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Abstract: This paper deals with two types of systems of second-order differential equations with
parameters: coupled systems with the boundary conditions of the Sturm–Liouville type and classical
systems with Dirichlet boundary conditions. We discuss an Ambosetti–Prodi alternative for each
system. For the first type of system, we present sufficient conditions for the existence and non-
existence of its solutions, and for the second type of system, we present sufficient conditions for
the existence and non-existence of a multiplicity of its solutions. Our arguments apply the lower
and upper solutions method together with the properties of the Leary–Schauder topological degree
theory. To the best of our knowledge, the present study is the first time that the Ambrosetti–Prodi
alternative has been obtained for such systems with different parameters.
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1. Introduction

This article focuses on the sufficient conditions that must be present from nonlinearities
in order to be able to discuss, depending on the parameters, the existence and non-existence
of solutions for second-order systems of the type{

u′′1 (t) + f (t, u1(t), u2(t), u′1(t)) = µ v1(t),
u′′2 (t) + g(t, u1(t), u2(t), u′2(t)) = λ v2(t),

(1)

for t ∈ [0, 1], where f , g : [0, 1]×R3 → R, v1, v2 : [0, 1] → R+ are continuous functions
and µ, λ are real parameters, along with the boundary conditions

aiui(0)− biu′i(0) = 0,
ciui(1) + diu′i(1) = 0,

(2)

where ai, bi, ci, di ≥ 0, i = 1, 2, such that ai + bi > 0 and ci + di > 0.
A multiplicity of solutions will be obtained for a particular case of (1) and (2), that is,{

u′′1 (t) + f (t, u1(t), u′1(t)) = µ v1(t),
u′′2 (t) + g(t, u2(t), u′2(t)) = λ v2(t),

(3)

for t ∈ [0, 1], where f , g : [0, 1]×R2 → R, with the boundary conditions

ui(0) = ui(1) = 0, for i = 1, 2. (4)
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These types of equations were introduced in [1], and since then, they have been
studied by many authors in the context of different types of boundary value problems.
As examples, we refer to [2,3] for three-point and two-point boundary value problems;
ref. [4,5] for Neumann boundary conditions; ref. [6–10] for periodic problems; ref. [11]
for parametric problems with (p, q)-Laplacian equations; ref. [12] for asymptotic conditions;
and [13] for coercivity conditions.

Common to all of these problems is the discussion of the so-called Ambrosetti–Prodi
alternative, in which there are some values, ξ0 and ξ1, of a parameter ξ such that the
problem has no solution for ξ < ξ0, at least one solution if ξ = ξ0, or two solutions
if ξ0 < ξ < ξ1.

Coupled systems of second-order differential equations, where there is dependence
between the various unknown variables, were studied in a huge variety of theoretical
and applied situations involving different types of boundary conditions, such as [14–17].
Moreover, there are many real phenomena modeled by coupled systems, particularly in
problems related to population dynamics, as in [18–21].

Recently, in [22], the authors presented a technique to discuss the existence of coupled
systems of two Ambrosetti–Prodi-type second-order fully differential equations and proved
the existence of solutions for the values of the parameters for which there are lower and
upper solutions for the system.

This paper extends, for the first time, as far as we know, the Ambrosetti–Prodi alter-
native to coupled systems of differential equations with two parameters. The existence
and nonexistence of solutions are obtained for Problems (1) and (2), and a discussion of
multiplicity for particular cases of the boundary conditions are considered in [22].

Our method relies on the lower and upper solutions technique together with a Nagumo
condition to estimate the values of the first derivatives. Leray–Schauder topological degree
properties play a key role in obtaining the multiplicity of solutions. As is usual in this type
of method, the results also provide the localization for such solutions in a strip bounded
by lower and upper solutions. This feature is particularly useful in practice, particularly
in the application of these theorems to the study of population dynamics and namely to
Lotka–Volterra steady-state systems with migration, as we show in the last section.

