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Abstract: The notion of decisive coalitions of voters with different grades of decisiveness is a part
of the mathematical framework for many models in social choice theory. More generally, we study
aggregation problems in which a subgroup of decision makers have the right to determine the
properties of the aggregate. Then, we introduce property spaces and rights to properties and
characterize aggregation operators that are consistent with rights to properties. Moreover, we
define congruences in property spaces, and we propose a generalization of the Sugeno integral in
our framework.
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1. Introduction

Multicriteria choice problems are characterized by a plurality of points of view, and
there are different dimensions from which the alternatives can be viewed. In order to solve
a decision problem, we have to compare and rank a set of alternatives, and each alternative
is often defined by its attributes or properties. We consider the abstract aggregation model
recently studied in [1] that represents a decision problem in terms of a set of Boolean prop-
erties specifying a list of properties that are satisfied for every alternative. The “property
space” model has received attention in the literature on social choice, judgment aggregation
and aggregation of preferences (see [2,3]).

In this paper, we consider a property space as a convex space since every property
space defines a convex space. As it is well known, the notion of convexity is a basic mathe-
matical structure, and in the literature, there are various kinds of generalized, topological
or axiomatically defined convex structures. Van De Vel analyzed the theory of convexity
systematically in [4].

We consider abstract convex structures that are combinatorial objects studied in var-
ious areas of mathematics. Abstract notions of convexity are considered in different
environments, such as vector spaces, metric spaces, graphs, matroids, median algebras,
lattices and so on.

There are also many applications in different fields; for example, in economic theory
and in rough set theory. Then, we can refer to the general definition of convex preferences
proposed in [5] where abstract convex spaces are considered underlying universes with
an abstract convex structure. We can also refer to the important notion of abstract convex
geometry due to [6]; that is, an abstraction of the standard notion of convexity in a linear
space that is at the root of the convex rough sets defined recently in [7]. Then, we consider
aggregation operators that are compatible with rights systems; that is to say, they allow
subgroups of decision makers to enforce a property to which they hold a right.

Moreover, we define and study congruences in property spaces as convex spaces, and
then we prove that the aggregation operators in property spaces considered in [1,2] can
be viewed as Sugeno integrals in property spaces since the operators are compatible with
congruences (see [8–10]).
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The current paper is organized as follows. In Section 2, we provide the basic notations
and definitions we work with. In Section 3, we consider rights-consistent aggregation
functions, while in Section 4, we define congruences in convexity spaces and in property
spaces, and some basic information concerning Sugeno integrals is given. Then, we study
aggregation operators that are compatible with congruences. Finally, some concluding
remarks are added.

2. Model and Preliminaries

In this section, we recall some basic definitions of lattice theory. Then, we introduce
the notion of property space and define rights to properties.

2.1. Preliminaries on Lattices

In this section, we briefly recall basic definitions needed for our purposes. We assume
that the reader is familiar with the basic notions of lattice theory and refer the reader
to [11,12].

Throughout this paper, we assume that all lattices are distributive and bounded with
meet and join operations denoted by ∧ and ∨, respectively. We denote the greatest and the
least element with 0, 1, respectively, and we assume that 0 6= 1.

A filter of a finite lattice L is a subset F of L such that

(i) if x ∈ F and x ≤ y, then y ∈ F;
(ii) if x, y ∈ F, then x ∨ y ∈ F.

Any ordered set subsets satisfying (i) are called upsets.
The dual notion is that of an ideal. An ideal of a lattice L is a subset I of L such that

(i) if x ∈ I and y ≤ x, then y ∈ I;
(ii) if x, y ∈ I, then x ∧ y ∈ I.

A proper filter is a filter that is neither empty nor the whole lattice, while a prime filter is
a proper filter F such that whenever x ∨ y ∈ F, we have x ∈ F or y ∈ F.

A proper ideal is an ideal that is neither empty nor the whole lattice, while a prime ideal
is a proper ideal I such that whenever x ∧ y ∈ I, we have x ∈ I or y ∈ I.

