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Abstract: This current investigation aims to explore the significance of induced magnetic fields and
double-diffusive convection in the radiative flow of Carreau nanofluid through three distinct geome-
tries. To simplify the fluid transport equations, appropriate self-similarity variables were employed,
converting them into ordinary differential equations. These equations were subsequently solved
using the Runge–Kutta–Fehlberg (RKF) method. Through graphical representations like graphs and
tables, the study demonstrates how various dynamic factors influence the fluid’s transport character-
istics. Additionally, the artificial neural network (ANN) approach is considered an alternative method
to handle fluid flow issues, significantly reducing processing time. In this study, a novel intelligent nu-
merical computing approach was adopted, implementing a Levenberg–Marquardt algorithm-based
MLP feed-forward back-propagation ANN. Data collection was conducted to evaluate, validate,
and guide the artificial neural network model. Throughout all the investigated geometries, both
velocity and induced magnetic profiles exhibit a declining trend for higher values of the magnetic
parameter. An increase in the Dufour number corresponds to a rise in the nanofluid temperature. The
concentration of nanofluid increases with higher values of the Soret number. Similarly, the nanofluid
velocity increases with higher velocity slip parameter values, while the fluid temperature exhibits
opposite behavior, decreasing with increasing velocity slip parameter values.

Keywords: Carreau nanofluid; induced magnetic field; wedge/plate/stagnation point; chemical
reaction

MSC: 65N12; 76M22; 76M25; 80M25

1. Introduction

The circulation of blood is a fundamental component of human physiology, and
comprehending its kinetics of paramount importance to numerous disciplines, such as
biomedical engineering and healthcare investigation. The investigation of blood flow in
bioengineering facilitates the development of medical equipment and innovations that can
aid or supplant the operation of the cardiovascular system, including but not limited to
artificial heart valves, stents, and pumps. Bioengineers can design devices that optimize
blood flow, minimize turbulence, and reduce the risk of clotting by comprehending the
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fluid mechanics of blood flow. Additionally, these hemodynamic stresses can cause damage
to blood vessels. The investigation of blood circulation is an essential aspect of medical
research as it provides insights into various cardiovascular ailments and conditions, includ-
ing but not limited to hypertension, atherosclerosis, and aneurysms. Medical professionals
employ diverse methodologies, such as medical imaging and computational simulations,
to scrutinize blood circulation in distinct areas of the circulatory system and evaluate the
impact of different interventions or therapies. This knowledge facilitates physicians in
the diagnosis and treatment of cardiovascular diseases with greater efficacy, and in the
development of novel therapies that can enhance patient outcomes. The phenomenon of
heat transfer holds significant importance in the context of blood circulation within the
human body. The transportation of heat throughout the body is facilitated by blood, and
the interaction between blood and the adjacent tissues in terms of heat exchange has an
impact on various physiological mechanisms, including blood circulation [1–7]. Alghamdi
et al. [8] examined the MHD flow of a hybrid nanofluid in a microcirculatory system with
the use of the delivery procedure. The energy equation is purported to maintain a con-
sistent temperature for the blood flow through the incorporation of the heat source/sink
term. Dharmaiah et al. [9] investigated the features of heat transmission by examining
the influence of the supply of blood velocity and circulation flow temperature slips via
the Casson blood-flow ferromagnetic fluid throughout a sheet that was stretched through
a wide range of fluid-controlling governing parameters. Jiang et al. [10] conducted re-
search on a nonlinear fractional differential equation using the predictor-corrector compact
difference system. Yang et al. [11] examine a space-time Sinc-collocation approach for
solving the fourth-order nonlocal heat model emerging in viscoelasticity, a class of partial
integrodifferential equations whose solution generally shows weak singularities at starting
point time.

Artificial intelligence (AI), a branch of computer science, focuses on tasks with a de-
fined goal, such as problem-solving, environmental adaption, decision-making, learning,
and communication. Artificial intelligence (AI) finds application in diverse fields such
as robotics, computer vision, pattern recognition, information retrieval, natural language
processing, medical image computing, machine learning, image processing, data mining,
knowledge representation, and other related domains. The artificial neural network (ANN)
is a widely used methodology that emulates neural processes to mimic the cognitive func-
tions of the human brain [12,13]. The significance of this factor is found to be crucial in
addressing numerous intricate challenges in the field of physical engineering. Consequently,
it is widely utilized with great efficacy in various mechanical systems such as combustion
engines, refrigeration systems, and thermal devices. The researchers initially examined the
effect of nanoparticle size, temperature, and particle concentration on thermal conductivity
to estimate it using the ANN method. The utilization of artificial neural networks (ANN) is
an effective method for the simulation of blood flow within the human circulatory system.
This technique can facilitate the comprehension of the fundamental physiology and patho-
physiology of diverse cardiovascular ailments. Artificial neural network (ANN) models
have the potential to be trained on medical imaging data, including magnetic resonance
imaging (MRI) or computed tomography (CT) scans. This can enable the prediction of
blood flow patterns and the identification of areas within the circulatory system that may
be compromised or obstructed. The aforementioned data have the potential to aid in the
identification of cardiovascular ailments and strategizing of corresponding therapeutic
interventions. Furthermore, artificial neural network (ANN) models have the potential to
simulate the hemodynamics of blood flow within the circulatory system and investigate
the impacts of different interventions or treatments. This methodology has the potential to
facilitate researchers in comprehending the underlying mechanisms of diverse cardiovascu-
lar ailments and evaluating prospective therapeutic interventions. These models have been
employed for the purpose of constructing predictive models for cardiovascular ailments,
including hypertension, atherosclerosis, and aneurysms. Through the examination of
extensive patient cohorts, researchers have the ability to instruct artificial neural network
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models to forecast the likelihood of disease development by utilizing diverse demographic,
genetic, and environmental determinants [14–20]. Shilpa and Leela [21] explore the effects
of local thermal nonequilibrium, induced magnetic field, and radiative heat on the magne-
tohydrodynamic mixed convective flow in the vertically circular permeable region. These
effects are investigated using artificial neural networks (ANN) and LBM. The nanomaterial
magnetohydrodynamic (MHD) flow of Ree–Eyring fluid between two spinning disks was
analyzed utilizing an artificial neural network by Zhao et al. [22].

