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Abstract: Due to the low computational efficiency of the Improved Element-Free Galerkin (IEFG)
method, efficiently solving three-dimensional (3D) Laplace problems using meshless methods has
been a longstanding research direction. In this study, we propose the Dimension Coupling Method
(DCM) as a promising alternative approach to address this challenge. Based on the Dimensional
Splitting Method (DSM), the DCM divides the 3D problem domain into a coupling of multiple
two-dimensional (2D) problems which are handled via the IEFG method. We use the Finite Element
Method (FEM) in the third direction to combine the 2D discretized equations, which has advantages
over the Finite Difference Method (FDM) used in traditional methods. Our numerical verification
demonstrates the DCM’s convergence and enhancement of computational speed without losing
computational accuracy compared to the IEFG method. Therefore, this proposed method significantly
reduces computational time and costs when solving 3D Laplace equations with natural or mixed
boundary conditions in a dimensional splitting direction, and expands the applicability of the
dimension splitting EFG method.

Keywords: dimension splitting method; improved element-free Galerkin method; dimension cou-
pling method; finite element method; Laplace equation

MSC: 65N22

1. Introduction

In science and engineering fields, the meshless method has become an important
tool in numerical methods for solving partial differential equations. Compared with the
traditional Finite Element Method (FEM), the meshless method [1] is only based on node
distribution, eliminating mesh constraints and allowing for higher-accuracy solutions to
large deformation problems by establishing appropriate shape functions without requiring
grid reconstruction.

The Element-Free Galerkin Method (EFGM) [2–5] is a noteworthy meshless method
proposed by Belytschko et al. that utilizes the Moving Least-Squares (MLS) approximation
to construct shape functions. The MLS approximate functions have been improved to
accelerate computational speed, including the Improved Moving Least-Squares (IMLS)
approximation [6], interpolating MLS approximation [7,8], and complex variable MLS
approximation [9,10]. Using these methods to construct shape functions resulted in the
presentation of the IEFG method [11–14], interpolating EFG method [15–20], and complex
variable EFG method [10,21,22], respectively.

Due to the complexity of establishing trial functions, the meshless method has been
known to be time-consuming when solving complex 3D mechanics problems. Therefore,
finding ways to analyze complex 3D problems more efficiently has become a significant
research direction in the field of numerical methods. Recently, researchers have made strides
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in this area, leading to the development of numerous dimensional split meshless methods,
including the dimensional split complex variable EFG method [23–26], dimensional split
EFG method [27–30], dimensional split reproducing kernel particle method [31–34], and
interpolating dimensional split EFG method [35,36]. These hybrid meshless methods have
demonstrated the capability to efficiently solve a wide range of 3D partial differential
equations with smaller relative errors.

However, when natural or mixed boundary conditions occur in a dimensional splitting
direction, traditional hybrid meshless methods require the 3D problems to be split into
more layers to achieve higher accuracy. In [28], when a natural boundary condition existed
in a split direction, Meng et al. had to choose 50 planes to obtain greater computational
accuracy. In [33], the wave propagation problem with mixed boundary conditions was
investigated. The splitting direction of the second numerical example had natural boundary
conditions, so Peng and Cheng had to select 100 planes to achieve a smaller relative error
of 0.62% with a computation time of 15.2 s. In contrast, if the splitting direction is selected
as an essential boundary condition, only 10 layers are required, resulting in an error of
0.24% and a computation time of 1.1 s. Hence, it is worth noting that time consumption
remains a concern when using the FDM in the dimensional split direction to address natural
boundary conditions.

To address the above-mentioned issue of time consumption and explore a novel ap-
proach to enhance the convenience and efficiency of applying natural or mixed boundary
conditions, we propose a modification that replaces the FDM with the FEM in the dimen-
sional splitting direction. The FEM [37,38] is widely recognized for its advantages over the
FDM in numerical simulations. Therefore, compared with the Dimensional Splitting EFG
Method presented by Meng et al. [28], our proposed method can reduce CPU time when
solving partial differential equations with mixed or natural boundary conditions in the
splitting direction.

