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Abstract: The generalized penalized constrained regression (G-PCR) is a penalized model for high-
dimensional linear inverse problems with structured features. This paper presents a sharp error
performance analysis of the G-PCR in the over-parameterized high-dimensional setting. The analysis
is carried out under the assumption of a noisy or erroneous Gaussian features matrix. To assess the
performance of the G-PCR problem, the study employs multiple metrics such as prediction risk, cosine
similarity, and the probabilities of misdetection and false alarm. These metrics offer valuable insights
into the accuracy and reliability of the G-PCR model under different circumstances. Furthermore, the
derived results are specialized and applied to well-known instances of G-PCR, including `1-norm
penalized regression for sparse signal recovery and `2-norm (ridge) penalization. These specific
instances are widely utilized in regression analysis for purposes such as feature selection and model
regularization. To validate the obtained results, the paper provides numerical simulations conducted
on both real-world and synthetic datasets. Using extensive simulations, we show the universality and
robustness of the results of this work to the assumed Gaussian distribution of the features matrix. We
empirically investigate the so-called double descent phenomenon and show how optimal selection of
the hyper-parameters of the G-PCR can help mitigate this phenomenon. The derived expressions and
insights from this study can be utilized to optimally select the hyper-parameters of the G-PCR. By
leveraging these findings, one can make well-informed decisions regarding the configuration and
fine-tuning of the G-PCR model, taking into consideration the specific problem at hand as well as the
presence of noisy features in the high-dimensional setting.

Keywords: penalized regression; prediction risk; cosine similarity; probability of false alarm; double
descent; over-parameterization; constrained ridge regression
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1. Introduction
1.1. Notations and Definitions

To avoid confusion, we start by introducing the notations and definitions used
throughout this paper. For any positive integer p, let [p] denote the set {1, 2, · · · , p}.
Bold face lower case letters (e.g., θ) represent a column vector, and θi is its ith entry,

while ‖θ‖q =
(

∑
p
i=1 |θi|q

) 1
q is its `q-norm. The `∞-norm of a vector is defined as: ‖θ‖∞

= maxi |θi|. Upper case bold letters such as X are used to indicate matrices, with Ip rep-
resenting the p × p identity matrix. The symbols (·)−1 and (·)> are the inversion and
transpose operations, respectively. We use P(·) and E[·] to indicate the probability of an

event and the expected value of a random variable, respectively. The notation “ P−→ ” is
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used to represent convergence in probability. We write X ∼ pX to indicate that a random
variable X is randomly distributed according to a probability mass (or density) function pX .
Particularly, v ∼ N(0, Cv) means that the random vector v has a normal distribution with 0
mean vector and covariance matrix Cv = E[vv>], where 0 is the zero vector. For m ∈ N, a
function ψ : Rm → R is said to be pseudo-Lipschitz of order k ≥ 1 if there exists a constant
L > 0 such that, for all x, y ∈ Rm: |ψ(x)− ψ(y)| ≤ L(1 + ‖x‖k−1

2 + ‖y‖k−1
2 )‖x− y‖2.

A function P : Rp → R is called separable if P(x) = ∑
p
j=1 P̃(xj) ∀x ∈ Rp, where

P̃ : R→ R is a real-valued function. The notation 1{A} is the indicator function, which is
defined as

1{A}(x) =

{
1, if x ∈ A,
0, otherwise.

Finally, we need the following definitions:

• The generalized Moreau envelope function of a proper convex function h : R→ R is
defined as

Mh(a; b, c, d) = min
c≤x≤d

1
2
(x− a)2 + b h(x) (1)

for a, b, c, d ∈ R, with b ≥ 0, c ≤ 0 and d ≥ 0. The generalized Moreau envelope given
above is an extended version of the well-known Moreau–Yosida envelope function [1].

• The minimizer of the above function is called the generalized proximal operator,
which is given as

proxh(a; b, c, d) = arg min
c≤x≤d

1
2
(x− a)2 + b h(x).

1.2. Motivation

Suppose we observe a response vector y ∈ Rn and a data matrix X ∈ Rn×p according
to the linear model

y = Xθ0 + ε, (2)

where θ0 ∈ Rp is a vector of coefficients or parameters, or an unknown signal vector, and
ε ∈ Rn is an error vector. This is also known as a linear inverse problem model [2]. The
linear model in (2) appears in many practical problems in engineering and science [3,4]. For
example, in statistics and machine learning [5–7], y is the response vector (or the output data);
X is often called the predictor matrix, features matrix, or design matrix, which collects the
input data (or features); θ0 is the so called target vector, which is a vector of some weighting
parameters or regression coefficients; and ε is a random noise term. In the context of
compressed sensing [8,9], y represents the measured data, X is a sensing or measurement
matrix, θ0 denotes a signal of interest (to be recovered), and ε is a random noise vector. In
addition, in signal representation [10,11], y is a signal of interest, the matrix X denotes an
over-complete dictionary of elementary atoms, the vector θ0 contains the representation
coefficients of the signal y, and ε represents some approximation error. Moreover, in the
field of wireless communications [12,13], y represents the received signal, X is the channel
matrix between the transmitter and the receiver, θ0 is the transmitted signal vector, and ε is
the additive thermal noise.

In the past, different computational algorithms have been proposed for recovering
(estimating) the unknown vector θ0. The simplest and most conspicuous approach is the
ordinary least squares (OLS) estimator, which finds an estimate θ̂ of θ0 by minimizing the
residual sum of squares (RSS), i.e.,

θ̂OLS = arg min
θ∈Rp

‖y− Xθ‖2
2. (3)
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For the OLS estimator, it is required that n ≥ p, i.e., X is a full column rank matrix. In
this case, (3) has the following closed-form solution:

θ̂OLS =
(

X>X
)−1

X>y. (4)

In many applications, most of the time, the number of parameters to be recovered
p is greater than the number of available samples n, i.e., p > n. This scenario is known
in the literature as the over-parameterized regime [14] (This case, n < p, is also called the
“compressed measurement” scenario in the compressive sensing context). Such inverse
problems are known to be ill-posed unless the unknown vector θ0 is located in a manifold
with a considerably lower dimension than the initial ambient dimension p. These vectors
are called structured vectors [15]. Examples of structured vectors are vectors with a finite-
alphabet structure, sparse and block-sparse structures, low-rankness, etc. [9].

Despite being a popular approach, the OLS estimator performs very poorly when
applied to ill-posed or under-determined problems [16]. Thus, to solve ill-posed problems,
penalization methods are often used. Examples of these methods include penalized least
squares (PLS) [17], least absolute shrinkage and selection operator (LASSO) [18], truncated
singular value decomposition (SVD) [19], etc.

For structured vectors, the most widely used approach is the penalized M-estimator [20],
which finds an estimate θ̂ of the unknown vector θ0 by solving the convex optimiza-
tion problem

θ̂ = arg min
θ∈Rp

L(Xθ− y) + α P(θ), (5)

where L : Rn → R is a convex loss function that determines how close the estimate Xθ̂ is to
the linear model y = Xθ0 + ε. Furthermore, P : Rp → R is a convex penalization function
that enforces the specific structure (the a priori information) of the unknown vector θ0,
and α > 0 is a penalization factor that is used to balance the two functions. In addition,
we assume that P is separable, i.e., P(θ) = ∑

p
j=1 P̃(θj). Examples of the most popular

structure-inducing functions are:

• P(·) = ‖ · ‖1 induces sparsity structure.
• P(·) = ‖ · ‖? encourages low-rankness structure, where ‖ · ‖? is the nuclear norm of

a matrix, which is defined as the sum of its singular values.
• P(·) = ‖ · ‖1,2 induces block-sparsity structures, where ‖ · ‖1,2 is the mixed `1,2-norm.
• P(·) = ‖ · ‖∞ promotes finite-alphabet (i.e., constant-amplitude) signals.

The choice of the loss function L(·) depends on the noise distribution [3] as follows:

• If the noise is Gaussian-distributed, then we choose L(·) = (1/2)‖ · ‖2
2 or L(·) = ‖ · ‖2,

which is related to the maximum likelihood estimation [10].
• If the noise is sparse (e.g., Laplacian distributed), then one can select L(·) = ‖ · ‖1.
• If the noise is bounded, then a proper choice is L(·) = ‖ · ‖∞, and so on.

