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Abstract: The problem of finding key players in a graph, also known as network dismantling, or
network disintegration, aims to find an optimal removal sequence of nodes (edges, substructures)
through a certain algorithm, ultimately causing functional indicators such as the largest connected
component (GCC) or network pair connectivity in the graph to rapidly decline. As a typical NP-
hard problem on graphs, recent methods based on reinforcement learning and graph representation
learning have effectively solved such problems. However, existing reinforcement-learning-based
key-player-identification algorithms often need to remove too many nodes in order to achieve the
optimal effect when removing the remaining network until no connected edges remain. The use of a
minimum number of nodes while maintaining or surpassing the performance of existing methods
is a worthwhile research problem. To this end, a novel algorithm called MiniKey was proposed to
tackle such challenges, which employs a specific deep Q-network architecture for reinforcement
learning, a novel reward-shaping mechanism based on network functional indicators, and the
graph-embedding technique GraphSage to transform network nodes into latent representations.
Additionally, a technique dubbed ‘virtual node technology’ is integrated to grasp the overarching
feature representation of the whole network. This innovative algorithm can be effectively trained on
small-scale simulated graphs while also being scalable to large-scale real-world networks. Importantly,
experiments from both six simulated datasets and six real-world datasets demonstrates that MiniKey
can achieve optimal performance, striking a perfect balance between the effectiveness of key node
identification and the minimization of the number of nodes that is utilized, which holds potential
for real-world applications such as curbing misinformation spread in social networks, optimizing
traffic in transportation systems, and identifying key targets in biological networks for targeted
interventions.

Keywords: complex networks; combinatorial optimization; deep reinforcment learning; reward shaping

MSC: 90C27; 05C85

1. Introduction

Complex networks hold substantial significance given their extensive reach and impact
on diverse aspects of our lives. At the heart of complex networks lie the key players, also
known as influential players [1], vital players [2], or critical players [3]. These players
represent certain nodes, edges, or substructures that, when removed, can substantially
degrade a network’s specific functionality [4]. The importance of identifying these key
players has profound implications in a variety of domains, such as epidemic control [5],
drug design [6], viral marketing [7], criminal networks analysis [8] and combat network
disintegration [9].
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In the quest to identify key players in complex networks, many techniques and
methods have been developed over the years, each with its own strengths and weaknesses.
At one end of the spectrum, mathematical-programming-based methods represent one
of the earliest and most fundamental approaches to this problem [10,11]. They tackle the
problem by formulating it as an optimization challenge, using techniques such as integer
programming, or mixed-integer programming to seek optimal solutions. However, as
network size increases, these methods can quickly become computationally intensive,
restricting their practical applications to larger-scale networks.

Another well-studied approach focuses on using network centrality measures such
as degree centrality [12], k-core centrality [13], betweenness centrality [14], pagerank
centrality [15], and collective influence (CI) [16]. These techniques identify key players
based on their importance within the network, as determined by their centrality measure.
Typically, before removing the next node, these algorithms adaptively recalculate the
network’s centrality indicators. The method that removes the node with the highest degree
is termed HDA. Similarly, methods that remove nodes with the highest betweenness,
pagerank, and collective influence are referred to as HBA, HPRA, and HCI, respectively.
This process is repeated iteratively until there are no connected edges left in the network.
However, while intuitively appealing and computationally efficient, these approaches can
sometimes oversimplify the complex dynamics of the network. Additionally, they typically
overlook node attributes, which can offer insights into a node’s role or importance, leading
to suboptimal results as they fail to account for the intricate interconnections among nodes.

Moving beyond these techniques, a wide range of heuristic-based methods have
been developed, including greedy algorithms [17], acquaintance immunization [18], belief
propagation dismantling [19,20], the reverse-reinsertion algorithm [21,22], and spectral
partitioning [23]. These methods are designed around heuristics to select nodes for removal,
with the aim of maximizing the impact on network functionality. Despite their innovative
approaches, the performance of these methods can be heavily reliant on the specific heuristic
that is used, and they may not always yield optimal results.