Due to the low computational efficiency of the EFG for solving 3D problems, re-
searchers have been exploring alternative efficient meshless methods. The Dimension
Coupling Method (DCM) [39] as a potential approach for solving the 3D Laplace equation
is presented in this study. By introducing the Dimensional Split Method (DSM), the problem
domain of the 3D Laplace equation is divided into a coupling of multiple 2D problems, and
the IEFG method is employed to handle 2D forms. Two-dimensional discrete equations are
combined by the FEM in the third direction and the final algebraic equation of the original
3D Laplace’s equation is derived.

The error formula of the DCM is given in numerical examples, and we discuss the
influence of meshes of the FEM in the third direction, weight function, other parameters,
and node distribution in 2D domains on precision. Furthermore, the convergence of the
proposed method in this study is numerically verified. Through three numerical examples,
it is demonstrated that the DCM for 3D Laplace equations can significantly improve
computational efficiency without reducing computational accuracy.

2. IMLS Approximation

For a point x, the approximation of the corresponding function u(x) can be written as

uh(x) = Φ̃u =
n

∑
I=1

Φ̃I(x)uI , (x ∈ Ω), (1)

uT = (u1, u2, · · · , un), (2)

Φ̃ is the shape function and its form is

Φ̃ = (Φ̃1(x), Φ̃2(x), · · · , Φ̃n(x)) = pT(x)A∗(x)B(x), (3)
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pT(x) is the vector of the basis function,

A∗(x) =


1

(p1,p1)
0 · · · 0

0 1
(p2,p2)

0 0
...

...
. . .

...
0 0 · · · 1

(pn ,pn)

, (4)

B(x) = PTW, (5)

P =


p1(x1) p2(x1) · · · pm(x1)
p1(x2) p2(x2) · · · pm(x2)

...
...

. . .
...

p1(xn) p2(xn) · · · pm(xn)

, (6)

W =


w(x− x1) 0 · · · 0

0 w(x− x2) · · · 0
...

...
. . .

...
0 0 · · · w(x− xn)

, (7)

and w(x− xI) is the weighting function.
Equations (1)–(7) are the IMLS approximation [6].

3. Dimension Coupling Method for 3D Laplace Equations

When solving 3D Laplace equations using the IEFG method, the numerical solution
obtained has low computational speed due to the complexity of shape functions compared
to 2D problems.

In this paper, we propose using the DCM to solve this issue. The 3D problem can be
transformed into multiple 2D problems as shown in Figure 1, which are then discretized
using the IEFG method. In the splitting direction, 2D discretized equations are coupled via
the FEM.

Mathematics 2023, 11, x FOR PEER REVIEW 4 of 22 
 

 

 

Figure 1. Layers in the direction 3x
 of the domain Ω . 

The formula of the DCM for 3D Laplace equations is derived in this section. Consid-
ering the governing equation [23] 

0=Δu , Ω∈),,( 321 xxx ;  (8)

with boundary conditions 

),,( 321 xxxuu = , uxxx Γ∈),,( 321 ,  (9)

),,( 3213
3

2
2

1
1

xxxqn
x
un

x
un

x
uq =

∂
∂+

∂
∂+

∂
∂= , qxxx Γ∈),,( 321 ;  (10)

q  and u  are given values, and in  is the unit outward normal to the boundary Γ  
in direction ix , qu ΓΓΓ = , ∅=qu ΓΓ  . 

The governing equation of 2D form in the k-th layer based on the DCM is 

2
3

)(2

2
2

)(2

2
1

)(2

x
u

x
u

x
u kkk

∂
∂−=

∂
∂+

∂
∂

, )(
21 Ω),( kxx ∈ , )(

33
kxx = ,  (11)

where )(Ω k  is the 2D domain of the k-th layer of Ω , and 

{ } 1)(

1

1)(
3

)(
3

)( Ω],[ΩΩ +

=

+×= L
L

k

kkk xx  ,  (12)

),,( )(
321

)( kk xxxuu = ,  (13)

with boundary conditions 

),,(),( )(
32121

)()( kkk xxxuxxuu == , )(
21 Γ),( k

uxx ∈ ,  (14)

),,(),( )(
32121

)()( kkk xxxqxxqq == , )(
21 Γ),( k

qxx ∈ ,  (15)

where )(Γ k
u   and )(Γ k

q   are essential and natural boundaries. )()()( ΓΓΓ k
q

k
u

k =  , and 

∅=)()( ΓΓ k
q

k
u  . 

