u)(yA +16)(60n0F; + m0Tps + o Fa(eF3p1 + 6p3))
+ (7t(o+ ) — GOF ) (0pa (YA + T6) + 0 Fa(eFapy +0ps),

C= ﬂ(ﬂ@pz"{z((f + 1) — 2000°F F (eF301 + 0p3) + 0 Fa (et F301 (0 + 1)
+O(yA +276)(5(0 + ) — aF1pa) + 710Tp3(0 + ),

D = onthr? (o +u) (1 - Ro),

where R is defined by Equation (25). From Equation (35), we have
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1. IfY =0, then from Equations (31), (32) and (34) we obtain the infection-free equilib-
rium Qy.
2. IfY #0, then we have AY® 4+ BY? + CY + D = 0. In this case, let us define a function
¥(Y) on [0,00) as:
¥(Y) =AY} +BY?+CY +D.
We have

¥(0) = onbthr® (0 +u) (1 — Ro) < 0if Ro > 1,
lim ¥(Y) = oo,

Y—o0

which show that ¥ has a positive real root Y;. Then, by substituting from Equations (31) and (32)

into Equation (26), we obtain
N «
1= = = =,
1+ p1V1+p251 +p3Nh
where . . _ .
5 i+ (YA+16)YE . eBY [ A
= 0'F2(7T+5Yl) ’ 1= o 1_7'(4-5?1.
It is clear that the infected equilibrium Q7 = (Hj,S1,Yy, V3, 1) exists when
Ro>1. O

3.2.3. Stability of Equilibria Qg and Q;
In the following theorems, global asymptotic stability of equilibria will be discussed.

Theorem 4. For system (23), if Ro < 1, then Qq is G.A.S and it is unstable when Ry > 1.

Proof. Consider

- 1 (c+u)(1—Rp) p1Ho (o + 1) (1 —Ro)
O = Aol (> tE Sy Py e

+ 1 /Okl Fi (o) /tig H(5)(01V (5¢) + p2S(3¢) + p3Y (5¢) )dsedo

+_wu%yg;;g%ﬁ‘Abﬁﬂe)[igsuﬂd%de

& k t
+P116‘10€ / 31:"3(())/ Y (5¢)dsdo.
JO t—o

Clearly, ©(H,S,Y,V,I) > 0 forall H,S,Y,V,I > 0, and ©y(Hy,0,0,0,0) = 0. We
calculate dgo

as:

46 _ (, FHo\dH  1dS (c+u)(1-Roo)dY  p1FodV  t(o+p)(1l—TRo)dl
at H ) dt Fdt oF F> dt 6 dt AcE F, dt

ke _
+H(p1V + 25 +p3Y) — Fil /O F(o)H(t—0)(p1V(t —0) +p25(t — o) +p3Y(t — 0))do

(0+u)(1—Rop) (0+u)(1—Rop) [ _
5 / B(0)S(t — 0)d
+ E B , R2(0)5(t—o)de
HyeF Hye [k _
+ By B [P R (o)Y (- o)de

A, 1 ko
= (1 - Ij) (€ =yH = p1HV = p2HS = psHY) + 7 /0 Fi(o)H(t = e)(1V(t )
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o — R
4250t —0) 4oV (¢~ @)do — THI  CHIL TR g )5y )i
T(UJF?FE;Z_ Ra)y (”(’i}ﬁ; R py "ff“g/o B(0)Y(t — 0)do
(o + 1) (1= Ro)
AoE

—01HoV + (AY —tl = 8IY) + p1 HV + po HS + psHY

5 [ R@H(E - 1V (- o)+ a5 (- 0) +o57( - e
n (UJFV)(l*?ﬁoz)S_ (0 +u)(1—Rop)
F FE

Hpe [k _
- B [T By (- o)de.

ko _ HyeF
| Ex0)s(t = o)do+ 2y

After direct calculation and using Hy = a/1, we obtain

d®y H, (o4 u)(1—Ro) Ct i )
dr (1 - ) (nHo —nH) — Ao b I— EE (YA (1 = Rep) +76(1 — Ro)) IY
_ n(H-A)’ mte (1 -R0),  otu o .
o H AcFiF, I ACE (YA (1 = Roz) +16(1—Ro) ) IY

Clearly, d%o < 0when Ry < 1 with equality holding when H = Hyand Y = I = 0. Let
d) = {(H S,Y,V,I): d®° = 0} and ®, be the largest invariant subset of ®. Therefore,

all solutions converge to dDO [52]. All elements in 536 satisfy H(t) = Hypand Y(t) = I(t) = 0.
Then, the third equation of system (23) gives

ko

0=Y(t) =0 /O E>(0)S(t — o)da.

