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Abstract: In this paper, we present a constructive description of the function space of all real-valued
functions on R (F(R,R)) by presenting a partition of it into 28 distinct blocks and a closed-form
formula for the representative function of each of them. Each block contains elements that share
common features in terms of the cardinality of their sets of continuity and differentiability. Alongside
this classification, we introduce the concept of the Connection, which reveals a special relationship
structure between the well-known representatives of four of the blocks: the Cantor function, the
Dirichlet function, the Thomae function, and the Weierstrass function. Despite the significance of this
field, several perspectives remain unexplored.
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From the paradise, that Cantor created for us, no-one shall be able to expel us.

(David Hilbert-1925)

1. Introduction
1.1. Real Valued Functions

The theory of functions of a real variable was first treated by the Italian mathematician
Ulisse Dini in 1878 [1]. This theory was constructed through the enlargement and deepening
of set theory and was later developed separately and in parallel with its mentioned parent
theory [1]. The development of this theory can be divided into three periods: the first
period (1867–1902) saw extensive investigation into various topics of classical analysis, such
as integrals, derivatives, and point set theory; the second period (1902–1930) marked the
solidification of the theory of functions of a real variable as an independent mathematical
discipline; and the third period (1930-present) is characterized by the study of the theory of
real-valued functions in connection with functional analysis [1].

1.2. Motivation

The function space of all real-valued functions on the real line (F(R,R)) is an infinite-
dimensional vector space with a nonconstructive basis. It encompasses various types of
functions with pathological and chaotic structures. Here, we refer to the term “pathological”
in the sense of contradicting features with perceived human intuition. Furthermore, we
refer to the term “chaotic” in the context of dynamical systems where, at any neighborhood
of a given point in the function domain, there is an unpredictable change in the values
of the function [2]. As researchers’ attention has shifted from pure existential mathemat-
ics to constructive mathematics [3,4], mathematicians have made numerous attempts to
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focus on special subsets of this vast vector space (e.g., all real-valued continuous func-
tions [5]) or to classify this vector space using novel ancillary concepts. Examples of such
classifications include those based on (i) set theory (surjective, injective, bijective, etc.),
(ii) operators (additive, multiplicative, even, odd, etc.), (iii) topology (continuous, open,
closed, etc.), (iv) properties concerning real numbers (differentiable, smooth, convex, etc.),
and (v) measurability (Borel status, Baire status, etc.) [6–8].

This work presents another attempt to describe the vector space of real-valued func-
tions on the real line from a constructive mathematics perspective. Specifically, it aims to
classify the elements of this vector space using their associated information on cardinality,
continuity, and differentiability. Furthermore, based on this classification, it establishes a
particular relationship among four of them: the Cantor function, the Dirichlet function,
the Thomae function, and the Weierstrass function.

1.3. Study Outline

This paper is divided into four sections. The first section provides the necessary
preliminaries in set theory, linear algebra, and special functions, which are essential for the
following sections. In the second section, we discuss the partition of F(R,R) into 28 blocks
of functions, presenting constructive examples for each block. The third section focuses on
the relationship between these 28 blocks of functions using graph theory, with a specific
emphasis on the four main plausible functions. Finally, we conclude the work with a
discussion section on the current results and future directions.

2. Preliminaries

Readers who have studied the key topics of Analysis and Linear Algebra are well-
equipped with the following notations, definitions, and results in the areas of “Set The-
ory” [9–11], “Linear Algebra” [9,12–14], and “Special Functions” [15–22].

2.1. Set Theory

Proposition 1. Let R denote the set of real numbers and A ⊆ R. Then, A is empty, non-
empty finite, denumerable, or uncountable. In these cases, we denote the cardinality of A by
0, n(n ∈ N),ℵ0, or c, respectively.

Remark 1. Henceforth, we assume there are only four types of subsets in the real line given
Proposition 1, considering all non-empty finite sets of one category with common symbol “n” as
their cardinal number.

Proposition 2. (i) Let A ⊆ R be uncountable and A = A1∪̇A2. Then, A1 or A2 is uncountable.
(ii) Let A ⊆ B ⊆ R. Then, 0 ≤ Card(A) ≤ Card(B) ≤ c.

