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Abstract: The task of dense video captioning is to generate detailed natural-language descriptions
for an original video, which requires deep analysis and mining of semantic captions to identify events
in the video. Existing methods typically follow a localisation-then-captioning sequence within given
frame sequences, resulting in caption generation that is highly dependent on which objects have been
detected. This work proposes a parallel-based dense video captioning method that can simultaneously
address the mutual constraint between event proposals and captions. Additionally, a deformable
Transformer framework is introduced to reduce or free manual threshold of hyperparameters in
such methods. An information transfer station is also added as a representation organisation, which
receives the hidden features extracted from a frame and implicitly generates multiple event proposals.
The proposed method also adopts LSTM (Long short-term memory) with deformable attention
as the main layer for caption generation. Experimental results show that the proposed method
outperforms other methods in this area to a certain degree on the ActivityNet Caption dataset,
providing competitive results.

Keywords: dense video caption; video captioning; multimodal feature fusion; feature extraction;
neural network

MSC: 68T45

1. Introduction

With the widespread use of video as an information transmission medium, record-
ings for playback and live broadcasting have become increasingly popular today. Video
processing has gradually become a hot research topic in computer vision [1,2]. Video
caption generation is an important task that provides understanding and representation
of videos between two media: frame-to-text. This task has also involved critical artificial
intelligence (AI) technologies [3,4]. Such technologies have potential applications in the de-
velopment of smart glasses to assist the visually impaired, intelligent commentary on sports
events, early childhood education, and the generation of video surveillance reports [5–7].

Dense video captioning tasks mostly use datasets directly crawled from online sources
such as YouTube, whose videos typically consist of long content without pruning [8]. Unlike
traditional video captioning, which uses concise sentences to explain the video content,
dense video captioning requires not only dividing long videos into various events, but also
describing the behaviours in a series of events as accurate as possible. The objective of
dense video captioning is to generate as detailed and general description for videos clearly.
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A cross domain method is required to perform such video analysis and comprehension, so
as to represent the events as sentences. In practice, the video is always based on a sequence
of frames of fast-playing images that also contain important audio information usable in
the captioning. Therefore, the computer needs to perform a high-level understanding of
the video content, aiming to localise/categorise the interesting objects, then represent their
motion and behaviour in detail.

Reviewing previous achievements, the process of generating dense video captions
can be summarised into two main procedures: dividing event regions and generating
descriptive sentences, as shown in Figure 1a. There are different orders to arrange the
video localisation and description, mostly following a sequential top-down or bottom-
up structure. Inevitably, this makes the generation of captions more dependent on the
quality of the previous steps [9–12]. In other words, the performance of the generated
descriptions can decrease if the former module does not perform well, and the complexity
of the module design is less relevant. Moreover, these methods are not trained end-to-
end in the traditional sense and require additional steps for extensive and complicated
training, which also affects the results to a certain extent. The parallel method shown in
Figure 1b defines dense video caption generation as a set of prediction tasks and decodes
the divided events and sentences simultaneously, which solves the problem of dependence
on previous results [13]. Although this type of method has produced good results, there
are still bottlenecks in the decoding branch that limit the fine-grained description of the
video. Therefore, further improvement is necessary.

Dense Caption Generation

Video Feature Extraction

Event Proposals

Proposal 
Selection

(a)

Video Feature Extraction

Caption

Parallel Decoding

N x Pairs

Localization

Representation Organization

Dense Caption Generation

Top K

(b)
Figure 1. Comparison between existing methods and the parallel method. (a) Localise-then-describe
method. (b) Parallel method.

This work builds on previous research and further explores the techniques to alleviate
the fine-grained bottleneck that arises when generating dense video captions in parallel.
Additionally, this approach fully exploits the multi-modal features of videos. The main
contributions are summarised below:

• A novel model for video caption generation is proposed, which effectively utilises
the visual–audio features. Unlike the common conventional sequential mechanism
of localise-then-describe approach, the proposed model reasonably associates the
proposal and caption modules through parallel paths, which enhances the compre-
hensiveness of the textual expression.

• In addition, a simplified method is proposed to eliminate the redundancy generated
by the anchor mechanism on which the maximum suppression algorithm relies and
to reduce the steps of manually setting hyperparameters for end-to-end training of
the model.
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• The decoding side introduces the representation organisation module as intermediate
information for event localisation and description and extracts temporal boundary
information from the video to generate all potential events.