The nonnegativity of S implies that S(t) = 0 for all . Moreover, the first equation of
model (23) yields

0=H(t) =a—nHy—p1HyV(t) = V(t) =0, forall t.
Therefore,cbz) ={(H,S,Y,V,I)edy: H=Hy,S=Y =V =1=0} = {Qop}.Hence,
according to L.I.P, we obtain that when o < 1, then Qp is G.A.S [52].
On the other hand, model (23) can be rewritten as:

U(t) = F(U(t), U(t—q)),

where U(t) = (H(t),S(t), Y (t), V(t), I(t))". This system is a coupled system of ordinary
differential equations with a delay parameter, using total differentiation at Oy we have

H_aa]I_'_l|QoH+ |QOS+ |Q0Y+ ‘Q0V+ |Q0

Y o |Q S+ |QOY+ oy |Q V+ ar'Q I (36)
_aa}ﬂQo |Qos+ |Q0Y+ a |Q0V+g|QOI’
I= ‘Qo |QOS+ 3Y|Q0Y+ |Q0V+ oI |Q01

Suppose that the linear DDEs system (36) has exponential solutions.

H = €XtWH, S = EXth, Y = EXtWy, V= EXtWV, I= €XtW1.
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Substituting this ansatz into system (36) and rearranging it, we obtain AW = 0, where

x+1 p2Ho p3Ho p1Ho 0 Wy

0 X+0+ 12 N p2HOF1 —p3H0F1 —p1H0F1 0 WS

A= 0 —oh X+T 0 0 , W= Wy
0 0 —eF3 x+0 0 Wy

0 0 —A 0 X+ 7T Wi

Note that the characteristic equation is the set of x such that matrix A is not invertible,
which means det(A) = 0, then the characteristic equation of system (23) at Qy is given by
(x + 7)(x 4+ 1)K(x) = 0, where K(x) is a continuous function defined on [0, o) as:

R(x)=x*+ (0 +0+pu+7— HfFpr)x*
+ (T((T +u— Hoﬁlpz) +9(U +Uu+T— Hoﬁlpz) — UH0P1ﬁ2p3)x
— U€H0ﬁ1ﬁ2ﬁ3p1 + 9(1’(0’ +u— Hoﬁlpz) — O'H()ﬁlﬁzp3),

where [ = fo i(0)e~(*thiedo, i = 1,2,3. Let & > 1, then we have
K(0) =6t(c+p)(1— §RO) <0and lim K(x) = oo, which implies that K(x) has a positive
X—r 00

real root. Hence, Qg is unstable when ity > 1. O
Theorem 5. For system (23), if?fio > 1, then Q; is G.A.S.

Proof. Define

H S < S ) Hy (Fsp1e 4 p30)Ys ( Y) 1H1V1 ( V)
Oy = A F + 22 + D (= .
! ! <H1) 51 9(T+’)’Il) Y1 \%
7H1(F3P1€+P39) N /k1 = / ( (5)V (5« ))
- — (I —1 _— F — ded
+ 29(T+’)’Il)()\ — 511) ( 1) + F 0 1(Q) t QF H e
0215 /kl . /t <H #)S( %) P3H1Y1/ . / < (3)Y (52 ))
+ = F dsdo + F dod
o 1(0) t QF H15 0 o 1(0) HJF 0y, s

0H, 51 (F3p1€ 4 p3b) / ( )d sedg
0(t+h)

p1HieYq /k3 = /t <Y(%)>
+ — F dd
0 A 3(0) tng Y 0.