Figure 1. Layers in the direction x3 of the domain Ω.

The formula of the DCM for 3D Laplace equations is derived in this section. Consider-
ing the governing equation [23]

∆u = 0, (x1, x2, x3) ∈ Ω; (8)
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with boundary conditions

u = u(x1, x2, x3), (x1, x2, x3) ∈ Γu, (9)

q =
∂u
∂x1

n1 +
∂u
∂x2

n2 +
∂u
∂x3

n3 = q(x1, x2, x3), (x1, x2, x3) ∈ Γq; (10)

q and u are given values, and ni is the unit outward normal to the boundary Γ in
direction xi, Γ = Γu ∪ Γq, Γu ∩ Γq = ∅.

The governing equation of 2D form in the k-th layer based on the DCM is

∂2u(k)

∂x2
1

+
∂2u(k)

∂x2
2

= −∂2u(k)

∂x2
3

, (x1, x2) ∈ Ω(k), x3 = x(k)3 , (11)

where Ω(k) is the 2D domain of the k-th layer of Ω, and

Ω =
L
∪

k=1

{
Ω(k) × [x(k)3 , x(k+1)

3 ]
}
∪Ω(L+1), (12)

u(k) = u(x1, x2, x(k)3 ), (13)

with boundary conditions

u(k) = u(k)(x1, x2) = u(x1, x2, x(k)3 ), (x1, x2) ∈ Γ(k)
u , (14)

q(k) = q(k)(x1, x2

)
= q(x1, x2, x(k)3 ), (x1, x2) ∈ Γ(k)

q , (15)

where Γ(k)
u and Γ(k)

q are essential and natural boundaries. Γ(k) = Γ(k)
u ∪ Γ(k)

q , and

Γ(k)
u ∩ Γ(k)

q = ∅.
Equations (11), (14) and (15) are then analyzed using the IEFG method. The discretiza-

tion of the second-order partial derivative in the splitting direction is performed using the
FEM, then we obtain the discretized equations.

Π =
∫

Ω(k)

[
u

(
∂2u
∂x2

3

)]
dΩ(k) −

∫
Ω(k)

1
2

[(
∂u
∂x1

)2
+

(
∂u
∂x2

)2
]

dΩ(k) −
∫

Γ(k)
q

uqdΓ(k). (16)

Equation (16) is the equivalent functional, and the penalty method is selected for
exerting boundary conditions, hence we can obtain that the modified functional of each 2D
form is

Π∗ = Π +
α

2

∫
Γ(k)

u

(u− u)(u− u)dΓ(k). (17)

Let
δΠ∗ = 0, (18)

hence we have∫
Ω(k)

δu · ∂2u
∂x2

3
dΩ(k) −

∫
Ω(k)

δ(Lu)T · (Lu)dΩ(k) −
∫

Γ(k)
q

δu · qdΓ(k)

+α
∫

Γ(k)
u

δu · udΓ(k) − α
∫

Γ(k)
u

δu · udΓ(k) = 0, (19)

where

L(·) =
[

∂
∂x1
∂

∂x2

]
(·). (20)
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In the 2D domain Ω(k), we select M nodes xI ; thus, we can obtain the following form:

u(x(k)I ) = u(x(k)I , x(k)3 ) = uI . (21)

From Section 2, the expression of the approximate function of Equation (21) is

u(x, x(k)3 ) = Φ̃u =
n

∑
I=1

Φ̃I(x)uI , (22)

with
u = (u1, u2, · · · , un)

T. (23)

Thus,

∂2u(x, x(k)3 )

