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Abstract: Mathematical models play a crucial role in predicting disease dynamics and estimating
key quantities. Non-autonomous models offer the advantage of capturing temporal variations and
changes in the system. In this study, we analyzed the transmission of typhoid fever in a population
using a compartmental model that accounted for dynamic changes occurring periodically in the
environment. First, we determined the basic reproduction number, R0, for the periodic model
and derived the time-average reproduction rate, [R0], for the non-autonomous model as well as
the basic reproduction number, RA

0 , for the autonomous model. We conducted an analysis to
examine the global stability of the disease-free solution and endemic periodic solutions. Our findings
demonstrated that when R0 < 1, the disease-free solution was globally asymptotically stable,
indicating the extinction of typhoid fever. Conversely, whenR0 > 1, the disease became endemic in
the population, confirming the existence of positive periodic solutions. We also presented numerical
simulations that supported these theoretical results. Furthermore, we conducted a sensitivity analysis
ofRA

0 , [R0] and the infected compartments, aiming to assess the impact of model parameters on these
quantities. Our results showed that the human-to-human infection rate has a significant impact on
the reproduction number, while the environment-to-human infection rate and the bacteria excretion
rate affect long-cycle infections. Moreover, we examined the effects of parameter modifications and
how they impact the implementing of efficient control strategies to combat TyF. Although our model
is limited by the lack of precise parameter values, the qualitative results remain consistent even with
alternative parameter settings.

Keywords: typhoid fever; seasonal model; partially susceptible; reproduction numbers; global
stability; periodic solutions; sensitivity analysis

MSC: 34A99; 34C25; 34C60; 92D30

1. Introduction

Typhoid fever (TyF), caused by the bacteria Salmonella Typhi, is a highly infectious
illness. TyF is a leading cause of disease and death in regions with few medical facilities.
Food and water contamination, lack of sanitation, and intimate personal contact between
infected people are the most common ways that the disease is spread [1,2]. High fever that
persists, headache, weakness, stomach discomfort, and either constipation or diarrhea are
all signs of typhoid. Some individuals may develop a skin rash, and in the most extreme
situations, typhoid may be deadly [3]. TyF has a significant worldwide impact, especially
in low- and middle-income nations where sanitary infrastructure is weak and safe drinking
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water is scarce. The World Health Organization (WHO) reports that roughly 110,000 people
die from TyF each year out of an estimated 9 million annual infections. In many third-
world nations, particularly those with inadequate sanitation and few supplies of potable
water, the disease is prevalent. Examples of such areas include South Asia, India, Pakistan,
and Bangladesh, which are particularly affected [3–5]. The liver, spleen, digestive tract,
and bone marrow are only a few of the organs susceptible to damage from TyF. The
gallbladder of chronic typhoid carriers may function as a reservoir for the germs due to
the formation of a bio-film. This can lead to intermittent shedding of bacteria into the
stool, potentially transmitting the disease to others [6,7]. Recovery from TyF can lead
to partial immunity, reducing the risk of re-infection or milder symptoms. The immune
system produces antibodies during the first infection, which recognize and combat future
infections. However, partial immunity does not guarantee complete protection and may
not work against other Salmonella strains [8,9].

Mathematical models are employed to demonstrate the dynamics of infectious diseases
(e.g., [10–15]). Several mathematical models focusing on TyF dynamics have considered
that transmission occurs only via direct contact between infected and susceptible per-
sons [12,16]. Alternatively, some models have assumed that the disease is transmitted only
through environmental factors like contaminated food and water [10,11]. In contrast, other
models have included direct and environmental transmission dynamics [17,18]. Most of
these models are autonomous models, where the model’s parameters are constant and do
not require external input to describe their behavior over time. For instance, Irena and
Gakkhar [19] studied a two-strain mathematical model analyzing antimicrobial-resistant
typhoid infection revealing that transmission rates and bacterial consumption affect R0
(basic reproduction number). The development of resistance due to treatment does not
have an impactR0. However, it does contribute to the elevated presence of resistant strains
in a state of co-existence equilibrium. To mitigate the transmission of antimicrobial-resistant
Salmonella Typhi strains, the study recommends promoting access to clean and potable
water and practicing appropriate sanitation methods. Abboubakar and Racke [20] studied
a compartmental model for preventing TyF, considering control mechanisms like an imper-
fect vaccine, hygiene practices, and therapeutic measures. Clinical data from Mbandjock,
Cameroon, demonstrated the need for a comprehensive approach involving large-scale
immunization, environmental sanitation, and appropriate therapeutic interventions to
effectively control TyF. Pitzer et al. [18] modeled an autonomous system, dividing the
population into two populations depending on their susceptibility (fully and partially
susceptible). The evaluation conducted in the study examines both the direct and indirect
impacts of typhoid vaccination. The findings indicate that vaccination can provide imme-
diate indirect protection and contribute to a reduction in typhoid cases in the short term.
However, relying solely on vaccination is improbable to lead to the complete elimination of
the disease. The extent of indirect protection achieved through vaccination is influenced by
assumptions made about chronic carriers of the infection.

Furthermore, some models (e.g., [21,22]) are non-autonomous models where some
of the model’s parameters are time-dependent parameters. In a study on TyF transmis-
sion dynamics [21], a system of non-linear differential equations is formulated with a
time-dependent infection rate to account for fear in periodic environments. The model’s
equilibrium solutions are identified, and stability analysis is conducted. The impact of
vital parameters on disease progression is determined via sensitivity analysis and numer-
ical simulations. The study highlights the significance of fear and seasonality in disease
transmission and emphasizes the implications for public health resulting from the findings.
Pitzer et al. [22] developed a non-autonomous mathematical model to elucidate patterns in
TyF cases in Blantyre, Malawi. The findings indicate that before 2010, the transmission was
mainly influenced by chronic carriers and sub-critical transmission from primary infections.
However, the appearance of multidrug-resistant strains and the H58 haplotype allowed the
disease to infect more than one person, resulting in exponential epidemic growth.
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This study builds upon prior research conducted in papers such as [18,22,23]. These
studies have laid the foundation for our work by establishing mathematical models and
analyzing various aspects of typhoid fever transmission. In our research, we construct
a non-autonomous compartmental model that considers the impact of periodic environ-
mental changes, specifically incorporating seasonal variations in transmission rates based
on rainfall. This extension goes beyond the scope of [18], which did not include environ-
mental periodicity. Furthermore, in contrast to [22], we focus on analyzingR0, the basic
reproduction number, for our periodic model to investigate its dynamics. We establish the
global asymptotic stability (GAS) of disease-free periodic solution (DFPS) and the existence
of periodic solutions, varying withR0. Additionally, we perform numerical simulations
to validate our findings. In particular, our investigation examines how the transmission
dynamics of TyF are affected by various factors, such as the seasonal transmission rate,
rates of bacteria extraction and decay, proportion of chronic carriers, and other important
parameters. In our analysis of the time-periodic model, we utilize approaches established
and applied in previous studies on periodic epidemic models. Specifically, we draw upon
the techniques used in [23–27].

The article is structured into different sections, starting with Section 2, which details the
proposed model. Section 3 focuses on determining reproduction numbers, while Section 4
presents the global dynamics in relation to R0. Finally, Section 5 contains numerical
simulation results.