In any lattice L, F ⊂ L is a prime filter if an only if its complement Fc is a prime ideal.
Moreover, it can be proved that if x, y are two elements of a finite distributive lattice L and
x � y, there exists a prime filter F where y ∈ F and x /∈ F. If x ∈ L, let ↑ x = {y ∈ L :
y ≥ x}. It is easy to prove that ↑ x is a filter for every x ∈ L that is called the principal
filter generated by x. It can be proved that in a finite lattice, each filter and each ideal are
principal.

If L is a finite lattice, p ∈ L is said to be join prime if p ≤ x ∨ y, and then p ≤ x or p ≤ y.
A filter F of a finite distributive lattice is prime if and only if F =↑ p for some join prime
element p of L.

2.2. Property Spaces

In this section, we consider the model of abstract aggregation studied in [1,2,13,14]
that describes a decision problem in which we consider a set of alternatives, and each
alternative is defined by its attributes or properties. Note that in this framework, properties
are extensionally defined as subsets of alternatives. Let X be a finite set of objects or
alternatives such that |X| > 2.

Definition 1. A property space is a pair (X,P) whereP ⊆ 2X, which satisfies the following properties:
P1 (Nontriviality) P ∈ P ⇒ P 6= ∅
P2 (Closedness under negation) P ∈ P ⇒ Pc ∈ P
P3 (Separation) if x, y ∈ X and x 6= y, there exists P ∈ P such that x ∈ P and y /∈ P.

Then, the elements of P are referred to as properties, and if x ∈ P, we say that x has
property represented by the subset P. We can say that for every property P, there is an
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alternative that has this property. In addition, property membership is binary, and two
alternatives can be distinguished by at least one property. The “property space” model
provides a very general framework for representing different structures and preferences
and then the aggregation of preferences. Here are some important examples:

Example 1. If (X,≤), where ≤ is a total order in the set X, the set X is a property space with
respect to the family of subsets {Pt : t ∈ X} ∪ {Qt : t ∈ X}, where Pt = {x ∈ X : x ≥ t} and
Qt = {x ∈ X : x < t}.

Example 2. If X is a finite distributive lattice, the family P of the prime filters and prime ideals of
X defines a property space.

Example 3. We consider a finite set of alternatives A and a setR of linear orders in A.
If we define for each pair a, b ∈ A , the set

Pa,b = {R ∈ R : aRb}

the family PR of all the sets Pa,b and their complement defines a property space structure on the set
R. See [2,3] for more details on the Arrowian framework.

Example 4. The geometric notion of a point lying between two given points on a geometric
line or a totally ordered set has strong intuitive appeal and has been generalized in a number of
directions. In all of these, betweenness is taken to be a ternary relation that satisfies certain conditions.
The modern axiomatic definition of betweenness is due to Hedlíková [15], who introduced the
ternary representation of betweenness. Recently, concepts of betweenness were developed in [16,17].
Moreover, a notion of betweenness has recently been encoded in choice theory [18]. Betweenness
has been introduced in the context of abstract convexity in [4] and in the context of property spaces
in [2,19].
In a. lattice L is defined as a ternary betweenness relation:

B = {(x, z, y) ∈ L3 : x ∧ y ≤ z ≤ x ∨ y}.

This ternary relation satisfies the following properties:
[B1] (Reflexivity) If z ∈ {x, y}, then B(x, z, y)
[B2] (Symmetry) If B(x, z, y), then B(y, z, x)
[B3] (Transitivity) If B(x, x′, y), B(x, y′, y) and B(x′, z, y′), then B(x, z, y).
[B4] (Antisymmetry) If B(x, z, y) and B(x, y, z), then y = z.
Let us assume that these properties characterize a ternary betweenness relation.
We say that a set A ⊆ X is convex if and only if

if x, y ∈ A and B(x, z, y), then z ∈ A.

Now we consider the following property of a ternary betweenness relation:
[B5] (Separation) If the relation B(x, z, y) is not satisfied, then there exists a subset H ⊆ X such
that the set H and Hc are convex and x, y ∈ H, z /∈ H.
It can be proved (see [19]) that if a ternary betweenness relation satisfies the conditions [B1]–[B5],
then there exists a property space (X,P) such that

if x, y ∈ P ∈ P and B(x, z, y), then z ∈ P.