∂x2
3

=
∂2

∂x2
3

n

∑
I=1

Φ̃Iu(xI , x(k)3 ) =
n

∑
I=1

Φ̃I
∂2uI

∂x2
3

= Φ̃(x)u”, (24)

Lu(x, x(k)3 ) =
n

∑
I=1

[
∂

∂x1
∂

∂x2

]
Φ̃IuI =

n

∑
I=1

BIuI =Bu, (25)

where

u” =

(
∂2u(x1, x(k)3 )

∂x2
3

,
∂2u(x2, x(k)3 )

∂x2
3

, · · · ,
∂2u(xn, x(k)3 )

∂x2
3

)T

, (26)

B = (B1, B2, · · · , Bn), (27)

BI =

[
Φ̃I,1(x)
Φ̃I,2(x)

]
. (28)

Substituting Equations (22), (24) and (25) into Equation (19),

∫
Ω(k)

δ[Φ̃u]
T · [Φ̃u”]dΩ(k) −

∫
Γ(k)

q

δ[Φ̃u]
T · qdΓ(k) −

∫
Ω(k)

δ[Bu]T[Bu]dΩ(k)

+α
∫

Γ(k)
u

δ[Φ̃u]
T · [Φ̃u]dΓ(k) − α

∫
Γ(k)

u
δ[Φ̃u]

T · udΓ(k) = 0. (29)

Next, we write Equation (29) in its matrix form∫
Ω(k)

δ[Φ̃u]
T · [Φ̃u′′ ]dΩ(k) = δuT · [

∫
Ω(k)

Φ̃TΦ̃dΩ(k)] · u′′ = δuT · C · u”, (30)

∫
Ω(k)

δ[Bu]T · [Bu]dΩ(k) = δuT · [
∫

Ω(k)
BTBdΩ(k)] · u = δuT ·K · u, (31)

∫
Γ(k)

q

δ[Φ̃u]
T · qdΓ(k) = δuT ·

∫
Γ(k)

q

Φ̃TqdΓ(k) = δuT · fq, (32)

α
∫

Γ(k)
u

δ[Φ̃u]
T · [Φ̃u]dΓ(k) = δuT · [α

∫
Γ(k)

u
Φ̃TΦ̃dΓ(k)] · u = δuT ·Kα · u, (33)

α
∫

Γ(k)
u

δ[Φ̃u]
T · udΓ(k) = δuT · α

∫
Γ(k)

u
Φ̃TudΓ(k) = δuT · fα, (34)

where
K =

∫
Ω(k)

BTBdΩ(k), (35)
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C =
∫

Ω(k)
Φ̃TΦ̃dΩ(k), (36)

Kα = α
∫

Γ(k)
u

Φ̃TΦ̃dΓ(k), (37)

fq =
∫

Γ(k)
q

Φ̃TqdΓ(k), (38)

fα = α
∫

Γ(k)
u

Φ̃TudΓ(k). (39)

Substituting Equations (30)–(34) into Equation (29),

δuT · (Cu” + Kαu−Ku− fα − fq) = 0. (40)

Let
F = fq + fα, (41)

K̂ = Kα −K. (42)

Hence, Equation (40) can be transformed as

Cu” + K̂u = F. (43)

Let
u(x(2)3 ) = u(2), (44)

u(x(3)3 ) = u(3), (45)

...

u(x(L)
3 ) = u(L), (46)

suppose x3 ∈ [a, c], thus we have

Cu′(c)v(x(L+1)
3 )− Cu′(a)v(x(1)3 )− C

∫ c

a
u′v′dx3 + K̂

∫ c

a
uvdx3 =

∫ c

a
Fvdx3, (47)

the test function v = ϕi (i = 1, 2, · · · , N + 1) is selected with the shape function based
on piecewise linear interpolation functions, thus v(x(1)3 ) = 0 and v(x(L+1)

3 ) = 0 when

x3 = x(2)3 , x(3)3 , · · · , x(L−1)
3 , x(L)