2. Related Work

In early years of video captioning, the main approach was to use template matching to
generate logical and specific sentences through keyword sorting or selection. However, this
approach only supported simple sentence structures and was inflexible for complex event
representation, making it poor for understanding multiple scenes in long videos [14]. With
the development of powerful neural networks, deep learning approaches using artificial
intelligence (AI) have become possible for extracting multimedia information, marking
a milestone in the field of video captioning [15]. Inspired by image captioning methods,
such technology can be directly extended to video captioning, enabling the discovery of
correlations between image sequences [16–18]. For dense video captioning tasks, significant
breakthroughs have been made in the generation of detailed and rich descriptive sentences
for event representation. Deep learning in image processing has shown that the Sequence-to-
Sequence (Seq2Seq) framework can be applied to video captioning [3,19]. This framework
consists of two neural network models over an encoder and a decoder. Most of the
input videos use CNN-based network models such as VGGNet [20], VGGreNet [21], or
ResNet [22] for the encoder. Conversely, the decoder uses RNN-based network models to
generate native sentences for the final output. This encoder–decoder design projects visual
features into text sentences, extracting important abstract information and discarding noise
in the application [23].

In recent years, attention mechanisms have shown outstanding performance when
integrated into various neural models. They have the potential to play a prominent role
in image captioning and are increasingly used to address the problem of video caption-
ing [24,25]. Dense video captioning involves visual understanding processes that locate
different events in a video and generate descriptive captions for each interesting object.
This approach represents video content in detail by transforming frame sequences into
multiple descriptive sentences among multiple clips in a long video [26–28]. In the research
of Shen et al. [29], dense image captioning is migrated to the video field by combining the
multi-scale suggestion module and a visual context perception mechanism. Additionally,
Huang et al. in their work [30] divide the long video into several different regional se-
quences and comprehensively express the video content. However, the feature extraction of
regions within the frame sequence is a complicated process in the Seq2Seq framework. It is
not an end-to-end method in the traditional sense, and extensive hyperparameters may be
required for the input of a non-fixed length video. Furthermore, if too many small regions
are split within a shot, it becomes difficult to represent the entire video and to categorise
objects within specific regions, making it difficult to discover their correlations.

Since a video can be considered as a sequence of images with an additional time
dimension, multiple scene events can occur, and objects can appear and perform actions
within a range of frames. To address the neglected time series problem in video more
comprehensively, Tran et al. [5] introduced a 3D CNN approach for extracting video features.
An advanced model, C3D, was developed based on the 3D CNN, which can handle more
complex cases in terms of various scenes [1,31–33]. In addition, Carreira et al. [34] added
optical flow features in the encoder part, combined with C3D to form a new Inflated 3D
ConvNet (I3D) model, which enhanced the quality of the extracted video features to a
certain extent. Qiu et al. [35] and others took advantages of the residual connection’s
ability to deepen the convolutional network, decomposed the 3D video features into a
2D spatial convolution and a 1D temporal convolution, and constructed a Pseudo-3D
Residual Network (P3D) that greatly reduced the need for labelled video data, increased
the network’s depth, and reduced the amount of convolutional computation.

To enhance the capability of feature extraction, it is important to improve the caption
generation module. Caption generation methods use advanced NLP technology such as
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LSTM [36], BERT [37], Transformer [38], and other variants [39], which have been applied
to video captioning with competitive results [40]. In the approach of Pasunuru et al. [41], a
multi-task learning method is proposed that uses LSTM to share parameters between differ-
ent tasks and improve model performance with more data. Additionally, Shetty et al. [42]
used an improved deep LSTM in the decoding section, trained on two different video
features, and used an evaluation network to judge video features and generated sentence
keywords to improve sentence quality. The EEDVC model, the first to encode video features
using Transformer, solves the problem of long-term dependence in LSTM [43]. It converts
each extracted proposal into a mask, combines it with video features, and completes the
end-to-end training of the model.

In addition, Yao et al. [44] applied the attention mechanism in NLP to the video
captioning task. They introduced the attention weight α based on the codec structure.
It is different from the attention to region in image captioning but is used to compute
different features of a video along the time sequence. This approach allows the decoder
to automatically select a more relevant time period when generating words, helping the
model filter out irrelevant information and reduce the workload, ultimately improving the
evaluation index.