2. Typhoid Compartmental Model Formulation

Our model classifies the human population into nine compartments and two sub-
populations based on their level of infection: primary infected and partially infected.
The model that we propose, represented by Equation (1), builds upon prior models such as
those presented in [18,22], as well as other models concerning the transmission dynamics
of TyF. Specifically, our model incorporates a seasonal transmission parameter. To put
it simply, the model postulates that people are naturally vulnerable to being infected
and developing illness due to Salmonella Typhi (S1(t)). Those susceptible to the infection
can acquire it through either human-to-human transmission (direct or short-cycle) or
environment-to-human transmission (indirect or long-cycle) and then move to the exposed
class (E1(t)), where they remain exposed for a period of 1/ν. People who contract the
primary infection (I1(t)) stay contagious for a period of 1/δ. After that period, we presume
that a portion (α) of them will die due to the illness, while another portion (θ) develop
gallbladder infections and become chronic carriers (C(t)) [6,7]. The remaining individuals,
comprising of (1− θ − α), will undergo recovery and attain temporary immunity (R(t)).
We hypothesize that α + θ ≤ 1 and the value of θ varies depending on the infected person’s
age, which is supported by epidemiological evidence [28]. At a certain rate ω, a person’s
immunity against future infections decreases, making them partially susceptible (S2(t)). In
the event of reinfection, before the partial immunity wanes at a rate of η, these partially
susceptible individuals move into the exposed class (E2(t)), where they remain exposed
for a duration of 1/ν. After that period, any subsequent reinfection (I2(t)) is assumed
to be sub-clinical. Infected individuals who experience sub-clinical infections can either
recover or become chronic carriers. B(t) is used to represent the density of bacteria in the
environment. It is assumed that all individuals who are infected with the pathogen release
bacteria into the environment’s reservoir (B(t)) at a rate of γ. The infectious period of these
bacteria lasts for a duration of 1/ξ. Additionally, the infectiousness of individuals who
are chronic carriers is reduced by a factor of τ ≤ 1. Therefore, susceptible humans become
infectious at a rate of (βλ(t) + βb(t))Si for i = 1 or 2, where λ(t) = I1(t) + I2(t) + τC(t).
The parameters β and βb(t) represent the rate of infection from infected to susceptible
humans and the rate of infection from the environment to susceptible humans, respectively.
TyF transmission can be seasonal in some regions, particularly in areas with monsoon
seasons, due to factors such as flooding and poor sanitation. However, the seasonality of
TyF transmission can vary depending on the geographic location and local environmental
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factors. Based on this information, we made an assumption in our model that βb(t) is
a continuous, positive T-periodic function to represent the seasonal transmission of the
disease. The diagram in Figure 1 provides an illustration of the model.

Λ

S2 E2 I2

CB

S1 E1 I1

R

βλ(t) + βb(t)B ν

δθ

βλ(t) + βb(t)B ν δ(1
− α

− θ)

δ(1 −
θ)

δθ
γ

γ

τγ

β
b (t)

η

β b
(t)

ω

µ

µ

µ + αδ

µ

µ

µ

µ

µ

ξ

Figure 1. Diagram illustrating the flow of the model (1). The red and brown nodes represent
infectious individuals, and the green nodes represent non-infectious individuals. The black solid
arrows indicate the progression of infection, while the red dashed arrows represent the direction of
transmission between humans and bacteria.

Using the notations introduced above and Figure 1, we can express our model equa-
tions as follows:

S
′
1(t) = Λ− βλ(t)S1(t)− βb(t)B(t)S1(t) + ηS2(t)− µS1(t),

E
′
1(t) = βλ(t)S1(t) + βb(t)B(t)S1(t)− νE1(t)− µE1(t),

I
′
1(t) = νE1(t)− (δ + µ)I1(t),

R
′
(t) = δ(1− α− θ)I1(t) + δ(1− θ)I2(t)−ωR(t)− µR(t),

C
′
(t) = δθ I1(t) + δθ I2(t)− µC(t), (1)

S
′
2(t) = ωR(t)− βλ(t)S2(t)− βb(t)B(t)S2(t)− ηS2(t)− µS2(t),

E
′
2(t) = βλ(t)S2(t) + βb(t)B(t)S2(t)− νE2(t)− µE2(t),

I
′
2(t) = νE2(t)− (δ + µ)I2(t),

B
′
(t) = γλ(t)− ξB(t).

For clarity, we have provided a summary of the model parameters in Table 1.
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Table 1. Model (1) parameters and description.

Parameters Description

Λ, µ Human birth and mortality rates
β Infected-to-susceptible infection rate
βb(t) Environment-to-susceptible infection rate
γ Bacteria excretion
ν Rate of progression to carriers
θ Proportion infected who transition into chronic carriers
1/δ Duration of infectiousness
α Disease-induced mortality
1/ω Temporary full-immunity duration to infection
τ Relative infectiousness of chronic carriers
η Immunity waning rate to clinical disease
ξ Bacterial decay rate

2.1. Basic Properties

Our initial focus is to investigate whether the solutions for Equation (1) exist and are
unique. To facilitate our analysis, we will introduce some notation.(

S1(0), E1(0), I1(0), R(0), C(0), S2(0), E2(0), I2(0), B(0)
)
=(

S0
1, E0

1, I0
1 ,R0, C0, S0

2, E0
2, I0

2 , B0) ∈ R9
+,

where R+ is the set of non-negative real numbers. It follows from ([29], Theorem 5.2.1) that
Model (1) has single non-negative local solution(

S1(t), E1(t), I1(t), R(t), C(t), S2(t), E2(t), I2(t), B(t)
)
,

for any initial value
(
S0

1, E0
1 , I0

1 , R0, C0, S0
2, E0

2 , I0
2 , B0) ∈ R9

+. For the human subsystem of (1)
with a positive initial condition, let

N(t) = S1(t) + E1(t) + I1(t) + R(t) + C(t) + S2(t) + E2(t) + I2(t).

Then, N(t) satisfies

N′(t) = Λ− µN(t)− δI1(t)− δI2(t) ≤ Λ− µN(t). (2)

Therefore,

lim
t→∞

N(t) ≤ Λ
µ

, (3)

where the notation lim
t→∞

( or lim sup
t→∞

), represents the limit superior as t approaches infin-

ity. Assuming the absence of the disease in the population, Equation (2) has a unique
equilibrium N∗ = Λ/µ that is GAS. Additionally, N(t) is bounded.

By applying the aforementioned inequality, we can derive from the last equation in (1)
that I1 + I2 + τC ≤ I1 + I2 + C ≤ N ≤ Λ

µ , and

B
′
(t) ≤ γΛ

µ
− ξB(t). (4)

Solving the above Equation (4) gives B(t) ≤ γΛ
ξµ + B0e−ξt, which implies that B is

non-negative. Therefore, by applying the limit to the previous inequality, we obtain

lim
t→∞

B(t) ≤ γΛ
ξµ

, (5)
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and hence B(t) remains bounded as well. Consequently, the preceding discussion indicates
that system (1) solutions are bounded and non-negative within the given region

Ω :=
{
(S1, E1, I1, R, C, S2, E2, I2, B) ∈ R9

+ : N ≤ Λ
µ

, B ≤ γΛ
ξµ

}
.

As a consequence, we state the following proposition:

Proposition 1. System (1) is positively invariant with respect to the region Ω. Specifically,
if the initial values

(
S0

1, E0
1, I0

1 , R0, C0, S0
2, E0

2, I0
2 , B0) ∈ R9

+ at time t = 0, then the solution(
S1(t), E1(t), I1(t), R(t), C(t), S2(t), E2(t), I2(t), B(t)

)
is positive for all t > 0.