3 . Hence, Equation (47) is changed to the following form

K̂
L+1

∑
k=1

u(k)
∫ c

a
ϕk ϕidx3 − C

L+1

∑
k=1

u(k)
∫ c

a
ϕ′k ϕ′ idx3 =

∫ c

a
F(k)ϕidx3, i = 2, 3, · · · , N. (48)

Let

Hik =

(
L+1

∑
k=1

∫ c

a
ϕk ϕidx3

)
K̂−

(
L+1

∑
k=1

∫ c

a
ϕ′k ϕ′ idx3

)
C, i = 2, 3, · · · , N, (49)

Wi =
∫ c

a
F(k)ϕidx3, i = 1, 2, · · · , N + 1. (50)

Therefore, Equation (48) is transformed as

Hiku(k) = Wi, i = 2, 3, · · · , N. (51)
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If the Dirichlet boundary conditions are known,

u(L+1) = u(c), (52)

u(1) = u(a). (53)

Hence, Equation (47) is written in the following form:

Êu(1) = u(a), x3 = x(1)3 ; (54)

H21u(1) + H22u(2) + H22u(3) = W2, x3 = x(2)3 ; (55)

H32u(2) + H33u(3) + H34u(4) = W3, x3 = x(3)3 ; (56)

...

HL,L−1u(L−1) + HL,Lu(L) + HL,L+1u(L+1) = WL, x3 = x(L)
3 ; (57)

Êu(L+1) = u(c), x3 = x(L+1)
3 ; (58)

Let

H =



Ê
H21 H22 H23

H32 H33 H34
. . .

HL,L−1 HL,L HL,L+1
Ê


, (59)

W =
(
(u(a))T, W2

T, · · · , (u(c))T
)T

, (60)

U =
(

u(1)T, u(2)T, · · · , u(L+1)T
)T

, (61)

thus the final linear equation of the 3D Laplace equation is

HU = W. (62)

If mixed boundary conditions are known,

u′(x(L+1)
3 ) = u′(c), (63)

u(x(1)3 ) = u(a), (64)

Equations (58), (59), and (60) can be changed as follows:

HL+1,Lu(L) + HL+1,L+1u(L+1) = WL+1 − Cu′(c), x3 = x(L+1)
3 , (65)
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H =



Ê
H21 H22 H23

H32 H33 H34
. . .

HL,L−1 HL,L HL,L+1
HL+1,L HL+1,L+1


, (66)

and
W =

(
(u(a))T, W2

T, W3
T, · · · , WL

T,
(
WL+1 − Cu′(c)

)T
)T

, (67)

respectively.
Equations (8)–(67) are the DCM for 3D Laplace equations.

4. Numerical Examples

In this section, four numerical examples are calculated using the DCM.
The formula of error is

∥∥∥u− uh
∥∥∥rel

L2(Ω)
=

(∫
Ω (u− uh)

2
dΩ
)1/2

‖u‖L2(Ω)

. (68)

We employ the IEFG method based on some distributed nodes and use linear basis
functions to construct trial functions in the 2D computational domain. Additionally, 4 × 4
Gaussian points are used in each cell with two Gaussian points used in the dimensional
split direction in each mesh.

The first example [40,41] is
∇2u = 0, (69)

and the problem domain is Ω = [0, 1]3,

u = sin(πx2) sin(πx3), (x1 = 0), (70)

u = 2 sin(πx2) sin(πx3), (x1 = 1), (71)

u = 0, (x2 = x3 = 0, x2 = x3 = 1), (72)

Equations (70)–(72) are boundary conditions.

u = [2 sin h(π
√

2x1) + sin h(π
√

2(1− x1)]
sin(πx2) sin(πx3)

sin h(π
√

2)
. (73)