Proposition 3. Let C be the ternary Cantor set, i.e., C = {x ∈ [0, 1]|x := ∑∞
n=1

an
3n : an = 0,

2(n ∈ N)}. Then, one can write C = ∩∞
n=1Cn where Cn is the disjoint union of 2n intervals of the

form In,k := [an,k, bn,k] (1 ≤ k ≤ n) each of the length 3−n, (n ≥ 1).

Remark 2. Given Cunc = {A ⊆ C|Card(A) = c}, we have Card(Cunc) = 2c.

2.2. Linear Algebra

Definition 1. Let R denote the set of real numbers. We define (i) F(R,R) = { f : R →
R| f is a f unction}; (ii) C(R,R) = { f : R → R| f is a continuous f unction everywhere};
and (iii) D(R,R) = { f : R→ R| f is a di f f erentiable f unction everywhere}.

Remark 3. The function space F(R,R) equipped with conventional addition + and scalar multipli-
cation • constitutes the vector space (F(R,R),R,+, •). In addition, the vector spaces (C(R,R),R,
+, •), and (D(R,R),R,+, •) are its sub-spaces.
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Proposition 4. Given the sets introduced in Definition 1, we have (i) D(R,R) ( C(R,R) (
F(R,R); (ii) Card(F(R,R)) = 2c; (iii) Card(C(R,R)) = c; and (iv) Card(D(R,R)) = c.

Proposition 5. dim(F(R,R)) = 2c.

2.3. Special Functions

Definition 2. Given indicator function 1A(A ⊆ R), and the ternary Cantor set C. Then, the Can-
tor function C(.), the Dirichlet function D(.), the Thomae function T(.), and the Weierstrass
function W(.) are defined on a closed-unit interval as:

C(x :=
∞

∑
n=1

an,x

3n ) =
1

2Nx
+

Nx−1

∑
n=1

an,x

2n+1 : Nx = min{n ∈ N : an,x = 1}, (1)

D(x) = 1Q(x), (2)

T(
m
n

1Q(x :=
m
n
) + x1Qc(x)) =

1
n

1Q(x) : (m, n) = 1, (3)

W(x) =
∞

∑
n=0

cos(21nπx)
3n . (4)

Remark 4. We note that the definitions of the above functions have straightforward extension from
the closed unit interval to the entire real line. Also, the introduced Weierstrass function here is a
special case of the general form for a = 1

3 , b = 21.

Definition 3. Let C be the ternary Cantor set, D(.) be the Dirichlet function, and −∞ <

a < b < ∞. Then, for the triangular function T(1)(.) given by T(1)
a,b (x) =

√
3
(

b−a
2 − |x −

b+a
2 |
)

1[a,b](x), and the transformed cosine function T(2)(.) given by T(2)
a,b (x) = (b− a) ∗ (1−

cos(2π( x−a
b−a )))1[a,b](x), we define two functions fC and gC on the real line as

fC(x) = (
∞

∑
n=1

fn(x))D(x) : fn(x) =
2n

∑
k=1

T(1)
an,k ,bn,k

(x)1[an,k ,bn,k ]
(x), (n ≥ 1) (5)

gC(x) = (
∞

∑
n=1

gn(x))D(x) : gn(x) =
2n

∑
k=1

T(2)
an,k ,bn,k

(x)1[an,k ,bn,k ]
(x) (n ≥ 1). (6)

Remark 5. While the triangular function is continuous everywhere and has no derivative at points
x = a, b, the linear transformed cosine function is differentiable everywhere and, in particular, its
derivative at points x = a, b is zero. These properties are inherited by the associated functions fC
and gC, respectively.

3. Main Results
3.1. Partition of F(R,R) with Scenario Classification & Examples

We present a constructive perspective of the function space F(R,R) by its blockization
in three parts: (i) Existence of the Blocks, (ii) Construction of the Blocks, and, (iii) Size of
the Blocks.