It is noted from the equilibrium condition Equation (30) that A — 61} =

77_'11

3 1
clear that O is positive definite. We calculate dt% along the solutions of model (23) as:

av
dt

@ B _; dH l Sl ds Hl(F3p18+p39) Yl lel
it _(1 >dt+F1(1 )dt+ 6(cr) U dt+ o\~

Hi1 (F3p1€ + p3b) PlH1V1/ ( HV ( HV )
M 9(r+711)(/\7511)( 1)dt Al ARALCAn 2 "\ &

_W—i—l—&-m(w>)d9+ 921;11151 /Ok1 Fl(e)(ﬁ —1

HW HiW; Hlsl
~in( g ) - TRy (HEE RS ) g
Hi 5, Hi 51 5,
.Y k — —
LT (Y () oY=
Fl 0 H1Y1 H1Y1 H‘lY]

H(t—o)Y(t— Q))) oH151(Fp1e + p3b) /'k2 . ( S ( S )
e n( H1Y1 Q+ 9(T+’)/Il) 0 Z(Q) Sl " Sl
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75(%0) HHH(S(’%Q)))@JF @/@"s F;,(Q)(Yl1 *17111(%1)
,Y(tT;Q)+1+ln(Y(tTIQ)>)dQ

= (1 — ﬁ) (¢ —yH — p1HV — poHS — p3HY)

o
+ (1= 2) ([ A@HE= eV -0+l =) +paY (- e~ (105

~ v ko
o Hi(Fpre + p3f) (1 - %) (g /0 Ex(0)S(t — 0)do — TY — WIY)

0(t+h)
+ 91;?1 (1 - %) (s /0](3 By(0)Y(t — 0)do — 9v)
szi(’ljslf)l‘z;pflz) (I—=T)(AY — 7l — 5IY)
B (Mgt ()

e

B (5 [ 0150 (259
P () )

1 H ’ FH; (F 0 .

e (O
" g U8 o+u)S

_Fl/() Fl(Q)(SQ)l(pr(t_Q)+p2s(t—@)+PsY(t—Q))dg+(F;*)l

ocH; (F3p1e +p30) k2 - S(t—o)Y THy (F301¢ + p30 .
_ oHy (B ~ps)/ B(0) (t—oV1,  tHi(Bp ~p3)(Y—Y1)
0(t+h) 0 Y 0(t+h)
'YHI(FSP1€+P39) o\ piHe /k3 = Y-V 70
Y—-Y)— F ——d HV;
0(t+1I) 1y-m) , Bl—— —detpthi
’yH1 (F3p18 + 4039

9(T+'yf1)()\ A (I—T)(AY — 7l = 3IY)

e /Ok1 Fl(e)ln(H(t‘%(t‘Q))de
1
ocH1 51 (F301€ + p36) - S(t—o)
0(t+1h) /o 2(9)1n< S )dQ

k —
 ifehsTy (;) pofiehs 3F3(Q)ln(Y<fe>>dQ_ 37)
1
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Using the following equilibrium conditions for o))

a = nHy + p1H1 V1 4 p2H1S1 + p3s 1 Y1,

1,V 7,5 N CE W O
o1 ALV + 021 §1 + s Fh Yy = <Fj*>1
U‘gl = <T+711)Y1 :>Y1 _ (TFZS{ )

E T+7h
~ EY . B .
V1zgzlr AY, — il — 6L Y, =0,

We obtain

Hl (F3p18 + PBG)Yl _ (TFZH1 (F3p18 + p39)§1

p1Hh Vi 4+ p3sH Yy =

6 0(t+~h)
~ o+ u 0’F2H1 (F3p1e + p39) \ ~
Hy — + = 51 =0.
(Pz ! F 9(T+’)’Il) !

Therefore, Equation (37) will take the following form:

d® H - . - - 2} N
ditl = <1 - Hl> (nH1 —nH) + (01H1 Vi + p2 H1 51 + p3Hi 1) (1 - Hl> +psH1Y
1 (b H(t—0)S
-2 [ B @ S v - o)+ paS(t— o) + pa (- 0))de
- ~ & < v cHi(Fpie +036)S) /kz =\ St—oh
o LV + p2F S+ ps LY — L E —oh
P11 V1 + p2H101 + P31 V7 6(t + 1)) ) 2(0) 8% Q
TH; (F301€ + p30 - Hy(F3p1¢ + p30 - Hy(F301e + 030) -
_THBeetps) gy dHBmEeLps8) gy vHBpELpsf) iy g
0(t+h) 0(t+hL) 0(t+hL)
YH1(F3p1€ + p36) - o\ prHien /kf‘— Y(t—o)Va oy
— = LY —Y;)— F ———>—do+ p1H1V;
6(t+1) 1 1) 0 0 (0) A QT P1Vy

vH1(Fsp1€ + p3f) : T .
L (1= 1) (AY — 7l = 6IY — AYy + ly + 6L Yy — 8LY + 6L, Y
6(T+711)(/\—511)( DAY = 1+l +00Y; = 6hY +0LY)