Equation (73) is the analytical solution.
In this example, we investigate the convergence of the DCM before obtaining the

greater computational accuracy of the numerical solution.
(1) Weight function.
The impact of weight functions on the relative error of the numerical solutions is

discussed. In the case of using the cubic spline function, we choose 19 × 19 regular nodes
and 18 × 18 integral cells. In the x3 split direction, we employ the FEM with the mesh
number of 10, with dmax = 1.48 and α = 2.1 × 106. The resulting relative error of our
proposed DCM is 0.1435%. For the case of using the quartic spline function, we maintain
the same background integral grid and node distributions. In the x3 split direction, the
mesh number of the FEM is set to 18, with dmax = 1.35 and α = 3.9 × 106. As a result, the
relative error is 0.1516%. These results indicate that the relative error of the quartic spline
function is slightly larger than that of the cubic spline function. Consequently, the cubic
spline function is used in the following analysis.
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(2) Scale parameter.
We choose 19 × 19 regular nodes and 18 × 18 integral cells. The mesh number of the

FEM in the x3 split direction is 18 and we set α = 2.1 × 106. Figure 2 shows the relationship
between the scale parameter dmax and the error. From Figure 2, we can conclude that when
dmax = 1.4~1.5, the computational accuracy of the numerical solution is higher.
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numerical solution is higher when α = 2.1 × 106 in Figure 3.
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Different node distributions in the k-th plane and meshes in the x3 direction are
analyzed in the following, respectively.

(4) Node distribution.
We select dmax = 1.48, α = 2.1 × 106, and 18 meshes in the x3 split direction. The

relationship between the relative error and the number of nodes is shown in Figure 4. We
can see that as the number of nodes increases, the relative error tends to decrease.
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(5) Mesh number.
We use 19 × 19 regular nodes and 18 × 18 integral cells in each 2D domain, setting

dmax = 1.48 and α = 2.1 × 106. The relationship between the relative error and the mesh
number is shown in Figure 5. We can see that as the number of meshes increases in the x3
splitting direction, the computational accuracy steadily improves.
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As discussed above, the DCM for the 3D Laplace equation is convergent.
Using the proposed DCM in this paper to solve Example 1, we select 19 × 19 regular

nodes and 18 × 18 integral cells. In the x3 splitting direction, we employ the FEM with a
mesh number of 18, dmax = 1.48, and α = 2.1 × 106. As a result, the relative error is 0.1435%
and the computational time is 1.5 s.

In contrast, when applying the IEFG method to solve Example 1, we choose 19 × 19 × 19
regular nodes, 18× 18× 18 integral cells, and the cubic spline weight function. By selecting
dmax = 1.32 and α = 1.5 × 103, the resulting relative error is 0.2134% with a computational
time of 63.9 s.

The comparison of the computational accuracy and time of the DCM and the IEFG
method is shown in Table 1.
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Table 1. The comparison of computational accuracy and time of the DCM and the IEFG.

Method Regular Nodes Relative Error CPU Time (s)

DCM 19 × 19 × 19 0.1435% 1.5
IEFG 19 × 19 × 19 0.2134% 63.9

A comparison is performed between the numerical solutions obtained using the DCM
and the IEFG method, along with the exact solutions depicted in Figures 6–8. It can be
observed that the results of these two methods accord well with the analytical solutions.
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We can see that the DCM not only exhibits superior calculation accuracy but also
significantly enhances the computational efficiency of the IEFG method in the numerical
results of Figures 6–8.

The second example [1] is
∇2u = 0, (74)

this problem domain is Ω = [0, 1]3, and

u,1
∣∣x1=0 = u,1

∣∣x1=1 = u,2
∣∣x2=0 = u,2

∣∣x2=1 = 0, (75)

u|x3=0 = −cos(πx1) cos(πx2)√
2πtanh(

√
2π)

, (76)

u,3
∣∣x2=1 = 0. (77)

Equations (75)–(77) are boundary conditions, and

u = cos(πx1) cos(πx2)

[
sinh(

√
2πx3)√

2π
− cosh(

√
2πx3)√

2πtanh(
√

2π)

]
(78)

is the analytical solution.
In Example 2, 15 × 15 regular nodes and 14 × 14 integral cells are selected in each

2D domain. We employ the FEM in the x3 split direction with a mesh number of 14 and
dmax = 1.34. The resulting relative error is 0.3796% and the computational time is 0.6 s.

