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Jiří Holman †

Department of Technical Mathematics, Faculty of Mechanical Engineering, CTU in Prague,
16636 Prague, Czech Republic; jiri.holman@fs.cvut.cz
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Abstract: This work deals with the numerical solution of hypersonic flow of viscous fluid over a
compressible ramp. The solved case involves very important and complicated phenomena such
as the interaction of the shock wave with the boundary layer or the transition from a laminar to a
turbulent state. This type of problem is very important as it is often found on re-entry vehicles, engine
intakes, system and sub-system junctions, etc. Turbulent flow is modeled by the system of averaged
Navier–Stokes equations, which is completed by the explicit algebraic model of Reynolds stresses
(EARSM model) and further enhanced by the algebraic model of bypass transition. The numerical
solution is obtained by the finite volume method based on the rotated-hybrid Riemann solver and
explicit multistage Runge–Kutta method. The numerical solution is then compared with the results
of a direct numerical simulation.

Keywords: compressible ramp; hypersonic flow; shock wave interaction; transition; RANS; EARSM;
algebraic model of transition; finite volume method; rotated-hybrid Riemann solver; DNS
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1. Introduction

The design of hypersonic vehicles is becoming increasingly common nowadays, and it
is therefore necessary to develop and use appropriate engineering tools.

Hypersonic flow has a very complex nature. Strong shock waves may be present in
the flow field as well as in their interactions with each other or with the boundary layer.
Contact waves, large areas of a subsonic flow field, supersonic jets, and other complicated
elements may also be present in the flow field. Measuring these flow fields in experi-
mental aerodynamic laboratories can be technically difficult and expensive. Therefore,
computational fluid dynamics (CFD) methods are increasingly being used.

Solving hypersonic flow using CFD methods is still a major challenge. It is necessary
to use a suitable numerical method that is sufficiently robust, stable, and capable of approx-
imating the flow at low and high Mach numbers. The numerical scheme must also be able
to accurately capture all the flow field elements described above. Recent developments in
numerical methods, e.g., [1–5], address some of these problems.

Another issue is the appropriate modeling of turbulence, which is still an open problem.
Many commonly used models of turbulence neglect terms that may only be significant at
hypersonic velocities [6]. A significant part of the problem is modeling the transition from
a laminar to a turbulent flow regime. The answer to all these problems may be the use of
the direct numerical simulation (DNS), which can accurately predict hypersonic turbulent
flows, e.g., [7–10]. However, the DNS method requires a very precise numerical method
and a very fine computational mesh (the number of cells required for the DNS method
is equal to Re

9
4 [6]). Therefore, its use for industrial applications in current computers is

not possible.
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The main objective of this work is to test the possibility of using a relatively com-
mon CFD method based on averaged Navier–Stokes equations closed by the modified
EARSM model of turbulence and second-order accurate numerical method for hypersonic
flow prediction.

The problem selected for this test is flow over a compressible ramp. Although the
geometry of the problem is simple, the solution is complex and involves the interaction of
shock waves, shock wave interaction with the boundary layer, and separation, reattachment,
and even transition from a laminar to a turbulent state. This problem is the subject of current
research, e.g., [7,11–13]. These publications use the DNS method, which is suitable for
research purposes but very expensive for use in design calculations of re-entry vehicles or
engine intakes, which are typical applications of solved problems.

The importance of this test is to determine whether common CFD methods can be
used for such cases with sufficient accuracy for engineering designs.

The paper is organized as follows. First, the averaged Navier–Stokes equations to-
gether with the modified EARSM model of turbulence are introduced in Section 2. The fol-
lowing section deals with the numerical solution using the finite volume method. After that,
the problem of flow over a compressible ramp is formulated and solved numerically. Finally,
the obtained results are discussed in the last section.