The paper is organized as follows. Section 2 contains definitions and some auxiliary
results, such as the a priori Nagumo estimation for the first derivatives and a previous
result used in the main results. The third and fourth sections provide a discussion of
the two parameters for the existence and multiplicity of solutions, respectively. The last
section presents an application for studying the interactions between two species under
two scenarios: mutualism and neutralism.

2. Definitions and Auxiliary Results

In this section, some definitions, lemmas, and theorems are introduced for the subse-
quent analysis.

Let X = C1[0, 1] be the usual Banach space equipped with the norm ‖ · ‖C1 , defined by

‖ x‖C1 := max{‖ x‖, ‖ x′‖},

where
‖x‖ := max

t∈[0,1]
|x(t)|,

and let X2 = C1[0, 1]× C1[0, 1] with the norm

‖ (x, y)‖X2 = max{‖ x‖C1 , ‖ y‖C1}. (5)

The Nagumo condition, introduced by [23], establishes an a priori estimation for the
first derivative of the solution of System (1), provided that it satisfies an adequate frame-
work.



Mathematics 2023, 11, 3645 3 of 19

Definition 1. Let αi(t), βi(t), i = 1, 2 be continuous functions such that

αi(t) ≤ βi(t), for all t ∈ [0, 1],

and consider the set

S = {(t, y1, y2, y3) ∈ [0, 1]×R3 : α1(t) ≤ y1 ≤ β1(t), α2(t) ≤ y2 ≤ β2(t)}. (6)

A continuous function h : [0, 1]×R3 → R satisfies a Nagumo-type condition in the set (6) if
there is a continuous positive function ϕ : [0,+∞)→ (0,+∞)satisfying

|h(t, y1, y2, y3)| ≤ ϕ(|y3|), (7)

such that ∫ +∞

0

ds
ϕ(s)

= +∞. (8)

The a priori estimate for the first derivatives is given by the next lemma following the
arguments of [22].

Lemma 1. Suppose that the continuous functions f , g : [0, 1]×R3 → R satisfy the Nagumo-type
Conditions (7) and (8) in S. Then, for every solution (u1, u2) ∈ (C2[0, 1])2 of (1) satisfying

α1(t) ≤ u1(t) ≤ β1(t), and α2(t) ≤ u2(t) ≤ β2(t), ∀t ∈ [0, 1], (9)

there are N1 > 0 and N2 > 0 such that

‖u′1‖ ≤ N1, and ‖u′2‖ ≤ N2. (10)

Remark 1. The constant N1 depends only on the parameter µ and on the functions v1, α1, and β1.
Analogously, N2 depends only on λ, v2, α2, and β2. However, if the parameters µ and λ belong to
bounded sets, N1 and N2 can be taken independently of µ and λ.

To apply the lower and upper solutions method, depending on the values of the
parameters µ and λ, we take the followings coupled functions.

Definition 2. Let ai, bi, ci, di ≥ 0 such that ai + bi > 0 and ci + di > 0 for i = 1, 2.
A pair of functions (γ1, γ2) ∈ (C2(]0, 1[) ∩ C1([0, 1]))2 is a lower solution of Problems (1)

and (2) if, for all t ∈ [0, 1],
γ′′1 (t) + f (t, γ1(t), γ2(t), γ′1(t)) ≥ µ v1(t),

γ′′2 (t) + g(t, γ1(t), γ2(t), γ′2(t)) ≥ λ v2(t),
(11)

and, for i = 1, 2,
aiγi(0)− biγ

′
i(0) ≤ 0,

ciγi(1) + diγ
′
i(1) ≤ 0.