3.1.1. Existence of the Blocks

We start by partitioning the function space F(R,R) into a finite number of blocks
using the intersectionality of three concepts: “cardinal number”, “continuity”, and “dif-
ferentiability”. Here, two real-valued functions defined on R belong to the same block
if and only if their associated set of continuities, discontinuities, differentiabilities, and
non-differentiabilities have the same cardinal number, explained in detail below.
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Definition 4. Let f , g ∈ F(R,R), with associated sets of continuities C f , Cg and the associated
sets of differentiabilities D f , Dg. Then, f is equivalent to g in structure, denoted by fRsg, when-
ever (i) Card(C f ) = Card(Cg); (ii) Card(Cc

f ) = Card(Cc
g); (iii) Card(D f ) = Card(Dg); and

(iv) Card(Dc
f ) = Card(Dc

g).

It is trivial that Rs in Definition 4 is an equivalence relation on F(R,R). Hence, it
induces a partition on it as follows.

Theorem 1. The function space F(R,R) may be partitioned into 28 unique distinct blocks:

F(R,R) =
⋃̇28

i=1
[ fi], (7)

[ fi] = { f ∈ F(R,R)| fRs fi}(1 ≤ i ≤ 28). (8)

Proof. First, let f ∈ F(R,R), and consider its set of continuity points C f . Then, given
R = C f ∪̇Cc

f , by an application of Proposition 2 (i), it follows that at least C f or Cc
f is

uncountable. Subsequently, by Proposition 2 (ii), there are seven different scenarios for the
cardinality of the pair (C f , Cc

f ), including (0, c), (n, c), (ℵ0, c), (c, c), (c,ℵ0), (c, n), or (c, 0).
A similar argument for the set of differentiabilities D f with the same seven blocks holds.
Secondly, by multiplication principle, it appears that there are 7× 7 = 49 blocks of functions.
However, by two applications of Proposition 2 (ii) for A = D f and B = C f , and for A = Cc

f
and B = Dc

f , only (1 + 2 + · · ·+ 7) = 28 blocks exist. Table 1 lists these blocks.

Table 1. List of 28 representatives blocks of partition of F(R,R).

Continuity Differentiability

# Case Card(C f ) Card(Cc
f ) Card(D f ) Card(Dc

f )

1 1-1 0 c 0 c
2 2-1 n c 0 c
3 2-2 − − n c
4 3-1 ℵ0 c 0 c
5 3-2 − − n c
6 3-3 − − ℵ0 c
7 4-1 c c 0 c
8 4-2 − − n c
9 4-3 − − ℵ0 c
10 4-4 − − c c
11 5-1 c ℵ0 0 c
12 5-2 − − n c
13 5-3 − − ℵ0 c
14 5-4 − − c c
15 5-5 − − c ℵ0
16 6-1 c n 0 c
17 6-2 − − n c
18 6-3 − − ℵ0 c
19 6-4 − − c c
20 6-5 − − c ℵ0
21 6-6 − − c n
22 7-1 c 0 0 c
23 7-2 − − n c
24 7-3 − − ℵ0 c
25 7-4 − − c c
26 7-5 − − c ℵ0
27 7-6 − − c n
28 7-7 − − c 0
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Corollary 1. Each of the blocks of functions with the most chaotic structure ([ f1]) and functions
of the least chaotic structure ([ f28] = D(R,R)) constitutes only 3.5% (1/28) of all blocks. Hence,
93% of blocks of functions fall between these two opposite extremes. Furthermore, the vector space
of everywhere-continuous functions on the real line (C(R,R)) constitutes 25% (7/28) of all blocks.

3.1.2. Construction of the Blocks

We now consider the proposed blocks in Theorem 1 and investigate the existence of at
least one explicit closed form function as the representative of each block, as shown below.

Theorem 2. There is at least one constructive example representing each of 28 unique distinct
blocks of functions in F(R,R).

Proof. We consider the ith (1 ≤ i ≤ 28) row in the Table 1 and find a closed-form represen-
tative function fi(1 ≤ i ≤ 28). Table 2 lists all the functions. It is straightforward for the
reader to check that each function satisfies the associated block requirements.

Table 2. List of 28 representative functions for each of the 28 blocks F(R,R).