In the majority of scientific and practical applications for changing natural processes,
viscoelastic non-Newtonian fluids are chosen over Newtonian fluids. The diverse proper-
ties of Newtonian materials cannot be adequately represented by a solitary constitutive
relationship between sharing rate and stress (examples: water, air, alcohol and glycerol).
The non-Newtonian paradigm encompasses a diverse array of constitutive relationships.
Blood is classified as a non-Newtonian fluid due to its variable viscosity in response to
changes in shear rate or applied force. At low shear rates, blood exhibits solid-like behav-
ior, whereas at high shear rates, it exhibits liquid-like behavior [23–29]. The anomalous
fluid dynamics exhibited by blood can be attributed to the existence of red blood cells,
which possess the ability to undergo deformation and alter their morphology in reaction
to the externally imposed shear stress. Under conditions of low shear rates, red blood
cells have a tendency to aggregate and coalesce, resulting in the formation of clusters that
contribute to an elevation in blood viscosity. Under conditions of high shear rates, the
erythrocytes undergo alignment and directional flow, resulting in a reduction in blood
viscosity. Comprehending the non-Newtonian characteristics of blood holds significant
importance in numerous medical domains, including but not limited to blood rheology,
hemodynamics, and blood flow simulations. The aforementioned phenomenon holds
significant ramifications for the identification and management of cardiovascular ailments,
including thrombosis, wherein alterations in blood viscosity can exert an impact on the
genesis and endurance of blood coagulation. Comprehending the flow characteristics of
biological fluids holds significance in the development of tissue-engineered structures that
can emulate the performance of native tissues. Nanoparticles in an MHD Carreau fluid
were subjected to a time-dependent stretching sheet with heat radiation and examined for
their effects of multislip with multistratification by Faraz et al. [30]. Algehyne et al. [31]
study the mixed convection flow of micropolar Carreau–Yasuda hybrid nanoliquid across
a convectively heated Riga plate at a stagnation point. Shojaei et al. [32] used molecular
dynamics simulation to study the impacts of atomic percentage and size of zinc nanopar-
ticles as well as atomic porosity on the thermal behavior and mechanical performance of
reinforced calcium phosphate cement. Koochaki et al. [33] employed the molecular dynam-
ics technique and LAMMPS (www.lammps.org (accessed on 1 January 2023)) software to
examine the atomic and mechanical performance of a polyethylene glycol-based hydrogel–
cellulose nanocomposite as a wound-healing biostructure. Almitani et al. [34] investigated
the impact of numerous surfactants on the thermal conductivity of nanofluids made of
silica and deionized water. The nanofluids used in this investigation were produced using
a two-step process.

Biomedical engineers, medical scientists, and physicians are interested in observing
blood flow rate since it is used to diagnose cardiovascular disorders, including atheroscle-
rosis and arrhythmia. Numerous researchers have investigated blood flow through the
cardiovascular system using various non-Newtonian fluid models. Due to its shear-thinner
characteristics, the Carreau fluid model may more precisely depict the rheological behavior
of blood. Furthermore, magnetic properties are a noninvasive diagnostic tool that can
be used to identify a variety of diseases and conditions, such as tumors, joint injuries,
and injuries to the brain and spinal cord. The primary objective of the current study is to
demonstrate the occurrence of double-diffusive convection in the radiative flow of blood
nanofluid over three distinct geometries, namely plate, wedge, and stagnation point, under
the influence of an induced magnetic field. The current literature has been extensively
reviewed, revealing a lack of attempts to demonstrate the flow of forced convective blood
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nanofluid over three distinct geometries in the occurrence of an induced magnetic field. The
current framework involves the utilization of Carreau nanofluid as a substitute for blood.
The current issue is modeled using the nonhomogeneous equilibrium model. The current
model has the potential to be utilized for the analysis of fluid transport characteristics in
blood flow within a cardiovascular system, catheterized artery, and various hyperthermia
treatments, such as cancer therapy. The self-similarity variables that were acquired are ap-
propriate for accommodating any fluid Prandtl number. This study presents a new method
for intelligent numerical computation, which involves the use of a Levenberg–Marquardt
algorithm-based MLP feed-forward back-propagation ANN implementation [35,36]. The
implementation of suitable self-similarity variables has enabled the transformation of
equations governing fluid transport into equations of ordinary differential nature. The
aforementioned equations were solved using the Runge–Kutta–Fehlberg (RKF) numerical
integration technique.

2. Problem Formulation

The schematic illustration of three different geometries is shown in Figure 1. This
study focuses on the Falkner–Skan unsteady forced convective flow of blood nanofluid.
It is assumed that the velocity of the potential flow out from the boundary layer is given
by the equation u∞ = bxm, with b standing for the constant. In the provided equations, u
and v are the velocity components along the x and y directions. The wall’s temperature
(Tw) and concentration (Cw) are elevated compared to the ambient temperatures (T∞) and
concentrations (C∞). It is assumed that a magnetic field of uniform induction with an
intensity of H0 = He is applied to the surface in a direction perpendicular to it. Once H2
reaches the surface and H1 attains the value of H0, the induced magnetic field’s typical
component vanishes.

• This study investigates the properties of forced convective flow of Cross nanofluid,
which is characterized by its laminar, steady, and incompressible nature.

• The formula for momentum neglects the body force, such as the Lorentz force.
• The rheological behavior of blood nanofluid is characterized using the Carreau

nanofluid model.
• Viscose dissipation and impacts from linear radiation are taken into account in the

temperature equation. The Buongiorno nanofluid model is employed to simulate the
governing equations.

• The mass transfer equation incorporates a chemical reaction of a destructive nature.
• n = 1

6 for plate, wedge, and stagnation point of a flat plate.

• m =
(

1
(2/β1)−1

)
β1 = 0, 0.5, 1 represents plate, wedge and stagnation point, respec-

tively, n1 ∈ [0, 1].
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The aforementioned factors have led to the expression of the fluid transport equations
in Cartesian coordinates (x, y) for the current problem [37–41].

Continuity equation:
∂u
∂x

+
∂v
∂y

= 0 (1)

Momentum equation:

u ∂u
∂x + v ∂u

∂y = u∞
du∞
dx −

µmp He
4πρ f

dHe
dx +

µmp
4πρ f

(
H1

∂H1
∂x + H2

∂H1
∂y

)
+υ f

∂2u
∂y2

[
1 + Γ2

(
∂u
∂y

)2
] nk−1

2
+ υ f (nk − 1)Γ2

(
∂u
∂y

)2
∂2u
∂y2

[
1 + Γ2

(
∂u
∂y

)2
] nk−3

2 (2)

Induced magnetic field equation:

u
∂H1

∂x
+ v

∂H1

∂y
− µe

∂2H1

∂y2 = H1
∂u
∂x

+ H2
∂u
∂y

(3)

Energy equation:

u
∂T
∂x

+ v
∂T
∂y

= α f
∂2T
∂y2 + τ

(
DB

∂T
∂y

∂C
∂y

+
DT
T∞

(
∂T
∂y

)2
)
− 1(

ρcp
)

f

∂qr

∂y
+

DmkT
cp f cs

∂2C
∂y2 (4)

Concentration equation:

u
∂C
∂x

+ v
∂C
∂y

= DB
∂2C
∂y2 +

DT
T∞

∂2T
∂y2 − K2

r (C− C∞) +
DmkT

Tm

∂2T
∂y2 (5)

