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Abstract: Neural networks with a ring structure are considered biologically plausible and have
the ability of enforcing unique and persistent heading representations, yielding realistic homing
behaviors. Recent studies have found that insects optimally integrate sensory information from the
environment for head direction by using ring attractor networks. Optimal cue integration as the
basic component of a complex insect navigation system proves to consist of a ring attractor network
that is coupled by some integration neurons and some uniform inhibition neurons. The dynamics
of the coupled mechanisms between neurons in optimal cue integration determine whether the
insects’ homing capability is affected by environmental noises. Furthermore, time delays caused
by communication between different kinds of neurons may induce complex dynamical properties.
These dynamical behaviors are essential for understanding the neural mechanisms of insect homing
behaviors, but there is a lack of relevant research on the dynamics of optimal cue integration with time-
varying delay in the insects’ navigation system. In this paper, we discuss the dynamical properties of
optimal cue integration with time-varying delay and show that it is asymptotically stable and leads to
a unique insect home direction. These results are critical in providing the theoretical basis for further
research on insect homing behaviors and the establishment of autonomous robots that mimic insect
navigation mechanisms in the future.

Keywords: neural network; time-varying delay; stability; Lyapunov–Krasovskii functional; linear
matrix inequality

MSC: 92B20; 34D05

1. Introduction

In recent studies, the CX (central complex) of the insect midbrain has been shown
to act as a navigational center in insect navigation, and CX-based mechanisms flexibly
coordinate guidance strategies across sensory domains using biologically plausible ring
attractor networks [1,2]. A ring attractor network mathematically describes the dynamical
behaviors of neural circuits, and its properties of local excitation and long-range inhibition
are ubiquitous across many brain areas and across many animal taxa [3–8]. As a canonical
model for neural information representation, the ring attractor network constructs an
appropriate map between the external states in the world and the attractor states in the
insect brain [9,10] and demonstrates its efficiency in explaining the neural mechanisms
responsible for orientation representation, such as modeling motor responses to external
stimuli, tracking anticipation, and integrating multisensory cues [11,12].

Cue integration is common in insect navigation [13,14]. Despite facing external factors
like wind gusts or similar odors, insects still aim for the nest and consistently use a
sophisticated integration strategy that yields applicable navigational behaviors across
contexts [15,16]. Such insect-inspired artificial intelligence (AI) optimizes the resource
efficiency and computing capabilities of small, autonomous mobile robots [17].

Heading direction for insects is related to the activity of neurons in the CX [18,19]. As
the primary basis in the insects’ navigation system, optimal cue integration is presented as
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consisting of two kinds of neurons (integration neurons and uniform inhibition neurons),
which are coupled as a ring attractor network [20]. Additionally, noises may lead to
representational “drift”, indicating that neural population codes in many brain areas
continuously change even when animals have fully learned and stably performed their
tasks [21]. However, the dynamics of neurons in the ring attractor network robustly resist
random drifts and distractions and drive the perturbation to stability [9]. The light cue
experiments in rats suggest that when rats navigate until they reach a specific location, the
firing rate of neurons in the CX will approach a fixed value [22]. The interaction of attractor
dynamics and neuromodulation allows the insects’ motor commands to align with the
current target [23].

Research on neural networks with a ring structure mainly focuses on the discussion
of their neural basis and computational properties. Vafidis et al. proposed a synaptic
plasticity rule in an attractor network that maintains the connectivity required for path
integration [24]. Kutschireiter et al. proposed a Bayesian ring attractor to implement near-
optimal angular path integration and evidence accumulation [25]. Yu et al. investigated the
type and shape of the attractors in a ring attractor network based on specific conditions [26].
A rigorous analysis of the dynamical properties of a ring attractor network with two kinds
of neurons coupled is currently lacking, and studies on these dynamical behaviors are
rarely correlated to insect homing behaviors in the real environment.

Insects are able to convert spatiotemporal changes into orientation signals [27]. Since
optimal cue integration proposed in existing studies is relatively simple [15,16] and time
delays are one of the main features of information transmission between neurons in insect
brains, optimal cue integration with time-varying delay is able to greatly emulate biological
neural networks in detail. Time delay is a hot topic in the study of neural networks [28–31].
The presence of time delay may lead to oscillations and instabilities, which deteriorate the
performance of neural networks [32–34].

Numerous studies on the stability of a wide range of neural networks with time
delays are based on linear matrix inequalities (LMIs). Guo et al. discussed the sufficient
conditions for asymptotic stability of delayed memristive neural networks [35]. Zheng et al.
investigated the stability on delayed T-S fuzzy state feedback controller of the singular
uncertain system [36]. Maharajan et al. handled the problem of globally exponential stabil-
ity analysis in impulsive Cohen–Grossberg BAM neural networks with time delays [37].
Chen et al. studied the conditions for exponential stability in nonlinear time-delay systems
under flexible delayed impulsive control [38]. But these are all based on traditional neural
networks, with few achievements in neural networks with a ring structure.

Thus, inspired by the aforementioned analysis and based on Lyapunov–Krasovskii
functionals, some inequality techniques, and LMIs, the paper focuses on the dynamics
of optimal cue integration with time-varying delay and coupled properties. The major
contributions are summarized as follows:

• We introduce a time delay into the mechanisms of optimal cue integration to emulate
biological neural networks in insect brains. The improved system for optimal cue
integration becomes more complex and has better compatibility than the one proposed
before [16,20].