# Case Representative f (x) Comments Card([ f ])

1 1-1 D(x) Dirichlet Function 2c

2 2-1 (∏n
k=1(x− k))D(x) 2c

3 2-2 (∏n
k=1(x− k)2)D(x) 2c

4 3-1 sin(πx)D(x) 2c

5 3-2 (sin(πx)∏n
k=1(x− k))D(x) 2c

6 3-3 (sin2(πx))D(x) 2c

7 4-1 fC(x) C f = C 2c

8 4-2 (∏n
k=1(x− 1

3k )
2) fC(x) 2c

9 4-3 (sin2(π
x )) fC(x) 2c

10 4-4 gC(x) C f = D f = C 2c

11 5-1 T(x) Thomae Function c
12 5-2 (∏n

k=1(x− k)2)T(x) c
13 5-3 (sin2(πx))T(x) c
14 5-4 T(x)1[0,1](x) c
15 5-5 ∑+∞

n=1 πn1{πn}(x) c
16 6-1 W(x) + ∑n

k=1 πk1{πk}(x) c
17 6-2 (∏n

k=1(x− k)2)(W(x) + ∑n
k=1 πk1{πk}(x)) c

18 6-3 (sin2(πx))(W(x) + ∑n
k=1 πk1{πk}(x)) c

19 6-4 (W(x) + ∑n
k=1 π−k1{π−k}(x))1[0,1](x) c

20 6-5 | sin(πx)|+ ∑n
k=1 πk1{πk}(x) c

21 6-6 ∑n
k=1 πk1{πk}(x) c

22 7-1 W(x) Weierstrass Function c
23 7-2 (∏n

k=1(x− k)2)W(x) c
24 7-3 (sin2(πx))W(x) c
25 7-4 C(x) Cantor Function c
26 7-5 | sin(πx)| c
27 7-6 |∏n

k=1(x− k)| c
28 7-7 x c

Remark 6. The block of functions with the least chaotic structure ([ f28]) represented by the identity
function I in the Table 2 lists many well-known functions, including all polynomials pm(.)(m ≥ 0),
the trigonometric functions sin(.) and cos(.), the exponential function exp(.), and the Volterra’s
function [23].

Remark 7. The ternary Cantor set (C) appears in the construction of representatives of 17.9%(5/28)
of the blocks. This shows that the ternary Cantor set has remarkable presence in the representative
blocks of the space of real-valued functions on the real line.



Mathematics 2023, 11, 3715 6 of 10

Remark 8. The four well-known functions C(.), D(.), T(.), and W(.) show up in 64.3%(18/28) of
the blocks where, for given representative function fi = (hi1 + hi2)hi3, at least one of hij(j = 1, 2, 3)
is one of these four functions.

3.1.3. Size of the Blocks

We now consider the the problem of cardinality calculation of each presented block in
Theorem 1. In the spirit of having some hints on the their sizes from information presented
in Proposition 4, we investigate this in two steps as follows.

Lemma 1. Let F1(R,R) = ∪10
i=1[ fi] and F2(R,R) = ∪28

i=11[ fi]. Then,
(i) Card(F1(R,R)) = 2c

(ii) Card(F2(R,R)) = c.

Proof. First, given F(R,R) = F1(R,R)∪̇F2(R,R), we have 2c = Card(F1(R,R))+Card(F2(R,
R)). Hence, proving claim (ii) yields proving claim (i). Secondly, to prove claim (ii), let
Xcount ⊂ R be countable. Then, given Card(C(Xc

count,R)) = c [24], we have Card(∪Xcount⊂R
C(Xc

count,R)) = c. Consequently, Card(F(N,R)×∪Xcount⊂RC(Xc
count,R)) = c. Finally, using

the recent result, it is sufficient to consider the 1-1 mapping:
φ : F2(R,R)→ (F(N,R)×∪Xcount⊂RC(Xc

count,R))
φ( f ) = ( f |Cc

f
, f |C f ).

This completes the proof.