Evolutionary-algorithm-based strategies, on the other hand, have been inspired by
processes found in nature. Techniques such as Tabu Search [24], genetic algorithms [25],
simulated annealing [26], and artificial bee colonies [27] use these naturally inspired pro-
cesses to guide the search for optimal node removal sequences. Despite their ability to
handle complex problems and search a larger solution space, they are typically compu-
tationally intensive, and their probabilistic nature can impact the quality of the solutions
they provide.

Continuing the exploration of these methodologies, the landscape of key player iden-
tification has been recently reshaped with the emergence of deep reinforcement learning
(DRL) [28,29]. Different from traditional approaches, DRL learns from interactions within
the environment and makes decisions based on the observed states, offering a more dy-
namic way to understand and manipulate complex networks. A representative work is
the network key node identification algorithm framework called FINDER, based on deep
reinforcement learning [30]. FINDER can be trained on small graphs and extended to mil-
lions of nodes, and it has a good identification performance. Since the FINDER algorithm
operates on a single-objective deep reinforcement learning framework, it usually requires a
large number of nodes to be removed to achieve optimal disintegration effects, even when
there are no remaining edges in the network. How to achieve the best results with as few
nodes as possible is an important issue that is worth studying.

In light of these issues, we introduce MiniKey (Leveraging Minimum Nodes for
Optimum Key Players Identification in Complex Networks), a novel algorithm that inte-
grates DRL with reward-shaping. MiniKey extends the original FINDER framework into a
multi-objective optimization field, which can navigate the balance between functionality
optimization and minimal node usage. By harnessing the power of DRL and reward shap-
ing, it ensures a more efficient and robust learning process, resulting in the identification of
fewer key players while still maintaining the network’s optimal functionality.
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To provide a vivid illustration of the effectiveness of MiniKey, we showcase its ap-
plication in the domain of crime networks in Figure 1. This figure depicts the efficient
performance of MiniKey, clearly demonstrating how it outperforms other methods, main-
taining network connectivity while minimizing the number of utilized nodes. In a direct
comparison using the 9/11 terrorist network as an example, MiniKey outperforms the
original FINDER model, preserving network connectivity by using fewer nodes, which
represents a significant step forward in this research area. This demonstration of MiniKey’s
superior performance emphasizes its potential in solving real-world problems, particularly
in maintaining optimal network functionality while minimizing node usage.
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Figure 1. Leveraging minimum nodes for optimum key players’ identification in complex net-works.
(a) The 9/11 terrorist network with 62 terrorists (nodes) and 159 relations (edges). The size of a node
corresponds to its degree. (b): HDA algorithm adaptively removes 28 nodes (grey); only 3 edges
remain in the network, but this algorithm has a poor ANC score. (c): FINDER algorithm removes
the same number of nodes as HDA, and 6 edges remain in the network. (d): MiniKey algorithm
removes the same number of nodes as HDA; only 3 edges remain in the network and an optimal
ANC score is achieved.

2. Preliminaries
2.1. Accumulated Normalize Connectivity (ANC)

Given a graph G(V, E) with vertices set V, edge set E and a connectivity metric σ,
where each edge E is a pair of distinct vertices (u, v) ∈ V ×V, the learning target in key
players’ identification is to find a optimal node removal sequence (v1, v2, · · · vn) which
minimizes the following accumulated normalize connectivity (ANC):

R(v1, v2, · · · vn) =
1
N ∑n

k=1
σ(G\{v1, v2, · · · vn})

σ(G)
(1)

In this paper, connectivity metric σ represents the size of the largest connected com-
ponent remaining in the network, in which case the problem is referred to as the network



Mathematics 2023, 11, 3690 4 of 13

dismantling problem (NC) [31]. This problem involves the identification of a sequence of
node removals that minimizes the size of the largest connected component remaining in
the network. By addressing this issue, we aim to offer new insights into the process of
network disintegration and propose more efficient strategies for identifying key players in
complex networks.