The captioning and event generation modules in the method described above can only
be trained independently. However, the results of the captioning module can theoretically
be used to train the proposal process. In order to improve the localise-then-describe scheme
and fully exploit the two subtasks of event localisation and caption generation, Li et al. [11]
proposed a bridging idea using desperation regression to link the two subtasks. This
approach allows the prediction of description complexity in the proposal module. The
caption module captures video features and achieves the goal of jointly training the two
subtasks. However, since many generated sentences are redundant and produce incon-
sistent results, it is necessary to use Non-Maximum Suppression (NMS) [45] or an Event
Sequence Generation Network (ESGN) [9] to select the proposal. These modules introduce
many hyperparameters and are highly dependent on manual thresholding strategies, which
can affect the model results. The PDVC model [46] proposed a parallel decoding method
to address these issues. By designing two parallel prediction heads (localisation head and
caption head), both the scope and text description of the event query are predicted. This
approach allows the PDVC to directly use the video features to match the split target events,
thus providing more unique features. Experiments have shown that the parallel design
can make the loss of the caption module improve the performance of event localisation.
Furthermore, the absence of thresholding and NMS mechanisms makes model training
more efficient. Li et al. proposed a transfer learning method that can simultaneously utilise
knowledge from two types of source domains, spatial appearance and temporal motion,
and transfer them to the target domain [47]. The core of the CMG-AAL [48] model is a
cross-modal foundation module that is composed of two complementary attention mech-
anisms, which can effectively establish correspondence between text and vision, thereby
improving the model’s understanding and generation capabilities.

Furthermore, existing methods for analysing and understanding video content mostly
rely on visual features, without taking into account clues provided by other modalities such
as sound or subtitles [49]. However, incorporating other modalities can help computers
understand video content and produce more detailed text descriptions. For instance, in a
video of a female announcer broadcasting, the content of the broadcast may not be clear
without sound. To address this issue, Jin et al. [50] developed a model that combined
multiple types of features by extracting them separately, weighting the average, and, finally,
fusing them together as the input for LSTM. This model aims to make full use of more
comprehensive feature information to represent videos and proposes a new approach to
using multi-modal features to improve the quality of video captions. Other models, such
as EMVC [51] and BMT [52], have also proposed methods for incorporating audio features.
The EMVC model integrates audio features to support visual cues in event generation,
while the BMT model extracts feature vectors for both video and audio using I3D and



Mathematics 2023, 11, 3685 5 of 16

VGGish, respectively, and uses a Transformer framework to improve the quality of the
generated text.

Having reviewed the existing work, it suggests that there is still room for improvement
in the relationship between video event localisation and text description. Currently, there
are bottlenecks in the branch of parallel decoding methods, and the auxiliary function
of multi-modal features is equally important. However, due to the challenge of unifying
different video lengths, the calculation of the number of contained events remains difficult.
Therefore, developing a method for the computer to use the characteristics of multi-modal
data in the video and to fully consider the connection between the two subtasks of event
localisation and caption generation is still a challenging task.

3. Methodology

For an unedited video, the task of dense video captioning is to divide multiple events
in the video and generate corresponding description sentences. In order to fully exploit
the correlation between caption and event proposals, as well as the multi-modal features
of the video to improve the efficiency of text description generation, we design a parallel
multi-modal dense video caption generation model.

3.1. Model Overview

The entire framework and the data flow between the various parts in the schematic
diagram are shown in Figure 2.
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Figure 2. Overall framework of the proposed model.

The proposed model uses pre-trained I3D and VGGish to extract the visual and audio
features of the video, respectively. It then merges the encoded multi-scale video features
into a more characteristic feature set based on the deformable Transformer encoder and
decoder framework [53]. Such a representation organisation allows for a more intuitive
understanding of the core context of the video. In addition, the model inputs the video
features into the captioning and positioning modules in parallel, rather than directly per-
forming proposal localisation and generating captions from the video features in sequence.
Finally, the model selects multiple sets of proposal-caption pairs with higher confidence to
ensure content integrity and produces more logical and detailed video captions.

3.2. Video Encoder

The video encoding process consists of two parts: a multi-modal feature extraction
component and a position encoder. The convolutional network is responsible for extracting
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feature information from the video, while a sequence data encoder based on the Transformer
framework is used to understand the information association between contexts.

3.2.1. Feature Extraction

In order to enhance the use of multi-modal information in videos, the work decided to
incorporate audio features based on the findings of visual modality research. To extract the
features of each modality separately, the work used the proven pre-trained combination of
I3D and VGGish.