Different popular algorithms that correspond to different choices of L(·) and P(·) include:

• OLS: P(·) = 0, as in (3);
• `2-penalized LS or ridge regression: min

θ
‖Xθ− y‖2

2 + α ‖θ‖2
2;

• `1-penalized LS or LASSO: min
θ
‖Xθ− y‖2

2 + α ‖θ‖1;

• group LASSO: min
θ
‖Xθ− y‖2

2 + α‖θ‖1,2;

• generalized least absolute deviation (LAD): min
θ
‖Xθ− y‖1 + α P(θ).

The above list is not exhaustive, and many regression, classification, and other statisti-
cal learning algorithms can be written in the form of (5).

1.3. Summary of Contributions and Related Work

Since the Gaussian noise is the most widely encountered noise in practice, we focus
in this work on optimization problems involving an `2-norm squared loss and a general
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penalization function. We call these problems the Generalized Penalized Regression (G-PR),
which solves the following convex optimization problem:

θ̂ = arg min
θ∈Rp

‖Xθ− y‖2
2 + α P(θ). (6)

In this paper, we provide high-dimensional analysis of a constrained version of the
G-PR called the G-PCR (as in Equation (9)) based on the convex Gaussian min–max theorem
(CGMT) [20]. This analysis includes studying its general error performance and specializing
it to particular cases such as sparse and ridge linear regressions. The derived performance
measures, such as the prediction risk and similarity and probability of misdetection, are
then used to tune the involved hyper-parameters of the algorithm. Numerical simulations
of both synthetic and real data are presented to support the theoretical analysis presented
in this work.

Previous works on the high-dimensional performance characterization of convex
optimization problems have a very rich history. There are early results that provided
order-wise “loose bounds” of the error performance of several penalized regression prob-
lems, such as in [14,21–25]. However, the first results that provided a high-dimensional
error analysis were derived using the approximate message passing (AMP) algorithm by
Bayati et al. [26,27] for the unconstrained (standard) LASSO. Later, Ref. [28] extended the
AMP framework to analyze the performance of more general loss functions.

A different approach that is based on the replica method was considered in [29,30] to
analyze various problems in the compressed sensing setting.

In addition, another powerful high-dimensional tool called the random matrix theory
(RMT) [31] was used in [32–34] to derive asymptotic error analysis of some optimization
problems that possess closed-form solutions.

Recently, Thrampoulidis et al. developed a new high-dimensional analysis framework
that is based on the convex Gaussian min–max theorem (CGMT). First, this framework was
used in [35–38] to provide precise error analysis of the LASSO and square-root LASSO. Then,
in [20], it was extended to obtain asymptotic error performance analysis of unconstrained
penalized M-estimator regression problems. The first CGMT-based results on constrained
regression models were derived in [39–41] for the box relaxation optimization (BRO)
and its regularized variant. This BRO method is used to promote constant-amplitude
structures. The authors in [42–44] extended the previous CGMT results to obtain sharp
error performance characterization of constrained versions of the popular LASSO and
Elastic-Net (EN) problems. These extended versions are called the Box-LASSO and Box-EN,
respectively. Furthermore, the authors in [45,46] extended the above results to derive
symbol error rate performance of a more general method called the sum of absolute values
(SOAV) optimization and its constrained pair (Box-SOAV) for discrete-valued binary and
sparse signal recovery.

Even though the focus of this paper is on regression problems, we should highlight
that the CGMT framework was also applied to characterize the high-dimensional error
performance of classification problems as in [47–49], phase retrieval problems [50,51], and
various statistical learning problems [52–54].

In most of these works, the features matrix is considered to be fully known, but in
practice, data are always noisy and contain different types of errors. This motivates the
analysis considered in this paper to be performed under uncertainties in the design matrix
(see Section 2.2). As compared to related work, such as [41,43,44] which considered the
imperfect design matrix assumption, this work differs in multiple ways.

• The proposed constrained G-PCR problem in (9) considers a general penalization
function P(·) instead of the specific penalties used in previous works.

• This work derives a general performance measure (Theorem 1) that is more broad
and useful than the particular metrics previously taken into consideration, such as the
mean square error (MSE), symbol error probability, etc.
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• This work generalizes these previous results, as they can be obtained as special cases
of the results of this paper.

• In Appendix B, we highlight the use of the same machinery developed in this work
to analyze a closely related class of problems known as Square-Root Generalized
Penalized Constrained Regression.

2. Problem Setup
2.1. Dataset Model

Consider the problem of estimating a scalar response yi from a set of n independent
training data samples {(xi, yi)}n

i=1, where xi ∈ Rp is the feature vector, following the
linear model

yi = θ>0 xi + εi, i ∈ [n], (7)

where θ0 ∈ Rp is an unknown structured target vector, and {εi}n
i=1 denotes the noise

samples with zero mean and variance σ2
ε . Furthermore, the feature vectors xi are assumed

to independent and identically distributed (i.i.d.) random normal vectors with zero mean
and covariance matrix 1

p Ip.
The model in (7) can be compactly written as

y = Xθ0 + ε,

where y = [y1, y2, · · · , yn]>, X = [x1, x2, · · · , xn]>, and ε = [ε1, ε2, · · · , εn]>.

2.2. Main Assumptions

Our study is based on the following set of assumptions:

• The unknown target vector θ0 is assumed to be a structured vector, with entries Θ0
that are sampled i.i.d. from a probability distribution function pΘ, which has zero
mean, and variance E[Θ2

0] = σ2
θ , where 0 < σ2

θ < ∞.
• The noise variance σ2

ε < ∞ is a fixed positive constant.
• As discussed above, the data matrix X ∈ Rn×p is a Gaussian matrix with i.i.d. N(0, 1

p )

elements. The choice of the 1/p as the variance level in X is commonly used in the
literature; see [20,27]. This is done to ensure that ‖Xθ‖2

2/n and ‖θ‖2
2/p are of the

same order.

Furthermore, in this work, we assume that the data matrix, X, is not perfectly known,
and we only have an erroneous copy of it, X̂, which is given as:

X̂ = X + E, (8)

where X̂, and E ∈ Rn×p are independent matrices which have i.i.d. entries drawn from

N(0, 1−σ2
e

p ), and N(0, σ2
e
p ), respectively. (This uncertainty notion is widely encountered in

practice. For example, it could be used to represent model mismatch, errors, and noises
from the data collection process, noise in the sensors used to gather the measurements, etc.)
Here, E represents the unknown error matrix, and σ2

e ∈ [0, 1] is the variance of the error.

• n and p grow to infinity with n
p −→ ζ ∈ (0, ∞).

2.3. Generalized Penalized Constrained Regression (G-PCR)

In this paper, we refer to (5) as the standard G-PR, but we analyze a modified version
that we call the Generalized Penalized Constrained Regression (G-PCR), which solves the
following optimization instead:

θ̂ = arg min
θ∈Vp
‖X̂θ− y‖2

2 + αP(θ), (9)

where V = [−L, U], and L, U ∈ R+ ∪ {0}.
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When compared to (6), the constraint V is used instead of R, and X̂ is used instead of X.
This is due to the fact that X is not perfectly known and we only have its noisy estimate X̂.

When we compare (9) to (6), we can see that there is only a slight difference between
them, which is the constraint set V instead of R. This small change assures significant
performance improvements in the algorithm in many practical applications, such as image
and signal processing [55], wireless communications [41,43,56], etc. These improvements
are shown for several cases in Sections 4 and 5.

3. Sharp Asymptotics
3.1. Measures of Performance

This paper considers the following measures used to assess the high-dimensional
performance of the G-PCR.

• Prediction Risk: One of the most extensively used measures of performance is the
prediction risk. For a given estimator θ̂, the prediction risk is defined as

R(θ̂, θ0) :=
1
p
Ex,y

[∣∣∣x>(θ̂− θ0)
∣∣∣2] = 1

p
‖θ̂− θ0‖2

2, (10)

where x and y are new test points following the linear model in (7) but are independent
of the training data.