It is worth noting that the connectivity metric σ can also represent various other
network characteristics. For instance, it could represent the sum of the connectivity between
nodes, referred to as the critical node problem (CN) [32]. It could also indicate the average
geodesic distance [33] in the network among other possible measures.

2.2. Solution Length Ratio (SLR)

Given a graph G(V, E), we define the solution length ratio (SLR) under a certain
strategy as the ratio of the total number of nodes needed to disintegrate the network
until no edges remain to the total number of nodes in the original network. This can be
mathematically expressed as follows:

SLR =
|VS|
|V| (2)

Here, |VS| is the number of nodes required to dismantle the network until no edges
remain in the network; |V| is the number of nodes in the original network G(V, E). The
importance of the SLR lies in its ability to measure the resource efficiency of a network-
disintegration strategy. In practical scenarios, it is often preferable to achieve the network
disintegration with as few node removals as possible due to resource constraints. Hence, a
strategy with a lower SLR would be more desirable as it indicates less resource consumption
in terms of node removals. When optimizing based solely on this metric, the problem can
be transformed into the minimum vertex cover problem (MVC) [34].

2.3. Pareto Frontier

In the field of multi-objective optimization, the pareto frontier is characterized as the
assortment of solutions (or, correspondingly, points within the objective function space)
for which no other viable solution can be found that would decrease any given criterion
without concurrently instigating an increase in at least one additional criterion.

Formally, for a problem with objectives to minimize, a solution X is said to dominate
another solution Y if, and only if:

(1) For all objectives i, 1 ≤ i ≤ k, the score of X on i is less than or equal to the score of Y
on i;

(2) There exists at least one objective j, 1 ≤ j ≤ k, such that the score of X on j is strictly
less than the score of Y on j.

3. Model of MiniKey

Here, we employ a typical encoder–decoder architecture to model the key node
identification problem on graphs. Simultaneously, we utilize a reinforcement learning
algorithm with structured reward-shaping to train the entire MiniKey model. The design
of each part of the algorithm is as follows.

3.1. Encoding Process of MiniKey

The identification of key players in complex networks heavily depends on the feature
representation of elements within the network. Therefore, an effective feature-learning
model can enhance the performance of the algorithm. In this work, we employ Graph-
Sage [35] to encode the nodes within the network into a latent representation. Furthermore,
we utilize a technique known as virtual node technology to capture the overall feature
representation of the entire network. The detailed algorithmic framework of our graph
encoding process is outlined as follows.
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Algorithm 1 is the encoding process of MiniKey; given a graph G(V, E), node features
Xv, depth K, and learnable weight parameters W1 ∈ Rc×p, W2 ∈ Rp×(p/2), W3 ∈ Rp×(p/2),
the purpose of this algorithm is to produce node embeddings zv and graph embedding zs.

Algorithm 1: Encoding process of MiniKey

Input: Graph G(V, E), node features
{

Xv ∈ R1×c, ∀v ∈ V
}

, depth K, learnable weight parameters
W1 ∈ Rc×p, W2 ∈ Rp×(p/2), W3 ∈ Rp×(p/2)

Output: Node embedding zv, ∀v ∈ V ∪ {s}
1. Add a virtual node s, which connects all nodes in G(V, E)
2. Initialize h(0)v ← ReLU(Xv ·W1) , h(0)v ← h(0)v /‖h(0)v ‖2, ∀v ∈ V ∪ {s}
3. FOR l = 1 to K
4. FOR v ∈ V ∪ {s}
5. h(l−1)

N (v) ← ∑
j∈N (v)

h(l−1)
j

6. h(l)v ← ReLU([W2 · h
(l−1)
v , W3 · h

(l−1)
N (v) ])

7. END FOR
8. h(l)v ← h(l)v /‖h(l)v ‖2, ∀v ∈ V ∪ {s}
9. END FOR
10. zv ← h(K)v , ∀v ∈ V ∪ {s}

The algorithm starts by adding a virtual node s that connects to all nodes in the graph.
This node is referred to as the graph state. The embeddings h(0)v for the nodes and the
virtual node are then initialized. The function Rectified Linear Unit (ReLU) is applied to
the dot product of the node features Xv and the weight parameters W1, and the result is
then normalized using the L2 norm. The algorithm then enters a loop that runs K times.
This loop corresponds to the K layers of the graph neural network. In each iteration, it
calculates the new embeddings for each node and the virtual node. Inside this loop, there
is a nested loop that runs for every node v in the graph and the virtual node. For each node
v, the embedding h(l−1)