# 0L [ gy (HUS V=0 gp 4 20051 [ g g1 (MU= 080,

2 HV F HS
p3H1 Y, /k1 . H(t—o)Y(t—0) o (X
+ 71:1 0 Fl(Q) In HY do+ p1H1V; Yl
oH151(F3p1€ + 036) /"2 . (S(t—e)> p1Hielq /"3 - (Y(f— e))
= F 1 d L F 1 do.
+ Q(T—F’)/Il) 0 Z(Q) n g 0+ 0 0 3(@) n Y Q
This implies that
~ ~\2 -~
doe H—-H o~ . - H .
dtl — _77( o 1) + (lelvl +PZH151 +p3H1Y1) <2 — I_Il> +‘03H1Y
e A1 /"1 = HE—0V(E—0)51,  paHiS /kl = H(E—0)S(t—0)
- F L do — F = d
F 0 ! HV1S ¢ F 0 l(Q) H1S ¢
_ psHIY /kl 3 H(t —o)Y(t — )51 do— p1Hi Vi +psHi Y /kz FQ(Q)S(t - Q)Yld
F 0 HY1S 133 0 51Y
Hi Y1 (Fsp1¢ + p36) < Y ) p1H1Vy /k3 S Y-V -
— - —1) - "—— F ————d H;, V-
0 2 5 o 3(0) A% 0+ P11V

vH1(Bp1e +p30) (T +6Y) . z\2  piFhVi /k1 - (H(f—Q)V(f—Q)>
_ ! - - 1)+ 22 [P R o)1 d
0(t+L) (A —oh) (I=h)"+ =% — | h@ln HV Q
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+ P28y /Ok1 Fl(e)1n<H(t —Q)5(t - Q)>de + pafh¥y /Ok1 Fl(e)ln(H(t —QY(t- Q)>de

E HS 3 HY
p1H1V1 4 p3H1 Y /kz . (S(t—Q)> oy <Y)
I 1 d H{Vi | =
+ 5 0 2(0) In S 0+ p1H1Vp ¥
p1H1 /’k3 - Y(t—o)
+7F3 A F(0)In v do
n(H—H)°

(1-1)?

5 - & v Hi\  7Hi(Fspie + psb) (m +6Y)
= -’ HqV: H:S HY)(2—— ) - = =
H + (01H1 Vi + p2H151 + p3Hy 1)< H> 6(c +10,) (A —oh)

HiV; (k. H(t—0)V(t—0)S HiS, A, H(t—0)S(t—
_9111/0 Fl(g)( QV( Q)1dQ_P2 11/0 Fl(Q)( 0)S( Q)dg

31 Vs F H,S
—"3};11?1/01“ Fi(o H(t_gf;(lg_ 08140 - lelVllfzp"’HlYl /Okz F2(Q)S<tg—1§)Y1dQ
2T+ oy — L[5 ) KUV
# 70 [ py (g (MU= @) gp 4 2151 [ g g1 (MU= 0820,
n (?31;111171/0"1 H(Q)ln(H(t_?;(t_Q))dQ—i— PlH1V1;;P3H1Y1 /Ok2 Fz(g)ln(s(tS_Q))dg

p1H1 V3 /k3 - Y(t—o)
+ F3 0 F3(Q) ln Y dQ

Moreover, we have

H(f—Q)V(f—Q)> <H(f—Q)V(f—Q)§1> <H1> < 1S>
1 =1 L In{ — L — |,
n( HV 1 E, V45 tlEm ) T ys
H(te)Y(tQ)> (H(tQ)Y(tQ)§1> <H1> (HS)
i =1 =/ In( — 1 -
“( HY n Y5 g )My, )
H(t—0)S(t—0)\ _, (H(t—0)S(t—0) Hy
ln< S =In s +1In )
1n<5(f—9)> :ln<5(th)Y1> +1n(51}/)’
S 51Y 5Y;
Y(f—Q)> <Y(f—Q) Nl) (~1V>
I§ =1 = 1 -
n( Y Ty )Ty
Therefore, d‘% will be
L@:_M+( A7+ 00H S0 4+ Hy)z_&
i H P11 V1 + po151 + P31 1 H
7H1(F3p1€+P39)(7T+(5Y) ~\2 p1[:11‘71 k1 _ H(t*Q)V(t*Q)gl
- = = (I-hL)" - F (o) = d
9(T+’)’Il)(/\—511) F] 0 H1V1S
p2H1S3 /kl - H(t—0)S(t—0) p3H1 Y1 /"1 - VH(E—0)Y(t—0)5
. F = do — F — d
EJy 1100 H,S o= —F ), D A,Y,S
Vi +psH Y, k2., S(t—o)Y I L
- 1F293 ! 1/0 Fz(Q)i( 515) Ldo + 2011 Vi + psFh Ty
p1H1V;y /k3 = Y(t—oVi
2 0 3(0) A% Q