• We study the dynamical properties of the system for optimal cue integration, which
is a neural network with a ring structure. We obtain conditions for the existence
and uniqueness of the equilibrium point in the system by employing the uniqueness
theorem [39]. Taking the size of the time delay into account, we also obtain some
delay-dependent asymptotic stability conditions for this system, which are more in
line with the real situation of delayed information transmission in insect brains, based
on Lyapunov–Krasovskii functionals [40].

• By linking the experimental observations with mathematical properties from a dy-
namic point of view, we shed light on the fact that optimal cue integration in the
insects’ navigation system plays a crucial role in directly driving insects back to their
target location, their nest, without being affected by complex environmental changes.
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The outline of the paper is arranged as follows. Section 2 presents the improved
system for optimal cue integration with coupled property and time-varying delay, as well
as some illustrations of the system. Section 3 presents the dynamical properties of the
system of optimal cue integration and some conditions under which insects are able to
optimally integrate the noisy information available to them and return to the nest. Section 4
presents some numerical examples to illustrate the validity of the main results.

Notations: R denotes the set of real numbers. Rn and Rm×n denote the n-dimensional
Euclidean space and the set of all m× n real matrices, respectively. For a real matrix A,
A > 0 (A < 0) indicates that A is symmetric and positive definite (negative definite),
whereas A ≥ 0 (A ≤ 0) represents a positive (negative) semidefinite matrix. Matrices are
assumed to have compatible dimensions if not explicitly stated.

2. Problem Formulation

The system for optimal cue integration with time-varying delay in the insects’ naviga-
tion system is as follows:

τĊIN = −CIN +
s

∑
j=1

W ji
E2Eg(Cj

IN) + WI2Eg
(

CUI
(
t− d(t)

))
+ ci, i = 1, ..., s, (1)

τĊUI = −CUI + WI2I g(CUI) + WE2I

p

∑
k=1

g
(

Ck
IN
(
t− d(t)

))
, k = 1, ..., p, (2)

where CIN and CUI represent the firing rates of integration neurons (IN) and uniform inhi-
bition neurons (UI), respectively. Integration neurons have recurrent excitatory connections
to each other in a ring attractor network to optimally integrate different cues from the input,
so WE2E = (W ji

E2E)s×s is the matrix of connected weights between integration neuron j and
integration neuron i. Uniform inhibition neurons also have the same positive feedback to
each other in this ring because of the interaction between neurons of the same functional
type, so WI2I = (Wkm

I2I)p×p, m = 1, 2, ..., p is the connected weight matrix between uniform
inhibition neurons. Obviously, the matrices WE2E and WI2I are symmetric because the
neurons in each matrix are of the same kind.

In addition, uniform inhibition neurons sum up activations from all integration neu-
rons, and the coupled mechanisms between neurons for optimal integration require con-
sideration of time delays due to the information transmission occurring in neurons, such
that WE2I = (Wmi

E2I)p×s represents the delayed connection weight matrix from integration
neuron m to uniform inhibition neuron i. The uniform inhibition neurons also inhibit all
integration neurons, such that WI2E = (Wim

I2E)s×p is the delayed connection weight matrix
from uniform inhibition neurons to integration neurons. The inhibitory effect of uniform
inhibition neurons on integration neurons results in negative connection weights, i.e.,
(Wim

I2E)s×p < 0. The activation function is g(x) with g(0) = 0, wherein tanh, sigmoid, and
ReLU are typical examples. ci represents the input cue constant. Note that CUI

(
t− d(t)

)
and Ck

IN
(
t− d(t)

)
are interaction terms, and d(t) describes the time delay between uni-

form inhibition neurons and integration neurons in signal transmission. For the sake of
simplicity, let the positive time constant τ be 1.

As a result of the above discussion, the system for optimal cue integration can be
formulated in the following form:

[Ċ1
IN , ..., Ċs

IN , Ċ1
UI , ..., Ċp

UI ]
T = −[C1

IN , ..., Cs
IN , C1

UI , ..., Cp
UI ]

T +

[
(WE2E)s×s 0

0 (WI2I)p×p

]
n×n

× [g1(C1
IN), ..., gs(Cs

IN), gs+1(C1
UI), ..., gn(C

p
UI)]

T +

[
0 (WI2E)s×p

(WE2I)p×s 0

]
n×n

× [g1
(
C1

IN(t− d(t))
)
, ..., gs

(
Cs

IN(t− d(t))
)
, gs+1

(
C1

UI(t− d(t))
)
, ..., gn

(
Cp

UI(t− d(t))
)
]T

+ [c1, ..., cs, 0, ..., 0]T , s + p = n.

(3)
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The activation functions gi(·) satisfy the following inequalities with gi(0) = 0:

0 ≤ gi(c̃1)− gi(c̃2)

c̃1 − c̃2
≤ ki, i = 1, 2, ..., n, ∀c̃1 6= c̃2, (4)

where ki(i = 1, 2, ...n) are constants that are not negative and we let K = diag(k1, k2, ..., kn).
c̃1 and c̃2 are arbitrary constants and the functions gi(·), i = 1, 2, ...n are Lipschitz continuous.
For simplicity, let g(·) be tanh.