• Similarity: Another metric that is used to quantify the degree of alignment between the
target vector θ0 and its estimate θ̂ is the (dis)similarity. It is a measure of orientation
rather than magnitude. It is defined as

$(θ̂, θ0) :=
θ̂
>

θ0

‖θ̂‖2‖θ0‖2
∈ [−1, 1]. (11)

This similarity measure could also be thought of as the correlation between the esti-
mated and true target vectors. Essentially, we desire estimates that maximize this similarity.
Note that this metric is also known as the cosine similarity in machine learning literature,
since $(θ̂, θ0) = cos(∠(θ̂, θ0)).

Note that these two measures are related as

R(θ̂, θ0) =
1
p

[
‖θ̂‖2

2 + ‖θ0‖2
2 − 2‖θ̂‖2‖θ0‖2$(θ̂, θ0)

]
.

3.2. High-Dimensional Performance Evaluation

In this subsection, we provide the main results of the paper, namely, the sharp analysis
of the asymptotic performance of the G-PCR convex program. We start by analyzing the
estimation performance via a general pseudo-Lipschitz function as in Theorem 1 below,
which sharply characterizes the general asymptotic behavior of the error. Then, we use
this theorem to compute particular performance measures such as the prediction risk,
similarity, etc.

Theorem 1 (General Performance Metric). Consider the high-dimensional setup of Section 2.2,
and let the assumptions therein hold. Moreover, let θ̂ be a minimizer of the G-PCR program in (9)
for a fixed α > 0. Let ψ : R×R→ R be a pseudo-Lipschitz function. Then, in the limit of p→ ∞,
it holds that

1
p

p

∑
j=1

ψ(θ̂j, θ0,j)
P−→ E

[
ψ

(
proxP̃

(
Θ0 +

H
γ?

√
ζ(1− σ2

e )
;

α

q?γ?
√

ζ(1− σ2
e )

,−L, U

)
, Θ0

)]
, (12)

where (q?, γ?) is the unique optimal solution to the following objective,
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supq≥0 infγ>0 OP̃ (q, γ) := q
√

ζ
2γ + qγ

√
ζ

2
(
σ2

ε + σ2
e σ2

θ

)
− q

2γ
√

ζ
− q2

4

+qγ
√

ζ(1− σ2
e ) E

[
MP̃

(
Θ0 +

H
γ
√

ζ(1−σ2
e )

; α
qγ
√

ζ(1−σ2
e )

,−L, U
)]

,
(13)

and the expectation is taken with respect to independent random variables Θ0 ∼ pΘ and
H ∼ N(0, 1).

Proof. The proof is given in Appendix A.

Remark 1 (Choice of ψ(·, ·)). The performance metric in Theorem 1 is computed in terms of
evaluation of a pseudo-Lipschitz function, ψ(·, ·). As an example, ψ(a, b) = (a− b)2 can be used
to compute the prediction risk, or ψ(a, b) = |a− b| can be used to evaluate the mean absolute error
(MAE). We will appeal to this theorem later with various choices of ψ(·, ·) to evaluate different
performance measures on θ̂.

Remark 2 (Optimal Solutions). Note that q? and γ? can be calculated by any search technique
such as the golden-section search method and the ternary search [57].

Remark 3 (Decoupling Property). Theorem 1 shows that

1
p

p

∑
j=1

ψ(θ̂j, θ0,j)
P−→ E

[
ψ(Θ̂, Θ0)

]
, (14)

where

Θ̂ := proxP̃

Θ0 +
H

γ?

√
ζ(1− σ2

e )︸ ︷︷ ︸
:=Y

;
α

q?γ?
√

ζ(1− σ2
e )

,−L, U

. (15)

This provides some insights for the structured signal recovery with the G-PCR optimization.
From (14), it can be seen that the random variable Θ̂ shares the same statistical properties as the
estimate θ̂ [46]. Thus, Equation (15) can be considered as a decoupled scalar version of the original
system as depicted in Figure 1. Particularly, in the original system (Figure 1a), the true target
vector θ0 is first mixed by the design matrix X, and then the additive white Gaussian noise (AWGN)
vector ε is added to form the measurement vector y. On the other hand, in the decoupled system
(Figure 1b), the unknown variable Θ0 is only mixed by the Gaussian vector 1

γ?

√
ζ(1−σ2

e )
H, where

Y := Θ0 +
1

γ?

√
ζ(1−σ2

e )
H. Furthermore, letting B := 1

q?γ?
√

ζ(1−σ2
e )

, it can be observed that the

generalized proximal operator solution

Θ̂ = proxP̃ (Y; αB,−L, U) = arg min
−L≤θ≤U

1
2
(Y− θ)2 + αB P̃(θ)

has a decoupled scalar form of the original G-PCR in (9), which can be expressed as

θ̂ = arg min
−L≤θj≤U

1
2
‖y− X̂θ‖2

2 + αB P(θ), j ∈ [p]

up to a scaling of B. This suggests that, in the high-dimensional asymptotic setting, one can use the
decoupled scalar system to characterize the probabilistic properties of the G-PCR recovery problem.

This decoupling property was also shown for similar problems, such as box-constrained sum of
absolute values (Box-SOAV) optimization for sparse recovery [46], sparse logistic regression [58],
and the approximate message passing (AMP) algorithm [59].



Mathematics 2023, 11, 3706 8 of 27

As a first application of Theorem 1, we provide a sharp high-dimensional performance
evaluation of the prediction risk as given in the following corollary.

θ0 X + G-PCR θ̂
y

ε X̂

(a)

Θ0 + proxP̃

(
·; α

q?γ?
√

ζ(1−σ2
e )

,−L, U
)

Θ̂
Y

1
γ?

√
ζ(1−σ2

e )
H

(b)
Figure 1. A system model comparison between the original G-PCR recovery algorithm and its scalar
decoupled version. (a) Original system. (b) Scalar decoupled system.

Corollary 1 (Prediction Risk). Under the same assumptions of Theorem 1, and for Θ0 ∼ pΘ that
is independent of H ∼ N(0, 1), it holds that

R(θ̂, θ0)
P−→ EΘ0,H

[(
proxP̃

(
Θ0 +

H
γ?

√
ζ(1−σ2

e )
; α

q?γ?
√

ζ(1−σ2
e )

,−L, U
)
−Θ0

)2
]

= 1
1−σ2

e

(
1

γ2
?
− σ2

θ σ2
e − σ2

ε

)
,

(16)

where q? and γ? are the unique optimal solutions to the objective function in (13).

Proof. Using Theorem 1 with ψ(a, b) = (a− b)2, we can obtain the above expression of the
prediction risk. Details are deferred to Appendix A.2.4.

Remark 4 (Optimal Hyper-parameters). Corollary 1 allows us to determine the optimal hyper-
parameters, such as α, L, and U, that minimize the prediction risk. To do so, it is first required
to estimate some variances, such as σ2

θ , σ2
ε and σ2

e , from the available data. Those can be easily
estimated by using existing algorithms such as [60,61].

It should be noted that this theoretical hyper-parameter optimal tuning as discussed above
avoids the traditional time/data-consuming practice of cross-validation used to tune the hyper pa-
rameters.

The following corollary sharply characterizes the similarity measure defined earlier
in (11).

Corollary 2 (Similarity). Under the same assumptions and settings of Theorem 1, and in the limit
of p→ ∞, it holds that

$(θ̂, θ0)
P−→

EΘ0,H

[
proxP̃

(
Θ0 +

H
γ?

√
ζ(1−σ2

e )
; α

q?γ?
√

ζ(1−σ2
e )

,−L, U
)

Θ0

]
√

σ2
θ ·EΘ0,H

[
prox2

P̃

(
Θ0 +

H
γ?

√
ζ(1−σ2

e )
; α

q?γ?
√

ζ(1−σ2
e )

,−L, U
)] , (17)

where q? and γ? are the unique optimal solutions to (13).
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Proof. The proof follows from Theorem 1 and from the continuous mapping Theorem [62].
Details are given in Appendix A.2.5.

In the subsequent sections, we consider various instants of (9), such as `1-norm and
`2-norm penalization, to illustrate the application of the theoretical asymptotic expressions
derived in this section.

4. Sparse Linear Regression

In this section, we study the performance of the G-PCR with an `1-norm penalization.
As indicated in the introduction, this penalty function is used to promote sparse solutions.
In contemporary machine learning applications, it is common to encounter a significantly
large number of features, p. To prevent the problem of over-fitting, it becomes crucial
to engage in feature selection, which involves eliminating irrelevant variables from the
regression model [18]. A popular technique for accomplishing this is by introducing an
`1-norm penalty to the loss function. This approach is widely adopted and used for feature
selection tasks.