Proof. In order to establish that the solutions of (1) are non-negative, it is enough to demonstrate
that the solution components (S1(t), E1(t), I1(t), R(t), C(t), S2(t), E2(t), I2(t), B(t)) ≥ 0 for
all t > 0, given that

(
S0

1, E0
1, I0

1 , R0, C0, S0
2, E0

2, I0
2 , B0) ∈ R9

+. Let q(t) be defined as the
minimum value among {S1(t), E1(t), I1(t), R(t), C(t), S2(t), E2(t), I2(t), B(t)} for all t > 0.
Assuming that q(0) > 0, we can infer the existence of t1 > 0 such that q(t1) = 0, while
ensuring that q(t) ≥ 0 for all t ∈ [0, t1). Given the assumption that q(t1) = Si(t1), where
i = 1 or 2, we can derive the following inequalities from System (1) for all t ∈ [0, t1]:

S′i(t) ≥ −(βλ(t) + βb(t)B(t) + µ)Si(t).

From these inequalities, we can observe that at t = t1, the condition 0 = Si(t1) ≥
S0

i e−
∫ t1

0 (βλ(t)+βb(t)+µ)ds > 0 holds. The impossibility of Si(t) having negative values for
any t > 0 leads to this contradiction. Assuming the rest of the human equations in (1),
we can make the assumption that there exists a minimum time value t > 0 where one of
the compartments, specifically E1(t), I1(t), R(t), C(t), E2(t), or I2(t), becomes zero. Let us
consider, without any loss of generality, that this specific compartment is Ei(t), where i = 1
or 2. In the case where q(t1) = Ei(t1), the following inequalities are derived:

E′i(t) ≥ −(ν + µ)Ei(t), ∀t ∈ [0, t1].

Based on this inequalities, if 0 = Ei(t1) ≥ E0
i e−(ν+µ)t1 > 0, we arrive at a contradiction.

Similarly, if q(t1) is equal to any of the variables I1(t1), R(t1), C(t1), or I2(t1), we can
reach a similar contradiction. Hence, S1(t) ≥ 0, E1(t) ≥ 0, I1(t) ≥ 0, R(t) ≥ 0, C(t) ≥ 0,
S1(t) ≥ 0, E2(t) ≥ 0, and I2(t) ≥ 0 for all t > 0. Furthermore, equality is present if the
initial values are set to zero. The inequalities (3) and (5) indicate that for all t > 0 both N(t)
and B(t) are bounded. This observation concludes the proof.

2.2. Disease-Free Solution

The disease-free periodic solution (DFPS) of (1) is provided when there is no presence
of disease by

P∗ =
(
S∗1 , E∗1 , I∗1 , R∗, C∗, S∗2 , E∗2 , I∗2 , B∗

)
=
(Λ

µ
, 0, 0, 0, 0, 0, 0, 0, 0

)
, (6)

and it is always feasible. In Section 4, we will study the global dynamic of P∗ based onR0
of periodic epidemic models.

3. Reproduction Numbers

Within this section, our primary objective is to calculate R0, the basic reproduction
number (BRNP) for the periodic system described by Equation (1). Additionally, we
will derive an expression ofRA

0 , representing the basic reproduction rate (BRNA) for the
autonomous model derived from the system defined by Equation (1). Furthermore, we will
compute, [R0], the time average reproduction rate (BRNT) corresponding to Equation (1).
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3.1. Basic Reproduction Number (BRNP) of the Model (1)

Using the approach proposed by Wang and Zhao [25], we will determine the BRNP
R0 for the model (1).

The vector Y = (E1, I1, E2, I2, C, B, S1, S2, R)T represents the state of a system, where
F(t, Y(t)), V+(t, Y(t)), and V−(t, Y(t)) are the rates of newly infected individuals, individ-
uals from other sources, and individuals transferred out of compartments, respectively.
To ensure the fulfillment of the conditions (A1)–(A7) in ([25], Section 1), we have restruc-
tured system (1), which can be expressed as the following non-autonomous equation:

Y′(t) = F(t, Y(t))−V(t, Y(t)), (7)

where V(t, Y(t)) = V−(t, Y(t)) − V+(t, Y(t)). The DFPS of (7) is defined by
Y∗ =

(
0, 0, 0, 0, 0, 0, S∗1 , 0, 0

)
. To compute the matrices F (t) and V(t), we define F (t) as the

matrix
( ∂Fi(t,Y∗)

∂Yj

)
1≤i,j≤6 and the matrix V(t) is defined as

( ∂Vi(t,Y∗)
∂Yj

)
1≤i,j≤6. The entries of

F (t) and V(t) expressed as

F (t) =



0 βS∗1 0 βS∗1 βτS∗1 βb(t)S∗1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

,

and

V(t) =



ν + µ 0 0 0 0 0
−ν αδ + µ 0 0 0 0
0 0 ν + µ 0 0 0
0 0 −ν δ + µ 0 0
0 −δθ 0 −δθ µ 0
0 −γ 0 −γ −γτ ξ

.

Conditions (A1) through (A6) given in [25] are simple to confirm, and the disease-free
subspace Y∗ is linearly asymptotically stable at Ys = (0, 0, 0, 0, 0, 0, S1, S2, R) ∈ R9

+.
Assuming Z(s1, s2) is a solution to the IVP (initial value problem) below with s1 ≥ s2:

dZ(s1, s2)

dt
= −V(s1)Z(s1, s2), Z(s2, s2) = I6, ∀s1 ≥ s2, (8)

where I6 denotes the identity matrix (6× 6). Hence, the requirement (A7) given in [25]
is satisfied since the matrix Φ−V (t) of (8) for t ≥ 0 is equivalent to Z(s, 0). Let us denote
the ordered Banach space of T-periodic functions from R to R6 by CT with ‖ · ‖∞ (usual
maximum norm) and define C+T := {φ ∈ CT : φ(t) ≥ 0, ∀t ∈ R} (positive cone).

The linear operator K for subsequent infections maps CT to CT . Its definition is given
by

(Kφ)(s) =
∫ ∞

0
Z(s, s− r)F (s− r)φ(s− r)dr, ∀ φ ∈ CT , s ∈ R.

The BRNPR0 of the model (1) can be determined as the spectral radius of K; therefore,

R0 := ρ(K). (9)

Let ΦF−V (t) is a fundamental matrix of the linear T-periodic system x′ = [F (t)−
V(t)]x. In addition, and without loss of generality, we assume that ΦF−V (0) = I, namely,
the identity matrix. Now, at this step, we recall that ΦF−V (T) is the monodromy matrix of
the linear T–periodic system above mentioned. We will need the following Theorem 2.2
from [25] for the local stability of P∗ defined in (6).
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Theorem 1. The relation between the BRNP and the monodromy matrix is described as follows.

1. R0 = 1 is the same as ρ(ΦF−V (T)) = 1;
2. R0 > 1 is the same as ρ(ΦF−V (T)) > 1;
3. R0 < 1 is the same as ρ(ΦF−V (T)) < 1.

The inequalities stated in the Theorem 1 are equivalent to the stability of the origin of
the periodic system x′ = [F (t)− V(t)]x described by the classical Floquet’s theory.

3.2. Basic Reproduction Number (BRNA) of the Constant Model

If we have βb(t) = β̄b for ∀t ≥ 0, which leads to F (t) ≡ F , we can use the findings
of [30] study to calculateRA

0 for the autonomous version of model (1) as follows:

RA
0 =

ν(βξ + β̄bγ)(δθτ + µ)S∗1
µξ(µ + ν)(αδ + µ)

=
νβ(δθτ + µ)S∗1

µ(µ + ν)(αδ + µ)
+

νβ̄bγ(δθτ + µ)S∗1
µξ(µ + ν)(αδ + µ)

. (10)

The BRNA RA
0 can be expressed as the sum of two components: the reproductive

number for short-period infections, denoted as R0h, and the reproductive number for
long-period infections, denoted asR0b, where

R0h =
νβ(δθτ + µ)S∗1

µ(µ + ν)(αδ + µ)
and R0b =

νβ̄bγ(δθτ + µ)S∗1
µξ(µ + ν)(αδ + µ)

.