In addition, d(t) denotes the time-varying bounded state delay satisfying

0 ≤ d(t) ≤ d̄, ḋ(t) ≤ h, (5)

where d̄ and h are positive scalars.
The initial conditions associated with (3) are given as follows:

[C1
IN , ..., Cs

IN , C1
UI , ..., Cp

UI ]
T = φ(y), y ∈ [−d̄, 0], (6)

where φ(y) is a continuous function vector.

3. Existence and Stability of the Stationary Solution to the System for Optimal
Cue Integration

In this section, we discuss the dynamical properties of the system for optimal cue
integration and decide to begin by proving this system (3) has an invariant set. We as-
sume C∗ = (C∗1 , C∗2 , ..., C∗n)T is an equilibrium of system (3). By the coordinate trans-
formation x(·) = [x1(t), ..., xn(t)]T = [C1

IN , ..., Cs
IN , C1

UI , ..., Cp
UI ]

T − C∗, we obtain the
following system:

ẋ(t) = −x(t) +
[

(WE2E)s×s 0
0 (WI2I)p×p

]
f
(
x(t)

)
+

[
0 (WI2E)s×p

(WE2I)p×s 0

]
f
(
x(t− d(t))

)
, (7)

f
(

x(t)
)
= [ f1(x1(t)), f2(x2(t)), ..., fn(xn(t))]T , in which fi(xi(t)) = gi(xi(t) + C∗i )− gi(C∗i ).

We set

W0 = (w0
ij)n×n =

[
WE2E 0

0 WI2I

]
n×n

, W̃ = (w̃ij)n×n =

[
0 WI2E

WE2I 0

]
n×n

.

Proposition 1. System (7) has an invariant set

P = {x
∣∣|xj| ≤ 4, (j = 1, ..., n)}. (8)

Proof of Proposition 1. For each x(0) ∈ P, we have

xj(t) = xj(0)e−t +
∫ t

0
e−(t−r)(W0 f (x(t)) + W̃ f (x(t− d(t))

)
dr. (9)

From [16,20], the absolute value of the weights of recurrent connections between each
neuron in the system is equal to or less than 1, so that 0 ≤ w0

ij ≤ 1 and −1 ≤ w̃ij ≤ 0,
(i, j = 1, ..., n). According to fi(xi(t)) = gi(xi(t) + C∗)− gi(C∗) and g(·) = tanh(·), we
obtain −2 ≤ fi(·) ≤ 2. Then, from the above analysis and equality (9), there is

|xj(t)| ≤ |xj(0)|e−t +
∫ t

0
e−(t−r)|

(
W0 f (x(t)) + W̃ f (x(t− d(t))

)
|dr

≤ 4e−t +
∫ t

0
4e−(t−r)dr

= 4, t ≥ 0. (10)

So x(t) ∈ P. The proof is complete.
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In Proposition 1, we show that system (7) has an invariant set. This suggests that
the firing rates of neurons in the system of optimal cue integration stay within a range.
Then, we will give the existence and uniqueness conditions of the stationary solution to
system (7) in this invariant set.

Proposition 2. Under condition (4), the stationary solution x = 0 to system (7) is unique if
there exist positive definite diagonal matrices R ∈ Rn×n, V ∈ Rn×n and real constants γ > 0,
0 < q ≤ 1 such that the following LMI holds:

Φ =

[
2RK−1 − RW0 −WT

0 R− q−1γV ∗
− 1√

q RW̃ q−1γV

]
> 0, (11)

where ∗ represents the transpose of the corresponding matrix.

Proof of Proposition 2. The equilibrium point x∗ of system (7) is given by

−x∗ + W0 f
(

x∗
)
+ W̃ f

(
x∗
)
= 0. (12)

Equation (12) indicates that if f (x∗) = 0, then x∗ = 0. Suppose that f (x∗) 6= 0, multiplying
both sides of Equation (12) by 2 f T(x∗)R 6= 0, and then plus and minus q−1γ f T(x∗)V f (x∗)−
q−1 yields

− 2 f T(x∗)Rx∗ + 2 f T(x∗)RW0 f
(
x∗
)
+ 2 f T(x∗)RW̃ f (x∗)

+ q−1γ f T(x∗)V f (x∗)− q−1γ f T(x∗)V f (x∗) = 0.
(13)

Since 0 < q ≤ 1, there is

− 2 f T(x∗)Rx∗ + 2 f T(x∗)RW0 f
(
x∗
)
+ 2 f T(x∗)RW̃ f (x∗)

+ q−1γ f T(x∗)V f (x∗)− γ f T(x∗)V f (x∗) ≥ 0.
(14)

Note that inequality (4) given before can be used to acquire

f 2
i (xi(·)) ≤ kixi(·) fi(xi(·)) ≤ k2

i x2
i (·). (15)

From inequalities (15), we have

−
n

∑
i=1

kix∗i fi(x∗i ) ≤ −
n

∑
i=1

f 2
i (x∗i ). (16)

Thus,

−2 f T(x∗)Rx∗ ≤ −2 f T(x∗)RK−1 f (x∗). (17)