2. Governing Equations

Turbulent flow of viscous compressible fluid is modeled by the system of averaged
Navier–Stokes equations in vector form (summation over repeated indices will be used
throughout the paper),

∂W
∂t

+
∂Fj(W)

∂xj
=

∂Rj(W)

∂xj
, (1)

Fj(W) =

 ρuj
ρuiuj + pδij
(ρE + p)uj

, Rj(W) =

 0
τij + τt

ij
ui(τij + τt

ij)− (qj + qt
j) + dt

j

, (2)

where W = (ρ, ρui, ρE)T is the vector of mean conservative variables (Reynolds averaging
is used for density and static pressure, and Favre averaging is used for total specific energy
and for components of the velocity vector [14]), ρ is density, ui are components of the
velocity vector, E is total specific energy, p is static pressure, and δij is the Kronecker delta.
The components of the mean stress tensor τij are given by relation

τij = µ

(
∂ui
∂xj

+
∂uj

∂xi
− 2

3
δij

∂uk
∂xk

)
, µ = µre f

(
ρre f p
pre f ρ

) 3
4

, (3)

where µ is the mean viscosity computed using the Rayleigh relation, with µre f , ρre f , and
pre f being constants. The components of the mean heat flux vector qj are defined as

qj = −
κ

κ − 1
µ

Pr
∂

∂xj

(
p
ρ

)
, (4)

where κ is the specific heat ratio (in this work, the flow of perfect gas (air) is assumed,
for which κ = 1.4 holds), and the Prandtl number Pr is assumed to be constant (in this
work, Pr = 0.72). The components of the turbulent heat flux vector qt

j are analogically ([6])
defined as

qt
j = −

κ

κ − 1
µt

Prt

∂

∂xj

(
p
ρ

)
, (5)

where the turbulent Prandtl number Prt is also assumed to be constant (in this work,
Prt = 0.9). The term dt corresponds to the molecular diffusion and turbulent transport
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of the turbulent kinetic energy k. This term is usually neglected but can be significant in
hypersonic flows [6]. The components dt

j are given by the relation

dt
j = (µ + σ∗µt)

∂k
∂xj

. (6)

The model constant σ∗, the turbulent viscosity µt, and components of the Reynolds stress
tensor τt

ij will be given in the next subsection. The system of averaged Navier–Stokes
Equations (1) is also equipped with the equation of state of a perfect gas in the form

p = (κ − 1)
[

ρE− 1
2

ρujuj − ρk
]

. (7)

Model of Turbulence

The system of averaged Navier–Stokes Equations (1) is not closed and therefore needs
to be completed by some suitable model of turbulence.

The model of turbulence used in this work is based on the EARSM model, which is
further enhanced by the algebraic model of bypass transition [14].

The model consists of the transport equation for the turbulent kinetic energy k,

∂(ρk)
∂t

+
∂(ρkuj)

∂xj
= γ fSSP− β∗ρkω +

∂

∂xj

[(
µ + σ∗µt

) ∂k
∂xj

]
, (8)

and transport equation for the specific dissipation rate ω,

∂(ρω)

∂t
+

∂(ρωuj)

∂xj
= α

ω

k
fSSP− βρω2 +

∂

∂xj

[(
µ + σµt

) ∂ω

∂xj

]
+ Cd, (9)

where
P = τt

ij
∂ui
∂xj

(10)

is the original production term of the turbulent kinetic energy [15], Cd represents cross-
diffusion given by the formula

Cd = σd
ρ

ω
max

(
∂k
∂xj

∂ω

∂xj
, 0
)

, (11)

and β∗ = 0.09, σ∗ = 1.01, α = 0.553, β = 0.075, σ = 0.5, and σd = 0.52 are model constants.
The algebraic model of bypass transition is represented by two functions, namely fSS

and γ, where the first is sheer sheltering factor

fSS = exp
[
−
(

CSSµΩ
ρk

)2]
, (12)

where Ω =
√

2ΩijΩij is the vorticity tensor magnitude, and constant CSS = 2.75. The latter
function represents an intermittency factor defined as

γ = min( max(RekΩ − CT , 0), 1 ), (13)

where CT = 1.8125 is constant, and the Reynolds number RekΩ, which serves as the
transition onset parameter, is given by the relation

RekΩ =
ρk
µΩ

. (14)
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Finally, the last two terms in Equations (8) and (9) (τt
ij and µt) are the components of

the Reynolds stress tensor and turbulent viscosity, respectively. Both terms are parts of the
EARSM model’s constitutive relations. The components of the Reynolds stress tensor are
given as