Therefore, we specialize Theorem 1 to analyze the asymptotic performance of the
G-PCR with an `1-norm penalization. Particularly, for an s-sparse vector, we study the
performance of the following optimization problem:

θ̂ = arg min
−L≤θj≤U

‖X̂θ− y‖2
2 + α‖θ‖1, j ∈ [p]. (18)

(We say that a vector v ∈ Rp is an s-sparse vector if only s of its p elements are non-zero
(on average), and most of its elements are zeros, where s� p.)

4.1. Asymptotic Behavior of Sparse G-PCR

To analyze (18), we specialize Theorem 1 with P̃(·) = | · |. Then, the generalized
proximal operator and Moreau envelope functions can be expressed, respectively, in the
following closed forms:

prox|·|(x; b, c, d) := η1(x; b, c, d) =



d , if x ≥ d + b
x− b , if b < x < d + b
0 , if |x| ≤ b
x + b , if c− b < x < −b
c , if x ≤ c− b,

(19)

and

M|·|(x; b, c, d) =



1
2 (d− x)2 + bd , if x ≥ d + b
bx− 1

2 b2 , if b < x < d + b
1
2 x2 , if |x| ≤ b
−bx− 1

2 b2 , if c− b < x < −b
1
2 (c− x)2 − bc , if x ≤ c− b.

(20)

Note that this proximal operator is a generalization of the well-known soft-thresholding
operator, i.e., η(x; b) = sign(x) ReLU(|x| − b), where the Rectified Linear Unit (ReLU) is
defined as ReLU(t) = max(0, t).

These expressions can be used to solve the scalar optimization in (13) of Theorem 1
and to simplify the similarity expression in (17). Specifically, (13) becomes

supq≥0 infγ>0 O|·|(q, γ) = q
√

ζ
2γ + qγ

√
ζ

2
(
σ2

ε + σ2
e σ2

θ

)
− q

2γ
√

ζ
− q2

4

+qγ
√

ζ(1− σ2
e ) E

[
M|·|

(
Θ0 +

H
γ
√

ζ(1−σ2
e )

; α
qγ
√

ζ(1−σ2
e )

,−L, U
)]

.
(21)
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Figure 2 illustrates the performance of the `1-penalized G-PCR as a function of α for
different levels of error variance σ2

e . We generated the target vector θ0 randomly with
elements in {−1, 0,+1} and P(θ0,j = −1) = P(θ0,j = +1) = 0.2. This means that the
sparsity factor ρ := s

p is 0.2 in these simulations. From these figures, we can also see that
the theoretical expressions of the prediction risk and the similarity match the empirical
simulations very well. Furthermore, it can be noted in Figure 2a that, for different values
of σ2

e , there exists an optimal value α? that achieves the minimum possible prediction risk.
Similarly, notice in Figure 2b the optimal α? that maximizes the similarity metric. It can
also be observed that increasing α beyond α? reduces the similarity $ between θ̂ and θ0. In
these simulations, we set −L = min(θ0) = −1 and U = max(θ0) = +1.

R

(a) (b)
Figure 2. Performance of the G-PCR vs. the penalization factor for a sparse linear regression. The
parameters are set as follows: p = 300, ζ = 1.5, ρ = 0.2, σ2

ε = 0.1, L = 1, and U = 1. The simulation
results are averaged over 50 independent Monte Carlo trials. (a) The prediction risk. (b) The
cosine similarity.

In Figure 3, we compare the unconstrained G-PR in (6) (which is equivalent to a
standard LASSO formulation in this case) to the proposed G-PCR for an over-parameterized
setting with ζ = 0.85. As we can see from this figure, the G-PCR clearly outperforms the
unconstrained one in both metrics. Moreover, despite the fact that our theoretical results
are assumed to be asymptotic in the problem dimensions (i.e., n→ ∞ and p→ ∞), we can
see from all of the above figures that our rigorous results are accurate even for problems
with a few hundred variables, e.g., p = 300.

(a) (b)
Figure 3. Performance comparison between the G-PCR and G-PR. For the numerical simulations,
the results are averaged over 100 independent trials, with p = 128, ζ = 0.85, ρ = 0.1, σ2

ε = 0.2,
σ2

e = 0.05, L = 1, and U = 1. (a) The prediction risk. (b) The cosine similarity.
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4.2. Support Recovery

In this section, we analyze the so-called support recovery of the sparse G-PCR. As
discussed earlier, a sparse vector means that it has few non-zero elements. We define the
support of θ0 as follows:

Ω := {j ∈ [p] | θ0,j 6= 0} ⊆ [p].

Here, we are interested in computing the probability that an element on the support
of θ0 has been recovered correctly. Let θ̂ be a solution to the optimization problem in (18).
Let us fix ξ > 0 as a user-predefined hard threshold based on whether an entry of θ̂ is
decided to be on the support or not. Formally, we construct the following set as the estimate
of the support given θ̂:

Ω̂ξ := {j ∈ [p] | |θ̂j| > ξ}.

In order to analyze the support recovery correctness, we consider the following error
metrics, which are known as the probability of misdetection (MD) and the probability of
false alarm (FA), respectively.

PMD(ξ) = P(j /∈ Ω̂ξ | j ∈ Ω), and PFA(ξ) = P(j ∈ Ω̂ξ | j /∈ Ω).

In the following lemma, we study the asymptotic performance of both of these measures.

Lemma 1. Let θ̂ be a solution to (18), and assume that θ0 is a sparse signal. Fix α > 0 and ξ > 0.
Then, in the limit of p→ ∞, it holds that

PMD(ξ)
P−→P

(∣∣∣∣∣η1

(
Θ0 +

H
γ?

√
ζ(1− σ2

e )
;

α

q?γ?
√

ζ(1− σ2
e )

,−L, U

)∣∣∣∣∣ ≤ ξ

)
, (22)

and

PFA(ξ)
P−→P

(∣∣∣∣∣η1

(
H

γ?

√
ζ(1− σ2

e )
;

α

q?γ?
√

ζ(1− σ2
e )

,−L, U

)∣∣∣∣∣ ≥ ξ

)
, (23)

where η1(·; ·, ·, ·) is as defined in (19), (q?, γ?) is the unique optimal solution to (21), and the
probabilities are taken with respect to the randomness of Θ0 and H ∼ N(0, 1).

Proof. The proof can be obtained from Theorem 1 with some approximations of these met-
rics to Lipschitz functions. Details are omitted for briefness. See [39] for a similar proof.

Next, we give an example to illustrate this lemma.

Example: Sparse-Binary Target Vectors

For an s-sparse target vector, define ρ := s
p ∈ (0, 1] as the sparsity factor. Then, as an example,

let us assume that each element θ0,j, for j ∈ [p], is i.i.d. drawn from the following distribution
(this model has been widely adopted in the relevant literature; see, for example, [59,63,64]):

pΘ(θ) = (1− ρ) δ0(θ) + ρ δ0(θ − E), (24)

for some E > 0, and δ0(·) indicates a Dirac delta function (i.e., a point-mass distribution). In
other words, the elements of θ0 are zero with probability 1− ρ, and the non-zero elements
all have the value E . Figure 4 illustrates this distribution.

For a Θ0 that follows the distribution in (24), and for ξ ∈ (0, E), with L = 0 and U = E ,
the error measures in Lemma 1 simplify to the following:

PMD
P−→ Φ

(
(ξ − E)γ?

√
ζ(1− σ2

e ) +
α

q?
√

1− σ2
e

)
, (25)

and
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PFA
P−→ 1−Φ

(
ξγ?

√
ζ(1− σ2

e ) +
α

q?
√

1− σ2
e

)
, (26)

where Φ(t) = 1√
2π

∫ t
−∞ e−u2

du is the cumulative distribution function (CDF) of the stan-
dard normal distribution.

Figure 5 shows the accuracy of the above-derived theoretical expressions as compared
to empirical simulations for the considered sparse-binary vector example.

Figure 4. Probability mass function (PMF) of a sparse-binary distribution.