Subject to the boundary conditions

u = L1
∂u
∂y

[
1 + Γ2

(
∂u
∂y

)2
] nk−1

2
, v = 0, ∂H1

∂y = H2 = 0, −k f
∂T
∂y = h f (Tw − T), C = Cw at y = 0,

u = u∞, H1 = He → H0, T → T∞, C → C∞ as y→ ∞.
(6)

where u∞ = bxm is the free stream velocity, b is the constant. The parameter λ = δ1
√

Re,
which is suitable to choose any fluid Prandtl number value. Here, δ1 =

√
Pr

(1+Pr)2n , n = 1
6

for plate, wedge and stagnation point of a flat plate, and Re = xu∞
υ f

is the Reynolds number.
The radiative heat flux is provided in Equation (4) by

qr = −
4σ∗

3k∗1

∂T4

∂y
, (7)

where k∗1 is the mean absorption coefficient and σ∗ is the Stefan–Boltzmann constant. If the
temperature gradients within the blood flow mass are negligibly small, then Equation (7)
can be linearized by expanding T4 into the Taylor’s series about T∞, and neglecting higher-
order terms, we obtain

T4 ∼= 4T3
∞T − 3T4

∞ (8)

The appropriate variables for self-similarity are formulated in the following ap-
proach [38].

η = λ
( y

x
)
, f (η) = ψ(x,y)

λα∗ , u = bxm f ′(η)
(1+Pr)2n , H1 = H0g′(η)xm

(1+Pr)2n ,

v = −λ
(

α f
x

)[
m+1

2 f (η) + m−1
2 η f ′(η)

]
,

H2 = −H0λ
b

(
α f
x

)[
m+1

2 g(η) + m−1
2 ηg′(η)

]
,

T = T∞ + (TW − T∞)θ(η), C = C∞ + (CW − C∞)φ(η).

(9)
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Substituting Equation (9) into the Equations (2)–(6), we obtain

Pr
(

d3

dη3 f (η)
)(

1 + nk
PrWe2

(1+Pr)6n

(
d2

dη2 f (η)
)2
)[

1 + PrWe2

(1+Pr)6n

(
d2

dη2 f (η)
)2
] nk−3

2

−βmpm(1 + Pr)4n + m(1 + Pr)4n −m
(

d
dη f (η)

)2
+
(

m+1
2

)
f (η) d2

dη2 f (η)

−βmp

(
(m+1)

2 g(η) d2

dη2 g(η)−m
(

d
dη g(η)

)2
)
= 0

(10)

MmpPr
d3

dη3 g(η) +
(

m + 1
2

)(
f (η)

d2

dη2 g(η)− g(η)
(

d2

dη2 f (η)
))

= 0 (11)

(
1 + 4

3 Rd
)

d2

dη2 θ(η) + (m+1)
2 f (η) d

dη θ(η)

+Pr
(

NT

(
d

dη θ(η)
)2

+ NB
d

dη θ(η) d
dη φ(η)

)
+ PrDr

d2

dη2 φ(η) = 0
(12)

Pr
Sc

d2

dη2 φ(η) +
(m + 1)

2
f (η)

d
dη

φ(η) +
Pr
Sc

NT
NB

d2

dη2 θ(η)− γ(1 + Pr)2nφ(η) + PrSr
d2

dη2 θ(η) = 0 (13)

Subject to the boundary conditions

d
dη f (η) = αs

√
Pr

(1+Pr)n
d2

dη2 f (η)
[

1 + PrWe2

(1+Pr)6n

(
d2

dη2 f (η)
)2
] nk−1

2
, f (η) = 0,

d2

dη2 g(η) = g(η) = 0, d
dη θ(η) = − Bi(1+Pr)n

√
Pr

(1− θ(η)), φ(η) = 1 at η = 0
d

dη f (η) = d
dη g(η) = (1 + Pr)2n, θ(η)→ 0, φ(η)→ 0 as η → ∞

(14)

where m is the Hartree pressure gradient parameter, Pr =
υ f
α f

is the Prandtl number,

We =

√
Γ2u3

∞
xυ f

is the Weissenberg number, Mmp = µe
υ f

is the magnetic Prandtl number,

βmp =
µmp

4πρ f

(
H0
b

)2
is the magnetic parameter, NT = τDT(Tw−T∞)

T∞υ f
is the thermophoresis

parameter, NB = τDB(Cw−C∞)
υ f

is the Brownian motion parameter, Rd = 4σ∗T3
∞

k1
∗k f

is the radia-

tion parameter, Sr =
DmkT(Tw−T∞)
υ f (Cw−C∞)Tm

is the Soret number, Dr =
DmkT(Cw−C∞)

υ f (Tw−T∞)cp f cs
is the Dufour

number, Sc =
υ f
DB

is the Schmidt number, γ = xK2
r

u∞
is the chemical reaction parameter,

Bi =
h f
k f

√
xυ f
u∞

is the Biot number, and αs = L1
√

u∞
xυ f

is the velocity slip parameter.

The values for the skin friction factor, heat transfer rate, and mass transfer rate are
provided as follows:

C∗f =
2
√

Pr
(1+Pr)3n

(
1 + PrWe2

(1+Pr)6n ( f ′′ (0))2
) nk−1

2
f ′′ (0),

Nu∗ = −
[
1 + 4

3 Rd
]
θ′(0),

Sh∗ = −φ′(0).

(15)

where C∗f = C f Re1/2, Nu∗ = NuRe1/2δ1
−1, Sh∗ = ShRe1/2δ1

−1, Nn∗ = NnRe1/2δ1
−1.

3. ANN Modeling

The artificial neural network is a contemporary computer system approach that is
based on the concept of the human brain functioning as a network of interconnected neural
cells. This phenomenon has been identified as a replication of the evolutionary process
of neural networks observed in the human brain. This model exhibits comparable perfor-
mance to the human brain with respect to optimization, clustering, learning, classification,
prediction, and generalization [12].
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The subsequent phrases outline the principal benefits of utilizing the artificial neural
network methodology.

• The artificial neural network (ANN) has demonstrated remarkable effectiveness and
efficacy even when deployed on a limited hardware infrastructure.

• The intricate process of class-distributed mapping is surprisingly simplified by the
use of artificial neural networks.

• The input vector is responsible for determining the appropriate outcomes within the
training set.

• The weights that represent outcomes are acquired through iterative training.