N (v) is calculated by summing the embeddings h(l−1)
j of all nodes j in

its neighborhood N (v). Then, the new embedding h(l)v for each node v is calculated by
applying the ReLU function to the concatenation of the dot product of W2, and the previous
embedding h(l−1)

v of the node and the dot product of W3, and the newly calculated neighbor
nodes embedding h(l−1)

N (v) . After all nodes have been processed, the new embeddings h(l)v

are normalized using the L2 norm. Finally, after K layers, the final embeddings zv are
calculated for each node and the virtual node. These are simply the final h(K)v values. These
embeddings can then be used for subsequent tasks, such as the identification of key players
in the network.

3.2. Decoding Process of MiniKey

We use a two-layered MLPs to decode a state–action pair (s, a) to a scalar value Q(s, a)
that predicts the maximal rewards after taking action a in a given state s, which is defined
as shown below:

Q(s, a) = W>5 ReLU (z>a · zs ·W4) (3)

Here, W4 ∈ Rp×1, W5 ∈ Rp×1, are learnable weight parameters, zs and za ∈ R1×p are
the state-embedding (Graph) and action-embedding, respectively, which are produced by
Algorithm 1.

3.3. Training Algorithm of MiniKey

To leverage a minimum number nodes to find the optimum key players sets in complex
networks, we formulate this problem as a Markov Decision Process (MDP) in a graph. The
reinforcement learning components of MiniKey are outlined below:
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States: The state, denoted as S in MiniKey, is the current configuration of the network
graph G. It represents the partial solution to the key player identification problem. Each
state is represented as a vector in a p-dimensional space, which is defined in Algorithm 1
as zs.

Transitions: The transition function in MiniKey is deterministic and corresponds to
the selection of a node v ∈ G that is not yet part of the state S.

Actions: An action in MiniKey corresponds to the selection of a node v that is not
currently part of the state S. The node is also represented by its p-dimensional embedding
as zv in Algorithm 1.

Rewards: The reward r(S, v) in MiniKey can be be defined as ANC, i.e., the increase
in ANC after selecting node vk as the action and transitioning to the new state S′ =
(S, vk).Therefore, it can be expressed as:

r(vk) =
1
N

σ(G\{v1, v2, · · · vk})
σ(G)

(4)

The cumulative reward of a terminal state Ŝ aligns with the cost function value of Ŝ:

R(Ŝ) =
|Ŝ|

∑
i=1

r(Si, vi) = R(v1, v2, · · · vn) =
1
N ∑n

k=1
σ(G\{v1, v2, · · · vn})

σ(G)
(5)

In addition to considering the original ANC as the objective of reinforcement learning,
we also incorporate an additional structural penalty as a constraint for the agent. The
learning objective of MiniKey is to simultaneously optimize ANC and SLR, that is, to
identify the optimal key nodes with as few nodes as possible, which could lead to multi-
objective reinforcement learning [36,37].

Inspired by the network dismantling algorithm CoreHD [38], we observed that, for the
network dismantling problem, star-shaped networks are more optimal for disintegration.
In such cases, removing only the central node can disconnect many edges. Conversely, if
there are too many nodes with degrees 1 or 2 in the largest connected component, a large
number of nodes will need to be consumed in order to ensure that there are no remaining
edges in the network. Nodes with a degree of 1 in a network are usually leaf nodes, and
nodes with a degree of 2 are typically located in chains and cycles; the more of these two
types of nodes there are, the more nodes need to be removed to ensure no edges exist in
the network. In the extreme case of a chain of length N, to ensure that there are no edges, it
would be necessary to remove N-1 nodes.