Conversely, if (X,P) is a property space, the ternary relation is defined by

B(x, z, y) if and only if x, y ∈ P ∈ P , then z ∈ P

which is a betweenness relation that satisfies conditions [B1]–[B5] (see [19]).
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2.3. Rights Systems

Let N = {1, . . . , n} be a set of agents or decision makers or voters. We consider a
panel of experts each making judgments about a given set of properties, according to
their expertise. We might consider many situations in which a subgroup of members
could be decisive even though they do not constitute a majority. As an example, we could
consider that a hiring committee or university department can be tasked with evaluating
some applicants for an open faculty position in terms of research, teaching and service.
We suppose that there are different subcommittees that have the right to evaluate the
respective qualifications.

Definition 2. A rights system with respect to the set N and to the property space (X,P) is a
correspondence r : P ⇒ 2N . A rights system r is said to be exhaustive if for all P ∈ P and A ⊆ N,
either A ∈ r(P) or N \ A ∈ r(Pc).

Then, P ∈ P , r(P) is the set of subsets of N that have the right to property P. Note
that our definition is more general than that of [1] since in [1], it is assumed that r(P) is
an upset. Therefore, in our model, it is not assumed that the function r is monotone with
respect to inclusion and that there are closed groups of agents that want to make collective
judgments on certain properties.

3. Rights-Consistent Aggregation Functions

In our model, we assume that a description of alternatives is given in terms of their
properties, so a natural way to generate an aggregation procedure is to determine the final
outcome via its properties. Then, we consider the following condition that the aggregation
function F : Xn → X may satisfy, with (X,P) being a property space.

Definition 3. The function F : Xn → X is compatible with the rights system r : P → 2N if and
only if for all x = (x1, . . . , xn) and all P ∈ P ,

F(x) ∈ P if and only if {i ∈ N : xi ∈ P} ∈ r(P).

If the function F : Xn → X is compatible with the rights system r : P → 2N , the
collective choice F(x1, . . . , xn) follows each agent in its respective area of competence or
guarantees all properties P that are endorsed by a subgroup of individuals with a right
to P.

We consider now some properties that an aggregation function F : Xn → X may satisfy,
with (X,P) being a property space (see [2]).

Definition 4. F is a monotone aggregation operator if and only if whenever F(x1, . . . xi . . . , xn) ∈ P
for P ∈ P and yi ∈ P , then F(x1, . . . , yi . . . , yn) ∈ P.

Note that F is a monotone aggregation operator if and only if when {i ∈ N : xi ∈ P} ⊆
{i ∈ N : yi ∈ P} if F(x) ∈ P, then F(x) ∈ P, so monotonicity requires consistency with the
property space structure. Monotonicity is a very natural property of an aggregation opera-
tor; for example, every aggregation rule studied in the Arrowian framework is monotone.

Definition 5. F is an independent aggregation operator if for P ∈ P , when F(x1, . . . , xn) ∈ P
for P ∈ P and for every i, 1 ≤ i ≤ n, [xi ∈ P ⇔ yi ∈ P] , then F(x1, . . . , yn) ∈ P.

We can say that the aggregation operator F is independent if and only if F(x) ∈ P if
and only if F(y) ∈ P when {i ∈ N : xi ∈ P} = {i ∈ N : yi ∈ P}. This definition implies
that the fact that whether the outcome F(x) satisfies a property depends only on the pattern
of the considered property at the vector x and not on the patterns of other properties at
x. Independence is a characteristic property of aggregation operators that considers only
an ordinal point of view. So, if we consider an aggregation operator on the real line, the
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median is an independent aggregation operator that considers only the ordinal structure
while the mean also considers the cardinal structure of the real line
The following property can also be called an unanimity condition:

Definition 6. F is an idempotent aggregation operator if and only if F(x, x, . . . , . . . , x) = x for
every x ∈ X.

In a multicriteria decision-making approach, this property can be read as follows: if
all criteria are satisfied to the same degree x, then the global score should also be x.
We can easily prove the following result:

Proposition 1. Let F : Xn → X be an aggregation function compatible with the rights system
r : P → 2N :

(i) Fis independent;
(ii) if r is exhaustive, then F is idempotent;
(iii) if for every p ∈ P r(P) is an upset, then F is monotone.