Remark 1. We define the integral average of a continuous function f (t), where f (t) is T-periodic.
Using the notation presented in [23,31], we denote the integral average as [ f ] := 1

T
∫ T

0 f (t) dt.

Therefore, [R0] for the corresponding time-varying model is expressed as follows:

[R0] =
ν(βξ + [βb]γ)(δθτ + µ)S∗1

µξ(µ + ν)(αδ + µ)
, (11)

where

R0h =
νβ(δθτ + µ)S∗1

µ(µ + ν)(αδ + µ)
and [R0b] =

ν[βb]γ(δθτ + µ)S∗1
µξ(µ + ν)(αδ + µ)

.

4. Threshold Dynamics

This section aims to demonstrate that the DFPS P∗, defined in (6), is GAS and that
the disease goes extinct when the BRNP R0 is less than 1. On the other hand, if R0 is
greater than 1, we will prove the persistence of disease and the existence of a positive
periodic solution for (1). Throughout this section, the BRNP R0 is defined as shown in
Equation (9). To establish the GAS of the DFPS P∗ and the persistence of TyF, we will
require the following lemma.

Lemma 1 ([32], Lemma 2.1). Consider ζ = 1
T ln ρ(ΦD(·)(T)). With this consideration, there

exists a function u(t) > 0 with a period of T where eζtu(t) > 0 becomes a solution to the problem
z′ = D(t)z.

4.1. Local Stability of the DFPS P∗

Building upon the previous results in Section 3, we state the subsequent Theorem
regarding the local asymptotic stability (LAS) of P∗ defined in (6) of the model (1).

Theorem 2. In the case whereR0 < 1, the DFPS P∗ defined in (6) demonstrates local asymptotic
stability. On the other hand, whenR0 > 1, P∗ is unstable.
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Proof. The matrixJ (t), which represents the Jacobian of the system described by Equation (1)

at P∗, can be defined as J (t) =
[
F (t)− V(t) 0
−A(t) M

]
, where A(t) and M are given by

A(t) =

0 βS∗1 0 βS∗1 βτS∗1 βb(t)S∗1
0 0 0 0 0 0
0 −δ(1− α− θ) 0 −δ(1− θ) 0 0

,

and

M =

−µ η 0
0 −(η + µ) ω
0 0 −(ω + µ)

.

The matrix M is a fixed matrix with eigenvalues−µ,−η− µ, and−ω− µ. As all eigen-
values of M are negative, we can observe that ρ(ΦM) < 1. The conditions ρ(ΦF−V (T)) < 1
and ρ(ΦM(T)) < 1 determine the LAS of P∗ according to the findings in [33]. Hence,
the stability of the DFPS P∗ relies solely on the value of ρ(ΦF−V (T)). Consequently, P∗

is unstable if ρ(ΦF−V (T)) > 1, and it becomes LAS if ρ(ΦF−V (T)) < 1. The proof is
completed by the finding of Theorem 1.

4.2. Global Stability of the DFPS P∗

Theorem 3. In the case,R0 < 1, the DFPS P∗ exhibits global asymptotic stability.

Proof. Based on the local stability analysis in Theorem 2, ifR0 < 1, the DFPS P∗ is LAS. It is
still necessary to demonstrate that P∗ is globally attractive. The requirements (A1) through
(A7) described in [24] are met, according to the discussion in Section 3. Furthermore,
Y∗ =

(
0, 0, 0, 0, 0, 0, S∗1 , 0, 0

)
represents the single periodic solution of (7) within the set of

disease-free states Ys. Taking the first equation of (1), we obtain the following expression:

S′1(t) = Λ− βλ(t)S1(t)− βb(t)B(t)S1(t) + ηS2(t)− µS1(t).

Because I1(t) ≥ 0, I2(t) ≥ 0 and B(t) ≥ 0, One can prove that S′1(t) ≤ Λ− µS1(t),
meaning that

lim
t→∞

S1(t) ≤
Λ
µ

= S∗1 .

Thus, there is a t(ε) > 0 where S1(t) ≤ S∗1 + ε and S2(t) ≤ S∗2 + ε for all t > t(ε), for an
arbitrary ε > 0. Referring back to (1), for t > t(ε), we have

E
′
1(t) ≤ (βλ(t) + βb(t)B(t))(S∗1 + ε)− νE1(t)− µE1(t),

I
′
1(t) ≤ νE1(t)− (δ + µ)I1(t),

E
′
2(t) ≤ (βλ(t) + βb(t)B(t))(S∗2 + ε)− νE2(t)− µE2(t),

I
′
2(t) ≤ νE2(t)− (δ + µ)I2(t),

C
′
(t) ≤ δθ I1(t) + δθ I2(t)− µC(t),

B
′
(t) ≤ γλ(t)− ξB(t).

We define µ(ε) := min{S∗1/(S∗1 + ε), S∗2/(S∗2 + ε)}, which leads us to the system:

H′(t) ≤
(F (t)

µ(ε)
− V(t)

)
H(t), ∀t ≥ t(ε), (12)

with H(t) = (E1(t), I1(t), E2(t), I2(t), C(t), B(t)). As t approaches infinity, H(t) tends to
zero, leading to the extinction of the disease. The application of ([24], Theorem 2) allows
us to deduce that Y∗ achieves GAS by virtue of its GAS behavior within the disease-free
subspace Ys.
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4.3. Persistence

The objective of this subsection is to illustrate the persistence of infectious compart-
ments whenR0 > 1 through the application of the general technique introduced by [24].
Let S = S1 + S2, E = E1 + E2 and I = I1 + I2. Then, (1) can be expressed as follows:

S
′
(t) = Λ− βλ(t)S(t)− βb(t)B(t)S(t)− µS + ωR(t),

E
′
(t) = βλ(t)S(t) + βb(t)B(t)S(t)− νE(t)− µE(t),

I
′
(t) = νE(t)− (δ + µ)I(t), (13)

R
′
(t) = δ(1− θ)I(t)− δαI1(t)−ωR(t)− µR(t),

C
′
(t) = δθ I − µC(t),

B
′
(t) = γλ(t)− ξB(t).

In the following, we demonstrate the persistence of the infected compartments within (13).

Theorem 4. AssumingR0 > 1, the system (13) exhibits persistence concerning the variables E, I,
C, and B.

Proof. The persistence of E + I indicates the persistence of both E and I and, conse-
quently, the persistence of C and B as well. Suppose there exists a positive value ε where
lim inft→+∞

(
E + I

)
≥ ε. In that case, for large t, it follows that E ≥ ε

2 − I. Based on
system (13), we obtain I

′
(t) ≥ ν ε

2 − (δ + µ)I(t). Therefore, we can conclude that

I(t) ≥ νε

2(δ + µ)
=: κi(ε). (14)

By substituting into the fifth equation of (13), we can derive that C
′
(t) ≥ δθκi(ε)−

µC(t). We obtain

C(t) ≥ δθκi(ε)

µ
=: κc(ε). (15)

By incorporating the inequalities (14) and (15) into the final equation of system (13),
we obtain that B

′
(t) ≥ γ(κi(ε) + τκc(ε))− ξB(t), and hence,

B(t) ≥ κi(ε) + τκc(ε)

ξ
=: κb(ε). (16)

Suppose that E ≤ ε, I ≤ ε, C ≤ ε, R ≤ ε, and B ≤ ε for all t ≥ t0. Then,
there exists t1 ≥ t0 such that |N(t) − S∗| ≤ ε for all t ≥ t1 and S∗ = S∗1 + S∗2 = S∗1 .
Hence, for all t ≥ t1, we have S(t) = N(t) − E(t) − I(t) − C(t) − R(t) ≥ S∗ − 4ε. Set
λ(ε) := max{S∗/(S∗ − 4ε

)
}. Then, using the models’ equations, for fairly large t ≥ t1, one

can derive:

E
′
(t) ≥

(
βλ(t) + βb(t)B(t)

) S∗

λ(ε)
− νE(t)− µE(t),

I
′
(t) ≥ νE(t)− (δ + µ)I(t),

C
′
(t) ≥ δθ I − µC(t),

B
′
(t) ≥ γλ(t)− ξB(t).