Based on these observations, we modified our reward function to include a penalty
term, specifically, the number of nodes in the largest connected component of the remaining
network with degrees 1 or 2. This design intends to minimize the presence of nodes with
degrees 1 or 2 in the largest connected component while optimizing network dismantling.
Experiments demonstrate that this crucial reward function design enables our MiniKey
framework to identify the key nodes in the network with fewer nodes.

Rtot(v1, v2, · · · vn) = R(v1, v2, · · · vn) + Rpenalty(v1, v2, · · · vn)

= 1
N ∑n

k=1 (
σ(G\{v1,v2,···vk})

σ(G)
) + 1

N ∑n
k=1 (

|N|LCC
1,2 (G\{v1,v2,··· ,vk})

σ(G)
)

= 1
N ∑n

k=1 (
σ(G\{v1,v2,···vk})

σ(G)
+
|N|LCC

1,2 (G\{v1,v2,··· ,vk})
σ(G)

)

(6)

As illustrated in Equation (6), Rtot(v1, v2, · · · vn) is the total reward of MiniKey,
R(v1, v2, · · · vn) is the original reward of NC, and Rpenalty(v1, v2, · · · vn) is the penalty term,
where |N|LCC

1,2 (G\{v1, v2, · · · , vk}) is the number of nodes with degrees of 1 or 2 in the
largest connected component (LCC) of the left graph.

It is worth noting that the learning objective of MiniKey is to minimize the reward
function Rtot(v1, v2, · · · vn), and the original reward function R(v1, v2, · · · vn) will inevitably
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monotonically decrease as the network scale decreases. At this time, the optimal effect of
the reward function Rtot(v1, v2, · · · vn) after reward-shaping can only be achieved when the
structural penalty reward Rpenalty(v1, v2, · · · vn) also decreases. That is, while reducing the
number of nodes with a degree of 1 or 2 in the largest connected component, the size of the
largest connected component in the remaining network decreases the fastest.

Policy: The policy in MiniKey is based on the approximated Q-function, Q̂. A deter-
ministic greedy policy π(v|S) = argmaxv′∈SQ̂(zs, v′) is applied. When action v is taken, a
node from G is added to the current partial solution, leading to a reward r(S, v) = Q(s, a)
which is defined in Equation (3).

Based on the aforementioned modeling, we use the DQN [39] algorithm to train
MiniKey using simulated Barabási–Albert (BA) graphs as training samples. DQN is a
variant of reinforcement learning where Q-Learning is combined with deep neural networks.
This objective can be mathematically defined by the following cost function:

J(θ) = E(s,a,r,s′)∼D[(r + γmaxa′Q(s′, a′; θ′)−Q(s, a; θ))
2
] (7)

In Equation (7), s represents the current state, a is the action taken, r is the reward
received, and s′ is the new state after taking action a. D is the experience replay memory,
Q(s, a; θ) is the Q-value function approximated by the network with parameters θ, and γ is
the discount factor.

4. Results
4.1. Results on Synthetic Graphs

During the training phase, we employed the Barabási Albert model (BA) with a default
parameter setting: m = 4 (the number of edges attached from a new node to existing ones),
and node number is uniformly chosen from the range [30, 50] (indicating that the node
count varies between 30 and 50). All experiments were conducted on a platform equipped
from Huawei Cloud with a Nvidia GeForce Tesla V100-32GB GPU.

In the testing phase, synthetic graphs were generated, maintaining m = 4, but with
varying node numbers divided into scales: 30–50, 50–100, 100–200, 200–300, 300–400,
and 400–500. For each node size category, we created 100 test graphs. Subsequently, we
gauged the performance of several algorithms, namely, HDA [12], HBA [14], HCA [40],
HPRA [15], FINDER [30], and MiniKey, on these generated datasets. This methodology
ensured a comprehensive evaluation, permitting a detailed comparison of the methods
across different graph sizes.