The artificial neural network (ANN) utilized in this study is a computational approach
inspired by the human brain’s network of interconnected neurons. It is designed to handle
complex tasks such as problem-solving, learning, and prediction. The ANN consists of
multiple layers, including an input layer that receives data, hidden layers that process
information, and an output layer that generates predictions. The ANN model employed in
this research is a multilayer perceptron (MLP) feed-forward network, which is a widely
used architecture. It comprises nodes arranged in layers, with connections between nodes
in adjacent layers. The back-propagation algorithm is utilized for training, which is applied
to adjust the weights of connections iteratively to minimize prediction errors. A key
parameter is the number of hidden layers and nodes, which is determined through iterative
optimization. This ANN model is trained on data, utilizing 70% for training, 15% for
validation, and 15% for testing. The model’s ability to predict fluid flow characteristics, such
as skin friction and heat transfer rates, is demonstrated through comparison with numerical
simulations. The ANN’s ability to capture intricate relationships within the data enables it
to produce accurate predictions, offering an efficient alternative to traditional computational
methods. The development of a training algorithm and the establishment of interneuronal
connections yield diverse neural network structures. The stratification of neural networks is
frequently attributed to the close interplay among individual neurons. The artificial neural
network (ANN) methodology comprises three unique strata, namely the input, hidden, and
output layers. The layers of the system receive external information, undergo processing,
and subsequently transmit the output through the artificial neural network. The input
layer transmits information to the hidden layer neurons in an unmodified state without
undergoing any processing by the input layer’s processing components. It is imperative to
acknowledge that the weights, connection lines, and interconnecting neurons facilitate the
transmission of information. A database is maintained by the system to facilitate training
of artificial neural networks (ANNs), wherein input values and weights are stored. The
construction of an artificial neural network is guided by the utilization of data, which
takes into account various factors, such as determining the optimal number of layers and
hidden neurons.

The multilayer perceptron architecture-based feed-forward neural network (FFNN)
has gained significant popularity and interest as an artificial neural network (ANN) model
and is currently the most commonly employed. Alternative techniques for training feed-
forward neural networks exhibit inferior efficiency compared to the back-propagation
method. The back-propagation algorithm is capable of modifying the weights of individual
neurons during the computation of the network’s output error. This weight adjustment is
uniformly implemented across all neurons to reduce the output error.

The subsequent expression represents the net input of the jth hidden neuron, as
depicted in Figure 2.

The ith node input layer is denoted as xi, the jth node hidden layer is indicated as aj,
and the linking weight between xi and aj is represented as W1ji.

The output’s jth hidden node is represented as follows:

zj(x) =
1

1 + e−yj(x)
,
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The output layer’s kth node is indicated as follows:

ok(x) =
m

∑
j=1

W2kjzj + bk

W2kj is the connecting weight between the kth node of the output layer and the jth
node of the hidden layer, where bk is the biasing term at the kth node of the output layer.
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The present study involves the quantification of skin friction and heat transfer rates
for representative samples of artificial neural network (ANN) output nodes, as depicted
in Figure 3. The trained network’s characteristics, including its layer counts, are listed in
Table 1. The parameters We, βmp and αs and Bi, NT , NB, Dr, and Sr are estimated for the
input node samples. The process of trial and error is employed to ascertain the optimal
number of nodes in the hidden layer of a neural network, taking into account the number
of training epochs necessary for the network, preventing the over- or under-setting of
input parameters, and guaranteeing the successful completion of the learning process.
After conducting multiple iterations, it was determined that the convergence criteria
utilized involved the incorporation of a single hidden layer consisting of five neurons.
This approach was implemented to mitigate the discrepancy between the projected values
of C∗f , Nu∗, and Sh∗. In the present study, 24 datasets are obtained for αs, We, βmp, and
Mmp, and 48 datasets are obtained for αs, We, βmp, Mmp, Rd, NT , NB, Dr, Sr, γ, and Bi. It
is important to note that the appropriate neural network can be chosen by minimizing
the mean square error between the network model’s target data and the sample data. The
training process concludes upon reaching a point where the error stabilizes (see Figure 4),
indicating that the trained network has achieved the desired level of accuracy. Figure 5
presents an error histogram showcasing errors detected during the training phase of the
ANN. These values are small when considering the error values along the x-axis of this
histogram. Upon examining the data histogram, which illustrates error values across three
distinct data sets, it becomes apparent that the errors are heavily concentrated very close
to the yellow line representing the zero-error threshold. These findings, derived from an
analysis of the error histogram, conclusively demonstrate the successful completion of the
ANN model’s training phase, characterized by an impressively low error rate. The results
pertaining to the skin friction coefficient and heat transfer rate in the training, validation,
and test sets of the ANN model are presented in Figures 6 and 7. The provided elements
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equip artificial neural network models with the necessary components to replicate intricate
relationships between input and output variables.
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Figure 3. Schematic representation of a multilayer artificial neural network model.

Table 1. Neural networking detail.

Input Layer Hidden Layers Output Layer

4 (αs , We, βmp, and Mmp) 3 1 (skin friction factor)
11 (αs , We, βmp, Mmp, Rd, NT , NB, Dr, Sr, Bi

and γ) 5 2 (heat and mass transfer rate)
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Figure 5. Error histogram graph for (a) skin friction factor and (b) heat and mass transfer rate.
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Figure 6. Numerical and ANN model for skin friction factor.

The outcomes of the artificial neural network (ANN) model exhibit a remarkable
concurrence with the figures derived from computational analysis. Tables 2–5 present
the skin friction factor, heat transfer rate, and mass transfer rate magnetic parameter(

βmp = 0.1, 0.2, 0.3
)
, Weissenberg number (We = 0.5, 2.0, 3.5), velocity slip parameter

(αs = 0.1, 0.3, 0.5), magnetic Prandtl number
(

Mmp = 0.1, 0.3, 0.5
)
, thermal radiation pa-

rameter (Rd = 1.0, 2.0, 3.0), Dufour number (Dr = 0.001, 0.005, 0.010), Biot number
(Bi = 0.1, 0.3, 0.5), thermophoresis parameter (NT = 0.001, 0.005, 0.010), Brownian mo-



Mathematics 2023, 11, 3687 11 of 29

tion parameter (NB = 0.1, 0.2, 0.3), Soret number (Sr = 0.1, 0.5, 1.0), chemical reaction
parameter (γ = 0.0, 1.0, 2.0), and Schmidt number (Sc = 0.5, 1.0, 1.5) values for a range
of parameters. In addition to the quantitative results, the findings of the artificial neural
network model are demonstrated to be favorable. Thus far, the findings of this investigation
have indicated that the artificial neural network (ANN) is capable of accurately forecasting
both skin friction and heat transfer rate.
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Figure 7. Numerical and ANN model for heat transfer rate and mass transfer rate.

Table 2. Effects of We, βmp, and αs on local skin friction coefficient C∗f , dimensionless local rate of
heat transfer Nu∗, and dimensionless local rate of mass transfer Sh∗ over the wedge plate, wedge,
and stagnation point.

Parameter Values Physical Quantities Plate Wedge Stagnation Point

We

0.5
C∗f 0.61098 1.15894 1.62372

Nu∗ 0.17579 0.19120 0.20069

Sh∗ 0.13759 0.13997 0.14865

1.5
C∗f 0.64079 1.24752 1.76215

Nu∗ 0.17602 0.19160 0.20115

Sh∗ 0.13738 0.13956 0.14819

2.5
C∗f 0.68280 1.34075 1.88226

Nu∗ 0.17648 0.19216 0.20162

Sh∗ 0.13712 0.13924 0.14797
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Table 2. Cont.