Therefore, the assumptions of ([24], Theorem 4) are met and (13) is persistent with
respect to E, I, C, and B.
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4.4. Existence of Endemic Periodic Solutions

We will proceed by introducing the following symbols/notations:

X :=
{
(S1, E1, I1, R, C, S2, E2, I2, B) ∈ R9

+

}
,

X0 :=
{
(S1, E1, I1, R, C, S2, E2, I2, B) ∈ X : E1 > 0, I1 > 0, C > 0, E2 > 0, I2 > 0, B > 0

}
,

and

∂X0 := X \ X0 = {(S1, E1, I1, R, C, S2, E2, I2, B) ∈ X : E1 I1CE2 I2B = 0}.

The function P : R9
+ → R9

+ is defined as the Poincaré map associated with (1). Specif-
ically, we define P(x0) as the function u(T, x0) for x0 ∈ R9

+, and u(t, x0) represents the
unique solution of the (1) with the initial condition x0. It follows that, for all m ≥ 0, we
have Pm(x0) = u(mT, x0).

Lemma 2. Forany (S0
1, E0

1 , I0
1 , R0, C0, S0

2, E0
2 , I0

2 , B0) ∈ X0 with ‖
(
S0

1, E0
1, I0

1 , R0, C0, S0
2, E0

2, I0
2 , B0)

−P∗‖ ≤ σ, where σ > 0, ifR0 > 1, then the following inequality holds:

lim
m→∞

d(Pm(S0
1, E0

1, I0
1 , R0, C0, S0

2, E0
2, I0

2 , B0), P∗) ≥ σ.

Proof. Applying Theorem 1, it can be concluded that ρ(ΦF−V (T)) > 1 whenR0 is greater
than 1. Therefore, there is a small enough $ > 0 such that ρ(ΦF−V−M$

(T)) > 1, where
M$(t) is given by 

0 β$ 0 β$ βτ$ βb(t)$
0 0 0 0 0 0
0 0 0 0 0 0
0 β$ 0 β$ βτ$ βb(t)$
0 0 0 0 0 0
0 0 0 0 0 0

.

Let $ > 0 be an arbitrary constant. There exists a positive constant σ = σ($) such that
for any x0 =

(
S0

1, E0
1 , I0

1 , R0, C0, S0
2, E0

2, I0
2 , B0) ∈ X0 satisfying ‖x0−P∗‖ ≤ σ, the continuous

dependence of solutions on their initial values ensures that the following inequality holds:

‖u(t, (S0
1, E0

1, I0
1 , R0, C0, S0

2, E0
2, I0

2 , B0))− u(t, P∗)‖ ≤ $, 0 ≤ t ≤ T.

Our next claim is that

lim
m→∞

d(Pm(S0
1, E0

1, I0
1 , R0, C0, S0

2, E0
2, I0

2 , B0), P∗) ≥ σ. (17)

Assuming that (17) is not satisfied, we have

lim
m→∞

d(Pm(S0
1, E0

1, I0
1 , R0, C0, S0

2, E0
2, I0

2 , B0), P∗) < σ, (18)

holds for some
(
S0

1, E0
1, I0

1 , R0, C0, S0
2, E0

2, I0
2 , B0) ∈ X0. We can make the simplifying assump-

tion that
d(Pm(S0

1, E0
1, I0

1 , R0, C0, S0
2, E0

2, I0
2 , B0), P∗) < σ, ∀m ≥ 0.

The preceding information indicates

‖u(t,Pm(S0
1, E0

1, I0
1 , R0, C0, S0

2, E0
2, I0

2 , B0)− u(t, P∗)‖ < $, ∀0 ≤ t ≤ T, m ≥ 0.

Let t ≥ 0 be expressed as t = t1 + mT, where 0 ≤ t1 < T and m =
[ t

T
]
, denoting the

greatest integer not exceeding t
T . By employing this representation, we obtain

‖u(t, (S0
1, E0

1 , I0
1 , R0, C0, S0

2, E0
2, I0

2 , B0))− u(t, P∗)‖
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= ‖u(t1,Pm(S0
1, E0

1, I0
1 , R0, C0, S0

2, E0
2, I0

2 , B0))− u(t1, P∗)‖ < $,

for all t ≥ 0, suggesting that S1(t) ≥ S∗1 − $ and S2(t) ≥ S∗2 − $. Then, for

‖(S0
1, E0

1, I0
1 , R0, C0, S0

2, E0
2, I0

2 , B0)− P∗‖ ≤ σ,

we derive

E
′
1(t) ≥ (βλ(t) + βb(t)B(t))(S∗1 − $)− νE1(t)− µE1(t),

I
′
1(t) ≥ νE1(t)− (δ + µ)I1(t),

C
′
(t) ≥ δθ I1(t) + δθ I2(t)− µC(t),

E
′
2(t) ≥ (βλ(t) + βb(t)B(t))(S∗2 − $)− νE2(t)− µE2(t),

I
′
2(t) ≥ νE2(t)− (δ + µ)I2(t),

B
′
(t) ≥ γλ(t)− ξB(t).

Consider the system given below, which is used as an auxiliary system,

E
′
1(t) = (βλ(t) + βb(t)B(t))(S∗1 − $)− νE1(t)− µE1(t),

I
′
1(t) = νE1(t)− (δ + µ)I1(t),

C
′
(t) = δθ I1(t) + δθ I2(t)− µC(t),

E
′
2(t) = (βλ(t) + βb(t)B(t))(S∗2 − $)− νE2(t)− µE2(t),

I
′
2(t) = νE2(t)− (δ + µ)I2(t),

B
′
(t) = γλ(t)− ξB(t).

We can now conclude from the previous discussion that ρ(ΦF−V−M$
(T)) > 1. By

Lemma 1, there exists a function p(t) > 0, periodic with period T and it satisfies p(t) exp(ζt)
as a solution of (5), where ζ = 1

T ln ρ(ΦF−V−M$
(T)) > 0. Considering each G(0) ∈ R6

+, there
exists K∗ ∈ R+ such that G(0) ≥ K∗p(0), where G(t) = (E1(t), I1(t), C(t), E2(t), I2(t), B(t))T ,
and by ([34], Theorem B.1), we have G(t) ≥ p(t) exp(ζt) for all t > 0. Therefore, it
follows that limt→∞ E1(t) = ∞, limt→∞ I1(t) = ∞, limt→∞ C(t) = ∞, limt→∞ E2(t) = ∞,
limt→∞ I2(t) = ∞, and limt→∞ B(t) = ∞, leading to a contradiction to E1(t) < $, I1(t) < $,
C(t) < $, E2(t) < $, I2(t) < $, B(t) < $ and Equation (18). Hence, we have established the
validity of Equation (17), which concludes the proof.