Theorem 3.
Card([ fi]) = 1[1,10](i)× 2c + 1[11,28](i)× c (1 ≤ i ≤ 28). (9)

Proof. First, let f ∈ F(Qc,R−0 ). Then, we can extend f to R by f (Q) = {1}. A straightfor-
ward verification shows that f ∈ [ f1]. Thus, given the 1-1 mapping

ψ1 : F(Qc,R−0 )→ [ f1]

ψ1( f ) = [ f1],
we have 2c = Card(F(Qc,R−0 )) ≤ Card([ f1]) ≤ Card(F(R,R)) = 2c. This yields Card([ f1]) =
2c. Next, let f ∈ [ f1] and define gi(.) (2 ≤ i ≤ 6) by gi(x) = (∏n

k=1(x − k)), (∏n
k=1(x −

k)2), sin(πx), (sin(πx)∏n
k=1(x− k)), (sin2(πx)) for (2 ≤ i ≤ 6),. Then, using the CDF of

the normal distribution Φ, we have giΦ( f ) ∈ [ fi] for (2 ≤ i ≤ 6), respectively. Thus, given
the 1-1 mapping

ψi : [ f1]→ [ fi](2 ≤ i ≤ 6)

ψi( f ) = giΦ( f ),
we have 2c = Card([ f1]) ≤ Card([ fi]) ≤ Card(F(R,R)) = 2c, implying Card([ fi]) = 2c for
(2 ≤ i ≤ 6).

Secondly, let A ∈ Cunc and consider the modified f A
i (.) (7 ≤ i ≤ 10) in Table 2 by

f A
i (x) = fA(x), (∏n

k=1(x − 1/3k)) fA(x), (sin2(π
x )) fA(x), gA(x) for (7 ≤ i ≤ 10). Thus,

given the 1-1 mapping
ψi : Cunc → [ fi](7 ≤ i ≤ 10)

ψi(A) = f A
i ,

we have 2c = Card(Cunc) ≤ Card([ fi]) ≤ Card(F(R,R)) = 2c, implying Card([ fi]) = 2c

for (7 ≤ i ≤ 10).
Thirdly, let p ∈ R+. Then, using function fi (11 ≤ i ≤ 28) in the Table 2, we have

p fi ∈ [ fi] (11 ≤ i ≤ 28). Hence, given the 1-1 mapping
ψi : R+ → [ fi](11 ≤ i ≤ 28)

ψi(p) = p. fi,
we have c = Card(R+) ≤ Card([ fi]), for (11 ≤ i ≤ 28), respectively. Next, given [ fi] ⊆
F2(R,R), for (11 ≤ i ≤ 28), and Lemma 1 (ii), we have Card([ fi]) ≤ c for (11 ≤ i ≤ 28).
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Accordingly, by the last two inequalities on the cardinals, it follows that: Card([ fi]) =
c (11 ≤ i ≤ 28). In particular, for [ f28] = D(R,R), we have Card([ f28]) = c.

This completes the proof.

Remark 9. The cardinality of 35.7%(10/28) of the blocks is 2c, while that of 64.3%(18/28) of
blocks is c. This indicates that the cardinal number c has almost double frequency of that of cardinal
number 2c in representing the size of blocks of the space of real-valued functions on the real line.

3.2. The Connection between Real-Valued Functions on R
3.2.1. The Relationship between the 28 Representative Functions

In the previous section, we observed that any given function f ∈ F(R,R) belongs
to one of the 28 blocks of its partitions. Now, one may wonder how to connect these key
functions. Trivially, the equivalence relation induced by the aforementioned partition is
unhelpful in this regard. Hence, we consider an alternative approach. We begin with
a definition:

Definition 5. Given two functions f1, f2 ∈ F(R,R), f1 is called connected to f2, denoted by
f1

conn∼ f2, whenever, for some function g ∈ F(R,R), we have f1g ∈ [ f2].

Remark 10. Additional restrictions on g: When g = 1 in Definition 5, conn∼ is transformed into the
induced equivalence relation by the above partition in the Theorem 1; Furthermore, if g is a positive
everywhere-differentiable function on R, the aforementioned relation becomes an equivalence relation.