Parameter Values Physical Quantities Plate Wedge Stagnation Point

βmp

0.1
C∗f 0.60769 1.14176 1.58952

Nu∗ 0.17581 0.19116 0.20062

Sh∗ 0.13763 0.14006 0.14880

0.3
C∗f 0.53777 1.03182 1.46035

Nu∗ 0.17341 0.18966 0.19966

Sh∗ 0.13769 0.13949 0.14766

0.5
C∗f 0.46320 0.89631 1.29484

Nu∗ 0.17038 0.18750 0.19825

Sh∗ 0.13787 0.13882 0.14612

αs

0.1
C∗f 0.62774 1.37457 2.16400

Nu∗ 0.16060 0.17898 0.19102

Sh∗ 0.14033 0.14040 0.14600

0.4
C∗f 0.61465 1.19645 1.71000

Nu∗ 0.17304 0.18928 0.19932

Sh∗ 0.13803 0.13991 0.14809

0.7
C∗f 0.59115 1.04187 1.38777

Nu∗ 0.18010 0.19385 0.20237

Sh∗ 0.13714 0.14048 0.15002

Table 3. Effects of Bi, NT , NB, Dr, and Sr on dimensionless local rate of heat transfer Nu∗ and
dimensionless local rate of mass transfer Sh∗ over the wedge plate, wedge, and stagnation point.

Parameter Values Physical Quantities Plate Wedge Stagnation Point

Bi

0.1
Nu∗ 0.04254 0.04352 0.04406

Sh∗ 0.15246 0.15893 0.17031

0.4
Nu∗ 0.14697 0.15769 0.16414

Sh∗ 0.14085 0.14435 0.15382

0.7
Nu∗ 0.22673 0.25245 0.26896

Sh∗ 0.13191 0.13219 0.13939

NT

0.01
Nu∗ 0.16741 0.18669 0.19806

Sh∗ 0.10187 0.08966 0.08950

0.02
Nu∗ 0.13749 0.17012 0.18823

Sh∗ 0.10891 0.06094 0.04049

0.03
Nu∗ 0.08634 0.14125 0.17092

Sh∗ 0.21073 0.08891 0.02709

NB

0.1
Nu∗ 0.11288 0.15630 0.18007

Sh∗ 0.15873 0.15577 0.16153

0.2
Nu∗ 0.03178 0.09207 0.13861

Sh∗ 0.17854 0.17381 0.17441

0.3
Nu∗ 0.00284 0.03414 0.08648

Sh∗ 0.18389 0.18913 0.18987
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Table 3. Cont.

Parameter Values Physical Quantities Plate Wedge Stagnation Point

Dr

0.01
Nu∗ 0.16430 0.18535 0.19741

Sh∗ 0.14148 0.14208 0.14992

0.02
Nu∗ 0.14719 0.17720 0.19314

Sh∗ 0.14749 0.14504 0.15149

0.03
Nu∗ 0.11976 0.16514 0.18724

Sh∗ 0.15770 0.14970 0.15381

Sr

0.1
Nu∗ 0.17528 0.19078 0.20035

Sh∗ 0.14923 0.15465 0.16529

0.4
Nu∗ 0.17567 0.19106 0.20055

Sh∗ 0.14055 0.14372 0.15294

0.7
Nu∗ 0.17607 0.19135 0.20075

Sh∗ 0.13174 0.13270 0.14051

Table 4. Skin friction factor values for different αs, We, βmp and Mmp.

αs We βmp Mmp
C*

f

NM ANN Error

0 0.1 0.1 0.1 2.341742 2.341054 6.87 × 10−4

0.2 0.1 0.1 0.1 1.997203 1.997393 1.90 × 10−4

0.4 0.1 0.1 0.1 1.710001 1.709799 2.02 × 10−4

0.6 0.1 0.1 0.1 1.482665 1.482392 2.72 × 10−4

0.8 0.1 0.1 0.1 1.303260 1.302654 6.06 × 10−4

0.5 0.2 0.1 0.1 1.594459 1.597219 2.76 × 10−3

0.5 0.4 0.1 0.1 1.612127 1.615347 3.22 × 10−3

0.5 0.6 0.1 0.1 1.636474 1.636499 2.52 × 10−5

0.5 0.8 0.1 0.1 1.663976 1.662062 1.91 × 10−3

0.5 1 0.1 0.1 1.692508 1.694016 1.51 × 10−3

0.5 0.1 0.2 0.1 1.528476 1.519159 9.32 × 10−3

0.5 0.1 0.4 0.1 1.383355 1.377509 5.85 × 10−3

0.5 0.1 0.6 0.1 1.190723 1.199874 9.15 × 10−3

0.5 0.1 0.8 0.1 0.901431 0.898421 3.01 × 10−3

0.5 0.1 1 0.1 0.292491 0.294073 1.58 × 10−3

0.5 0.1 0.1 0.2 1.589078 1.589140 6.21 × 10−5

0.5 0.1 0.1 0.4 1.588526 1.589259 7.32 × 10−4

0.5 0.1 0.1 0.6 1.588166 1.589272 1.11 × 10−3

0.5 0.1 0.1 0.8 1.587900 1.589409 1.51 × 10−3

0.5 0.1 0.1 1 1.587689 1.588979 1.29 × 10−3
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Table 5. Heat transfer rate and mass transfer rate for different αs, We, βmp, Mmp, Rd, NT , NB, Dr,
Sr, γand Bi.

αs We βmp Mmp Rd NT NB Dr Sr γ Bi

Nu∗ Sh*

NM ANN Error NM ANN Error

0 0.1 0.1 0.1 1 0.001 0.01 0.001 0.5 1 0.5 0.1842 0.1891 4.90 × 10−3 0.1460 0.1450 9.62 × 10−4

0.2 0.1 0.1 0.1 1 0.001 0.01 0.001 0.5 1 0.5 0.1950 0.1950 6.98 × 10−6 0.1466 0.1466 2.84 × 10−5

0.4 0.1 0.1 0.1 1 0.001 0.01 0.001 0.5 1 0.5 0.1993 0.1992 8.00 × 10−5 0.1481 0.1481 2.37 × 10−5

0.6 0.1 0.1 0.1 1 0.001 0.01 0.001 0.5 1 0.5 0.2016 0.2015 6.08 × 10−5 0.1494 0.1496 1.18 × 10−4

0.5 0.2 0.1 0.1 1 0.001 0.01 0.001 0.5 1 0.5 0.2006 0.2007 6.93 × 10−5 0.1488 0.1487 7.70 × 10−5