According to Lemma 2.3 presented by [39], the following inequality holds:

−γ f T(x∗)V f (x∗) + 2 f T(x∗)RW̃ f (x∗) ≤ γ−1 f T(x∗)W̃T RV−1RW̃ f (x∗). (18)

Then, we combine (14), (17), and (18), for any f (x∗) 6= 0, yielding

2 f T(x∗)RW0 f
(
x∗
)
− 2 f T(x∗)RK−1 f (x∗) + q−1γ f T(x∗)V f (x∗)

+ γ−1 f T(x∗)W̃T RV−1RW̃ f (x∗) ≥ 0,
(19)

and it can be rewritten as

f T(x∗)(−2RK−1 + RW0 + WT
0 R + γ−1W̃T RV−1RW̃ + q−1γV) f (x∗) ≥ 0. (20)
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However, by Schur complement theory and condition (11), it follows that

f T(x∗)(−2RK−1 + RW0 + WT
0 R + γ−1W̃T RV−1RW̃ + q−1γV) f (x∗) < 0. (21)

The conflict in (20) and (21) implies that the assumption f (x∗) 6= 0 fails. That is, with
condition (11), the solution x = 0 is the unique solution, i.e., the unique stationary solution
to system (7). This indicates that the unique equilibrium point may correspond to their
unique target (nest) for insects. Based on the existence and uniqueness of the stationary
solution to this system, we next discuss its stability under the time delay derivative h < 1
to demonstrate that foraging insects are able to robustly integrate their route from envi-
ronmental disturbances, aim for the nest, and return to it under communication delays
between different kinds of neurons.

Proposition 3. If h < 1 and there exist a symmetric positive definite matrix P ∈ Rn×n, positive
definite matrices F1 ∈ Rn×n, F2 ∈ Rn×n and positive diagonal matrices N1 ∈ Rn×n, N2 ∈ Rn×n

such that the following LMI holds:

Γ =


η11 0 η13 η14
∗ η22 0 η24
∗ ∗ η33 η34
∗ ∗ ∗ η44

 < 0, (22)

where

η11 = −PI − IP + F1,

η13 = PW0 + KN1 − ET ,

η14 = PW̃,

η22 = −(1− h)F1,

η24 = KN2,

η33 = −2N1 + EW0 + WT
0 ET + F2,

η34 = EW̃,

η44 = −2N2 − (1− h)F2,

then, the stationary solution x = 0 to system (7) is asymptotically stable.

Proof of Proposition 3. We construct the following Lyapunov–Krasovskii function candi-
dates:

V(t, x(t)) = V1(t, x(t)) + V2(t, x(t)) + V3(t, x(t)), (23)

where

V1(t, x(t)) = xT(t)Px(t),

V2(t, x(t)) = 2
n

∑
i=1

ei

∫ xi(t)

0
fi(y)dy,

V3(t, x(t)) =
∫ t

t−d(t)
xT(y)F1x(y)dy +

∫ t

t−d(t)
f T(x(y))F2 f (x(y))dy,
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and ei(i = 1, ..., n) are positive scalars. The time derivative of Vi(t, x(t)) along system (7) is
separately given as follows:

V̇1(t, x(t)) = 2xT(t)Pẋ(t) (24)

= 2xT(t)P
(
− x(t) + W0 f

(
x(t)

)
+ W̃ f

(
x(t− d(t))

))
,

V̇2(t, x(t)) = 2
n

∑
i=1

ei fi(xi(t))ẋ(t) (25)

= 2 f T(x(t))E
(
− x(t) + W0 f

(
x(t)

)
+ W̃ f

(
x(t− d(t))

))
,

V̇3(t, x(t)) ≤ xT(t)F1x(t)− (1− h)xT(t− d(t))F1x(t− d(t)) (26)

+ f T(x(t))F2 f (x(t))− (1− h) f T(x(t− d(t)))F2 f (x(t− d(t))),

where E = diag(ei). Moreover, under inequality (15), there are two positive diagonal
matrices N1 and N2 such that

xT(t)KN1 f (x(t))− f T(x(t))N1 f (x(t)) ≥ 0, (27)

xT(t− d(t))KN2 f (x(t− d(t)))− f T(x(t− d(t)))N2 f (x(t− d(t))) ≥ 0.

Then, we have

V̇(t, x(t)) = V̇1(t, x(t)) + V̇2(t, x(t)) + V̇3(t, x(t))

≤ 2xT(t)P
(
− x(t) + W0 f

(
x(t)

)
+ W̃ f

(
x(t− d(t))

))
+ 2 f T(x(t))E

(
− x(t) + W0 f

(
x(t)

)
+ W̃ f

(
x(t− d(t))

))
+ xT(t)F1x(t)− (1− h)xT(t− d(t))F1x(t− d(t))

+ f T(x(t))F2 f (x(t))− (1− h) f T(x(t− d(t)))F2 f (x(t− d(t)))

+ 2[xT(t)KN1 f (x(t))− f T(x(t))N1 f (x(t))]

+ 2[xT(t− d(t))KN2 f (x(t− d(t)))− f T(x(t− d(t)))N2 f (x(t− d(t)))]

= [xT(t), xT(t− d(t)), f T(x(t)), f T(x(t− d(t)))]Γ


x(t)

x(t− d(t))
f (x(t))

f (x(t− d(t)))

. (28)

According to condition (22), we obtain V̇(t, x(t)) ≤ 0 (V = 0 only if x = 0). This
indicates that system (7) is asymptotically stable.