Figure 2 provides a comprehensive overview of the average performance (ANC and
SLR) of various methods on these synthetic datasets. Importantly, we highlighted the error
bars in the figure to depict the standard deviations of each method across the 100 test
graphs. From Figure 2a, which shows the ANC results, we can observe that the MiniKey
method generally outperforms the other techniques across all graph sizes. It achieves the
lowest ANC in all categories except for the 30–50 and 50–100 range, where it is narrowly
beaten by HBA. This indicates that MiniKey is more effective at identifying key nodes
within the networks, as a lower ANC indicates a more effective disintegration of the largest
connected component. The performance of MiniKey is especially noticeable in larger graph
sizes (200–500), where it consistently outperforms the other methods. Figure 2b presents
the SLR results across different graph sizes. The SLR measures the ratio of the nodes
used by an algorithm to break the network completely. Here, MiniKey demonstrates an
impressive performance again, consistently using fewer nodes compared to the majority
of other methods across all graph sizes. This performance indicates a higher efficiency in
utilizing network nodes for MiniKey. However, it is noteworthy that HDA method also
showcases a competitive performance, with SLR closely following MiniKey’s.
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Moveover, according to Figure 3, which illustrates the Pareto Front comparison of
different methods on six simulated datasets, it is evident that the competitive performance
of MiniKey in both identifying critical nodes within the network and efficiently using nodes
to break down the network.
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Figure 3. Comparison of pareto frontiers across different methods on six simulated datasets (a–f).
MiniKey has the best performance when considering both ANC and SLR metrics simultaneously.

4.2. Results on Real-World Networks

During the testing phase on real-world graphs, we used the best model, trained on
simulated BA graphs (with node range 30–50 and m = 4), as the default parameters for
MiniKey. We selected six real datasets from SNAP Datasets [41]: Crime, HI-II-14, Digg,



Mathematics 2023, 11, 3690 9 of 13

Enron, Gnutella31, and Facebook. These datasets cover a wide range of fields, including
criminal networks, biological networks, social networks, and communication networks.
Table 1 presents the details of the network structures of these datasets, including node
number, edge number, maximum degree, average degree, diameter, clustering coefficient
and assortativity.

Table 1. Statistical analysis of network structures for six real-world datasets examined in this study.

Statistics/Dataset Crime HI-II-14 Digg Enron Gnutella31 Facebook

Node Number 829 4165 29,652 33,696 62,561 63,392

Edge Number 1473 13,087 84,781 180,811 147,878 816,831

Maximum Degree 25 286 310 1383 95 1098

Average Degree 3.55 6.28 5.72 10.73 4.73 25.77

Diameter 10 11 12 11 11 15

Clustering
Coefficient 0.0058 0.0444 0.0054 0.5092 0.0055 0.2218

Assortativity −0.1645 −0.2016 0.0027 −0.1165 −0.0927 0.1768

Furthermore, we compared MiniKey with network critical node identification algo-
rithms that can run on large-scale networks, such as CI [16], MinSum [31], CoreHD [38],
GND [23], and FINDER [30]. Table 2 and Figure 4, respectively, present the ANC score
and the ANC curves of different methods on six real-world datasets. From the results, we
can observe that FINDER and MiniKey consistently outperform the other methods across
all datasets. Specifically, on Crime, HI-II-14, and Digg datasets, FINDER and MiniKey
excel by providing the most accurate identification of key nodes. For the Gnutella31 and
Facebook datasets, although BPD and MiniKey perform slightly better, FINDER still de-
livers results that are quite close to the top performers, indicating its effectiveness in key
node identification.

Table 2. The ANC score of different methods on six real world dataset.

Method/Dataset Crime HI-II-14 Digg Enron Gnutella31 Facebook

CI 0.1243 0.0616 0.0866 0.0445 0.1174 0.2695

MinSum 0.1383 0.0652 0.0952 0.0477 0.1173 0.2725

CoreHD 0.1133 0.0606 0.0868 0.0514 0.1197 0.2747

GND 0.1381 0.0694 0.1066 0.0456 0.1257 0.2742

FINDER 0.1099 0.0554 0.0866 0.0430 0.1110 0.2684

MiniKey 0.1085 0.0566 0.0858 0.0509 0.1045 0.2810

Table 3 provides the solution length ratio (SLR), which measures the number of nodes
each method uses to successfully decompose the network, a critical factor when evaluating
efficiency. MiniKey exhibits an excellent performance in this respect, requiring the fewest
nodes across all datasets to accomplish this task. It is particularly remarkable in the Crime
and HI-II-14 datasets, significantly outperforming all other methods. FINDER also shows
impressive results, especially on the Digg and Enron datasets, demonstrating high efficiency
by maintaining a low SLR.