For the visual modality feature extraction, the work chose the I3D network, which can
solve the problem of 2D CNN not being able to extract spatial features in videos and adapt
to video inputs of different lengths and resolutions by adjusting the network structure and
output characteristics accordingly. I3D is constructed by expanding 2D CNN into 3D CNN,
which can inherit the knowledge and parameters learned by 2D cellular neural networks
in image classification and recognition tasks, without the need for training from scratch.
Compared with some other models (such as C3D with only 8 layers), the 20 layers of I3D
have a deeper and more complex network structure, including a multi-branch structure
composed of multiple convolutional kernels of different sizes, which can capture features
at different scales and reduce the number of parameters and computational costs. The I3D
network can not only process RGB features, but also optical flow features and average
the outputs of the two networks during testing, thus integrating colour information and
motion information. Therefore, it can extract spatial features present in videos better than
other options.

For audio modality feature selection, we use VGGish to extract the features, which has
a strong generalisation ability with pre-trained parameters and can effectively transform
audio features into feature vectors that conform to natural language logic. In our work,
VGGish converts audio into 128-dimensional semantic feature vectors, which have stronger
expressiveness with high-level feature vectors.

3.2.2. Feature Encoding

Previous methods have attempted to concatenate features with common weights,
but this has proven to be insufficient. It is not possible to fuse them together because the
visual and audio features have different dimensions extracted form a video. To address
this issue, the work introduced the deformable Transformer as a novel component in the
proposed model. The deformable Transformer can distinguish different attention heads
in the framework, thereby improving the model expressive and generalisation abilities.
Among them, deformable sampling locations are introduced into the pre-filtering mecha-
nism to reduce computational complexity and memory consumption, while maintaining
efficient information transmission. The deformable Transformer uses deformable attention
to replace the self-attention module in the encoding part of traditional Transformers, as well
as the cross-attention class module in the decoding part. This allows the model to better
capture long-distance dependencies and local details in the sequence, thereby improving
performance. This process can be thought of as converting video features from a video se-
quence to a set sequence, which is essentially a learnable positional coding. The deformable
Transformer encodes the position of the extracted multi-modal video features, unfolds
pixels into a one-dimensional sequence, and computes the correlation between pixels; thus,
the global information of the video is fully learned. To better exploit the multi-scale features
in event prediction, the work added L timescale convolutional layers to obtain feature
sequences spanning multiple resolutions. The multi-scale deformable attention module
helps alleviate the convergence problem of self-attention by focusing on the sparse space
near the reference point.

Let X be the set of feature maps, given by

X =
{

xl
}L

l=1
, (1)
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where each multi-scale feature map xl , with size xl is C× Hl ×W l , is extracted from the
feature map output in the previous stage for 1 ≤ l ≤ L. A projection matrix Hmilt is used
to project the sample offset into the features. The Hmilt matrix is associated with a linear
operator, expressed as the offset of the t-th sampling point of the i-th query element on
the l-th scale in the m-th attention head,

Hmilt = φl(p̂i) + ∆pmilt, (2)

where p̂i is the coordinate of the reference point of each query element qi in the [0, 1]2 space,
φl is a function that converts the normalised reference point to the input feature map at the
l-th layer, and ∆pmilt is a sampling offset that is derived from a linear transformation on
the query element.

Then, the deformable Transformer is used to understand the long-distance associ-
ations of different segments in long videos and output multi-scale video features. The
Multi-Scale Deformable Attention (MSDAttn) dynamically adjusts sampling positions and
attention weights by using learnable offsets, allowing for adaptive allocation of attention
resources based on the characteristics and needs of the data. MSDAttn can also reduce
computational complexity and memory consumption by sampling sparsity, improving
the running speed and performance of the model. The traditional attention mechanism
requires fully connected operations on all input features, which leads to an exponential
increase in computational and storage capacity as the input features increase. This uses
deformable convolutional kernels to sparsely sample input features, selecting only a por-
tion of important features for attention calculation, greatly reducing computational and
storage costs.

MSDAttn(qi, p̂i, X) =
M

∑
m=1

Wm

(
L

∑
l=1

T

∑
t=1

Amilt ·W ′
mXHmilt

)
, (3)

where, the MSDAttn module samples L points from multi-scale feature maps, instead of
sampling T points from single-scale feature maps. The m denotes attention heads, M is
the number of heads, t denotes sampling keys, and T is the total number of sampling keys
(T ≤ HW), and Amilt represents the attention weight of the t-th sampling point in the m-th
attention head, which is calculated by using so f tmax on the query feature qi.

3.3. Video Decoder

In the decoder section, the work used the deformable Transformer to decode video
features at multiple scales. These features are then fed in parallel to the localisation and
captioning modules. As an intermediate information hub, the work also constructed a
representation organisation module that receives video temporal features and implicitly
generates multiple event proposals.