0.5 0.4 0.1 0.1 1 0.001 0.01 0.001 0.5 1 0.5 0.2007 0.2006 5.71 × 10−5 0.1487 0.1486 1.17 × 10−4

0.5 0.6 0.1 0.1 1 0.001 0.01 0.001 0.5 1 0.5 0.2007 0.2006 1.54 × 10−4 0.1486 0.1486 2.39 × 10−5

0.5 0.8 0.1 0.1 1 0.001 0.01 0.001 0.5 1 0.5 0.2008 0.2008 4.59 × 10−5 0.1485 0.1486 1.55 × 10−4

0.5 0.1 0.2 0.1 1 0.001 0.01 0.001 0.5 1 0.5 0.2002 0.2002 5.13 × 10−5 0.1483 0.1481 1.86 × 10−4

0.5 0.1 0.4 0.1 1 0.001 0.01 0.001 0.5 1 0.5 0.1990 0.1989 1.37 × 10−4 0.1470 0.1466 3.95 × 10−4

0.5 0.1 0.6 0.1 1 0.001 0.01 0.001 0.5 1 0.5 0.1972 0.1967 5.75 × 10−4 0.1451 0.1450 1.09 × 10−4

0.5 0.1 0.8 0.1 1 0.001 0.01 0.001 0.5 1 0.5 0.1936 0.1932 4.11 × 10−4 0.1422 0.1435 1.25 × 10−3

0.5 0.1 0.1 0.2 1 0.001 0.01 0.001 0.5 1 0.5 0.2006 0.2006 3.22 × 10−6 0.1488 0.1488 1.56 × 10−5

0.5 0.1 0.1 0.4 1 0.001 0.01 0.001 0.5 1 0.5 0.2006 0.2005 1.23 × 10−4 0.1488 0.1487 4.70 × 10−5

0.5 0.1 0.1 0.6 1 0.001 0.01 0.001 0.5 1 0.5 0.2006 0.2004 1.93 × 10−4 0.1488 0.1488 2.24 × 10−5

0.5 0.1 0.1 0.8 1 0.001 0.01 0.001 0.5 1 0.5 0.2006 0.2005 5.83 × 10−5 0.1488 0.1489 8.30 × 10−5

0.5 0.1 0.1 0.1 0.1 0.001 0.01 0.001 0.5 1 0.5 0.0207 0.0207 2.97 × 10−5 0.1463 0.1461 1.15 × 10−4

0.5 0.1 0.1 0.1 0.2 0.001 0.01 0.001 0.5 1 0.5 0.0412 0.0404 7.99 × 10−4 0.1466 0.1468 1.46 × 10−4

0.5 0.1 0.1 0.1 0.3 0.001 0.01 0.001 0.5 1 0.5 0.0616 0.0617 1.40 × 10−4 0.1469 0.1474 4.23 × 10−4

0.5 0.1 0.1 0.1 0.4 0.001 0.01 0.001 0.5 1 0.5 0.0818 0.0836 1.86 × 10−3 0.1473 0.1480 7.13 × 10−4

0.5 0.1 0.1 0.1 1 0.01 0.01 0.001 0.5 1 0.5 0.1981 0.1980 2.63 × 10−5 0.0895 0.0896 5.67 × 10−5

0.5 0.1 0.1 0.1 1 0.02 0.01 0.001 0.5 1 0.5 0.1882 0.1882 5.24 × 10−6 0.0405 0.0404 8.69 × 10−5

0.5 0.1 0.1 0.1 1 0.03 0.01 0.001 0.5 1 0.5 0.1709 0.1693 1.64 × 10−3 0.0271 0.0445 1.74 × 10−2

0.5 0.1 0.1 0.1 1 0.04 0.01 0.001 0.5 1 0.5 0.1463 0.1463 3.01 × 10−5 0.0674 0.0672 2.13 × 10−4

0.5 0.1 0.1 0.1 1 0.001 0.10 0.001 0.5 1 0.5 0.1801 0.1813 1.25 × 10−3 0.1615 0.1603 1.26 × 10−3

0.5 0.1 0.1 0.1 1 0.001 0.15 0.001 0.5 1 0.5 0.1618 0.1617 5.48 × 10−5 0.1673 0.1674 3.81 × 10−5

0.5 0.1 0.1 0.1 1 0.001 0.20 0.001 0.5 1 0.5 0.1386 0.1372 1.41 × 10−3 0.1744 0.1749 4.53 × 10−4

0.5 0.1 0.1 0.1 1 0.001 0.25 0.001 0.5 1 0.5 0.1126 0.1127 8.95 × 10−5 0.1822 0.1822 3.52 × 10−5

0.5 0.1 0.1 0.1 1 0.001 0.01 0.01 0.5 1 0.5 0.1974 0.1972 1.59 × 10−4 0.1499 0.1499 4.22 × 10−5

0.5 0.1 0.1 0.1 1 0.001 0.01 0.015 0.5 1 0.5 0.1954 0.1952 2.36 × 10−4 0.1507 0.1510 3.74 × 10−4

0.5 0.1 0.1 0.1 1 0.001 0.01 0.02 0.5 1 0.5 0.1931 0.1929 2.09 × 10−4 0.1515 0.1520 5.18 × 10−4

0.5 0.1 0.1 0.1 1 0.001 0.01 0.025 0.5 1 0.5 0.1905 0.1906 5.21 × 10−5 0.1525 0.1523 2.20 × 10−4

0.5 0.1 0.1 0.1 1 0.001 0.01 0.001 0.1 1 0.5 0.2003 0.2002 1.18 × 10−4 0.1653 0.1653 3.98 × 10−5

0.5 0.1 0.1 0.1 1 0.001 0.01 0.001 0.15 1 0.5 0.2004 0.2003 5.56 × 10−5 0.1632 0.1633 4.70 × 10−5

0.5 0.1 0.1 0.1 1 0.001 0.01 0.001 0.2 1 0.5 0.2004 0.2004 2.99 × 10−6 0.1612 0.1613 1.11 × 10−4

0.5 0.1 0.1 0.1 1 0.001 0.01 0.001 0.25 1 0.5 0.2005 0.2005 5.38 × 10−5 0.1591 0.1593 1.52 × 10−4

0.5 0.1 0.1 0.1 1 0.001 0.01 0.001 0.5 0 0.5 0.2017 0.2017 1.01 × 10−5 0.0723 0.0727 4.06 × 10−4

0.5 0.1 0.1 0.1 1 0.001 0.01 0.001 0.5 0.2 0.5 0.2015 0.2014 4.18 × 10−5 0.0904 0.0898 5.45 × 10−4

0.5 0.1 0.1 0.1 1 0.001 0.01 0.001 0.5 0.4 0.5 0.2012 0.2013 2.11 × 10−5 0.1067 0.1064 3.08 × 10−4