We observe that a function F : Xn → X is compatible with the rights system r : P → 2N

if and only if
F(x1, . . . , xn) ∈

⋂
{P ∈ P : {i ∈ N : xi ∈ P} ∈ r(P)}. (1)

Furthermore, if we define Pr(x) =
⋂{P ∈ P : {i ∈ N : xi ∈ P} ∈ r(P)}, we could see

that for some x ∈ Xn, Pr(x) = ∅ and then does not exist, and a function F : Xn → X is
compatible with the rights system r : P → 2N .

We consider in our framework a condition similar to the Intersection Property over
Critical Families condition in [1]:

Proposition 2. There exists a function F : Xn → X compatible with the rights system r : P → 2N

if and only if for every C = {P1, . . . , Pn} ⊆ P such that
⋂{Pi, 1 ≤ i ≤ n} = ∅ and for all

k, 1 ≤ k ≤ n,
⋂{Pi ∈ 1 ≤ i ≤ n, i 6= k} 6= ∅, if x ∈ Xn exists such that Ai = {i ∈ N :

xi ∈ Pi} ∈ r(Pi) for every i ∈ N, then
⋂{Ai, 1 ≤ i ≤ n} 6= ∅.

Proof. Suppose that there does not exist a function F : Xn → X compatible with the
rights system r : P → 2N . This implies that some x ∈ Xn by Equation (1)

⋂{P ∈ P :
{i ∈ N : xi ∈ P} ∈ r(P)} = ∅. Then, there exists C = {P1, . . . , Pn} ⊆ P such that⋂{Pi, 1 ≤ i ≤ n} = ∅, and for all k, 1 ≤ k ≤ n,

⋂{Pi ∈ 1 ≤ i ≤ n, i 6= k} 6= ∅,
such that Ai = {i ∈ N : xi ∈ Pi} ∈ r(Pi) for every i ∈ N. Hence, we have that⋂{Ai, 1 ≤ i ≤ n} 6= ∅, but if i ∈ ⋂{Ai, 1 ≤ i ≤ n}, then xi ∈

⋂{P ∈ P : {i ∈ N :
xi ∈ P} ∈ r(P)}, and this is a contradiction.
Conversely, suppose that there exists a subset C of P , C = {P1, . . . , Pn} ⊆ P such that⋂{Pi, 1 ≤ i ≤ n} = ∅, and for all k, 1 ≤ k ≤ n,

⋂{Pi ∈ 1 ≤ i ≤ n, i 6= k} 6= ∅
and x ∈ Xn such that Ai = {i ∈ N : xi ∈ Pi} ∈ r(Pi) for every i ∈ N . Now suppose

that there exists a function F : Xn → X compatible with the rights system r : P → 2N ; then,
F(x) ∈ ⋂{Pi, 1 ≤ i ≤ n} = ∅, a contradiction.

4. Congruences

In this section, we consider congruences that are equivalence relations that preserve
the structure of the space. We define congruences in convexity spaces and in lattices. In [20],
the authors studied the notion of congruence on a choice space.

4.1. Congruences in Convexity Spaces

The notion of convexity is a basic mathematical structure that is used to analyze many
different models, and in the literature, there are various kinds of generalized, topological or
axiomatically defined convexities. In this paper, the general notion of an abstract convexity
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structure that is studied in [4] is considered. This definition is based on the properties of a
family of sets.

Definition 7. If X is a set and C is a subset of 2X, (X, C) is a convexity space if the following
conditions are satisfied:

(1) C is closed under arbitrary intersections;
(2) if {Xj : j ∈ J} is a totally ordered subset of C with respect to inclusion, then

⋃
j∈J Xj ∈ C .

The elements of C are called convex sets of X.
Moreover, the convexity notion allows us to define the notion of the convex hull

operator, which is similar to that of the closure operator in topology.
If X is a set with convexity C and A is a subset of X, then the convex hull of A ⊆ X is

the set

coA =
⋂
{C ∈ C : A ⊆ C}.