In contrast, when analyzing Example 2 using the IEFG method, we choose the cubic
spline weight function along with 15 × 15 × 15 regular nodes and 14 × 14 × 14 integral
cells. Moreover, we set dmax = 1.0 and α = 5.8 × 102. The corresponding relative error is
0.3745% and the computational time is 12.9 s.

The comparison of the computational accuracy and time of the DCM and the IEFG
method is shown in Table 2.

Table 2. The comparison of computational accuracy and time of the DCM and the IEFG.

Method Regular Nodes Relative Error CPU Time (s)

DCM 15 × 15 × 15 0.3796% 0.6
IEFG 15 × 15 × 15 0.3745% 12.9
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The numerical solution of the DCM is compared with that of the IEFG method and the
exact solutions in Figures 9–11. It can be observed that the results of these two numerical
methods accord well with the exact ones.
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The results demonstrate that the DCM exhibits higher efficiency compared to the IEFG
method, despite both methods yielding similar errors. Furthermore, the DCM has the
advantage of efficiently handling mixed boundary conditions without requiring excessive
layers in the dimensional splitting direction.

The third example is
∇2u = 0, (79)

this problem domain is Ω = [0, 1]3, and

u = x2
2 + x2

3, (x1 = 0), (80)

u = −2 + x2
2 + x2

3, (x1 = 1) (81)

u = −2x2
1 + x2

3, (x2 = 0), (82)

u = −2x2
1 + 1 + x2

3, (x2 = 1), (83)

u = −2x2
1 + x2

2, (x3 = 0), (84)

u = −2x2
1 + x2

2 + 1, (x3 = 1). (85)

Equations (80)–(85) are boundary conditions.

u = −2x2
1 + x2

2 + x2
3 (86)

is the analytical solution.
Then, we apply the DCM to solve Example 3 and analyze three situations in which the

FEM is applied in different directions.
(1) The FEM applied in the x1 direction.
The mesh number is 18 with dmax = 1.51 and α = 2.5 × 104. We select 11 × 11 regular

nodes and 10 × 10 integral cells in each 2D domain. The resulting relative error is 0.1025%
and the computational time is 0.3 s.

(2) The FEM applied in the x2 or x3 direction.
The mesh number is 10 with dmax = 1.32 and α = 4.2 × 104. We select 11 × 11 regular

nodes and 10 × 10 integral cells in each 2D domain. The resulting relative error is 0.1934%
and the computational time is 0.2 s.

Furthermore, we employ the IEFG method for analysis. In this case, we choose
11 × 11 × 11 regular nodes, 10× 10× 10 integral cells, and the cubic spline weight function.
The parameters used are dmax = 1.33 and α = 1.4 × 103. The resulting error is 0.1544% with
a calculation time of 7.1 s.

The comparison of the computational accuracy and time of the DCM and the IEFG
method is shown in Table 3.

Table 3. The comparison of computational accuracy and time of the DCM and the IEFG.

Method Regular Nodes Relative Error CPU Time (s)

DCM (split in x1 direction) 11 × 11 × 11 0.1025% 0.3
DCM (split in x2 or x3 direction) 11 × 11 × 11 0.1934% 0.2

IEFG 11 × 11 × 11 0.1544% 7.1

When the FEM is used in the x1-axis splitting direction, it can be observed that the
DCM can obtain a smaller error. Comparing the numerical solution of the DCM with those
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of the IEFG method and the exact ones in Figures 12–14, the results of these two methods
agree well with the exact ones.
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The fourth example [27,31] is in an irregular-shaped domain selected as

∇2u = 0, (r ∈ [1, 2], θ ∈ [0, π], x3 ∈ [0, 1]), (87)

The boundary conditions are

u(1, θ, x3) = sin θ + x3, (88)

u(2, θ, x3) = x3, (89)

u(r, 0, x3) = x3, (90)

u(r, π, x3) = x3, (91)

u(r, θ, 0) =
4
3

(
1
r
− r

4

)
sin θ, (92)

u(r, θ, 1) =
4
3

(
1
r
− r

4

)
sin θ + 1. (93)