3.3.1. Feature Decoding

The work incorporated the query mechanism and set prediction loss from the DETR
framework for object detection into the video captioning domain during the decoding
phase. The input query is a learnable vector or parameter that represents an initial estimate
of the event location at the input layer, which is then updated and optimised by attention
at each decoding layer. The output queries are considered as the representations of N
events, with each output token from the decoder corresponding to a potential event.
Therefore, all tokens predict a set of events without changing the meaning of the original
text. Moreover, the work also included a module for organising representations prior to
the parallel method. This module serves as intermediate information for event localisation
and sentence generation. Representation organisation uses a feed-forward neural network
to identify the most important features in a spatio-temporal context and generate all the
possible proposal representations. Each representation becomes the central information of
the event, including the timestamps and sentences.
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It is important to note that the input event query is used to replace the anchor. This
method is learnable and allows the model to automatically identify regions in the image
that may contain objects, with a capacity of up to 100 such regions. Then, using a bipartite
graph matching method, valid prediction boxes are filtered from the 100 prediction boxes,
and the loss function is calculated. Therefore, the event query is equivalent to replacing the
anchor with a learnable method that avoids generating a large number of invalid boxes
that result from using the anchor.

The number of input event queries can be controlled, which limits the maximum
number of proposals the model can generate. This may result in a low recall rate if
the number of queries is set too low, which may affect the accuracy of the subsequent
positioning module and result in the loss of important information. In turn, although it may
improve the recall rate to some extent if the number of queries is set too high, it reduces
the accuracy rate of the title generation module, resulting in repeated words or unnatural
language logic. Therefore, the number of event queries must be carefully considered and
counted to ensure the best possible results.

Nset = argmax(vlen), (4)

where the vlen represents a fixed-size feature vector for prediction. By using the deformable
Transformer in combination with the event query during decoding, this work can more
accurately divide the extreme point regions of object boundaries, resulting in more precise
event edge detection and can accelerate the network training by focusing on sparse spatial
locations and combining multi-scale feature representations.

3.3.2. Parallel Pathway

The query features and reference enhanced by the representation organisation are
sent to the localisation and captioning proposal modules in parallel. This is followed by a
one-to-one matching process and filtering to select the combination that best matches the
actual video content to achieve dense video captioning.

Localisation Module

The primary objective of this module is to match the output of the representation
organisation module to the video on a one-to-one basis and to determine the centre and
timestamp of the event proposal. The work used a multi-layer perceptron for box prediction,
which involves regression of the event boundary and binary classification of foreground
and background. In box prediction, the work calculates the relative offset of the reference
point from the actual ground and determines the centre and duration of the event. The
purpose of binary classification is to generate a confidence score for the foreground of
each event proposal. The final output time proposal consists of the start time tstar

i , the end
time tend

i , and the confidence of the location proposal cloc
i .

Caption Module

The captioning module allows the model to focus on video frames that are highly
correlated with the output words. This helps mine fine-grained interactions between words
and video frames. Most traditional methods rely on LSTM with soft attention to generate
captions. This allows the importance of each element to be dynamically determined by
restricting the attentional field to event proposals and ensures that the generated words are
all contained in the same event for sentence and video matching. However, the work wants
to use a parallel method for this task and cannot rely directly on the information from
the positioning module. If the work used the above method, the association between the
reference text and the video would be lost. Therefore, the work proposed to use deformable
soft attention combined with LSTM to generate captions, as shown in Figure 3.

By using deformable soft attention, a reference point can be predicted for each input
query as the reference position of the centre point of the event proposal, and the weight of
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the sampling point can be calculated to limit the event to a more precise region. Specifically,
the hidden state hit of LSTM at the t-th moment is given by

hit = LSTM
(

wi,t−1, hi,t−1, q̃i,t−1

)
, (5)

where wi,t−1 is the word generated at the previous moment, and q̃i,t−1 is the event query
output by the representation organisation. Then, take [hit, q̃i] as the query in deformable
soft attention to obtain the context feature zit,

zit = DSAttn([hit, q̃i]), (6)

and the output features zit are restricted to a relatively small region to narrow down the
scope of event proposals. Next, LSTM takes zit, wi,t−1, and q̃i in series as input to obtain
the generated t-th word wit and calculates the probability distribution p of the word wit in
the entire vocabulary,

p(wit | wi,t−1) = Softmax(wi,t−1, zit, q̃i). (7)

According to the probability distribution p, the embedded word sequence can be
continuously sampled until an End-of-Sentence (<EOS>) symbol is encountered, resulting
in a complete sentence.