This operator enjoys certain properties that are identical to those of usual convexity: for
instance, coA is the smallest convex set that contains set A. It is also clear that C is convex
if and only if co C = C.

We consider equivalence relations that are compatible with the structure of a convexity
space as defined in [4]. If A ⊆ X, we define E(A), which is called the saturation of the set
A, as E(A) = {y ∈ X : (x, y) ∈ E for some x ∈ A}, and then we denote the equivalence
class of x ∈ X with E(x).

Definition 8. If (X, C) is a convexity space, an equivalence relation E in X is called a congruence
in X if and only if

co(E(A)) ⊆ E(co(A))

for every A ⊆ X.

Proposition 3. Let (X, C) be a convex space. An equivalence relation E in X is a congruence if
and only if E(C) is convex if C is convex.

Proof. Let E be a congruence in a convex space (X, C) and C ⊆ X be a convex set. By
definition, co(C) = C, then co(E(C)) ⊆ E(C), and this implies that E(C) is a convex set.
Conversely, suppose that the saturation of a convex set is a convex set. If we consider a
subset A ⊆ X, since co(A) is a convex set, we have that E(co(A)) is a convex set. Moreover,
E(A) ⊆ E(co(A)), and then co(E(A)) ⊆ E(co(A)).

The following result follows from Proposition 3.

Proposition 4. A property space (X,P) is a convex space with respect to the convexity C such
that if C ⊆ X, then C ∈ C if C = ∅ or C is an intersection of the elements of P .
An equivalence relation E in X is a congruence with respect to the convexity C if and only if C is an
intersection of the elements of P ; then, E(C) is an intersection of the elements of P .

4.2. Congruences in a Lattice

One of the important tools of lattice theoretical research is the study of lattice congru-
ences. In this section, we consider congruences in a finite and distributive lattice L. The
definition of a congruence in a lattice as a property space (or as a convexity space) is the
same definition of a congruence in a lattice considered, for example, in [8–10] as it is proved
with the following result.

Proposition 5. An equivalence relation E on a finite distributive lattice L is a congruence with
respect to the property space structure associated with the lattice structure if and only if it satisfies
the following properties:
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(i) if (x, y) ∈ E, then (x ∧ z, y ∧ z) ∈ E for each z ∈ L;
(ii) if (x, y) ∈ E, then (x ∨ z, y ∨ z) ∈ E for each z ∈ L.

Proof. If J is the set of join prime elements of a lattice L, then for every x ∈ L, there exists
p1, . . . pn elements of J such that

x = p1 ∨ . . . ∨ pn and ↑ x =↑ p1 ∩ . . .∩ ↑ pn.

Consequently, a subset of L is an intersection of prime filters (and then an element of the
convexity space associated with L) if and only if it is a principal filter.
Then, for every a ∈ J , we can define a relation Ea on L as follows: for all x, y ∈ L, set

(x, y) ∈ Ea ⇐⇒ [x ≤ a, y ≤ a] or [x � a, y � a]

that is,
x, y ∈ L (x, y) ∈ Ea ⇐⇒ [x, y ∈ ↑ a, ] or [x, y /∈ ↑ a].

We can prove that this relation is a congruence in L as a property space since the two
equivalence classes are the prime filter ↑ a and the ideal X\ ↑ a.

Because a is a join prime element of L, we can also prove that Ea is compatible with
the lattice operations of L. An equivalence relation on a finite distributive lattice L is a
congruence with respect to the property space structure associated with the lattice structure
if and only if the equivalence classes are intersections of the prime ideals. Then, it is easy to
see that E is a congruence in L if and only it is an intersection of the relation Ea : a ∈ A and
A ⊆ J ; then, the thesis follows.

4.3. Sugeno Integral

The process of combining sets of numerical or qualitative inputs into a single one is
usually achieved by the aggregation functionals; see [21] for a comprehensive overview of
aggregation theory. The importance of aggregation functionals is made apparent by their
wide use in several fields such as decision sciences, computer and information sciences,
economics and social sciences. There are a large number of different aggregation operators
that differ in the assumptions on the inputs and on the information that you want to
consider in the model.