Theorem 5. Suppose thatR0 > 1. In that case, system (1) admits at least a single positive periodic
solution and there is a positive value ε such that

lim inf
t→∞

E1(t) ≥ ε, lim inf
t→∞

I1(t) ≥ ε, lim inf
t→∞

R(t) ≥ ε, lim inf
t→∞

C(t) ≥ ε,

lim inf
t→∞

E2(t) ≥ ε, lim inf
t→∞

I2(t) ≥ ε, lim inf
t→∞

B(t) ≥ ε,

for all (S0
1, E0

1 , I0
1 , R0, C0, S0

2, E0
2, I0

2 , B0) ∈ X0.

Proof. We aim to to establish the uniform persistence of P regarding (X0, ∂X0), which
would imply that the solution of (1) is also uniformly persistent with respect to (X0, ∂X0)
by applying ([35], Theorem 3.1.1). To begin, we need to show that ∂X0 and X0 remain
positively invariant under system (1). Given (S0

1, E0
1, I0

1 , R0, C0, S0
2, E0

2, I0
2 , B0) ∈ X0, we can

solve (1) for all t > 0 to obtain

S1(t) =
[
S0

1 +
∫ t

0 (Λ + ηS2(s))e
∫ s

0 (a(r)+µ) dr ds
]
e
∫ t

0 −(a(r)+µ) dr > 0, (19)
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E1(t) =
[

E0
1 +

∫ t
0 a(s)S1(s)e(ν+µ)s ds

]
e−(ν+µ)t > 0, (20)

I1(t) =
[

I0
1 + ν

∫ t
0 E1(s)e(δ+µ)s ds

]
e−(δ+µ)t > 0, (21)

R(t) =
[

R0 +
∫ t

0 δ((1− α− θ)I1(s) + (1− θ)I2(s))e(ω+µ)s ds
]
e−(ω+µ)t > 0, (22)

C(t) =
[
C0 +

∫ t
0 δθ(I1(s) + I2(s))eµs ds

]
e−µt > 0, (23)

S2(t) =
[
S0

2 +
∫ t

0 (ωR(s))e
∫ s

0 (a(r)+η+µ) dr ds
]
e
∫ t

0 −(a(r)+η+µ) dr > 0, (24)

E2(t) =
[

E0
2 +

∫ t
0 a(s)S2(s)e(ν+µ)s ds

]
e−(ν+µ)t > 0, (25)

I2(t) =
[

I0
2 + ν

∫ t
0 E2(s)e(δ+µ)s ds

]
e−(δ+µ)t > 0, (26)

B(t) =
[

B0 +
∫ t

0 γλ(s)eξs ds
]
e−ξt > 0, (27)

where a(t) = βλ(t) + βb(t)B(t). Therefore, we established the positive invariance of X0
under the dynamics of (1). Moreover, since ∂X0 is relatively closed in X, it follows that ∂X0
is also positively invariant and system (1) is point dissipative. Introducing

M∂ =
{
(S0

1, E0
1 , I0

1 , R0, C0, S0
2, E0

2, I0
2 , B0) ∈ ∂X0 :

Pm(S0
1, E0

1, I0
1 , R0, C0, S0

2, E0
2, I0

2 , B0) ∈ ∂X0, ∀m ≥ 0
}

.

To establish our result, we will employ the uniform persistence theory as outlined
in [35]. To do so, we need to demonstrate that M∂ =M∂, whereM∂ is given by

M∂ =
{
(S0

1, E0
1 , I0

1 , R0, C0, S0
2, E0

2, I0
2 , B0) ∈ ∂X0 :

E0
1 = I0

1 = R0 = C0 = S0
2 = E0

2 = I0
2 = B0 = 0

}
.

We can observe that M∂ ⊇M∂. To complete the proof, it suffices to demonstrate that
M∂ ⊂ M∂. That is, for any initial value (S0

1, E0
1, I0

1 , R0, C0, S0
2, E0

2, I0
2 , B0) ∈ ∂X0, at least

one of the following holds: E1(nT) = 0, I1(nT) = 0, R(nT) = 0, C(nT) = 0, E2(nT) = 0,
I2(nT) = 0, or B(nT) = 0, for any n ≥ 0.

Assuming the opposite, let there be a non-negative integer n1 such that E1(n1T),
I1(n1T), R(n1T), C(n1T), E2(n1T), I2(n1T), B(n1T) are all positive. By substituting t = n1T
in Equations (19)–(27), we derive that 0 < S1(t), 0 < E1(t), 0 < I1(t), 0 < R(t), 0 < C(t),
0 < S2(t), 0 < E2(t), 0 < I2(t), 0 < B(t). This statement conflicts with the established truth
that ∂X0 is positively invariant.

Using Lemma 2 under the conditionR0 > 1, we have established the weak uniform
persistence of P with respect to (X0, ∂X0). Then we can conclude that P has a global
attractor by Proposition 1, and P∗ is an isolated invariant subset of X with Ws(P∗)∩X0 = ∅.
Furthermore, every solution in M∂ approaches P∗, and P∗ is acyclic in M∂. By ([35],
Theorem 1.3.1, Remark 1.3.1), we can conclude that P is uniform persistence with respect
to (X0, ∂X0). Therefore, there exists ε > 0 such that

lim inf
t→∞

E1(t) ≥ ε, lim inf
t→∞

I1(t) ≥ ε, lim inf
t→∞

R(t) ≥ ε, lim inf
t→∞

C(t) ≥ ε,

lim inf
t→∞

E2(t) ≥ ε, lim inf
t→∞

I2(t) ≥ ε, lim inf
t→∞

B(t) ≥ ε.

According to ([35], Theorem 1.3.6), there exists φ̃ ∈ X0 as an equilibrium for P , which
implies the existence of a minimum of single periodic solution u(t, φ̃) for (1). Here, φ̃ is
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given by φ̃ = (S̃1(0), Ẽ1(0), Ĩ1(0), R̃(0), C̃(0), S̃2(0), Ẽ2(0), Ĩ2(0), B̃(0)) ∈ X0. To show that
S̃1(0) and S̃2(0) are positive, suppose otherwise, i.e., S̃1(0) = S̃2(0) = 0. Then, by the
periodicity of u for all n ≥ 0, we have S̃1(nT) = S̃2(nT) = 0. However, this leads to a
contradiction as it violates the positive invariance of X0. Hence, S̃1(0) > 0 and S̃2(0) > 0
for all t > 0.

5. Numerical Simulations

This section is dedicated to presenting numerical simulations that aim to illustrate
and validate the theoretical findings discussed in the preceding sections. These simulations
provide visual evidence of the alignment between our periodic model (1) and the observed
seasonal variations. Following [22], we assume that

βb(t) = β̄b

(
1 + Π cos

(
2πt− ϕ

52

))
,

where β̄b is the baseline long-period transmission rate, Π is the amplitude of seasonal
forcing, and ϕ is the seasonal offset parameter.

5.1. Extinction and Persistence

As mentioned in Section 4, the BRNP R0 plays a critical role as a threshold pa-
rameter in determining the extinction and persistence of TyF within the population.
Theorems 3 to 5 provide further insights into this relationship. The numerical results
presented in Figures 2 and 3 provide clear evidence that the solutions obtained from our
model (1), with initial values set as S0

1 = 2000, E0
1 = 200, I0

1 = 30, R0 = 100, C0 = 20,
S0

2 = 2000, E0
2 = 100, I0

2 = 15, and B0 = 4000, are consistent with the analytical find-
ings. These findings establish that the single DFPS P∗ maintains GAS under the condition
R0 ≈ 0.8933 < 1 and the disease goes extinct.