τt
ij = µt

(
∂ui
∂xj

+
∂uj

∂xi
− 2

3
δij

∂uk
∂xk

)
− 2

3
δijρk− ρka(ex)

ij , (15)

where turbulent viscosity is given by the relation

µt = −
1
2
(β1 + IIΩβ6)ρkτ, (16)

and extra anisotropy is given as

a(ex)
ij = β3

(
Ω∗ikΩ∗kj −

1
3

IIΩδij

)
+ β4(S∗ikΩ∗kj −Ω∗ikS∗kj)

+ β6

(
S∗ikΩ∗klΩ

∗
l j + Ω∗ikΩ∗klS

∗
l j − IIΩS∗ij −

2
3

IVδij

)
+ β9(Ω∗ikS∗klΩ

∗
lmΩ∗mj −Ω∗ikΩ∗klS

∗
lmΩ∗mj). (17)

The turbulent viscosity µt and extra anisotropy a(ex)
ij are nonlinear terms, which

depend on the turbulent time scale

τ = max
(

1
β∗ω

, 6
√

µ

β∗ρkω

)
, (18)

dimensionless strain-rate and vorticity tensors

S∗ij =
τ

2

(
∂ui
∂xj

+
∂uj

∂xi
− 2

3
δij

∂uk
∂xk

)
, Ω∗ij =

τ

2

(
∂ui
∂xj
−

∂uj

∂xi

)
, (19)

and on the related invariants IIΩ = Ω∗klΩ
∗
lk and IV = S∗klΩ

∗
lmΩ∗mk. The beta coefficients

β1–β9 are defined as

β1 = −N(2N2 − 7IIΩ)

Q
, β3 = −12N−1IV

Q
, (20)

β4 = −2(N2 − 2IIΩ)

Q
, β6 = −6N

Q
, β9 =

6
Q

, (21)

where the denominator Q is

Q =
5
6
(N2 − 2IIΩ)(2N2 − IIΩ), (22)

with N representing the turbulent kinetic energy production and dissipation rate ratio
defined as

N = Nc +
162
[
IV2 + (V − 0.5IISIIΩ)N2

c
]

20N4
c (Nc − 0.5C′1)− IIΩ(10N3

c + 15C′1N2
c ) + 10C′1II2

Ω
, (23)

where

Nc =


C′1
3 +

(
P1 +

√
P2
) 1

3 + sign
(

P1 −
√

P2
)∣∣(P1 −

√
P2
∣∣ 1

3 for P2 ≥ 0
C′1
3 + 2

(
P2

1 − P2
) 1

6 cos
[

1
3 arccos

(
P1√

P2
1−P2

)]
for P2 < 0,

(24)
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P1 =

(
C′21
27

+
9

20
IIS −

2
3

IIΩ

)
C′1, P2 = P2

1 −
(

C′21
9

+
9
10

IIS +
2
3

IIΩ

)3

, (25)

IIS = S∗klS
∗
lk, V = S∗klS

∗
lmΩ∗mnΩ∗nk, (26)

and C′1 is given by relation

C′1 =
9
5
+

9
4

Cdi f f max
(

1 + β
eq
1 IIS, 0

)
, (27)

where
β

eq
1 = −6

5
Neq

(Neq)2 − 2IIΩ
, Neq =

81
20

and Cdi f f = 2.2. (28)

3. Numerical Method

The system of averaged Navier–Stokes Equation (1), together with the transport
equations of the EARSM model, can be written as

∂W
∂t

+
∂Fj(W)

∂xj
=

∂Rj(W)

∂xj
+ Q(W), (29)

where W = (ρ, ρui, ρE, ρk, ρω)T is the vector of the unknown conservative variables, Fj are
corresponding inviscid fluxes, Rj are corresponding viscous fluxes, and vector Q contains
source terms.

The numerical solution is obtained by in-house software based on the cell-centered
finite volume method [16] in semi-discrete form

dWi
dt

=
1
|Di|

faces

∑
k=1

(R̂k − F̂k)∆Sk + Q(Wi), (30)

where Wi is an averaged solution over the cell Di, viscous flux R̂ = ~R ·~n, inviscid flux
F̂ = ~F ·~n, ∆S is the area of the cell face between two adjacent cells, and~n is the unit vector
normal to a face.