P

(a)

P

(b)
Figure 5. Support recovery performance of the G-PCR versus the penalization factor for a sparse-
binary signal recovery. The parameters are set as follows: E = 1, p = 300, ζ = 0.85, ρ = 0.2,
σ2

ε = 0.05, ξ = 0.1, L = 0, and U = 1. The simulations are averaged over 100 independent Monte
Carlo trials. (a) Probability of misdetection. (b) Probability of false alarm.

5. G-PCR with `2
2-Norm Penalization

Even though it does not promote a particular structure, `2-norm penalization is used
in many signal processing, statistics, and machine learning applications to stabilize the
model when we have ill-conditioned or under-determined systems [17]. Adding this
penalization will shrink all the coefficients toward zero and hence decrease the variance
of the resultant model; therefore, it can be used to avoid over-fitting. Within the Bayesian
framework, the incorporation of this penalization implies that the regression coefficients
are assumed to follow a Gaussian distribution. This assumption is often justifiable in
numerous applications, in which the regression coefficients are typically taken from a
random process. In this section, we provide high-dimensional asymptotic performance
analysis of the G-PCR with `2

2-norm penalization; that is:

θ̂ = arg min
−L≤θj≤U

‖X̂θ− y‖2
2 + α‖θ‖2

2, j ∈ [p]. (27)

To analyze (27), we use Theorem 1. However, here the generalized proximal operator and
Moreau envelope functions of P̃(·) = (·)2 can be expressed, respectively, in the following
closed-forms:

prox(·)2(x; b, c, d) =


x

1+2b , if c ≤ x ≤ d
c, if x < c
d, if x > d,

(28)
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and

M(·)2(x; b, c, d) =


bx2

1+2b , if c ≤ x ≤ d
1
2 (x− c)2 + bc2, if x < c
1
2 (x− d)2 + bd2, if x > d.

(29)

Letting b = α
qγ
√

ζ(1−σ2
e )

and λ = γ
√

ζ(1− σ2
e ), the scalar optimization in (13) of

Theorem 1 reduces to:

supq≥0 infγ>0 O(·)2(q, γ) = q
√

ζ
2γ + qγ

√
ζ

2
(
σ2

ε + σ2
e σ2

θ

)
− q

2γ
√

ζ
− q2

4

+qγ
√

ζ(1− σ2
e )

{
E
[

b
1+2b

(
Θ0 +

H
λ

)2
1{−L≤Θ0+

H
λ ≤U}

+

[
1
2

(
Θ0 +

H
λ + L

)2
+ bL2

]
1{Θ0+

H
λ ≤−L}

+

[
1
2

(
Θ0 +

H
λ −U

)2
+ bU2

]
1{Θ0+

H
λ ≥U}

]}
,

(30)

where 1{·} is the indicator function.
In the same manner, we can simplify the similarity expression in (17) using the closed-

form expression of the generalized proximal operator of the `2
2-norm in (28). The prediction

risk and the similarity metric are given by (16) and (17), respectively. However, now (q?, γ?)
is the unique solution to (30). To illustrate the ideal let us consider the next examples.

5.1. Numerical Illustration

As stated at the beginning of this section, `2-norm penalization can be used for Gaus-
sian distributed target vectors. Therefore, as a first illustration, let us assume that θ0,j
∼ N(0, 1) ∀j ∈ [p]. Figure 6 depicts the risk/similarity performance of the G-PCR with
an `2-norm penalization for several levels of the penalization factor α. It also shows that
the G-PCR outperforms the unconstrained G-PR, which is equivalent to a ridge regression
formulation here. Again, Figure 6a illustrates that there exists an optimal value α? that
minimizes prediction risk, while Figure 6b shows that there is an optimal value of the
penalization factor α? that gives the maximum similarity. Both figures show the high
accuracy of the derived asymptotic expressions as compared to Monte Carlo simulations.

R

(a)
Figure 6. Cont.
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(b)
Figure 6. Performance of the `2

2-norm G-PCR vs. the penalization factor for a Gaussian target vector.
The parameters are set as follows: p = 500, ζ = 1.3, σ2

θ = 1, σ2
e = 0.01, σ2

ε = 0.01, L = 1, and
U = 1. The results are averaged over 50 independent realizations. (a) The prediction risk. (b) The
cosine similarity.

5.2. Binary Target Vector Estimation

Let us assume that θ0 = {±1}p, i.e., it takes only one of two possible values, +1 or
−1, with equal probability, i.e.,

pΘ(θ) =
1
2
[δ0(θ − 1) + δ0(θ + 1)]. (31)

Such vectors are widely encountered in many practical applications, such as the
detection of wireless communication signals [12,41]. We use (27) as our estimation method,
with L = U = 1. For this vector, σ2

θ = 1; i.e., the covariance matrix of θ0 is Cθ = Ip.
The task of estimating θ0 here is equivalent to a binary classification task, with the two

classes being +1 and −1. After obtaining the estimates using (27), we can map (decode)
them to the relative class using the following link function:

θ̄ = sign(θ̂).

We can use the prediction risk and similarity to measure the performance. How-
ever, a more suitable performance measure for this kind of target vector is the so-called
“classification error rate”, which is defined as:

Cerr :=
1
p

p

∑
j=1

1{θ̄j 6=θ0,j}. (32)

The next lemma derives an asymptotic expression for this metric.

Lemma 2. Let θ̂ be a solution to (27), and assume that θ0 = {±1}p, with a PMF pΘ that
follows (31). Fix ζ > 0. Then, in the limit of p→ ∞, it holds that

Cerr
P−→ 1−Φ

(
γ?

√
ζ(1− σ2

e )

)
, (33)

where γ? is the optimal solution of (30) in γ.

Proof. The proof is similar to that of Lemma 1. Please refer to [39,47]. Details are skipped
for brevity.
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Figure 7 illustrates the sharpness of Lemma 2 as compared to empirical simulations.
Similar to previous figures, this figure demonstrates the perfect match between numerical
simulations and theory.

Figure 7. Classification error rate (Cerr) of the G-PCR vs.the penalization factor for a binary target
vector. The parameters are set as follows: p = 500, ζ = 0.85, σ2

e = 0.01, σ2
ε = 0.02, and L = U = 1.

The results are averaged over 100 independent Monte Carlo trials.

5.3. Unpenalized Regression

When α = 0 in (9), we have an optimization problem with no penalization. The
resulting algorithm is known as the box relaxation optimization (BRO) [39], which has been
extensively studied in the literature. It is used to promote boundedness structure. In fact,
when L = U, the BRO is equivalent to an `∞-norm penalization. Setting α = 0 in (30), and
after some mapping of the involved variables, we can obtain the same results as in [39] for
binary vectors.

6. Additional Numerical Experiments

In this section, we provide additional numerical experiments to validate our results.
These experiments are performed on synthetic data beyond the Gaussian ensemble and on
real data as well. In addition, we empirically discuss the double descent phenomenon.

6.1. Synthetic Data: Universality of the Gaussian Design

Theorem 1 assumes that the elements of matrix X are i.i.d. Gaussian distributed.
However, we expect the asymptotic results derived in this paper (prediction risk, similarity,
etc.) to be robust and hold for a larger class of random matrices. Rigorous proofs are
presented in [65–69], where the asymptotic prediction is shown to have a universal limit
(as p→ ∞) with respect to random matrices with i.i.d. entries.

To validate the above claims, see Figure 8, where we plotted the prediction risk and the
similarity for a sparse-Gaussian target vector with i.i.d. entries that follow the distribution:
θ0,j ∼ (1− ρ) δ0 + ρ N(0, 2). We used the G-PCR with an `1-norm in (18) to obtain the
estimates. In addition to the Gaussian design matrix, we simulated the performance using

other random matrices with i.i.d. entries drawn from a uniform distribution
√

3
p U [−1, 1],

an exponential distribution 1√
p Exp(1), and from a Poisson distribution 1√

p Poiss(1). Note
that the normalization of these matrices is used to satisfy the high-dimensionality assump-
tions in Section 2.2. From this figure, we can see that the behavior seems to be nearly
identical for all distributions, suggesting that our results enjoy a universality property.
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R

(a) (b)
Figure 8. Performance the G-PCR for a sparse-Gaussian target vector. We set the parameters as
p = 180, ζ = 0.95, σ2

e = 0.1, σ2
ε = 0.2, ρ = 0.1, and L = U =

√
2. The results are averaged

over 50 independent trials. (a) The prediction risk. (b) The similarity.