Many studies have proposed two criteria for stability in delayed systems [41–45].
One is the delay-independent criteria, under which the system only remains stable if the
condition is satisfied at all times. We have already derived such a delay-independent
criterion through the above analysis. The other is the delay-dependent criteria, which, in
contrast to the delay-independent criteria, tend to be accurate since the delay function is
included as a parameter in the stability criteria. This kind of criterion with finite time delays
is more suitable for neural networks with time delays caused by actual signal transmission.
For this problem, when h < 1, we will discuss the delay-dependent asymptotic stability of
system (7).

Proposition 4. If h < 1 and there exist a symmetric positive definite matrix P ∈ Rn×n, positive
definite matrices F1 ∈ Rn×n, F2 ∈ Rn×n and positive diagonal matrices N1 ∈ Rn×n, N2 ∈ Rn×n

such that the following LMIs hold:
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X =


X11 X12 X13 X14 X15
∗ X22 X23 X24 X25
∗ ∗ X33 X34 X35
∗ ∗ ∗ X44 X45
∗ ∗ ∗ ∗ X55

 ≥ 0 (29)

Γ =


η11 η12 η13 η14
∗ η22 η23 η24
∗ ∗ η33 η34
∗ ∗ ∗ η44

 < 0, (30)

where

η11 = −PI − IP + XT
15 + X15 + F1 + d̄X55 + d̄X11,

η12 = XT
25 − X15 + d̄X12,

η13 = PW0 + XT
35 + KN1 − ET − d̄X55W0 + d̄X13,

η14 = PW̃ + XT
45 − d̄X55W̃ + d̄X14,

η22 = −XT
25 − X25 + d̄X22 − (1− h)F1,

η23 = −XT
35 + d̄X23,

η24 = −XT
45 + KN2 + d̄X24,

η33 = −2N1 + EW0 + WT
0 ET + d̄WT

0 X55W0 + d̄X33 + F2,

η34 = EW̃ + d̄WT
0 X55W̃ + d̄X34,

η44 = −2N2 + d̄W̃TX55W̃ + d̄X44 − (1− h)F2,

then, the stationary solution x = 0 to system (7) is asymptotically stable.

Proof of Proposition 4. Considering the following Lyapunov functional candidates:

V(t, x(t)) = V1(t, x(t)) + V2(t, x(t)) + V3(t, x(t)) + V4(t, x(t)) + V5(t, x(t)), (31)

with

V1(t, x(t)) = xT(t)Px(t),

V2(t, x(t)) = 2
n

∑
i=1

ei

∫ xi(t)

0
fi(y)dy,

V3(t, x(t)) =
∫ t

0

∫ δ

δ−d(t)
νTXνdydδ,

V4(t, x(t)) =
∫ t

t−d̄
(d̄ + y− t)ẋT(y)X55 ẋ(y)dy,

V5(t, x(t)) =
∫ t

t−d(t)
xT(y)F1x(y)dy +

∫ t

t−d(t)
f T(x(y))F2 f (x(y))dy,

where ei(i = 1, ..., n) are positive scalars and ν = [xT(δ), xT(δ− d(δ)), f T(x(δ)), f T(x(δ−
d(δ))), ẋT(y)]T , we can establish the derivative of Vi(t, x(t)) as follows:

V̇1(t, x(t)) = 2xT(t)Pẋ(t) (32)

= 2xT(t)P
(
− x(t) + W0 f

(
x(t)

)
+ W̃ f

(
x(t− d(t))

))
,

V̇2(t, x(t)) = 2
n

∑
i=1

ei fi(xi(t))ẋ(t) (33)

= 2 f T(x(t))E
(
− x(t) + W0 f

(
x(t)

)
+ W̃ f

(
x(t− d(t))

))
,



Mathematics 2023, 11, 3696 9 of 17

V̇3(t, x(t)) ≤ d̄[xT(t), xT(t− d(t)), f T(x(t)), f T(x(t− d(t)))] (34)

×


X11 X12 X13 X14
∗ X22 X23 X24
∗ ∗ X33 X34
∗ ∗ ∗ X44




x(t)
x(t− d(t))

f (x(t))
f (x(t− d(t)))



+ 2[xT(t), xT(t− d(t)), f T(x(t)), f T(x(t− d(t)))]


X15
X25
X35
X45


× (x(t)− x(t− d(t))) +

∫ t

t−d̄
ẋT(y)X55 ẋ(y)dy,

V̇4(t, x(t)) = d̄ẋT(t)X55 ẋ(t)−
∫ t

t−d̄
ẋT(y)X55 ẋ(y)dy, (35)

V̇5(t, x(t)) ≤ xT(t)F1x(t)− (1− h)xT(t− d(t))F1x(t− d(t)) (36)

+ f T(x(t))F2 f (x(t))− (1− h) f T(x(t− d(t)))F2 f (x(t− d(t))),

where E = diag(ei). Then, we can obtain

V̇(t, x(t)) = V̇1(t, x(t)) + V̇2(t, x(t)) + V̇3(t, x(t)) + V̇4(t, x(t)) + V̇5(t, x(t))