Since hypersonic flow is considered in this work, a rotated-hybrid Riemann solver [1]
is used for approximation of inviscid flux. By using the rotated-hybrid Riemann solver
concept, a carbuncle phenomenon caused by strong shock waves can be avoided. Moreover,
the rotated-hybrid Riemann solver is based on a combination of the low Mach number
variants of the HLLC and the HLL schemes, respectively, which is important for accurate
prediction of subsonic parts of the flow field.

Second-order accuracy is accomplished by piece-wise linear WENO reconstruction [17]
of the primitive variables. The viscous flux is discretized by the central scheme with aid
of diamond-shape dual cells [18]. Time integration of the semi-discrete finite volume
method (30) is done by the explicit two-stage TVD Runge–Kutta method [19] with point
implicit treatment of the source terms.

4. Numerical Solution of Hypersonic Flow over a Compressible Ramp

The hypersonic flow over a compressible ramp is characterized by the free-stream
Mach number M∞ = 7.7 and the Reynolds number Re = 8.6 · 105. This setup corresponds
to the same problem with total enthalpy h0 = 1.7 MJ·kg−1, as in the paper [7]. The relatively
low total enthalpy allows a calorically perfect gas to be used as the fluid.

The simulation was performed in the computational domain shown in Figure 1. The lower
boundary of the computational domain consists of a flat plate of length L = 100 mm, followed
by a ramp of length 220 mm, with an angle of 15 degrees. The left boundary (x = 0) of the
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computational domain and the upper boundary, which is equidistant by 30 mm from the
lower boundary, are considered as inlet, while the right boundary is considered as outlet.

Figure 1. Computational domain and mesh.

The computational domain was covered by a hyperbolically generated grid with
400× 100 cells, with minimum grid spacing in the y-direction ∆y = 3.8 · 10−6 m, which
corresponds to y+ ≈ 0.9.

The boundary conditions were prescribed in the following way:

• Inlet: ρ∞ = 0.032 kg ·m−3, u∞ = 1726 m · s−1, v∞ = 0 m · s−1, p∞ = 1550 Pa,
k∞ = 111.7 m2 · s−2, and ω∞ = 1.38 · 105 s−1.

• Outlet: zero-gradient extrapolation of all variables.
• Solid wall (leading flat plate and compressible ramp): no-slip isothermal wall condi-

tions, ~uwall =~0 m · s−1, Twall = 293 K, kwall = 0 m2 · s−2, and ωwall = 1.668 · 109 s−1.

The free-stream turbulent kinetic energy k∞ was calculated using relation

k∞ =
3
2

Tu2|~u∞|2, (31)

where the free-stream turbulence intensity Tu is equal to half a percent, which is approxi-
mately the lower limit of the bypass transition model used in this work. Therefore, we are
in the region between the natural transition and the bypass transition.

The free-stream value of the specific dissipation rate ω∞ is based on the dimen-
sional analysis

[ω∞] ∼ [u∞]

[L]
⇒ ω∞ = C

u∞

L
, (32)

where L is the characteristic size (in this case the length of the flat plate in front of the ramp),
and C is constant of order O(1). In our case, the value C = 7 is chosen because it allows us
to correctly capture the transition onset.

Finally, the value of the specific dissipation rate ωwall is calculated using relation

ωwall = Cω
6µ

ρβ(∆y1/2)2 , (33)

which is based on the solution of the simplified Equation (9) in the near-wall region. Here,
the constant Cω = 1.5, and ∆y1/2 is the distance between the center of the first cell and
the wall.
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Figure 2 shows the Mach number distribution. It shows a relatively weak shock wave
generated by the leading edge of the flat plate and a separation bubble around the corner,
with boundary layer separation located at x/L = 0.67 and reattachment at x/L = 1.17.
Both the separation and reattachment of the boundary layer generate stronger shock
waves, which then interact at the so-called triple point located at x/L = 1.37 (Figure 3).
The structure of the flow field is in good qualitative agreement with results obtained by the
DNS method in [7].

Figure 2. Distribution of Mach number.

Figure 3. Distribution of Mach number; detail near the triple point.