6.2. Real-World Data

In previous section, we showed the robustness of our results to the distribution of
the i.i.d. entries of the data matrix X. In this section, we take it a step further and consider
real-world datasets instead of the synthetic data discussed earlier. These datasets are
essentially not random and do not have i.i.d. elements. However, as seen in the numerical
simulations below, they match our theoretical results to a great extent.

As an illustration, we present in Figure 9 the outcomes of these simulations for
three real datasets. Each of these datasets consists of a small number of samples (n) and
a high-dimensional feature space (p), which is consistent with the over-parameterized
setting (p > n). These datasets are mainly for detecting several diseases and cancer sam-
ples. We generated the target vector, θ0, randomly with entries following the distribution
θ0,j ∼ (1− ρ) δ0 + ρ N(0, 1). The noise vector ε was generated using i.i.d. N(0, 0.2) elements.
We generated the observations as y = Xθ0 + ε. The G-PCR with `1-norm penalty in (18) is
used to obtain θ̂ with X̂ = X + E.

The three figures correspond to the following datasets:

• Figure 9a: For this figure, we used breast cancer data [70] (available at:
https://github.com/kivancguckiran/microarray-data (accessed on 27 May 2023)).
This dataset has been used in [71] for DNA microarray gene expression classification
using the LASSO. It consists of 22,215 gene expressions (features) and 118 samples.
From this matrix, we took a sub-matrix X of aspect ratio ζ = 0.75. We standardized all
columns of matrix X to have mean 0 and variance 1.

• Figure 9b: In this figure, glioma disease data [72] were used (available at:
https://github.com/kivancguckiran/microarray-data (accessed on 27 May 2023)).
This dataset includes 54,613 features and 180 samples. Similar to the breast cancer
data, the sub-matrix X with the same aspect ratio ζ was selected and standardized.

• Figure 9c: The dataset used in this figure includes colon cancer data [73] (available
at: http://www.weizmann.ac.il/mcb/UriAlon/download/downloadable-data (ac-
cessed on 27 May 2023)). This dataset was used in [74] for a sparse-group LASSO
model. It includes 2000 genes and 62 samples (22 normal tissues and 40 colon tumor
tissues). Similar to the previous datasets, we selected a sub-matrix X with aspect ratio
ζ and standardized it.

For all figures, we can see that the agreement between theory and simulations is
remarkably good.

https://github.com/kivancguckiran/microarray-data
https://github.com/kivancguckiran/microarray-data
http://www.weizmann.ac.il/mcb/UriAlon/download/downloadable-data
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R

(a)

R

(b)

R

(c)
Figure 9. Prediction risk as a function of the penalization factor α. Here, the data matrix X is a
standardized real dataset. We used a sparse-Gaussian vector θ0, and we generated the observations
as y = Xθ0 + ε. The G-PCR with `1-norm penalty is used to obtain θ̂ with X̂ = X+ E. The parameters
are set as ζ = 0.75, ρ = 0.1, σ2

ε = 0.2, σ2
e = 0.1, and L = U = 1. The results are averaged over 200

independent trials. (a) Breast cancer data. (b) Glioma disease data. (c) Colon cancer data.

6.3. Double Descent Phenomenon

In Figure 10, we plotted the prediction risk as a function of ζ for different choices of
the penalization factor α. As can be seen, for an arbitrary choice of α, the prediction risk
of the G-PCR first decreases for small values of ζ, then increases until it reaches a peak
known as the interpolation peak. After that, the prediction risk decreases monotonically
with respect to ζ. This is known as the double descent phenomenon [75]. On the other
hand, optimal values of the penalization factor α? always guarantee that the prediction risk
decreases with more training samples being used (i.e., with increasing ζ). This emphasizes
the important role of the optimal tuning of α to mitigate the double descent phenomenon
and to give the best performance.

R

(a)

R

(b)
Figure 10. Prediction risk as a function of the aspect ratio ζ. We used G-PCR with an `1-norm penalty
and sparse-binary vector with ρ = 0.2, σ2

e = 0.1, L = 0, and U = 1. (a) σ2
ε = 0.1. (b) σ2

ε = 0.3.
Illustration of the double descent and how optimal penalization can mitigate it.
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7. Conclusions

In this paper, we studied the high-dimensional error performance of the generalized
penalized constrained regression (G-PCR) optimization with noisy features. Several ana-
lytical expressions were derived to measure the performance, such as the prediction risk,
similarity, probability of misdetection, and probability of false alarm. Different popular
instances of this optimization, such as `1-norm penalized regression and `2-norm penaliza-
tion, were considered. We presented numerical simulations to validate these expressions
based on both synthetic and real data. These results can be used to tune the involved
hyper-parameters efficiently.

Furthermore, we empirically investigated the so-called double descent phenomenon and
showed that optimal penalization can mitigate its effect. We also illustrated through several
simulations the universality of our results beyond the assumed Gaussian distribution.

Finally, we note that numerical simulations have shown that our rigorous results are
accurate even for problems with a few hundred variables, despite the fact that these results
are assumed to be asymptotic in the problem dimensions.
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Appendix A. Proof of the Main Results

In this appendix, we provide an outline of the proof of the high-dimensional analysis
of the prediction risk of the considered G-PCR learning algorithm. Our main analysis frame-
work is the convex Gaussian min–max theorem (CGMT). For the reader’s convenience, we
firstly recall the CGMT.

Appendix A.1. Main Analysis Framework: CGMT

The CGMT is an extension of Gordon’s comparison lemma [76]. Gordon’s lemma was
used in the analysis of some high-dimensional inference problems, such as the study of
sharp phase-transitions in noiseless compressed sensing. The CGMT was initiated first
in [36] and further developed in [20]. It uses convexity to compare the min–max values of
two Gaussian processes.

To illustrate the main ideas of the CGMT, let us first consider the following doubly
indexed Gaussian random processes:

Xr,w := w>Gr + Ξ(r, w), (A1a)

Yr,w := ‖r‖2h>1 w + ‖w‖2h>2 r + Ξ(r, w), (A1b)

where G ∈ Rn×p, h1 ∈ Rn, h2 ∈ Rp, they all have i.i.d. standard Gaussian elements, and
Ξ : Rp × Rn → R. For these two processes, consider the following min–max optimiza-
tion programs, which are referred to as the primal optimization (PO) and the auxiliary
optimization (AO):
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F(G) := min
r∈Sr

max
w∈Sw

Xr,w, (A2a)

f (h1, h2) := min
r∈Sr

max
w∈Sw

Yr,w, (A2b)

where the sets Sr ⊂ Rp and Sw ⊂ Rn are assumed to be compact and convex sets. In
addition, if the function Ξ(r, w) is continuous and convex–concave on Sr × Sw, then,
according to the CGMT formulation in Theorem 6 in [20], for any χ ∈ R and µ > 0:

P(|F(G)− χ| > µ) ≤ 2P(| f (h1, h2)− χ| > µ). (A3)

The above result states that if we can show that the optimal AO cost is f (h1, h2)
P−→ c?

asymptotically, c? ∈ R, then it can be concluded that the optimal PO cost is F(G)
P−→ c?.

The premise is that it is usually much easier to analyze the AO instead of the PO. In addition,
the CGMT (Theorem 6.1(iii) in [20]) shows that concentration of the optimal solution to the
AO problem implies concentration of the optimal solution of the PO around the same value.

In other words, if minimizers of (A2b) satisfy that ‖r̂ f (h1, h2)‖2
P−→ ν?, where ν? > 0, then

the same holds true for minimizers of (A2a), i.e., ‖r̂F(G)‖2
P−→ ν?. In addition, we make

use of the following corollary that holds true in the high-dimensional asymptotic regime.

Corollary A1 (Asymptotic CGMT [20]). Using the same notations and assumptions as in the
above discussion, let S ⊂ Sr and S c := Sr/S . Define FS c(G) and fS c(h1, h2) as the optimal
costs in (A2a) and (A2b), respectively, given that we now constrain the optimization over r ∈ S c.

Suppose there exist constants J̄ < J̄S c , such that fS c(h1, h2)
P−→ J̄S c and f (h1, h2)

P−→ J̄. Then,

lim
p→∞

P(̂rF(G) ∈ S) = 1. (A4)

For more details about the framework of CGMT, the reader is advised to see [20].
Next, we use the CGMT to provide a proof outline of the general error asymptotic

behavior provided in Theorem 1.