Figures 4–6 provide visual representations of the prolonged dynamics and consistent
persistence of the disease whenR0 ≈ 15.55 > 1. This high value indicates that the disease
compartments persist, leading to an endemic state within the population, with annual
recurrences of the epidemic. The graphs effectively demonstrate the long-term behavior
and uniform persistence of TyF over time. For a comprehensive understanding of the
parameter values, ranges, and units employed in both cases, please refer to Table 2 and
the initial values set as S0

1 = 35, 000, E0
1 = 100, I0

1 = 80, R0 = 500, C0 = 20, S0
2 = 2000,

E0
2 = 50, I0

2 = 40, and B0 = 10, 000. The figures depict both the periodic model and its
autonomous version. As observed in Figures 4 and 5, the disease persists in both cases due
to the parameter settings used. In the context of the non-autonomous model, it is important
to emphasize that periodic solutions are present.

Table 2. Parameters, values, ranges, and units for model (1).

Parameters Values Values Range Unites SourceExtinction Persistence

Λ 500 140 100–1000 Week [36]
µ 0.00027 0.0007 (2.30–3.60) ×10−4 Week [37]
β 1× 10−10 1× 10−7 0–0.1 Week [18,22]
τ 0.05 0.196 0–0.2 Week [18,22]
β̄b 1× 10−11 8× 10−8 0–0.1 Week [18,22]
Π 0.544 0.7696 0–1 − [18,22]
ϕ 4.37 5.41 1–10 − [18,22]
γ 1 1.634 0–2 Week [18,22]
ν 0.102 0.112 0–1 Week [8,38]
θ 0.0292 0.0453 0.003–0.1 − [28]
δ 0.143 0.432 0–1 Week [8]
α 0.0025 0.188 0.001–0.2 Week [39,40]
ω 0.0054 0.0054 6.66×10−3–0.0125 Week [8]
η 0.000083 0.000083 0–0.01 Week [18,22]
ξ 0.217 0.26 0.001–0.5 Week [41]
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Figure 2. Extinction of typhoid whenR0 = 0.8933 < 1, given the specific parameter values specified
in Table 2 (extinction).
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Figure 4. Persistence of typhoid whenR0 = 15.55 > 1, given the specific parameter values specified
in Table 2 (persistence).
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Figure 5. Persistence of typhoid whenR0 = 15.55 > 1, given the specific parameter values specified
in Table 2 (persistence).

This means that the disease exhibits recurrent patterns and fluctuations over time,
adding an additional dynamic element to its persistence.
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Figure 6. Positive periodic solutions when R0 = 15.55 > 1, given the specific parameter values
specified in Table 2 (persistence).

5.2. Sensitivity Analysis

Sensitivity analysis refers to the study of how uncertainties in a model’s parameters
can be attributed to various sources of uncertainty in its parameters [42]. In order to
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identify influential parameters and evaluate their impact on output variability, it is crucial
to conduct a sensitivity analysis that focuses explicitly on the parameters associated with
the system. Sensitivity indices offer a way to measure the proportional impact of parameter
variations on a state variable. The normalized forward sensitivity index measures this
influence for a variable x that is differentiable with respect to a parameter p. It is determined
by comparing the relative changes in x and p, and can be mathematically expressed as
follows [43]:

Ψx
p =

∂x
∂p
× p

x
.

We first conduct a sensitivity analysis for the BRNARA
0 given in (10) and the BRNT

[R0] given in (11). To perform the sensitivity analysis, specific parameter values were
chosen, which are presented in Table 2. The sensitivity indices forRA

0 , [R0],R0h, andR0b
are provided in Table 3. According to the data provided in Table 3, reducing the values of β,
τ, θ, β̄b, and γ by 10% leads to a decrease in [R0] by approximately 5.8%, 4.3%, 4.3%, 4.16%,
and 4.16%, respectively. Conversely, increasing the values of µ, α, and ξ by 10% results in a
decrease in [R0] by approximately 8.69%, 5.69%, and 3.15%, respectively. Similar results
are obtained forRA

0 .
The findings presented in Figure 7a,b demonstrate that the BRNARA

0 and the BRNT
[R0] are most sensitive to the natural mortality rate (µ), human-to-human infection rate (β),
disease-induced mortality (α), followed equally by fraction infected who become chronic
carriers (θ) and relative infectiousness of chronic carriers (τ). The least influenced forRA

0
and [R0] are the environment to human infection rate (β̄b), bacteria excretion (γ), bacterial
decay rate (ξ), and 1/the duration of infectiousness (δ). WhileR0h is most influenced by β,
µ, α, θ, τ, and δ,R0b is most sensitive to β̄b, γ, ξ, µ, α, τ, and δ (see Figure 7c,d).
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Figure 7. Sensitivity analysis for RA
0 , [R0], R0h, and R0b, given the specific parameter values

specified in Table 2. Sensitivity indices are arranged in descending order of magnitude.
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Table 3. Sensitivity indices of RA
0 , [R0], R0h, and R0b to parameters in model (1), assessed by

utilizing the baseline parameter values listed in Table 2.

Parameter Sensitivity Index Sensitivity Index Sensitivity Index Sensitivity Index
RA

0 [R0] R0h R0b

µ −0.868986 −0.868986 −0.868986 −0.868986
β +0.684542 +0.584275 +1 −
α −0.569721 −0.569721 −0.569721 −0.569721
θ +0.436067 +0.436067 +0.436067 +0.436067
τ +0.436067 +0.436067 +0.436067 +0.436067
β̄b +0.315458 +0.415725 − +1
γ +0.315458 +0.415725 − +1
ξ −0.315458 −0.415725 − −1
δ −0.133654 −0.133654 −0.133654 −0.133654
ν +0.00264 +0.00264 +0.00264 +0.00264

It is crucial to understand the numerous parameters that influence the Model (1) vari-
ables. By using eFAST in the MATLAB software (see [44] for more details), the parameter
sensitivity analysis for the infected classes is performed. In eFAST, sensitivity indices are
computed while simultaneously modifying all parameters within predetermined limits.
The magnitude of the derived sensitivity indices determines the significance of the parame-
ters on the outcomes of the model’s variability [44,45]. All parameters fluctuate according
to the precise ranges and benchmark values specified in Table 2, and the baseline values are
(Values Persistence), assuming uniform distributions. The sensitivity indices for the model
variable are determined at one year. Calculated and displayed in Figure 8a,b, respectively,
are the sensitivity indices for I1 and I2. The number of infected humans is influenced
by various factors, as shown in Figure 8. Higher transmission parameters, such as β, β̄b,
γ, and τ, lead to an increase in the number of infected individuals. On the other hand,
an increase in the bacterial decay rate ξ, as well as the immunity parameters η and ω,
results in a decrease in the number of infected individuals.

b
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(a) Sensitivity Analysis for I1.
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(b) Sensitivity Analysis for I2.

Figure 8. Model (1) sensitivity analysis output, using the parameter values specified in Table 2.

Then, in Figures 9 and 10, we numerically displayRA
0 of the autonomous model and

[R0] of the related model that changes over time depends on the parameters that have
the most impact. (β, β̄b, γ, τ, θ, δ, ξ, and µ). The results show that RA

0 is less than [R0]
indicating that RA

0 gives a low estimate of how likely it is that an infection will spread.
Remarkably, our findings align with those reported in [23,25,46], where they present diverse
outcomes concerning the underestimation and overestimation of [R0]. In [23], their findings
showed that [R0] gives a lower estimate of the risk of malaria spread.
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Figure 9. Sensitivity of the reproduction numbers RA
0 and [R0] with respect to the Model (1)

parameters, given the specific parameter values specified in Table 2.
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Figure 10. Sensitivity of the reproduction numbers RA
0 and [R0] with respect to the Model (1)

parameters, given the specific parameter values specified in Table 2.