Table 1 shows a comparison with the results obtained by the DNS method in [7]. There
is a relatively large difference in the predicted location of the boundary layer separation
compared to the DNS method. Since it is in the laminar part of the boundary layer, this
difference is almost certainly due to the much more accurate numerical method and to the
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much finer grid used by the DNS method. On the other hand, the reattachment location is
predicted reasonably well by the presented method. The difference in the predicted location
of the triple point is due to above-mentioned shift in the separation location downstream.
The shift of the triple point is caused by the change in the angle of the separation shock wave.
Finally, the transition onset location is predicted, in good agreement with the DNS method.

Table 1. Comparison of separation, reattachment, triple point, and transition locations.

Method Separation Reattachment Triple Point Transition

mod. EARSM 0.67 1.17 1.37 1.67

DNS 0.49 1.26 1.65 1.76

Figure 4 shows the turbulent kinetic energy distribution. It shows a rather sharp
transition onset located at x/L = 1.67.

Figure 4. Distribution of turbulent kinetic energy [m2s−2]; detail near the transition onset.

Figure 5 shows distributions of the pressure coefficient. A small pressure increase can
be observed due to boundary layer separation and to a much higher increase downstream
of the reattachment location. The first increase is predicted later compared to both the
DNS method and the experiment. This is again due to the much higher accuracy of the
DNS method. The second increase is predicted more accurately. A qualitatively different
shape can be observed around the point x/L = 1.6. This is due to the typical sharp bypass
transition from the laminar to turbulent flow regime, which is notable even in the pressure
distribution. The location of the pressure drop in the vicinity of x/L = 2 is predicted in
good agreement with the DNS method, although the magnitude of the drop is smaller
in the case of the presented method. Finally, the magnitude of the pressure coefficient in
the turbulent part of the boundary layer is predicted in very good agreement with the
DNS method.

A grid convergence study was also performed. The same problem was solved for three
progressively refined meshes. The coarse mesh consists of 200× 100 cells, the medium mesh
of 400× 100 cells, and fine mesh of 600× 100 cells. Figure 5 shows all three results, which
are almost indistinguishable. Therefore, the results can be considered to be grid-convergent.
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Figure 5. Distributions of the pressure coefficient.

5. Discussion and Conclusions

A numerical simulations of the hypersonic flow of viscous fluid over a compressible
ramp with transition from laminar to turbulent flow regime has been performed.

The numerical solution was obtained by the common and much less demanding
numerical method used on relatively coarse meshes (40–60 thousand cells) in comparison
with the direct numerical simulation (627 million cells). This allows us to obtain solutions
in a much shorter time, which is required for efficient analysis and industrial designs. This
is clearly the biggest advantage of the presented method. On the other hand, the DNS
method provides more accurate results that agree very well with the experiment, but at the
cost of very long computation times (it can take months or even years, or it may be nearly
impossible on current computers for cases with high Reynolds numbers). This makes the
DNS method more suitable for research purposes or as a substitute for experiments.

Another advantage is the relative simplicity of the presented method, which can
be used to solve more complex problems with complicated geometry, whereas the DNS
method is generally only used for problems with simple geometry. Additionally, since
many existing codes are based on the averaged Navier–Stokes equations and two-equation
models of turbulence, it is easy to implement the presented method in existing solvers.

The lack of ability to model the natural transition is the biggest weakness of the
presented method. The transition from a laminar to a turbulent flow regime is modeled by
a very simple algebraic model of bypass transition, whereas the real transition process in
the case of flow over a compressible ramp is probably caused by means of the natural one.
This leads to a significant difference in the shape of the pressure coefficient distribution in
the transition region.

Another weakness is the use of a numerical scheme with only second-order accuracy.
There are visible differences (especially the location of the laminar boundary layer sep-
aration) in the solution due to the significantly lower accuracy of the presented method
compared to the DNS. This could be resolved by using a higher-order reconstruction
in space.

However, results obtained by the presented method are qualitatively correct and are
reasonable accurate, at least for common industrial design applications. The computational
time required to obtain a solution using the presented method is on the order of hours on
commonly available computers. Therefore, it can be stated that the presented method has
the potential to be used for design calculations of hypersonic vehicles.
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