It is trivial that, in Theorem 1, fi
conn∼ f28 for all (1 ≤ i ≤ 27). Figure 1 presents these

relationships. As shown, the block of everywhere-differentiable functions [ f28] is the sink
node with the highest in-degree connectivity among all blocks of functions.

f28

f1
conn

f2

conn

f3

conn

f4

conn

f5

conn

f6

conn

f7

conn

f8

conn

f9

conn
f10

connf11

connf12
conn

f13 conn

f14
conn

f15

conn

f16

conn

f17

conn

f18

conn

f19

conn

f20

conn

f21

conn

f22

conn

f23

conn
f24

conn f25

conn
f26

conn

f27conn

Figure 1. The (incomplete) graphical presentation of the relationship between all representatives of
blocks of F(R,R) and f28 the identity function.
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3.2.2. The Relationship between the Big Four

As there are 4C28
2 = 3.790327× 10227 potential scenarios for the complete graph in

Figure 1, finding the relationships between all nodes of the graph appears to be a tedious
and difficult task. However, we can identify the relationships between four of them,
i.e., f1 = D, f11 = T, f22 = W, and f25 = C, where there are only 4C4

2 = 4096 potential
scenarios. Equipped with Definition 5, we have the following.

Theorem 4. Given the above notations and definitions, we have (i) W conn∼ T, (ii) W conn∼ C,
(iii) W conn∼ D, (iv) T conn∼ D, and (v) C conn∼ D.

Proof. It is sufficient for each case to present the g function in Definition 5 as follows:
(i) g(x) = x+∑+∞

n=1 πn1{πn}(x); (ii) g(x) = x(x− 1)1[0,1](x); (iii)–(v) g(x) = ∑+∞
−∞ 1A+2n(x) :

A = (sin(n))+∞
n=1 dense in [−1, 1].

Figure 2 presents a graphical overview of the results in Theorem 4. As is shown,
the Weierstrass function (W) is the source-universal node with the highest out-degree
connectivity; the Cantor function (C) and the Thomae function (T) are the bridging nodes;
and the Dirichlet function (D) is the sink node with the highest in-degree connectivity.

D

W

conn

T

conn

C

conn

conn conn

Figure 2. The graphical presentation of the relationship between well-known functions: the Cantor
function (C), the Dirichlet function (D), the Thomae function (T), and the Weierstrass function (W).

4. Discussion
4.1. Summary & Contributions

This work presented a finite partition of the function spaces of all real-valued functions
on R based on cardinality, continuity, and differentiability, along with constructive examples
representing each block of the partition. In particular, it showed that the well-known
Cantor function, the Dirichlet function, the Thomae function, and the Weierstrass function
each represented a unique block of this partition. An additional aspect that adds more
importance to these four functions is that they collectively appeared in the representation of
almost two-thirds of the blocks. Furthermore, the concept of Connection among real-valued
functions was introduced, and the unique connection relation between the mentioned
functions was investigated.

Finally, this work’s findings add more prominence to the Cantor set C as well. While
it had a remarkable presence in the construction of the representative functions of blocks,
its size (e.g., Cardinal number c) had the highest presence in the set of sizes {c, 2c} of the
representative blocks.
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4.2. Limitations & Future Work

The limitations in this work are clear, and they open up new perspectives for further
investigations. Firstly, we merged the cardinal number of all finite subsets of R with given
symbol n. While this inaccuracy is a minimal price to pay for enabling the creation of
the aforementioned finite partition, it should be noted. Secondly, the presented graph in
Figure 1 needs to be completed for all its involved nodes. Thirdly, the connection relation in
Definition 5 is not an equivalence, making it suboptimal. One open problem in this regard
is investigating the results in Figures 1 and 2 when considering the equivalence relations
mentioned in Remark 10. Finally, it is worth exploring how the equivalence relation in
Definition 4 influences the structure and the number of blocks in the presented partition.
When one presents a new equivalence relation on the function space F(R,R) by replacing
some key features in the Definition 4 (such as continuity and differentiability) with other
properties of real-valued functions on the real line (such as integrability, measurability, etc.),
the structure and number of the blocks of the presented partition may change. This
modification opens doors to many other uncultivated areas of partition representation of
the function space F(R,R).

4.3. Conclusions

This work presented a constructive and finite partition-based description of the func-
tion space of all real-valued functions on R which has formerly been characterized by its
pure existential infinite dimensional base. Additionally, it presented the concept of the
“Connection” between elements of this space.
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