(12)

A pair of functions (φ1, φ2) ∈ (C2(]0, 1[) ∩ C1([0, 1]))2 is an upper solution of
Problems (1) and (2) if, for all t ∈ [0, 1],

φ′′1 (t) + f (t, φ1(t), φ2(t), φ′1(t)) ≤ µ v1(t),

φ′′2 (t) + g(t, φ1(t), φ2(t), φ′2(t)) ≤ λ v2(t),
(13)

and, for i = 1, 2,
aiφi(0)− biφ

′
i(0) ≥ 0,

ciφi(1) + diφ
′
i(1) ≥ 0.

(14)
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The first theorem is an existence and localization result that is a particular case of
Theorem 3.1 of [22]. In short, it guarantees the existence of a solution for the values of µ
and λ such that there are lower and upper solutions of Problems (1) and (2).

Theorem 1. Let f , g : [0, 1]× R3 → R be continuous functions. If there are lower and upper
solutions of (1) and (2), (γ1, γ2) and (φ1, φ2), respectively, according to Definition 2, such that

γi(x) ≤ φi(x), i = 1, 2, ∀x ∈ [0, 1], (15)

and f and g satisfy Nagumo conditions as in Definition 1 relative to the intervals [γ1(x), φ1(x)]
and [γ2(x), φ2(x)] for all x ∈ [0, 1] with

f (x, y0, z0, y1) nondecreasing in z0, (16)

for x ∈ [0, 1], we have

min
{

min
x∈[0,1]

γ′1(x), min
x∈[0,1]

φ′1(x)
}
≤ y1 ≤ max

{
max

x∈[0,1]
γ′1(x), max

x∈[0,1]
φ′1(x)

}
,

and with
g(x, y0, z0, z1) nondecreasing in y0

for x ∈ [0, 1], we have

min
{

min
x∈[0,1]

γ′2(x), min
x∈[0,1]

φ′2(x)
}
≤ z1 ≤ max

{
max

x∈[0,1]
γ′2(x), max

x∈[0,1]
φ′2(x)

}
.

Then there is at least (u(x), v(x)) ∈ (C2[0, 1])2, a paired solution of (1) and (2), and, moreover,

γ1(x) ≤ u(x) ≤ φ1(x), γ2(x) ≤ v(x) ≤ φ2(x), ∀x ∈ [0, 1]. (17)

3. Existence and Non-Existence of Solutions

A preliminary discussion of the values of the parameters µ and λ, for which it is
possible to guarantee the existence and non-existence of a solution for System (1) with the
boundary Condition (2), is given by the next theorem.

Theorem 2. Let f , g : [0, 1] × R3 → R be continuous functions fulfilling the conditions of
Theorem 1. If we have µ1, λ1 ∈ R, p > 0, and q > 0 such that satisfy

f (t, 0, 0, 0)
v1(t)

< µ1 <
f (t, y1, y2, 0)

v1(t)
, (18)

for every t ∈ [0, 1], y1 ≤ −p, and y2 ∈ R and

g(t, 0, 0, 0)
v2(t)

< λ1 <
g(t, y1, y2, 0)

v2(t)
, (19)

for every t ∈ [0, 1], y1 ∈ R, and y2 ≤ −q, then there exist µ0 < µ1 and λ0 < λ1 (with the
possibility of µ0 = −∞ and λ0 = −∞) such that:

1. If µ < µ0 or λ < λ0, there is no solution to (1) or (2);
2. If µ0 < µ ≤ µ1 and λ0 < λ ≤ λ1, then there is at least one solution to (1) and (2).

Proof. Claim 1: There exist µ̄ < µ1 and λ∗ < λ1 such that (1) and (2) have a solution for µ = µ̄
and λ = λ∗.
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Defining

µ̄ := max
t∈[0,1]

{
f (t, 0, 0, 0)

v1(t)

}
, and λ∗ := max

t∈[0,1]

{
g(t, 0, 0, 0)

v2(t)

}
,

there are t̄, t∗ ∈ [0, 1] such that

f (t, 0, 0, 0)
v1(t)