0.5 0.1 0.1 0.1 1 0.001 0.01 0.001 0.5 0.6 0.5 0.2010 0.2011 9.63 × 10−5 0.1218 0.1220 2.45 × 10−4

0.5 0.1 0.1 0.1 1 0.001 0.01 0.001 0.5 1 0.2 0.0860 0.0860 1.65 × 10−5 0.1646 0.1645 3.64 × 10−5

0.5 0.1 0.1 0.1 1 0.001 0.01 0.001 0.5 1 0.4 0.1641 0.1643 1.30 × 10−4 0.1538 0.1539 1.01 × 10−4

0.5 0.1 0.1 0.1 1 0.001 0.01 0.001 0.5 1 0.6 0.2355 0.2358 2.56 × 10−4 0.1440 0.1441 7.48 × 10−5

0.5 0.1 0.1 0.1 1 0.001 0.01 0.001 0.5 1 0.8 0.3010 0.3010 6.59 × 10−5 0.1350 0.1350 5.53 × 10−5
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4. Results and Discussion

This section is intended to demonstrate double-diffusive convection in radiative flow
of Carreau nanofluid over three geometries (plate, wedge, and stagnation point) with
induced magnetic field. In this section, the physical importance of velocities ( f ′(η)),
induced magnetic field (g′(η)), temperature (θ(η)), concentration (φ(η)), skin friction(

C∗f
)

, Nusselt number (Nu∗), and mass transfer rate (Sh∗) are visualized and thoroughly
discussed. Under specific boundary conditions, the dimensional version of the equations
for flow, heat transport, and concentration is solved using the Runge–Kutta–Fehlberg for
plate (β = 0), wedge (β = 0.5), and stagnation point (β = 1.0) are shown as solid, dashed,
and dotted lines in the comparison to the thermal radiative flow of ferromagnetic physical
features over the three distinct geometries of the images, respectively. Comparing the
results shows a significant degree of agreement, as shown in Table 6. This indicates that the
accuracy of the numerical simulation’s outcomes.

Table 6. Comparison of the present result (Nu∗) with the results of Lin and Lin [42] in the absences
of We, βmp, Bi, NT , NB, Dr, Sr, Mmp, nk, We, Rd, Sr, and αs.

Pr
Lin and Lin [42] Results Present Results

β1 = 0 β1 = 0.5 β1 = 1.0 β1 = 0 β1 = 0.5 β1 = 1.0

1 0.372722 0.493968 0.640326 0.3727218 0.4939669 0.6403256

10 0.343388 0.477039 0.631365 0.3433875 0.4770383 0.6313644

100 0.339208 0.482208 0.644454 0.3392574 0.4822070 0.6444532

1000 0.338766 0.486599 0.653023 0.3387666 0.4865983 0.6530225

Figures 8 and 9 depict how the magnetic parameter
(

βmp = 0.1, 0.2, 0.3
)

affected the
velocities ( f ′(η)) and induced magnetic field (g′(η)) profiles for β1 = 0, 0.5, 1 s, respectively.
It has been determined that the velocity profile f ′(η) decreases for higher values of βmp.
A similar nature is observed in the induced magnetic profile (g′(η)). The magnetic field
deflects particles near the walls less than those in the center because the force acting on
them is weaker. As a result, the magnetic field in the vicinity of the walls weakens while
remaining strong at the wall’s center. As a result, the magnetic field intensity in the velocity
profile and induced magnetic field are decreased.

Figures 10 and 11 describe how the velocities ( f ′(η)) and induced magnetic field
(g′(η)) profiles are influenced for the variations in Weissenberg number (We = 0.5, 2.0, 3.5)
blood nanofluid within the various geometries β1 = 0, 0.5, 1. Note that the velocity profile di-
minishes for both ( f ′(η)) and (g′(η)) and rises for (We). The fluid’s elasticity predominates
as the Weissenberg number rises, and the blood-based fluid flow shows more prominent
viscoelastic effects. For instance, the fluid may deform and stretch in reaction to the flow
due to the elasticity, creating elastic stresses that hinder the flow. When compared to a
fluid that is only viscous, this may result in the velocity profile being more wide and flat.
The fluid’s relaxation time, which is a component in the Weissenberg number definition,
serves as a defining characteristic of this relaxation process. As a result, the Weissenberg
number decreases and the fluid’s elasticity becomes less prominent as the fluid moves
downgradient, resulting in a narrower velocity profile that resembles the profile for a purely
viscous fluid.
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The effect of the velocity slip parameter (αs = 0.1, 0.3, 0.5) on velocities ( f ′(η)),
induced magnetic field (g′(η)) and temperature (θ(η)) profiles changes are shown in
Figures 12–14. These graphs indicate that increasing αs values lead to an increase in f ′(η)
and g′(η) for the various geometries β1 = 0, 0.5, and 1, but it is reduced for the temperature
profile (θ(η)). The blood fluid nanoparticles can interact with the solid surface to form
a thin layer of adsorbed particles, which can change the surface’s boundary conditions.
The velocity slip parameter’s value reflects the possibility of a slip velocity between the
fluid and the surface. Due to the enhanced contacts between the nanoparticles and the sur-
face, the slip velocity may rise as the fluid’s nanoparticle concentration rises. The velocity
slip parameter’s value may rise as a result of this. In general, when the blood nanofluid
temperature rises, the fluid’s viscosity decreases and the blood cells and nanoparticles
move through the fluid at a faster rate. The velocity slip parameter might rise as a result
of the larger velocity differential between the fluid and the solid surface caused by the
increasing velocity.
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Figure 12. f ′(η) for increasing values of αs.

Figure 15 shows the effect of different magnetic Prandtl numbers
(

Mmp = 0.1, 0.3, 0.5
)

on the induced magnetic field (g′(η)) profile. It is acknowledged that the g′(η) decreases
when the magnetic Prandtl number Mmp increases. A blood-based nanofluid encounters
the Lorentz force when an external magnetic field is introduced, which can cause the fluid
to flow and produce heat transfer. The magnetic Prandtl number illustrates how important
magnetic diffusion is in this process in relation to fluid viscosity. Additionally, the viscosity
and thermal conductivity of the nanofluid may alter due to the nanoparticles, which may
have an effect on the magnetic Prandtl number as a whole. Overall, the interaction between
the magnetic nanoparticles, magnetic field, and fluid characteristics is the physical cause of
the drop in magnetic Prandtl number in blood-based nanofluids under generated magnetic
field profiles.

Figure 16 illustrates how the thermal radiation parameter (Rd = 1.0, 2.0, 3.0) influence
of temperature (θ(η)) changes. According to this graph, the temperature (θ(η)) rises with
increasing Rd values. The interaction of the nanoparticles with thermal radiation, which can
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improve heat transfer and change the optical characteristics of the nanofluid, is the physical
cause for the rise in radiation parameter in the blood-based nanofluid temperature profile.
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Figure 13. g′(η) for increasing values of αs.
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Figure 14. θ(η) for increasing values of αs.
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Figure 16. θ(η) for increasing values of Rd.