≤ 2xT(t)P
(
− x(t) + W0 f

(
x(t)

)
+ W̃ f

(
x(t− d(t))

))
+ 2 f T(x(t))E

(
− x(t) + W0 f

(
x(t)

)
+ W̃ f

(
x(t− d(t))

))
+ d̄[xT(t), xT(t− d(t)), f T(x(t)), f T(x(t− d(t)))]

×


X11 X12 X13 X14
∗ X22 X23 X24
∗ ∗ X33 X34
∗ ∗ ∗ X44




x(t)
x(t− d(t))

f (x(t))
f (x(t− d(t)))



+ 2[xT(t), xT(t− d(t)), f T(x(t)), f T(x(t− d(t)))]


X15
X25
X35
X45

(x(t)− x(t− d(t)))

+ d̄ẋT(t)X55 ẋ(t) + xT(t)F1x(t)− (1− h)xT(t− d(t))F1x(t− d(t))

+ f T(x(t))F2 f (x(t))− (1− h) f T(x(t− d(t)))F2 f (x(t− d(t)))

+ 2[xT(t)KN1 f (x(t))− f T(x(t))N1 f (x(t))]

+ 2[xT(t− d(t))KN2 f (x(t− d(t)))− f T(x(t− d(t)))N2 f (x(t− d(t)))]

= [xT(t), xT(t− d(t)), f T(x(t)), f T(x(t− d(t)))Γ


x(t)

x(t− d(t))
f (x(t))

f (x(t− d(t)))

]. (37)

According to condition (30), we arrive at the conclusion that V̇(t, x(t)) ≤ 0 (V = 0
only if x = 0); thus, the stationary solution x = 0 to system (7) is asymptotically stable.
Next, when h > 1, we obtain a similar delay-dependent asymptotic stability criterion.
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Proposition 5. If h > 1 and there exist a symmetric positive definite matrix P ∈ Rn×n, and
positive diagonal matrices N1 ∈ Rn×n, N2 ∈ Rn×n such that the following LMIs hold:

X =


X11 X12 X13 X14 X15
∗ X22 X23 X24 X25
∗ ∗ X33 X34 X35
∗ ∗ ∗ X44 X45
∗ ∗ ∗ ∗ X55

 ≥ 0, (38)

Γ =


η11 η12 η13 η14
∗ η22 η23 η24
∗ ∗ η33 η34
∗ ∗ ∗ η44

 < 0, (39)

where

η11 = −PI − IP + XT
15 + X15 + d̄X55 + d̄X11,

η12 = XT
25 − X15 + d̄X12,

η13 = PW0 + XT
35 + KN1 − ET − d̄X55W0 + d̄X13,

η14 = PW̃ + XT
45 − d̄X55W̃ + d̄X14,

η22 = −XT
25 − X25 + d̄X22,

η23 = −XT
35 + d̄X23,

η24 = −XT
45 + KN2 + d̄X24,

η33 = −2N1 + EW0 + WT
0 ET + d̄WT

0 X55W0 + d̄X33,

η34 = EW̃ + d̄WT
0 X55W̃ + d̄X34,

η44 = −2N2 + d̄W̃TX55W̃ + d̄X44,

then, the stationary solution x = 0 to system (7) is asymptotically stable.

Proof of Proposition 5. Constructing the Lyapunov–Krasovskii functionals as follows:

V(t, x(t)) = V1(t, x(t)) + V2(t, x(t)) + V3(t, x(t)) + V4(t, x(t)), (40)

where

V1(t, x(t)) = xT(t)Px(t),

V2(t, x(t)) = 2
n

∑
i=1

ei

∫ xi(t)

0
fi(y)dy,

V3(t, x(t)) =
∫ t

0

∫ δ

δ−d(t)
νTXνdydδ,

V4(t, x(t)) =
∫ t

t−d̄
(d̄ + y− t)ẋT(y)X55 ẋ(y)dy.

ei(i = 1, ...n) are positive scalars and ν = [xT(δ), xT(δ− d(δ)), f T(x(δ)), f T(x(δ− d(δ))),
ẋT(y)]T , and combining (32)–(35), we have

V̇(t, x(t)) = V̇1(t, x(t)) + V̇2(t, x(t)) + V̇3(t, x(t)) + V̇4(t, x(t))

≤ [xT(t), xT(t− d(t)), f T(x(t)), f T(x(t− d(t)))Γ


x(t)

x(t− d(t))
f (x(t))

f (x(t− d(t)))

]. (41)
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According to condition (39), V̇(t, x(t)) ≤ 0 (V = 0 only if x = 0), which indi-
cates that the stationary solution x = 0 to system (7) is asymptotically stable. Note that
Propositions 3–5 are sufficient criteria for the asymptotic stability of system (7), where
Proposition 3 is a delay-independent criterion and the others are delay-dependent criteria.

The particular states of neurons in insects’ navigation system are expressed and
stabilized by the persistent activity of insects [46]. Considering the experimental observa-
tions [2,11,15,16,22], the asymptotic stability of the equilibrium point in the invariant set of
system (7) may represent that the mechanisms of optimal cue integration have the ability to
drive insects to robustly return to a unique target (nest). Based on the above propositions,
it is precisely due to continuous external navigational cue inputs and the uniqueness and
stability of the system’s equilibrium point that insects are able to self-correct their routes,
target their nest, and reach it without disturbances from the external environment.