The analytical solution of this problem is

u(r, θ, x3) =
4
3

(
1
r
− r

4

)
sin θ + x3. (94)

For this example, the FEM is applied in the x3 split direction with a mesh number of 10.
A total of 9 × 31 nodes are distributed in a half-torus domain for the 2D problem. Among
these nodes, 9 nodes are positioned along the radial direction r, and 31 nodes are uniformly
distributed along the angle axis θ as shown in Figure 15 given in [27]. This means that the
integral node distribution is 9 × 31 × 11 with dmax = 1.0 and α = 0.12. The resulting relative
error is 0.1510% and the computational time is 1.3 s.
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For this example, in order to verify the effectiveness and correctness of the DCM,
the results of the DCM are compared with those of the IEFG method given in [27] using
9 × 31 × 11 nodes, 8 × 30 × 10 integral cells, and the cubic spline weight function. When
dmax = 1.2, and α = 1.0 × 104 are selected, the relative error and the computational time of
the IEFG method are 0.2377% and 132.1 s, respectively.

The comparison of the computational accuracy and time of the present DCM and the
IEFG method given in [27] is shown in Table 4.



Mathematics 2023, 11, 3717 17 of 20

Table 4. The comparison of computational accuracy and time of the present DCM and the IEFG
method given in [27].

Method Nodes Relative Error CPU Time (s)

DCM 9 × 31 × 11 0.1510% 1.3
IEFG [27] 9 × 31 × 11 0.2377% 132.1

Comparing the numerical solutions of the present DCM with those of the IEFG method
given in [27] and the exact ones in Figures 16–18, the results of the DCM agree well with
the exact ones.
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5. Discussions

In this study, a new dimensional split EFG method called the DCM is studied. The
proposed method is used to solve 3D Laplace equations.

The influence of meshes of the FEM in the third direction, the weight function, other
parameters, and the node distribution in 2D domains on precision is discussed. Addition-
ally, the convergence of the proposed method in this study is numerically verified. Four
numerical examples are provided to illustrate that the new method significantly enhances
computational efficiency without reducing computational accuracy compared to the IEFG
method.

6. Conclusions

Due to the lower computational efficiency of the EFG and IEFG methods in solving 3D
Laplace equations, we propose a new dimension splitting EFG method named the DCM,
which efficiently solves the 3D Laplace equation. Moreover, it conveniently and efficiently
handles mixed boundary conditions by using the FEM instead of the FDM in the splitting
direction. Consequently, this study provides an efficient and potential numerical method
that can reduce computational time and costs without sacrificing accuracy to solve 3D
complex engineering problems, including but not limited to crack propagation, high-speed
collisions and explosions, metal press forming, and large deformation problems in gradient
materials. Because of the large-scale calculation of such problems, research into the DCM
combined with parallel algorithms needs to be investigated in the future, which has not
been addressed before.

However, the DCM still has some limitations. First, the MATLAB program for the
DCM is more complex than that for the IEFG method. Moreover, challenges may arise
when using the DCM presented in this study combined with parallel algorithms. Therefore,
this new method still needs further improvement in future research.
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Nomenclature

List of symbols in formulas.
Symbol Nomenclature Symbol Nomenclature
u(x) Approximation function Γq Natural boundary
Φ̃ Shape function of IEFG method Ω(k) 2D domain of k-th layer

p(x) Basis function of IEFG method Γ(k)
u Essential boundary in

k-th layer

w(x− xI) Weighting function of IEFG method Γ(k)
q Natural boundary in

k-th layer
Ω Problem domain dmax Scale parameter
Γ Boundary α Penalty factor
Γu Essential boundary v = ϕi Test function of FEM

List of abbreviations and corresponding full names.
Abbreviation Full name Abbreviation Full name
DCM Dimension Coupling Method IEFG Improved Element-Free

Galerkin
DSM Dimensional Split Method MLS Moving Least-Squares
FEM Finite Element Method IMLS Improved Moving

Least-Squares
FDM Finite Difference Method 3D Three-dimensional
EFG Element-Free Galerkin 2D Two-dimensional
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