One of the most noteworthy aggregation functionals making sense in a qualitative
framework is the Sugeno integral, which is very useful across a range of decision contexts.
The Sugeno integral was proposed in 1972 by M. Sugeno in a paper written in Japanese,
and it became a very important study due to Sugeno’s PhD dissertation [22]. The definition
of the Sugeno integral primarily introduced on real intervals can be extended to bounded
distributive lattices (see [23]). The Sugeno integral is useful when combining values on
an ordinal scale, where the usual sums and products are not defined since its calculation
requires only the lattice minimum and maximum operations.

We consider the set of inputs N = {1, 2, ..., n}, n ≥ 2, which can be either decision
criteria, optimization objectives or any other aggregation variables, and let P(N) be its
power set. Here, we only provide some basic definitions; the rest can be found in [8–10,23].
A set function m : P(N)→ [0, 1] satisfying m(∅) = 0, m(N) = 1 and being monotone, that
is to say that m(A) ⊆ m(B) whenever A ⊆ B, is called a capacity or a fuzzy measure. The
value of m(A) reflects the importance of each subset A in the considered problem.
The discrete Sugeno integral with respect to the capacity m is given by

S(x1, . . . , xn) =
∨

t∈[0,1]

(t ∧m({i ∈ N : xi ≥ t})).

Several equivalent definitions of the Sugeno integral have been proposed (see, for exam-
ple, [8,9,23]).



Mathematics 2023, 11, 3709 8 of 10

The Sugeno integral is a basic tool for many models in applied and theoretical studies
in several domains, especially in measure theory, decision making, probability, finance and
also in scientometrics. Torra and Narukawa showed in [24] that the h-index is a particular
case of some Sugeno integral, see also [25].

4.4. Compatible Aggregation Functions in Property Spaces

It has been proved that Sugeno integrals are aggregation functions preserving congru-
ences in [0, 1] (see [9]) and in a bounded distributive lattice (see [8,10]). If E is a congruence
in a property space (X,P), we denote the fact that x, y belong to the same congruence class;
that is to say that E(x) = E(y), where x ∼= y .

Definition 9. Let (X,P) be a property space and F a function F : Xn → X. F is said to be
compatible with the congruence E if when x, y ∈ Xn and for every i, 1 ≤ i ≤ n, xi

∼= yi, then
F(x) ∼= F(y).

We want to characterize the class of multivariate functions compatible with every
congruence of a property space.

Proposition 6. Let (X,P) be a property space and F a function F : Xn → X and N = {1, . . . , n}.
If the function F is compatible with a rights system with respect to the set N, r : P → 2N , then F is
compatible with every congruence in (X,P).

Proof. Let the function F be compatible with a rights system with respect to the set N,
r : P → 2N . If P is an element of P , we can consider the congruence EP in X defined by

x ∼=P y when x, y ∈ P or x, y /∈ P.

If we consider two elements x, y ∈ Xn such that for every i ∈ N, xi ∈ P if and only if
yi ∈ P, then F(x) ∈ P if and only if F(y) ∈ P, and then the function F is compatible with
the congruence EP. Moreover, by Proposition 4, every congruence E in (X,P) is such that
the equivalence classes are intersections of the elements of P , and so we can say that it is an
intersection of the elements EP with P ∈ Q, Q ⊆ P , and so we can say that F is compatible
with every congruence in (X,P).

Proposition 7. Let (X,P) be a property space and F a function F : Xn → X.
If the function F is a monotone and idempotent aggregation functional that is compatible with every
congruence in X, there exists an exhaustive rights system r : P → 2X such that

F(x1, . . . , xn) =
⋂
{P ∈ P : {i ∈ N : xi ∈ P} ∈ r(P)}. (2)

Proof. Let F be a monotone and idempotent aggregation functional that is compatible with
every congruence in X. If P is an element of P , we can consider the congruence EP in X
defined by

x ∼=P y when x, y ∈ P or x, y /∈ P.