Appendix A.2. Sharp Analysis of the G-PCR

Appendix A.2.1. Primal and Auxiliary Problems of the G-PCR

To obtain the main asymptotic result using CGMT, we first need to rewrite the G-PCR
learning problem in (9) as a PO problem. For convenience, define the vector r := θ− θ0,
and the following set

B :=
{

rj ∈ R | − L− θ0,j ≤ rj ≤ U − θ0,j, j ∈ [p]
}

; (A5)

then, the problem in (9) can be reformulated as

r̂ := arg min
r∈Bp
‖X̂r + Eθ0 − ε‖2

2 + αP(r + θ0). (A6)

Introducing the Convex Conjugate: Any convex function h : Rn → R can be
expressed in terms of its convex conjugate h? : Rn → R as:

h(t) = sup
w̄∈Rn

w̄>t− h?(w̄) = sup
w∈Rn

√
pw>t− h?(

√
pw).

Using the above definition, we can express the `2
2-norm loss function in (A6) as

‖t‖2
2 = sup

w∈Rn

√
pw>t− p

4
‖w‖2

2. (A7)

Hence, (A6) becomes equivalent to the following:
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min
r∈Bp

sup
w∈Rn

√
pw>X̂r +

√
pw>Eθ0 −

√
pw>ε− p

4
‖w‖2

2 + αP(r + θ0). (A8)

To apply the CGMT, we need the optimization sets to be compact. This is true for
Sr = Bp, but Sw = Rn is not. This issue can be treated in a similar way to the method in
Appendix A in [20]. We introduce an artificial compact set Sw = {w ∈ Rn | ‖w‖2 ≤ Rw}
for a sufficiently large constant Rw > 0 that is independent of p. The optimization problem
is unaffected by this constraint set asymptotically. After that, we obtain

min
r∈Bp

sup
w∈Sw

√
p(1− σ2

e )w
>X̃r + σe

√
pw>Ẽθ0 −

√
pw>ε− p

4
‖w‖2

2 + αP(r + θ0), (A9)

where X̃ and Ẽ are independent Gaussian matrices that have i.i.d. N(0, 1/p) elements each.
Now, the above problem is in the format of a PO with

Ξ(r, w) = σe
√

pw>Ẽθ0 −
√

pw>ε− p
4
‖w‖2

2 + αP(r + θ0).

Therefore, the corresponding AO problem is

min
r∈Bp

sup
w∈Sw

√
1− σ2

e ‖r‖2h>1 w +
√

1− σ2
e ‖w‖2h>2 r + Ξ(r, w), (A10)

where h1 ∼ N(0, In) and h2 ∼ N(0, Ip) are independent standard Gaussian vectors.

Appendix A.2.2. Simplifying the Auxiliary Problem

The next step is to reduce (simplify) the AO into a scalar problem, i.e., a problem that
has only scalar variables. To do so, first, let

h̃ =
√

1− σ2
e ‖r‖2h1 −

√
pε +

√
pσ2

e Ẽθ0. (A11)

Using standard probability theory results, one can show that h̃ ∼ N(0, Ch̃) with a
covariance matrix that is given by

Ch̃ =

(
(1− σ2

e )‖r‖2
2 + pσ2

ε + σ2
e ‖θ0‖2

2

)
In.

Thus, the AO in (A10) holds that

min
r∈Bp

sup
w∈Sw

h̃>w +
√

1− σ2
e ‖w‖2h>2 r− p

4
‖w‖2

2 + αP(r + θ0). (A12)

In order to further simplify the AO, we fix the norm of w to q := ‖w‖2. In this case,
one can simply optimize over the direction of w, which reduces the AO problem to

min
r∈Bp

sup
q≥0

q‖h̃‖2 +
√

1− σ2
e qh>2 r− pq2

4
+ αP(r + θ0). (A13)

Moreover, to have the proper convergence, we have to normalize the above cost
function by factor of 1

p . Then, we obtain

sup
q≥0

min
r∈Bp

q

√
1
p
[
(1− σ2

e )‖r‖2
2 + pσ2

ε + σ2
e ‖θ0‖2

2
] ‖g‖2√

p
+
√

1− σ2
e q

1
p

h>2 r− q2

4
+

α

p
P(r + θ0), (A14)

where g ∼ N(0, In). Note the change in the order of the min–sup, which can be justified
using (Appendix A in [20]). Next, we wish to write the above optimization as a separable
problem by using the following (for u ≥ 0):
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√
u = inf

γ>0

γu
2

+
1

2γ
. (A15)

Note that the optimal solution to (A15) is γ̂ = 1√
u . Using this identity with

u = (1− σ2
e )

1
p
‖r‖2

2 + σ2
ε + σ2

e
1
p
‖θ0‖2

2, (A16)

we can write the problem in (A14) as

supq≥0 infγ>0
q‖g‖2
2γ
√

p + γq‖g‖2
2
√

p

(
σ2

ε + σ2
e
p ‖θ0‖2

2

)
− q2

4

+minr∈Bp
γq‖g‖2

2
√

p
(1−σ2

e )
p ‖r‖2

2 + q
√

1− σ2
e

h>2 r
p + α

pP(r + θ0).
(A17)

By the weak law of large numbers (WLLN), we can show that ‖g‖2√
p

P−→
√

ζ and

1
p‖θ0‖2

2
P−→ σ2

θ . Now, let us work with the initial variable θ rather than r; then, the above
optimization problem converges to

supq≥0 infγ>0
q
√

ζ
2γ + qγ

√
ζ

2
(
σ2

ε + σ2
e σ2

θ

)
− q2

4

+ 1
p ∑

p
j=1 min−L≤θj≤U

{
qγ
√

ζ
2 (1− σ2

e )(θj − θ0,j)
2 +

√
1− σ2

e qh2,j(θj − θ0,j) + αP̃(θj)
}

.
(A18)

Completing the squares in θj in the last minimization of the above problem, and using

the fact that 1
p h>2 θ0

P−→ 0, we obtain

supq≥0 infγ>0
q
√

ζ
2γ + qγ

√
ζ

2
(
σ2

ε + σ2
e σ2

θ

)
− q2

4 −
1
p ∑

p
j=1

q
2γ
√

ζ
h2

2,j

+qγ
√

ζ(1− σ2
e )

1
p ∑

p
j=1 min−L≤θj≤U

1
2

(
θj −

(
θ0,j +

h2,j

γ
√

ζ(1−σ2
e )

))2
+ α

qγ
√

ζ(1−σ2
e )
P̃(θj).

(A19)

Note that the last summation term in (A19) can be expressed by the generalized
Moreau envelope functionMP̃ (·) defined in (1). Hence, we obtain the following problem:

supq≥0 infγ>0
q
√

ζ
2γ + qγ

√
ζ

2
(
σ2

ε + σ2
e σ2

θ

)
− q2

4 −
1
p ∑

p
j=1

q
2γ
√

ζ
h2

2,j

+qγ
√

ζ(1− σ2
e )

1
p ∑

p
j=1 MP̃

(
θ0,j +

h2,j

γ
√

ζ(1−σ2
e )

; α
qγ
√

ζ(1−σ2
e )

,−L, U
)

.
(A20)

Next, by the WLLN, 1
p ∑

p
j=1 h2

2,j
P−→ 1, and for all q > 0 and γ > 0, we have

1
p

p

∑
j=1

MP̃

(
θ0,j +

h2,j

γ
√

ζ(1− σ2
e )

;
α

qγ
√

ζ(1− σ2
e )

,−L, U

)

P−→ E
[
MP̃

(
Θ0 +

H
γ
√

ζ(1− σ2
e )

;
α

qγ
√

ζ(1− σ2
e )

,−L, U

)]
,

where the expectation is taken with respect to the independent scalar random variables
Θ0 ∼ pΘ and H ∼ N(0, 1).