ptFh iy [k { (H(tQ)V(fQ)gl) <Hl) (Vls)]
—_ F 1 - In( — 1 _ d
TR /0 1(e) |In F,V,S Hinlg ) Mg )%
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+

p2H1S1 [k { (H(t—e)S(t—e)> (Hl)]
277121 [ F (o) |1 In d
+ 3 /0 1(0) |In .S %] 0
PR [ A (PR ) () (5
B371°10 [ B (o) |1 1 d
T g /0 1(e)|In Hms +tinlyg )%
‘01H1V1 +p3FI1Y1 ka _ [ (S(i’—Q) ) <51Y>:|

Bo)|In( 25271 41 d
+ b /0 20) |In{ = | +In{ 5y, ) |9

p1tHi Vi ks { (Y(t—Q)‘71> ( )]
PUBA [P r o) | B9 4
RN /o se)|In| =53 ) +In{ 35, ) |de

Finally, we obtain

~ -2 Y~ ~ -
de; _ n(H-F)" pHiV /kl - { (H(f—Q)V(f—Q)Sl) <H1>}
= — — F "/ -1 d
T 7] 5 Jo 1(0) |F 7.5 (4 ) |de

o8l () 1 5o
(P o ()

p1H1‘71 —+ p3H1Y1 /'kz _ ( )
- F
E Jo B@F sly

prH1Vy ks (Y( Q)Vl) YH1 (F3p1€ 4 p36) (11 +6Y)
_ i Ry =N,
Fs /o (@) 'A% 0(t+0)(A—60L)

(1-1)%

Hence, if Ry > 1 then % < Oforall H,S,Y,V,I > 0. In addition, % = 0 when
H=H;,S=5,Y=Y,V=Viand I = I;. Let d>/1 be the largest invariant subset of
P, = {(H S,Y,V,I): @ = 0} Therefore, CTD; = {Ql} Applying L.LP, we obtain Q; is
G.A.Swhen Ry > 1 [52]. O

4. Numerical Simulations

In this section, we perform some numerical simulations for systems (8) and (23)
to confirm our theoretical findings. Further, we will investigate the effects of the CTL
immune impairment on model (8), in addition to the effect of time delays on the dynamics
of model (23).

4.1. Numerical Simulation for Model (8)
4.1.1. Effect of p;, i = 1,2,3 and J on Stability of Equilibria

Here, we solve system (8) numerically with values of the parameters listed in Table 1.
To investigate the stability of equilibria for system (8), we choose three different initial
conditions as follows:

IC1: (H(0),5(0),Y(0),V(0),I(0)) = (400,4,2,1,1),

IC2: (H(0),5(0),Y(0),V(0),1(0)) = (250,5,2.85,3.5,0.5),

IC3: (H(0),5(0),Y(0),V(0),1(0)) = (500,6.5,4,4,1.6).

Since the basic reproduction number $y is used to control the stability of equilibria,
and it depends on the infection rates p;, i = 1,2, 3, we vary the parameters p;, i = 1,2,3 and
present the following two situations:

Stability of Q,. We let p; = 0.0002, po = 0.0001, p3 = 0.0004 and 6 = 0.001. For
this set of parameters, we have $y = 0.6869 < 1. Figure 1 illustrates that the solution
trajectories initiating with IC1-IC3 reach the equilibrium Qy = (1000,0,0,0,0). This ensures
that Qp is G.A.S according to the result of Theorem 2. From a biological point of view, we
know this case means that the disease will die out and the human body will be cleared of
the infection.
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Table 1. Model parameters.