4. Illustrative Examples

In order to combine our theoretical analysis with the realistic cases, some numerical
simulation examples for system (7) are expounded in this section. The time delay functions
and activation function used below are based on references [47–49], which focus on neural
network stability and synchronization. First, we give an example of system (7) with the
time delay converging to 1.

Example 1. We consider the following four-neuron coupled system with time-varying delay d(t) =
et

1+et (d̄ = 1, h = 0.25), where the activation function is g(x) = tanh(x), and the matrices are

W0 =


0.15 0.28 0 0
0.28 0.16 0 0

0 0 0.12 0.17
0 0 0.17 0.20

, W̃ =


0 0 −0.04 −0.05
0 0 −0.01 −0.02

0.03 0.07 0 0
0.02 0.05 0 0

, K =


0.3 0 0 0
0 0.5 0 0
0 0 0.7 0
0 0 0 0.8

.

System (7) is then written as

ẋ1(t) = −x1(t) + 0.15 ∗ tanh
(

x1(t)
)
+ 0.28 ∗ tanh

(
x2(t)

)
,

− 0.04 ∗ tanh
(

x3
(
t− d(t)

))
− 0.05 ∗ tanh

(
x4
(
t− d(t)

))
,

ẋ2(t) = −x2(t) + 0.28 ∗ tanh
(
x1(t)

)
+ 0.16 ∗ tanh

(
x2(t)

)
,

− 0.01 ∗ tanh
(
x3
(
t− d(t)

))
− 0.02 ∗ tanh

(
x4
(
t− d(t)

))
,

ẋ3(t) = −x3(t) + 0.12 ∗ tanh
(
x3(t)

)
+ 0.17 ∗ tanh

(
x4(t)

)
+ 0.03 ∗ tanh

(
x1
(
t− d(t)

))
+ 0.07 ∗ tanh

(
x2
(
t− d(t)

))
,

ẋ4(t) = −x4(t) + 0.17 ∗ tanh
(
x3(t)

)
+ 0.20 ∗ tanh

(
x4(t)

)
+ 0.02 ∗ tanh

(
x1
(
t− d(t)

))
+ 0.05 ∗ tanh

(
x2
(
t− d(t)

))
.

(42)

We can obtain the following matrices and scalars:

R =


25.944 0 0 0

0 42.195 0 0
0 0 55.232 0
0 0 0 63.988

, V =


30.915 0 0 0

0 28.268 0 0
0 0 25.675 0
0 0 0 23.434

,

F1 =


21.865 −0.144 0 0
−0.144 21.803 0 0

0 0 22.141 −0.306
0 0 −0.306 22.043

, F2 =


16.480 −2.962 0 0
−2.962 16.641 0 0

0 0 17.135 −2.514
0 0 −2.514 16.186

,



Mathematics 2023, 11, 3696 12 of 17

N1 =


20.547 0 0 0

0 21.018 0 0
0 0 20.869 0
0 0 0 21.556

, N2 =


6.969 0 0 0

0 6.520 0 0
0 0 5.872 0
0 0 0 5.819

,

P =


20.412 −0.184 0 0
−0.184 20.333 0 0

0 0 20.766 −0.392
0 0 −0.392 20.641

, q = 0.43, γ = 1.20.

According to Propositions 1–3 and the above matrices and scalars, the stationary
solution x = 0 to system (7) is unique and delay-independent and asymptotically stable
in the invariant set. Figure 1 shows the trajectories of solutions x(t) with different initial
states, which asymptotically converge to 0, and it indicates that the system formed by the
interaction of two integration neurons and two uniform inhibition neurons has a bounded
invariant set, and there exists a unique equilibrium point that is asymptotically stable under
certain conditions. Under continuous external stimuli inputs, the firing rates of neurons in
the insects’ brain stay within a range and ultimately stabilize toward a unique equilibrium
point. This phenomenon aligns with realistic experimental observations. Once insects
lock in the target location (nest), the mechanisms of optimal cue integration in the insects’
navigation system play a vital role in driving insects to return to their nest, even in the
presence of spatiotemporal changes and weak noises.

X
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Phase trajectories of X
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2

initial state 1

initial state 2

initial state 3

initial state 4

initial state 5

initial state 6

initial state 7

initial state 8
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X
4

Phase trajectories of X
3
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4

initial state 1

initial state 2

initial state 3

initial state 4

initial state 5

initial state 6

initial state 7

initial state 8

Figure 1. Phase trajectories of Example 1.