Deformable Soft Attention

LSTM

Event query  q𝑖
t=0

t=1
t=2…

Run

the

the
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London

marathon
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…

R
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t

z𝑖t

Figure 3. LSTM with deformable attention.

3.3.3. Caption Generation

The localisation information and captions obtained by the parallel method are com-
bined into a proposal set. This set also requires checking for proposal-caption pairs, similar
to the number of event queries introduced in Section 3.2.2. However, too many features
for output can lead to redundancy and poor readability, while too few features can lead to
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missing of important information from the video. To avoid these problems, we perform
a bipartite match between N proposals in the proposal set and K captions in the Ground
Truth (GT), and measure the difference between the predicted foreground and background
regions of the model and the actual annotated regions through the cross-entropy loss
function, to obtain proposal-caption pairs. To ensure consistency in semantic information
and size, we use the set prediction loss for the calculation, which is the weighted sum of
the individual module losses,

L = µ
(

Lgiou + Lcls + Lcr−e + Lcap
)
, (8)

where Lgiou represents the generalised IOU between the generated timestamps and the
GT, Lcls means the focal loss of binary matching, Lcr−e represents the cross-entropy loss
between the generated number of event proposals and the GT number, and Lcap is the cross-
entropy loss between the generated words and the GT words. Based on the calculation
result, the work keeps use of the prediction frame with a confidence level higher than the
threshold as the final output and obtains a text description that is more suitable for the
video content and has an accurate time stamp.

4. Experiment

In order to evaluate our newly proposed method for dense video caption generation,
this work verifies the performance on the ActivityNet Caption dataset and compares the
results with those from the state-of-the-art methods.

4.1. Dataset and Data Pre-Processing

The ActivityNet Caption dataset is a publicly available dataset that is widely used
for dense video captioning tasks. It covers several domains relevant to our method. The
dataset consists of 20 K video clips, each with an average duration of 2 min. Each clip
is annotated with the events, including the start and end time of each event, along with
a human-written textual description of the event content. The dataset is derived from
YouTube videos, but some videos have been removed or altered by their original authors
and are not available for direct download. The work used an alternative approach provided
by the authors to retrieve the missing videos and obtain a complete dataset. Like most
researchers, here, we split the dataset into training, validation, and test sets. The training
set contains 10 K clips, the validation set contains 4 K clips, and the test set contains 5 K
clips. However, the labels for the test set have not yet been released, so this work used the
validation set for experimentation and comparison purposes.

Before training the model, the work preprocessed the reference sentences by converting
all letters to lowercase, removing non-text characters, and adding special markers <BOS>and
<EOS> at the beginning and end of each sentence. To reduce the impact of large vocabularies
and low-frequency words, the work replaced words occurring less than five times with
<UNK>. However, this replacement resulted in the loss of some semantic information, also
known as the out-of-bag error. This work also added a start token to the decoder input,
which allowed the caption to be generated word-by-word until the end marker was reached.

4.2. Implementation

Our model was trained on an Ubuntu 20.04 system using two NVIDIA GeForce RTX
3070 GPUs, and the work used PyTorch [54] as the neural network engine. For multi-modal
feature extraction, the work followed the approach of BMT [52]. This work used I3D to
extract 64 RGB features and 64 optical flow features at 25.0 fps with a size of 224, producing
feature vectors with a dimension of 1024. We also used VGGish to extract audio features.
The learning rate was set to 1e−4, and the batch size was 32. The work used a multi-scale
deformable attention of size 4 and applied a two-layer deformable Transformer to encode
and decode the video features. The hidden layer size of the feed-forward network was set
to 2048, and we set the number of event queries to 10. In the caption module, the work
set the hidden layer dimension of the LSTM to 512 and the word embedding size to 468.
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The work used a dynamic learning rate and set the warm-up steps to 10 epochs, gradually
increasing from 0 to 5e−5. We trained the relation detection with fixed prediction loss and
set the learning rate to 5e−4. This work used the Adam optimiser [55] for the loss function.

4.3. Results and Analysis

The work tested our framework by following the implementation details above and
performing experiments on the ActivityNet Caption dataset. We compared the results with
those obtained by the state-of-the-art methods. This work also performed an ablation study
to investigate how different modules in our framework affected the experimental results.
Finally, the work presents the results of the qualitative analysis in a visualisation, which
provides a clearer picture of the benefits of our proposed framework.