Additionally, as depicted in Figure 5, showing the pareto frontiers comparison of vari-
ous methods across six real-world datasets, MiniKey evidently has a superior performance.
In summary, both FINDER and MiniKey display an exceptional performance in critical
node identification and the efficiency of network decomposition. MiniKey stands out due
to its efficiency in maintaining a low SLR across all test datasets. This efficiency results in
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resource savings and an enhanced performance, marking it as a highly effective solution
for network-dismantling problems.
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5. Discussion

The MiniKey algorithm proposed in this paper highlights a significant step forward
in identifying key players in complex networks, emphasizing the use of minimal nodes.
Evaluations across different datasets showcase its strength and flexibility. However, upon
closer examination, clear challenges and details emerge, which are discussed as follows.

Scalability: while MiniKey exhibits notable proficiency with both small simulated
graphs and extensive real-world datasets, care should be taken when navigating exception-
ally large-scale networks. Networks characterized by complex structures or abundant node
interactions might introduce challenges, potentially impacting the algorithm’s reliability.

Dependency on Graph Representation: central to MiniKey’s efficacy is its reliance on
the graph representation technique, GraphSage. Nevertheless, as the landscape of graph
neural networks (GNNs) continues to evolve, considering newer architectures might be
beneficial. For instance, Graph Attention Network (GAT) [42], Message Passing Neural
Networks (MPNN) [43], and Geometric Graph Convolutional Networks (Geom-GCN) [44]
and et al. Incorporating or adapting components from these latest developments could
potentially offer a more comprehensive embedding for Minikey, enhancing its capacity to
tackle more intricate and diverse graph structures.

Structured Reward Shaping: our approach to reward-shaping is certainly innovative.
However, it strongly relies on preset network functional markers. The absence of compre-
hensive markers or overlooking of pivotal network dynamics might steer the reinforcement
learning agent away from the most fruitful actions.

Adaptability to Dynamic Networks: at present, MiniKey is fine-tuned to cater to static
graphs. The ever-evolving landscape of dynamic networks, where node relationships
fluctuate over time, presents a distinct challenge. Addressing this issue would require
major changes to our current approach.

In conclusion, MiniKey presents a promising approach to optimum key players’ identi-
fication with minimum nodes in complex networks; however, a comprehensive understand-
ing and careful consideration of its limitations and intricacies are pivotal to harnessing its
full potential and paving the way for future refinements in complex network analyses.

6. Conclusions

This paper presents MiniKey, an innovative approach to leveraging minimum nodes
for optimum key players’ identification in complex networks. Experiments conducted on a
range of simulated and real-world datasets attest to the superior performance of MiniKey
compared to other leading methods in terms of the Accumulated Normalized Connectivity
(ANC) score and Solution Length Ratio (SLR). MiniKey outperforms existing strategies in
its ability to identify and eliminate network edges, thereby proving its practical utility in
various fields, including crime networks, social networks, communication networks, and
bio-networks. Notably, MiniKey’s unique strength lies in its efficiency, as it consistently uses
fewer nodes to break network connectivity, providing resource savings and an enhanced
performance. MiniKey reshapes our understanding of how to maintain or break network
connectivity with minimal movements. Such insights can redefine current network analysis
techniques, benefiting stakeholders in domains such as social media, urban planning, or
epidemiology. Despite these promising results, the potential for future improvements
and applications of MiniKey remains vast. Future research might focus on extending the
approach to handling larger, more complex network structures or integrating it with other
network analysis tools for more comprehensive network solutions. The adaptability and
efficacy of MiniKey make it an exciting and promising frontier for network analysis.
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