The fluctuations in θ(η) are shown in Figure 17 for different values of the Dufour num-
ber (Dr = 0.001, 0.005, 0.010). It is detected that the θ(η) profiles increase by enhancing
the Dufour number (Dr) values. When the temperature of the Dufour number rises, it
indicates that thermal diffusion is occurring at a slower rate than the rate at which mass
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is transported through diffusion. This may occur because when the mixture’s chemical
composition varies with temperature, so do the components’ diffusivities. This may lead to
a rise in the Dufour number.
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Figure 17. θ(η) for increasing values of Dr.

Figure 18 shows the temperature (θ(η)) profile with different Biot number
(Bi = 0.1, 0.3, 0.5) values applied to the various geometries β1 = 0, 0.5, 1. The temper-
ature (θ(η)) profile is increased when the Biot number (Bi) is increased. The Biot number is
described as the relationship between a body’s internal and exterior thermal resistances. In
a temperature profile, an increasing Biot number indicates that the body’s internal thermal
resistance is rising compared to its exterior thermal resistance.

Figures 19 and 20 depict how the thermophoresis parameter (NT = 0.001, 0.005, 0.010)
affected the temperature (θ(η)) and concentration (φ(η)) profiles for β1 = 0, 0.5, 1 s, respec-
tively. Figure 19 describes how the θ(η) influenced the three geometries to the variations
in (Nt). It is observed that θ(η) intensification boosts (Nt). This is due to the action of
thermophoresis, which draws large thermally conducting nanoparticles deeper into the
fluid and exposes a stronger thermal boundary layer. The differences in a concentration
profile (φ(η)) for several thermophoresis values (Nt) are shown schematically in Figure 20.
The θ(η) increases for superior values of (Nt). The wall slope of concentration profiles
increases as the fluid concentration rises, nonetheless only partly.

The Brownian motion parameter (NB = 0.1, 0.2, 0.3) effect on the temperature profile
(φ(η)) and concentration profile (φ(η)) in the case of β1 = 0, 0.5, 1 was investigated with
results shown in Figures 21 and 22. The effect of θ(η) on the changes in the Brownian
motion parameter (NB) is shown in Figure 21. It can be seen that θ(η) intensifications
increase (NB). Blood nanofluid flow collides with the basic liquid particles when there is
an increase in the Brownian motion parameter. This results in an increase in temperature as
well as an increase in the kinetic energy. The differences of a concentration profile (φ(η)) for
several values of Brownian motion (NB) are shown schematically in Figure 22. The blood
nanofluid of the concentration profile (φ(η)) rises for superior values of (NB). Physically,
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the random movement of the fluid particles improves with increasing Brownian motion,
which increases heat generation and raises the fluid’s temperature.
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Figure 21. θ(η) for increasing values of NB.

Figure 23 shows the concentration profile (φ(η)) with various Soret number
(Sr = 0.1, 0.5, 1.0) values applied to the various geometries β1 = 0, 0.5, 1. The concen-
tration profile (φ(η)) is increased when the Soret number (Sr) is increased. The relative
rates of mass transport caused by temperature and concentration gradients in a fluid mix-
ture are described by the dimensionless Soret number. The rate of mass transfer due to heat
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gradients increases relative to the rate of mass transport due to concentration gradients as
the Soret number for a concentration profile in blood nanofluid flow increases.
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Figure 24 illustrates how the chemical reaction parameter (γ = 0.0, 1.0, 2.0) influences
in thblood nanofluid flow with response to changes in the concentration profile (φ(η)).
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According to this graph, the concentration profile (φ(η)) decays with increasing values of
γ. The blood nanofluid flow concentration profiles show a drop in the chemical reaction
parameter when compared to diffusion or convection, which indicates that the pace of
chemical reactions is slowing.
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Figure 25 illustrates how the Schmidt number (Sc = 0.5, 1.0, 1.5) influences blood
nanofluid flow with response to concentration profile (φ(η)) changes. According to this
graph, the concentration profile (φ(η)) decays with increasing values of Sc.
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5. Conclusions

The purpose of this study is to illustrate double-diffusive convection for the fluid
transport properties of blood-based Carreau nanofluid flow over three distinct geometries
with an induced magnetic field. This type of theoretical investigation is extensively used in
modern aspects of biological and chemical engineering, such as designing pumping devices
for medical diagnostics, mixing samples at certain temperatures, and generating microscale
flows using stimulus-responsive working fluids. The effect of important parameters like
Weissenberg number, magnetic parameter, thermophoresis, Brownian motion, thermal
radiation, Biot number, Soret number, and Dufour number are analyzed. The results are
shown through two-dimensional graphs and tables. The following significant findings
emerged from this investigation:

• The artificial neural network model does not require linearization, is fast convergent,
and has a reduced processing cost.

• The velocity f ′(η) and induced magnetic profiles decrease for higher values of βmp
magnetic parameter in all the geometries.

• Velocity profile diminishes for both ( f ′(η)) and (g′(η)) given higher values of the
Weissenberg number (We).

• Radiation, thermophoresis, and temperature ratio parameter increase corresponding
to a rise in blood nanofluid temperature.

• The concentration profile (φ(η)) decays with increasing values in the chemical reaction
parameter (γ). The temperature (θ(η)) profile is increased when the Biot number (Bi)
is increased.

• Among the three geometries, the fluid flow over the plate has the largest heat trans-
fer rate.
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Nomenclature

Bi Biot number
cp f specific heat of fluid
cpp specific heat of particle
cs concentration susceptibility
Cw nanoparticles concentration at the wall
C∞ ambient nanoparticles concentration
DB Brownian diffusion coefficient
Dm coefficient of mean diffusivity
Dr Dufour number
DT thermophoresis diffusion coefficient
h f convective heat transfer coefficient
H0 uniform upstream magnetic field
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H1&H2 parallel and the normal direction of the applied magnetic field
kT thermal-diffusion ratio
k f thermal conductivity of fluid
k∗1 mean absorption coefficient
Kr dimensional chemical reaction parameter
L1 velocity slip factor
m Hartree pressure gradient parameter
Mmp magnetic Prandtl number
NT thermophoresis parameter
NB Brownian motion parameter
nk power law index
Pr Prandtl number
Rd radiation parameter
Sr Soret number
Sc Schmidt number
T∞ ambient nanoparticles temperature
Tw nanoparticles temperature at the wall
Tm fluid mean temperature
We Weissenberg number
σ∗ Stefan–Boltzman constant
Γ material parameter
µmp magnetic permeability
ρ f density of the fluid
αs velocity slip parameter
βmp magnetic parameter
γ chemical reaction parameter
µe magnetic diffusivity
τ ratio between particle and base fluid
ρp density of the particle
α f thermal diffusivity of fluid
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