Parameter Value Reference Parameter Value Reference
o 10 [54] T 0.8 [32]
n 0.01 [54] 07 0.04 [32]
01 varied - € 2.6 [55]
02 varied - 0 24 [55]
03 varied - A 0.025 [32]
log 0.2 [54] T 0.2 [32]
U 0.17 [54] ) varied -
1000 7
—Ic1 ! —Ic1
900 - = -1C2|] 6f ---IC2
S IC3) | Lo e IC3
7001 /)
% 600 -
5007
400
300
200 : : : :
0 200 400 600 800 0 10 20 30 40 50
t t
(a) Healthy CD4" T cells (b) Latently infected cells
4 : 5 : : : :
—IC1 —IcCl1
3.5 - - -IC2| ---IC2
~~~~~~~~~ 1C3 4t e [C3

Y(t)

30 40 50 20 30 40 50
t t
(c) Actively infected cells (d) HIV-1 particles
16¢
14
12}

0 10 20 30 40 50
t

(e) CTLs

Figure 1. Solutions of system (8) when &y < 1.

Stability of Q,. We let p; = 0.003, p» = 0.0001, p3 = 0.0004 and § = 0.001. With such
choice we obtain Jtg = 2.7365 > 1. It is clear that the equilibrium point Q; exists when
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Ro > 1 with Q; = (373.74,16.93,4.13,4.47,0.51). Figure 2 shows that the numerical results
confirm the theoretical results of Theorem 3 as the solutions of system (8) converge to Q;
when Ry > 1 for all IC1-IC3. Biologically, this case sheds light on the fact that the HIV-1
particles and CTL cells will persist in the host.

500 ‘ ‘ ; ; ‘ 40 ‘
—IC1 —1IC1
---IC2 B[ra ---IC2
---------- IC3| : g (0%
30t
25
e S ol
5 F20)
15§
10
5
0 100 200 300 400 500 600 0 100 200 300 400 500 600
t t
(a) Healthy CD4" T cells (b) Latently infected cells
10 " 10 : : : :
—IC1 —IC1
- --1C2 - --1C2
---------- IC3 e JC3
0 ‘ ‘ ‘ ‘ ‘ 0 ‘ ‘ ‘ ‘ ‘
0 100 200 300 400 500 600 0 100 200 300 400 500 600
t t
(c) Actively infected cells (d) HIV-1 particles
1.6 ‘
—Ic1
14 -==IC2|]
---------- (&%)
12
1
o8
0.6
0.4
02
° ‘ ‘ ‘ ‘ ‘
0 100 200 300 400 500 600

t
(e) CTLs

Figure 2. Solutions of system (8) when &y > 1.

4.1.2. Effect of the CTL Immune Impairment

In this case, we vary the parameter ¢ and choose p; = 0.003, p = 0.0001 and
p3 = 0.0004. To investigate the immune impairment effects on the dynamics of system (8)
we solve the system numerically taking under consideration different values of § as shown
in Table 2. In this case, we select the following initial condition:

IC4: (H(0),5(0),Y(0),V(0),1(0)) = (370,17,4,4.5,0.3).



Mathematics 2023, 11, 3743

23 of 29

Table 2 shows that as ¢ is increased, the concentration of CTLs is decreased. Conse-
quently, the concentration of latently and actively infected cells and free HIV-1 particles
are increased. In the mean time, the concentration of healthy CD4*T cells is decreased.
We observe from Figure 3, that the CTL immune impairment does not change the stability
properties of the equilibria, since the parameter $ty does not depend on 4.

17.8

6:0.9‘ ‘_6=0 e §=0.05 eeeeeeene 6=0.1

——§=0 ——5=0.05 = 5=0.1 5=09]
374+ 17.6 ]
3721 1741,

3701
== 368114 / AN ©n
366
3641
362 L L L L L L
0 200 400 600 800 0 200 400 600 800
t t
(a) Healthy CD4 ™ T cells (b) Latently infected cells
45 ‘ ‘ ‘ 48 : ‘ :
‘_5=0 — §=0.05 §=0.1 5=0.9‘ ‘_6=0 —§=0.05 46=0.1 §=0.9
44t 47+
= =
: : : 43 ‘ ‘ ‘
0 200 400 600 800 0 200 400 600 800
t t

(c) Actively infected cells (d) HIV-1 particles

|— =0 —§=0.05 = §=0.1 ~-~--5=0.9)
0.5 r/‘
0.4
o3

\
0.2
01}

0 L L L L
0 200 400 600 800
t
(e) CTLs

Figure 3. Solutions of system (8) with different values of the impairment parameter J.

Table 2. Effect of the CTL immune impairment parameter.

Equilibria

1)
5=
0 =0.05
60=0.1
6=09

Q1 = (373.8995,16.9216,4.1241,4.4678,0.5155)
Q1 = (369.6465,17.0366,4.2053,4.5557,0.2563)
(1 = (368.2255,17.0750,4.2328,4.5855,0.1698)
Q1 = (365.8669,17.1387,4.2790, 4.6356, 0.0264)