4.3.1. Comparison to the State-of-the-Art

This work contrasted our proposed model with the state-of-the-art methods for the
dense video captioning task, consisting of EEDVC [43], DCE [8], MFT [26], WLT [27],
SDVC [9], EHVC [31], MDVC [28], BMT [52], EMVC [51], PPVC [13], and PDVC [46]. The
contrast results are displayed in Table 1.

Table 1. Comparison of the performance of our proposed method with the state-of-the-art methods
on the ActivityNet Captions dataset.

Models B@1 B@2 B@3 B@4 METEOR CIDEr

EEDVC [43] 9.96 4.81 2.91 1.44 6.91 9.25
DCE [8] 10.81 4.57 1.90 0.71 5.69 12.43

MFT [26] 13.31 6.13 2.84 1.24 7.08 21.00
WLT [27] 10.00 4.20 1.85 0.90 4.93 13.79
SDVC [9] 17.92 7.99 2.94 0.93 8.82 -

EHVC [31] - - - 1.29 7.19 14.71
MDVC [28] 12.59 5.76 2.53 1.01 7.46 7.38
BMT [52] 13.75 7.21 3.84 1.88 8.44 11.35

EMVC [51] 14.65 7.10 3.23 1.39 9.64 13.29
PPVC [13] 14.93 7.40 3.58 1.68 7.91 23.02
PDVC [46] - - - 1.96 8.08 28.59
Proposed 15.23 8.02 3.91 1.75 9.68 29.17

Bold font indicates the highest result.

As reported in Table 1, B@N is an evaluation metric known as BLEU [56], which
measures the quality of translations by comparing the matching degree of N-grams in
the candidate and reference translations. BLEU is commonly used for text generation
tasks in NLP. METEOR [57] is based on BLEU and uses the F-value as the final evaluation
metric, taking into account both recall and precision. CIDEr [58] calculates the similarity
between candidate and reference sentences, making it suitable for image and video cap-
tioning evaluation tasks. Higher quality text descriptions receive higher scores on these
evaluation metrics.

The work thoroughly analysed the comparative results based on the evaluation met-
rics mentioned above. Our proposed method performed slightly worse in B@1 and B@4,
but outperformed other methods in terms of METEOR and CIDEr. The SDVC uses rein-
forcement learning to train the model, resulting in a higher B@1 score compared to all other
methods. Furthermore, all our metrics are higher than those of BMT and EMVC, which also
use multi-modal features as inputs. This demonstrates the feasibility of using parallel paths
to generate textual descriptions. When compared to the two parallel decoding methods
of PPVC and PDVC, it can be seen that most of our metrics are slightly higher. It is worth
noting that PDVC’s input also includes visual and audio features, indicating that our
method is still competitive.
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4.3.2. Ablation Study

The work conducted several comparative experiments to analyse the impact of differ-
ent components of our proposed model on the output results. This includes comparing the
performance of the localisation module, investigating the effect of LSTM with deformable
attention on the caption module, and assessing the influence of multi-modal features as
inputs on model generation.

Table 2 shows the quality of event localisation on the ActivityNet Captions dataset.
Our method achieves a higher F1 score compared to MFT and SDVC. It outperforms the
traditional localise-then-describe methods and uses event proposal networks to generate
event proposals. Meanwhile, our method uses a representation organisation to filter better
quality events and overlays a localisation module to accurately locate event proposals. As
a result, our method significantly outperforms MFT on various metrics and achieves better
overall results compared to other models. These metrics demonstrate the effectiveness of
our proposed localisation module. The @tIoU represents the temporal intersection of the
unions, with 4 thresholds of {0.3, 0.5, 0.7, 0.9}.

Table 2. Performance comparison of the localisation module.

Models
Proposal Recall (@tIoU) Precision (@tIoU)

F1Network 0.3 0.5 0.7 0.9 avg 0.3 0.5 0.7 0.9 avg

MFT [26] X 46.18 29.76 15.54 5.77 24.31 86.34 68.79 38.30 12.19 51.41 33.01
SDVC [9] X 93.41 76.40 42.42 10.10 55.58 96.71 77.73 44.84 10.99 57.57 56.56
PPVC [13] - 91.71 78.90 56.73 20.60 61.98 96.23 73.80 37.66 12.31 55.07 58.33
PDVC [46] - 89.47 81.91 44.63 15.67 55.42 97.16 78.09 42.68 14.40 58.07 56.71

Ours - 90.25 81.97 48.39 20.77 63.08 95.51 79.31 39.60 15.72 59.10 58.43

Bold font indicates the highest result.