5.3. Effects of Parameter Modifications and Control

Modifying Model (1) parameters plays a crucial role in understanding the dynamics
of TyF transmission and formulating effective control strategies. The sensitivity analysis
conducted in the study provides insights into how different parameters influence the
reproduction numbers (R0, [R0], andRA

0 ) as well as the number of human infections (I1
and I2) and, consequently, the spread of TyF. By comprehending the effects of parameter
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modifications, we can identify key factors that contribute to the transmission of TyF and
devise targeted control measures. Here, we discuss some significant parameters and their
implications in implementing efficient control strategies to combat TyF through a series
of numerical simulations. We assume that the disease is persisting in the population as
well as that the number of chronic cases is high with an initial infection of approximately
20,000 cases.

Figure 11 shows the rate at which infected individuals transmit TyF to susceptible
ones due to short or long transmission periods (β and β̄b). Increasing either of these rates
leads to higher human infection (I1 and I2). In particular, the baseline environment-to-
human infection rate (β̄b) significantly impacts the number of infections, and even if β
is equal to zero, we observe that the disease persists as studied in [20]. This indicates
that TyF can spread via indirect or long-period transmission only, and control efforts
should focus not only on prioritizing social distancing, isolating infected individuals,
and promoting hygienic practices to reduce contact and interactions between infected
and susceptible individuals, but also on additional strategies targeting environmental
contamination through ensuring clean water supplies, proper waste disposal, and improved
hygiene practices to curb transmission.
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Figure 11. Solutions (I1 and I2) of Model (1) plotted with respect to the parameters β and β̄b, given
the specific parameter values specified in Table 2 (persistence).

As seen in Figure 12, the number of infected humans (I1 and I2) is plotted against the
proportion of infected individuals who transition into chronic carriers (θ) and the relative
infectiousness of chronic carriers (τ). Higher values of θ and τ indicate the significance
of chronic carriers in typhoid fever transmission. Reducing the proportion of infected
individuals transitioning into chronic carriers (higher θ) and minimizing the infectiousness
of chronic carriers (higher τ) through targeted interventions like regular screening and
timely treatment of acute infections is crucial for controlling the disease.
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Figure 12. Solutions (I1 and I2) of Model (1) plotted with respect to the parameters θ and τ, given the
specific parameter values specified in Table 2 (persistence).

The significant impact of the bacterial excretion rate (γ) and the bacterial decay rate
(ξ) on long-period infections is demonstrated in Figure 13. Higher values of γ correspond
to increased I1 and I2, indicating a higher likelihood of long-lasting infection periods.
Additionally, ξ exhibits an inverse relationship with the number of infected individuals.
A higher value of ξ results in a lower incidence of infection. These findings suggest that
interventions focused on targeting bacterial decay can play a crucial role in controlling TyF.
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Figure 13. Solutions (I1 and I2) of Model (1) plotted with respect to the parameters ξ and γ, given the
specific parameter values specified in Table 2 (persistence).



Mathematics 2023, 11, 3713 23 of 26

Modifying model parameters and understanding their influence on TyF transmission
are crucial for formulating effective control strategies. Targeting chronic carriers, reducing
infection rates through interventions like screening and treatment, and implementing
hygiene and environmental control measures are essential steps in curbing TyF spread.

6. Discussion

The utilization of mathematical models is essential for predicting the dynamics of
diseases and estimating critical quantities. One of the advantages of non-autonomous
models like ours is their ability to capture temporal variations and changes in the system.
This study aimed to analyze TyF transmission in a population through a compartmental
model, considering the dynamic changes occurring periodically in the environment.

Firstly, we calculate the BRNP,R0, for the periodic model. Furthermore, we derive an
expression for the BRNT, [R0], for the non-autonomous model, and the BRNA,RA

0 , for the
autonomous model. An analysis was conducted to examine the GAS of P∗ and endemic
periodic solutions. It has been shown that whenR0 < 1, P∗ is globally asymptotic stable,
indicating TyF goes extinct. Conversely, when R0 > 1, the disease spreads through the
population (see Theorem 4), which proves that there is a positive cyclical solution (refer to
Theorem 5). Furthermore, the numerical simulations following the theoretical results were
shown in this study (see Figures 2–6).

The sensitivity analysis ofRA
0 , for the constant version of the model, as well as [R0],

for the seasonal system described by 1, was conducted. The analysis aimed to assess the
impact of the model’s parameters on these quantities. The results suggested that the human-
to-human infection rate (β) is an essential element in RA

0 and the influence of β on the
comparison betweenRA

0 and [R0] is negligible (see Figures 7a,b, 9 and 10). Simultaneously,
the environment-to-human infection rate (β̄b) and bacteria excretion (γ) are also critical in
reducing the basic reproduction number for long-cycle infections,R0b, and the influence of
β̄b and γ on the comparison betweenRA

0 and [R0] is significant (see Figures 7d, 9 and 10).
As noted, [R0] is greater than or equal to RA

0 (see Figures 9 and 10). Therefore, [R0]
presents an overestimation of the threat of disease spread, whereasRA

0 underestimates the
level of potential infection. The model’s sensitivity indices for the variable are calculated at
a one-year interval. The infected individuals by TyF are impacted by multiple factors (see
Figure 8). Elevated transmission parameters, such as β, β̄b, γ, and τ, are associated with an
increased incidence of infection. Conversely, a higher bacterial decay rate, represented by
ξ, as well as increased immunity parameters η and ω are linked to a reduced number of
infected individuals.

The numerical simulations presented in Figure 11 through Figure 13 highlight the
significance of chronic carriers in TyF transmission. Reducing the transition proportion (θ)
and infectiousness (τ) of chronic carriers through screening and timely treatment is crucial
for control. The analysis reveals the impact of bacterial excretion rate (γ) and decay rate (ξ)
on long-lasting infections. Higher γ increases infection rates, while higher ξ reduces the
number of infections. Targeting bacterial decay is essential for effective TyF control.

Preventing transmission is paramount to avoiding TyF. Food and water contamination
are the primary vectors for disease transmission, highlighting the significance of practicing
good hygiene. Vaccination is also crucial in protecting against TyF. Additionally, efforts
must be directed toward controlling bacterial contamination by implementing strategies for
safe water supplies, sanitation, and hygiene practices. Lastly, prioritizing immune system
health is essential for overall well-being.

One of the limitations of our model is that limited knowledge exists regarding param-
eter values, which limits its quantitative accuracy. However, the qualitative results remain
consistent even when considering alternative parameter values. There are numerous poten-
tial avenues for further development of our model. As stated earlier, different regions may
experience distinct seasonal patterns that affect the incidence and spread of TyF; therefore,
a model that includes periodic parameters for human-to-human infection could be devel-
oped. Additional promising future research directions for understanding TyF transmission
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dynamics involve extending the current ordinary differential equation model to incorporate
partial differential equations, capturing spatial variations in disease dynamics in diverse
endemic regions. Furthermore, integrating a vaccination compartment for humans into the
model can significantly impact disease transmission dynamics. By considering vaccination
rates, coverage, and vaccine efficacy, we can explore the potential impact of vaccination
campaigns on reducing transmission and controlling outbreaks. Additionally, calibrating
and expanding the model specifically for typhoid-endemic regions like South Asia and
Africa, by integrating region-specific characteristics and local epidemiological data, would
enhance its predictive accuracy. The incorporation of these advancements in future research
will significantly contribute to the study of typhoid fever dynamics and aid in devising
more effective strategies for disease control.
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