It can be proved that the function F is compatible with the congruence EP, so if we consider
two elements x, y ∈ XN such that for every i ∈ N, xi ∈ P if and only if yi ∈ P, then
F(x) ∈ P if and only if F(y) ∈ P. Then, F satisfies the independence property; hence, it
satisfies monotone independence as defined in [1] and is idempotent. Then, according to
Fact 2 in [1], there exists an exhaustive rights system r such that

f (x1, . . . , xn) =
⋂
{P ∈ P : {i ∈ N : xi ∈ P} ∈ r(P)}.
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Example 5. As an important example, we consider the real unit interval X = [0, 1] with the
usual convexity, and we suppose that F : XN → X is a functional that satisfies the hypothesis of
Proposition 7 and Equation (2). We define a set function m : 2N → [0, 1] by m(A) = F(1A) where
1A is the characteristic function of the set A ⊆ N. Because F is monotone and idempotent, we can
easily prove that m is a capacity. We consider the sets Pt, 0 ≤ t ≤ 1 defined by Pt = {x ∈ X :
x ≥ t}. So m(A) = F(1A) ≥ t if and only if A ∈ r(Pt). Then, we find that F(x) ∈ Pt; that is,
F(x) ≥ t if and only if m({i ∈ N : xi ≥ t}) ≥ t. We can conclude that

F(x) =
∨

t∈[0,1]

(t ∧m({i ∈ N : xi ≥ t}))

is the usual form of the discrete Sugeno integral in [0, 1].

5. Concluding Remarks

We proposed the definition of a property space, and we showed that this definition
can be considered as a particular case of the definition of abstract convex space. Moreover,
we studied the notion of congruence in a property space.

Then, we introduced aggregation functions in property spaces, and we proposed a
definition of the Sugeno integral operator in our framework. This definition is related to
the property of compatibility with congruences that is introduced in [9] for aggregation
functions in [0, 1] and in [8] for aggregation operators in bounded and distributive lattices.

We plan to consider other classes of aggregation functions and to study a wide range
of applications of our results in future work.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kretz, C. Consistent rights on property spaces. J. Econ. Theory 2021, 197, 105323. [CrossRef]
2. Nehring, K.; Puppe, C. Abstract arrowian aggregation. J. Econ. Theory 2010, 145, 467–494. [CrossRef]
3. Holliday, W.H.; Pacuit, E. Arrow’s decisive coalitions. Soc. Choice Welf. 2020, 54, 463–505. [CrossRef]
4. van De Vel, M.L. Theory of Convex Structures; Elsevier: Amsterdam, The Netherlands , 1993.
5. Cardin, M. Convex preferences: An abstract approach. Fuzzy Sets Syst. 2022, 446, 233–242. [CrossRef]
6. Edelman, P.H.; Jamison, R.E. The theory of convex geometries. Geom. Dedicata 1985, 19, 247–270. [CrossRef]
7. Cantone, D.; Doignon, J.P.; Giarlotta, A.; Watson, S. Resolutions of convex geometries. arXiv 2021, arXiv:2103.01581.
8. Halaš, R.; Mesiar, R.; Pócs, J. Congruences and the discrete Sugeno integrals on bounded distributive lattices. Inf. Sci. 2016,

367, 443–448. [CrossRef]
9. Halaš, R.; Mesiar, R.; Pócs, J. A new characterization of the discrete Sugeno integral. Inf. Fusion 2016, 29, 84–86. [CrossRef]
10. Halaš, R.; Pócs, J.; Pócsová, J. Remarks on Sugeno Integrals on Bounded Lattices. Mathematics 2022, 10, 3078. [CrossRef]
11. Gratzer, G.A. Lattice Theory: Foundation; Springer: Berlin/Heidelberg, Germany, 2011; Volume 2.
12. Morandi, P. Dualities in Lattice Theory; Mathematical Notes, 2005. Available online: https://api.semanticscholar.org/CorpusID:

16898418 (accessed on 11 June 2023).
13. Cardin, M. Sugeno integral on property-based preference domains. In Advances in Fuzzy Logic and Technology 2017: Proceedings of:

EUSFLAT-2017–The 10th Conference of the European Society for Fuzzy Logic and Technology, September 11–15. 2017, Warsaw, Poland
IWIFSGN’2017–The Sixteenth International Workshop on Intuitionistic Fuzzy Sets and Generalized Nets, September 13–15. 2017, Warsaw,
Poland, Volume 1 10; Springer: Berlin/Heidelberg, Germany, 2018; pp. 400–407.