Finally, (A20) converges to the following scalar problem:
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supq≥0 infγ>0
q
√

ζ
2γ + qγ

√
ζ

2
(
σ2

ε + σ2
e σ2

θ

)
− q2

4 −
q

2γ
√

ζ

+qγ
√

ζ(1− σ2
e )E

[
MP̃

(
Θ0 +

H
γ
√

ζ(1−σ2
e )

; α
qγ
√

ζ(1−σ2
e )

,−L, U
)]

.
(A21)

Appendix A.2.3. General Performance Metric: Proof of Theorem 1

Now that we derived the scalar optimization problem, we proceed to prove Theorem 1.
Recall that in the process of scalarizing the AO, we introduced the generalized Moreau
envelope function in (A20). It can be shown that the optimizer of this function gives the
AO solution in θ. Let (q?, γ?) be the unique solution to (A21). Then, the AO solution can
be presented as

θ̂AO
j = Θ̂ := proxP̃

(
Θ0 +

H
γ?

√
ζ(1− σ2

e )
;

α

q?γ?
√

ζ(1− σ2
e )

,−L, U

)
, j ∈ [p],

where H is a standard normal random variable and Θ0 ∼ pΘ independent of H.
The last step is to show the convergence of any pseudo-Lipschitz function ψ(·, ·).

Using the weak law of large numbers and the fact that the elements of θ0 are i.i.d. sampled
from a density pθ , we obtain

1
p

p

∑
j=1

ψ(θ̂AO
j , θ0,j)

P−→ E
[
ψ(Θ̂, Θ0)

]
, (A22)

where the expectation is taken over H ∼ N(0, 1) and Θ0 ∼ pΘ independent of H. To use
the CGMT (Corollary A1), we introduce the following set:

Sη =

{
v ∈ Rp |

∣∣∣∣ 1p
p

∑
j=1

ψ(vj, θ0,j)−E
[
ψ(Θ̂, Θ0)

]∣∣∣∣ < η

}
,

for η > 0.

The convergence result in (A22) establishes that limp→∞ P
(
θ̂

AO ∈ Sη

)
= 1. Hence,

using the CGMT (Corollary A1), limp→∞ P
(
θ̂ ∈ Sη

)
= 1, where θ̂ is the solution to the

original G-PCR in (9). This concludes the proof of Theorem 1.

Appendix A.2.4. Prediction Risk Analysis: Proof of Corollary 1

The objective of this part is to analyze the prediction risk of the G-PCR asymptotically.
To begin with, for any η > 0, define the following set:

S̆η =

{
r ∈ Rp |

∣∣∣∣ 1p‖r‖2
2 −

1
1− σ2

e

(
1

γ2
?
− σ2

θ σ2
e − σ2

ε

)∣∣∣∣ < η

}
,

where γ? is the solution to (A21). Recall from (A16) that γ̂p = 1√
û

and û = (1− σ2
e )

1
p‖r̃‖2

2

+σ2
ε + σ2

e
1
p‖θ0‖2

2. Hence,

1
p
‖r̃‖2

2 =
1

1− σ2
e

(
1

γ̂2
p
− σ2

e
p
‖θ0‖2

2 − σ2
ε

)
,

where r̃ is the optimal solution to (A14) and γ̂p is the solution to (A17). Using the uniform

convergence of the cost functions, we can show that γ̂p
P−→ γ?. Hence, using the WLLN,

1
p‖θ0‖2

2
P−→ σ2

θ and, therefore,

R(θ̃, θ0) =
1
p
‖r̃‖2

2 =
1
p
‖θ̃− θ0‖2

2
P−→ 1

1− σ2
e

(
1

γ2
?
− σ2

θ σ2
e − σ2

ε

)
. (A23)
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Remember that r̃ = θ̃− θ0, where θ̃ is the AO solution in θ. From Equation (A23),
we can see that, for all η > 0, R(θ̃, θ0) ∈ S̆η , with probability approaching 1. Then, an
application of the CGMT yields that R(θ̂, θ0) ∈ S̆η with high probability.

Furthermore, Corollary 1 can also be proven as an immediate result of Theorem 1 with
ψ(a, b) = (a− b)2 therein. Hence,

R(θ̂, θ0)
P−→EΘ0,H

(proxP̃

(
Θ0 +

H
γ?

√
ζ(1− σ2

e )
;

α

q?γ?
√

ζ(1− σ2
e )

,−L, U

)
−Θ0

)2
. (A24)

Combining the results in (A23) and (A24) concludes the proof of Corollary 1.

Appendix A.2.5. Similarity Analysis: Proof of Corollary 2

The proof of Corollary 2 is based on the CGMT to derive asymptotic predictions of the
numerator and the denominator of the similarity expression $(θ̂, θ0) in (11) separately, and
then to use the continuous mapping Theorem [62] to arrive at the desired result. For the
sake of brevity, we only highlight the main steps of the proof.

The similarity expression in (11) can be rewritten as

$(θ̂, θ0) =

1
p ∑

p
j=1 θ̂jθ0,j√

1
p ∑

p
j=1 θ̂2

j ·
√

1
p ∑

p
j=1 θ2

?,j

. (A25)

For the numerator, we use Theorem 1 with ψ(a, b) = a · b, to obtain the following conver-
gence:

Numerator =
1
p

p

∑
j=1

θ̂jθ0,j
P−→ EΘ0,H

[
proxP̃

(
Θ0 +

H
γ?

√
ζ(1− σ2

e )
;

α

q?γ?
√

ζ(1− σ2
e )

,−L, U

)
Θ0

]
.

The denominator consists of two terms, each of which converges as well. For the first

term,
√

1
p ∑

p
j=1 θ̂2

j , use Theorem 1 with ψ(a, a) = a2 and the continuous mapping Theorem
to obtain√√√√ 1

p

p

∑
j=1

θ̂2
j

P−→

√√√√EΘ0,H

[
prox2

P̃

(
Θ0 +

H
γ?

√
ζ(1− σ2

e )
;

α

q?γ?
√

ζ(1− σ2
e )

,−L, U

)]
.

For the second term in the denominator,
√

1
p ∑

p
j=1 θ2

?,j, using the WLLN, we have

√√√√ 1
p

p

∑
j=1

θ2
?,j

P−→
√
E[Θ2

0] =
√

σ2
θ .

Putting together all of the above convergence results coupled with an application
of the continuous mapping Theorem [62], we obtain the asymptotic expression of the
similarity measure in (17).

Appendix B. A Note on the Square-Root Generalized Penalized Constrained Regression

Sqrt G-PCR Learning Algorithm

Let us consider the following optimization problem:

θ̂ = arg min
θ∈Vp
‖X̂θ− y‖2 +

α
√

p
P(θ), (A26)
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where
V = [−L, U], and L, U ∈ R+ ∪ {0}.

Problems of the above type are known as regularized square-root regression prob-
lems [77]. Here, instead of the `2

2-norm squared loss in (9), there is a non-squared `2-norm
loss. This leads to optimization problems with a loss function that is not separable. Ex-
amples of this algorithm include the square-root LASSO [24] and the square-root group
LASSO [78]. Please see [20,64,77] for the motivations for using the non-squared loss. Fur-
thermore, the scaling of the penalization factor α by a factor of 1√

p is just for convergence
issues of the analysis of the CGMT (see [20] for further justification). The analysis of the
above optimization, which we call the Square-root G-PCR (Sqrt G-PCR) is very similar to
the one provided in the previous sections of this paper for the G-PCR problem. The only
difference, however, is that, instead of (A7), we have

‖t‖2 = max
‖w‖2≤1

w>t. (A27)

Following the same analysis (with some normalization adjustments) as in Appendix A,
but using (A27) instead of (A7), we finally arrive at the following deterministic scalar
max–min optimization problem:

sup0≤q≤1 infγ>0 ÕP̃ (q, γ) : = q
√

ζ
2γ + qγ

√
ζ

2

(
σ2

ε + σ2
e σ2

β

)
− q

2γ
√

ζ

+qγ
√

ζ(1− σ2
e )E

[
MP̃

(
Θ0 +

H
γ
√

ζ(1−σ2
e )

; α
qγ
√

ζ(1−σ2
e )

,−L, U
)]

.
(A28)

Comparing ÕP̃ (q, γ) to O(q, γ)P̃ in (13), we can see two main differences, which are

the absence of the − q2

4 term and the presence of the constraint 0 ≤ q ≤ 1 in ÕP̃ (q, γ).
This means that the prediction risk and the similarity of the Sqrt G-PCR in (A26)

converge to the same asymptotic limits in (16) and (17), respectively, but now with q? and
γ?, which are solutions to (A28) instead of (13).
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