The work compared different methods for the caption module of our model: Vanilla
LSTM, LSTM with Soft Attention (SA), and LSTM with Deformable Soft Attention (DSA).
The results are shown in Table 3. When generating event proposals and captions in parallel,
using Vanilla LSTM results in a lack of interaction between text and features. SA training
does not allow all attention weights to be concentrated on a fixed area. Therefore, using
DSA as our proposed method effectively addresses the issue of parallel methods not directly
accessing event proposals and achieves better results.

Table 3. The effect of LSTM with deformable attention on the caption module.

Method B@1 B@2 B@3 B@4 METEOR CIDEr

Vanilla LSTM 14.88 7.15 3.84 1.70 8.91 27.39
LSTM with SA 15.44 7.61 3.70 1.68 9.23 28.85

LSTM with DSA(Ours) 15.23 8.02 3.91 1.75 9.68 29.17
Bold font indicates the highest result.

The work also confirmed that combining different types of features can help improve
the quality of the text generated by the model. The comparison of the results is shown in
Table 4. Experimental results also report that using only audio features is not sufficient to
improve the quality of the text and can even have a negative impact on the performance of
the model. Using only visual features can produce good results, but is still not as effective
as using multi-modal features. By supplementing visual features with audio features, the
generated text can be significantly improved.
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Table 4. The impact of multi-modal features on the quality of generated captions.

Method B@1 B@2 B@3 B@4 METEOR CIDEr

Visual-only 13.66 7.43 3.11 1.27 8.35 23.58
Audio-only 13.07 6.69 2.94 1.13 6.81 16.20
Proposed 15.23 8.02 3.91 1.75 9.68 29.17

Bold font indicates the highest result.

4.3.3. Qualitative Analysis

This work demonstrates the proposed method on the act dataset. The generated text
descriptions can be seen in Figure 4. The GT is also included for reference.

As shown in Figure 4, the proposed method divides a 2 min video into 4 proposals
event and generates logical text descriptions. Compared to GT, our method accurately
separates the video based on its content and scenes and avoids the event redundancy.
The generated captions fully describe the content of each event. However, GT clearly
identifies the name of the male protagonist as “Mr. Bean”, which our method does not.
This difference may be due to the fact that the video clip is from a popular TV series and
GT’s captions are manually marked, whereas the protagonist is relatively well known. This
comparison shows that our method has not yet successfully identified the protagonist and
matched his name in a complex scene.

0:00
0:44

0:44 2:16

GT: Mr. Bean smile in a picture, then a man explains and then invite two people to show karate moves.

GT: After, the man calls Mr. Bean who looks afraid and run.
2:16

2:27

GT: Then, Mr. Bean push the back of the man who falls on the mat, then Mr. Bean rolls up the man and then gives a smile.

0:00
0:39

0:42 1:32

Ours: A  man is telling and demonstrating karate to students in the room.

Ours: A man wearing a white belt seems frightened, and avoids another man.

Ours: A man knocks the another man over and wraps him with a mat, then makes a bow to the classmates.

1:27 2:18

2:15
2:27Ours: A man runs away in fear, and the another man calms him.

Figure 4. Results of a qualitative analysis of a video from the ActivityNet Caption dataset. The
predicted results of the proposed model are compared with the GT reference.

5. Conclusions

The paper has proposed a new model for dense video captioning that achieves competi-
tive results on the ActivityNet Caption dataset, with the following particular improvements.

• The approach was able to effectively exploit the multi-modal features of video and
highlights the potential of the audio modality to enhance video details.

• A deformable Transformer was used to encode and decode features, which eliminated
the need for complex anchor mechanisms and hyperparameter constraints in non-
maxima suppression.

• A representation organisation module was introduced to improve the link between
features and context.

• The parallel method for the two subtasks of localisation and captioning was enhanced,
allowing fine-grained interaction between the submodules and improving the com-
prehensiveness and accuracy of the text descriptions generated by the model.
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Based on the experimental results, it is evident that our method excels in event
localisation and generates text descriptions that follow linguistic logic, while presenting
video content from multiple perspectives. Compared to other dense video captioning
methods, our proposed method has clear advantages. In the future, we will aim to overcome
the branch bottleneck of existing parallel methods, improve the computer’s ability to
understand and represent video content, and ultimately achieve the beautiful vision of
artificial intelligence.
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