14. Gordon, S. Unanimity in attribute-based preference domains. Soc. Choice Welf. 2015, 44, 13–29. [CrossRef]
15. Hedlíková, J. Ternary spaces, media, and Chebyshev sets. Czechoslov. Math. J. 1983, 33, 373–389. [CrossRef]
16. Bankston, P. Road systems and betweenness. Bull. Math. Sci. 2013, 3, 389–408. [CrossRef]
17. Zhang, H.P.; Pérez-Fernández, R.; De Baets, B. Topologies induced by the representation of a betweenness relation as a family of

order relations. Topol. Its Appl. 2019, 258, 100–114. [CrossRef]
18. Albayrak, S.; Aleskerov, F. Convexity of Choice Function Sets; Bogazici University Research Paper, ISS/EC-2000-01; Bogazici

University: Istanbul, Turkey, 2000.
19. Nehring, K.; Puppe, C. The structure of strategy-proof social choice—Part I: General characterization and possibility results on

median spaces. J. Econ. Theory 2007, 135, 269–305. [CrossRef]

http://doi.org/10.1016/j.jet.2021.105323
http://dx.doi.org/10.1016/j.jet.2010.01.010
http://dx.doi.org/10.1007/s00355-018-1163-z
http://dx.doi.org/10.1016/j.fss.2021.07.016
http://dx.doi.org/10.1007/BF00149365
http://dx.doi.org/10.1016/j.ins.2016.06.017
http://dx.doi.org/10.1016/j.inffus.2015.08.008
http://dx.doi.org/10.3390/math10173078
https://api.semanticscholar.org/CorpusID:16898418
https://api.semanticscholar.org/CorpusID:16898418
http://dx.doi.org/10.1007/s00355-014-0809-8
http://dx.doi.org/10.21136/CMJ.1983.101889
http://dx.doi.org/10.1007/s13373-013-0040-4
http://dx.doi.org/10.1016/j.topol.2019.02.045
http://dx.doi.org/10.1016/j.jet.2006.04.008


Mathematics 2023, 11, 3709 10 of 10

20. Cantone, D.; Giarlotta, A.; Watson, S. Congruence relations on a choice space. Soc. Choice Welf. 2019, 52, 247–294. [CrossRef]
21. Grabisch, M.; Marichal, J.L.; Mesiar, R.; Pap, E. Aggregation Functions; Cambridge University Press: Cambridge, UK, 2009;

Volume 127.
22. Sugeno, M. Theory of Fuzzy Integrals and Its Applications. Doctoral Thesis, Tokyo Institute of Technology, Tokyo, Japan, 1974.
23. Couceiro, M.; Marichal, J.L. Characterizations of discrete Sugeno integrals as lattice polynomial functions. In Proc. 30th Linz

Seminar on Fuzzy Set Theory (LINZ 2009): The Legacy of 30 Seminars—Where Do We Stand and Where Do We Go?; Universitätsdirektion,
Johannes Kepler Universität: Linz, Austria, 2009; pp. 17–20.

24. Torra, V.; Narukawa, Y. The h-index and the number of citations: Two fuzzy integrals. IEEE Trans. Fuzzy Syst. 2008, 16, 795–797.
[CrossRef]

25. Mesiar, R.; Gagolewski, M. H-index and other Sugeno integrals: Some defects and their compensation. IEEE Trans. Fuzzy Syst.
2016, 24, 1668–1672. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s00355-018-1146-0
http://dx.doi.org/10.1109/TFUZZ.2007.896327
http://dx.doi.org/10.1109/TFUZZ.2016.2516579

	Introduction
	Model and Preliminaries
	Preliminaries on Lattices
	Property Spaces 
	Rights Systems

	Rights-Consistent Aggregation Functions
	Congruences
	Congruences in Convexity Spaces
	Congruences in a Lattice
	Sugeno Integral 
	Compatible Aggregation Functions in Property Spaces 

	Concluding Remarks
	References