The above example shows the biological plausibility of system (7). We then give
an example of system (7) with a time delay characterized by periodic oscillations with
amplitudes in the range of 1 to illustrate the efficiency of other stability criteria

Example 2. We discuss the the following four-neuron coupled system with time-varying delay
d(t) = 0.8− 0.1 ∗ sin(t) (d̄ = 0.9, h = 0.1), where the activation function is g(x) = tanh(x),
and the matrices are

W0 =


0.40 0.25 0 0
0.25 0.40 0 0

0 0 0.40 0.28
0 0 0.28 0.46

, W̃ =


0 0 −0.01 −0.05
0 0 −0.02 −0.01

0.13 0.16 0 0
0.10 0.15 0 0

, K =


0.5 0 0 0
0 0.5 0 0
0 0 0.5 0
0 0 0 0.5

.
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Plugging in the above matrices, system (7) can take the form of (42). Thus, we have

R =


21.408 0 0 0

0 21.418 0 0
0 0 21.084 0
0 0 0 21.734

, V =


33.330 0 0 0

0 33.338 0 0
0 0 33.102 0
0 0 0 32.654

,

F1 =


14.480 −0.216 −0.015 −0.001
−0.216 14.481 −0.015 −0.012
−0.015 −0.015 14.401 −0.313
−0.001 −0.012 −0.313 14.330

, F2 =


9.440 −2.040 −0.003 −0.003
−2.040 9.460 −0.003 −0.003
−0.003 −0.003 9.432 −2.277
−0.003 −0.003 −2.277 9.114

,

N1 =


20.365 0 0 0

0 20.380 0 0
0 0 20.137 0
0 0 0 20.545

, N2 =


10.063 0 0 0

0 10.120 0 0
0 0 9.990 0
0 0 0 10.089

,

P =


20.266 −0.752 −0.025 −0.004
−0.752 20.272 −0.025 −0.020
−0.025 −0.025 19.942 −1.149
−0.004 −0.020 −1.149 19.740

, q = 0.89, γ = 0.76.

Clearly, it follows from Propositions 1, 2 and 4 that the unique stationary solution
x = 0 to system (7) is delay-dependent and asymptotically stable (Figure 2). Compared with
the delay-independent stability condition, the delay-dependent stability condition allows
a finite time delay. In real bio-systems, the time delay is limited. The delay-dependent
stability result takes the time delay into account and proposes an accurate condition that the
system will be asymptotically stable within the upper bound of the time delay. Therefore,
we suggest that the delay-dependent criterion is more accurate and has higher compatibility
for systems with different time delay upper bound sizes. This criterion is superior to the
delay-independent one, which helps to further explore the stability of the bounded time
delay system in insects’ brains.
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Figure 2. Phase trajectories of Example 2.

Finally, we give an example of system (7) with a time delay, the time delay being
characterized by volatile slopes and a large upper bound.



Mathematics 2023, 11, 3696 14 of 17

Example 3. We consider the four-neuron coupled system with time-varying delay d(t) = 2 + 2 ∗
sin(t) (d̄ = 4, h = 2), where the activation function is g(x) = tanh(x), and the matrices are

W0 =


0.10 0.15 0 0
0.15 0.20 0 0

0 0 0.32 0.25
0 0 0.25 0.30

, W̃ =


0 0 −0.21 −0.16
0 0 −0.20 −0.14

0.20 0.23 0 0
0.25 0.22 0 0

, K =


0.2 0 0 0
0 0.3 0 0
0 0 0.5 0
0 0 0 0.6

.

Plugging in the matrices above, and system (7) will be in the form of (42). Then, we can obtain the
following matrices and scalars:

R =


13.237 0 0 0

0 20.206 0 0
0 0 33.097 0
0 0 0 37.731

, V =


28.904 0 0 0

0 27.735 0 0
0 0 23.700 0
0 0 0 21.759

,

N1 =


54.017 0 0 0

0 56.846 0 0
0 0 68.658 0
0 0 0 66.939

, N2 =


52.316 0 0 0

0 46.212 0 0
0 0 27.576 0
0 0 0 20.856

,

P =


96.308 −11.745 0.993 0.925
−11.745 103.314 0.654 1.092

0.993 0.654 108.333 −13.717
0.925 1.092 −13.717 109.864

, q = 0.59, γ = 1.40.

Under Propositions 1, 2 and 5, the stationary solution x = 0 to system (7) is unique
and delay-dependent and asymptotically stable. Figure 3 shows phase trajectories of
Example 3, and it indicates that the stationary solution x = 0 to this system is unique and
asymptotically stable. This criterion helps to address the stability problem that the slope
of time delay has large changes applied to situations where the communication between
neurons has a long time delay.
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Figure 3. Phase trajectories of Example 3.

5. Conclusions

In this paper, we discuss the dynamical properties of optimal cue integration in the
insects’ navigation system. The system for optimal cue integration is considered a primary
part of the navigational system, which coordinates different navigational strategies to
guide insects directly to their nest. From a dynamical perspective and based on LMIs and
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Lyapunov–Krasovskii functionals, we obtain that an invariant set exists in the system of
optimal cue integration. Then, conditions for the uniqueness and stability of the equi-
librium point are presented in this invariant set. Some experiments have confirmed that
in the presence of light and odor cues, firing rates of neurons in insects’ and mammals’
brains are correlated with path integration and homing behaviors. Therefore, the obtained
conditions may effectively demonstrate the neural mechanisms of the system of optimal
cue integration, which drive insects to successfully return to their nests under environ-
mental noises. This provides a theoretical basis for the research of insect-inspired AI and
promotes further investigation of the autonomous, mobile robots with high computing
capability and parsimony. In the future, we will focus on the multistability of the insects’
navigation systems.
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