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4.2. Numerical Simulation for Model (23)

In this subsection, for numerical purposes, we take a specific form of the probability

distributed functions f;(¢), i = 1,2,3, as follows:
file) =d:(¢—ai), @i€[0k], i=123,
where 6, (.) is the Dirac delta function. When k; — oo, we have
/wai(g)dg 1, i=1,23.
Further, we have

Fi = /0 d.(e—qe Mg =e"%, =123

Hence, the distributed time delay system (23) will be transformed to a discrete time

delay system as:

£ =e MAUH(t—01)(01V(t— 1) +p25(t— 01)
+o3Y(t —01)) — (0 +u)S(t),

() =oe25(t—go) —TY(t) —yI(t)Y(t),

(t) =eeBBY(t—03) —0V(t),

() = AY(t) — mI(t) — SI(£)Y(t).

< =

~.

For system (38), the basic reproduction number is given as:

() =a—yH(t) — pH(O V() — p2HOS(E) — p3H(EY (1),

I:Ioe—thl (o-e—hzez (Plge—h393 + P39) + p29T)

Ros) = (o + mor

The effect of time delays on stability of equilibria

(38)

(39)

To investigate the impact of delay parameters on the solutions of system (38), we fix
the parameters p; = 0.003, p, = 0.0001, p3 = 0.0004, 6 = 0.001, h; = 0.1, hp, = 0.2 and
hz = 0.3. On the other hand, the other parameters will be taken from Table 1. Moreover, we
vary the delay parameters ¢;, i = 1,2, 3. Since §f%0( 3g) given in Equation (39) depends on
0;, then changing the parameters ¢; will change the stability of equilibria. Let us take the

following cases of the delay values:
Case: 1 01 = 0.07, g2 = 0.06, 93 = 0.05.
Case: 2 01 = 0.8, 020 = 0.7, 03 = 0.9.
Case: 301 = 13,00 =14,03 =1.5.
Case: 401 =18,00=1.9,03 =2.
Case: 5 01 = 4, 02 = 3, 03 = 5.
We solve system (38) under initial condition IC5

IC5: (H(r),S(r),Y(r),V(r),L(r)) = (400,4,2,1,1), r € [—0,0], ¢ = max{e1, 02, 03}
In Table 3, we demonstrate the values of R 33 for different values of ¢;, i = 1,2,3. We

observe that as the parameters g; are increased, the values of %0(38) are decreased. The
numerical solutions are displayed in Figure 4. We conclude that a significant effect is caused
by the inclusion of time delays which causes increasing in the concentration of healthy
CD4 7T cells and decreasing in the concentrations of latently and actively infected cells,

HIV-1 particles and CTL cells.
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Table 3. The disparity of f%o(%) with respect to the delay parameters.

Delay Parameters (01, 02, 03) Equilibria Eﬁo(%)

(0.07,0.06,0.05) Q1 (35) = (384.729,16.513,3.982,4.249,0.488)  2.656
(0.8,0.7,0.9) Qy(35) = (558.891,11.005,2.358,1.95,0291)  1.812
(1.3,1.4,1.5) Q1 (35) = (747.257,5.998,1.125,0.777,0.14)  1.346
(1.8,1.9,2) Q1 (35) = (936.985,1.423,0.243,0.144,0.03)  1.069
(4,3,5) Qo3s) = (1000,0,0,0,0) 0.461
1100 - Case:1 = = =Case:2 - = -~ Case:3 Case:1 = = =Case:2 - - - Case:3
----- Case:4 - O - Case:5 30 - =-=-=Case:4 - O - Case:5
1000 - i eOnmm Q- ~ O- - - O - - -0 |
~ SR
9200r /.
A
P I -
= 7007,:'1 T #
I
L
s00f ¥
400‘%\/\,
0 560 1(;00 1560 2000
t t

(a) Healthy CD4™T cells (b) Latently infected cells

Case:1 = = =Case:2 - - ~Case:3 Case:1 = = =Case:2 = = - Case:3
7 |- Case:4 - O - Case:5 L Case:4 - O - Case:5
6r 6
5t 5
S s
1 4
3 v 3 "
[N hE}
oyt el iy ] “ n
2 ! . 'I, | 2 (Y II’ S L
1t ) N il 19 /) ,'\\ e cmmm— e emm =21
N2 ’ X ) -~
0 2! o Y 0 Z T el g Wit
0 500 1000 1500 0 500 1000 1500
t t
(c) Actively infected cells (d) HIV-1 particles
——Case:1 = = =Case:2 - - - Case:3
----- Case:4 - O - Case:5
1¢
e e
500 1000 1500
t
(e) CTLs

Figure 4. Effect of the delay parameters on the solutions of system (38).
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H(t, p)
ot

BS(t aS(t, p)

oY(t, p)
ot
aV(t p)

dI(t

5. Conclusions and Discussion

In this paper, we introduced two HIV-1 dynamic models with CTL immune impair-
ment. The models consist of five compartments: healthy CD4 T cells, latently and actively
infected cells, free HIV-1 particles and CTLs. We considered that the healthy CD4* T cells
become infected by coming into contact with free HIV-1 particles, latently infected cells and
actively infected cells. In the second model, we took into account three distributed time
delays to be more realistic. We showed that the solutions of the models are nonnegative and
bounded. We concluded that each model has two equilibria, the infection-free equilibrium,
and the infected equilibrium. We found the basic reproduction number *y (or o) that
controls the existence and global stability of the two equilibria. Number %, (or ) consists
of three parts: the first is the contribution from the VTC infection, the second part is the
contribution from the latent CTC spread, and the third part is the contribution from the
active CTC spread. For both models, we formulated Lyapunov functions and applied L.L.P
to establish the global asymptotic stability of the two equilibria. We proved that if the basic
reproduction number Ry < 1 (or fy < 1), then the infection-free equilibrium Qy (or Qo) is
G.A.S, and thus the infection dies out. Moreover, if 5 > 1 (or 8y > 1), then Qg (or Qp) is
unstable and the infected equilibrium Q; (or Q1) is G.A.S, and thus the infection becomes
chronic. Finally, we performed some numerical simulations to illustrate our theoretical
results. We showed that the numerical results are consistent with theoretical results

We discussed the effect of immune impairment and time delay on the HIV-1 dynamics.
We found that weak immunity contributes significantly to the development of the disease.
Moreover, the presence of time delay can significantly decrease the basic reproduction
number R and then suppress the HIV-1 replication. Therefore, to eliminate HIV-1 from
the body, one should focus on designing control strategies which make %y < 1. Increasing
delay parameters ¢;, i = 1,2,3 may be observed when infected patients are treated with
drug therapies against HIV-1.

We note that, when we ignore the latent CTC spread then model (8) leads to model (3)—(7).
The basic reproduction number of system (3)-(7) is given by:

HoSO’p1 H00’p3

o = Ot(c+u) T(o+u)

Clearly, 3?%0 < ¥, and thus the presence of latent CTC transmission increases the basic
reproduction number and then enhances the viral progression. Neglecting the latent CTC
spread in the HIV-1 infection model will lead to underestimation of the basic reproduction
number. Consequently, the designed drug therapies will not be accurate or sufficient to
eradicate the viruses from the body.

Model (8) can be extended by including the diffusion of the cells and viruses as
per Refs. [56,57]:

—¢uAH(t,p) = a—nH(t p) — 1 H(t, p)V(t p) — p2H(t, p)S(t, p) — psH(t, p)Y (L, p),

—GsAS(t,p) = /f1 Je MCH(t—0,p)(01V (t — 0, p) + p2S(t— 0, p)

+03Y (t — 0, p))do— (¢ +u)S(t, p),

—CyAY(tp) = 0/ f2(0)e 28 (t — g, p)do — TY (t,p) — YI(t, p)Y(t,p),
—SvAV(t,p) —8/ f3(@)e MY (t — g, p)do — OV (1, p),

Tip) =8It p) = AY(p) = I p) = o1(L p)Y (L p),
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92
W.
other types of diffusion can also be included in our models (see e.g., [58-60]). We leave
these points for future work.

where p is the position, ¢y, is the diffusion coefficient of compartment w and A = Some
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