≤ µ̄ =
f (t̄, 0, 0, 0)

v1(t̄)
< µ1,

and
g(t, 0, 0, 0)

v2(t)
≤ λ∗ =

g(t∗, 0, 0, 0)
v2(t∗)

< λ1,

for all t ∈ [0, 1].
Then, the functions φ1(t) ≡ 0 and φ2(t) ≡ 0 are upper solutions of Problems (1) and (2)

for µ = µ̄ and λ = λ∗. On the other hand, γ1(t) = −p and γ2(t) = −q are lower solutions
of Problems (1) and (2) for µ = µ̄ and λ = λ∗ since, by (18) and the boundary conditions,
we have

• γ′′1 (t) = 0 > µ1 v1(t)− f (t,−p,−q, 0) > µ̄ v1(t)− f (t,−p,−q, 0),
• γ′′2 (t) = 0 > λ1 v2(t)− g(t,−p,−q, 0) > λ∗ v2(t)− g(t,−p,−q, 0),
• −a1 p ≤ 0, and − c1 p ≤ 0,
• −a2q ≤ 0, and − c2q ≤ 0.

As f and g satisfy the Nagumo conditions on the set

S1 = {(t, y1, y2, y3) ∈ [0, 1]×R3 : −p ≤ y1 ≤ 0, − q ≤ y2 ≤ 0},

then, by Theorem 1, there exists at least one solution of Problems (1) and (2) for µ = µ̄ < µ1
and λ = λ∗ < λ1.

Claim 2: If (1) and (2) have a solution for µ = σ < µ1 and λ = ρ < λ1, then they have a solution
for µ ∈ [σ, µ1], and λ ∈ [ρ, λ1].

Let (u1σ(t), u2ρ(t)) be a solution of Problems (1) and (2) for µ = σ < µ1 and
let λ = ρ < λ1; that is,

u1
′′
σ(t) + f (t, u1σ(t), u2ρ(t), u1

′
σ(t)) = σ v1(t),

u2
′′
ρ (t) + g(t, u1σ(t), u2ρ(t), u2

′
ρ(t)) = ρ v2(t).

The pair of functions (u1σ(t), u2ρ(t)) is an upper solution of (1) and (2) for values of µ
and λ such that σ ≤ µ ≤ µ1 and ρ ≤ λ ≤ λ1 since

u1
′′
σ(t) = σ v1(t)− f (t, u1σ(t), u2ρ(t), u1

′
σ(t)) ≤ µ v1(t)− f (t, u1σ(t), u2ρ(t), u1

′
σ(t)),

and

u2
′′
ρ (t) = ρ v2(t)− g(t, u1σ(t), u2ρ(t), u2

′
ρ(t)) ≤ λ v2(t)− g(t, u1σ(t), u2ρ(t), u2

′
ρ(t)),

when the boundary conditions are trivially checked.
For p > 0 and q > 0, as defined in (23) and (24), consider values of P > 0 and Q > 0

large enough such that

P ≥ p, Q ≥ q, u1σ(0) ≥ −P, u1σ(1) ≥ −P, u2ρ(0) ≥ −Q, and u2ρ(1) ≥ −Q. (20)

Then, (−P,−Q) is a lower solution of Problems (1) and (2) for µ ≤ µ1 and λ ≤ λ1
since, by (18) and the boundary conditions, we have
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• 0 > µ1 v1(t)− f (t,−P,−Q, 0) ≥ µ v1(t)− f (t,−P,−Q, 0),
• 0 > λ1 v2(t)− g(t,−P,−Q, 0) ≥ λ v2(t)− g(t,−P,−Q, 0),
• −a1P ≤ 0, and − c1P ≤ 0,
• −a2Q ≤ 0, and − c2Q ≤ 0.

To apply Theorem 1, it remains to justify that

−P ≤ u1σ(t), and −Q ≤ u2ρ(t), ∀t ∈ [0, 1].

Assume, by contradiction, that the first inequality is not satisfied. Then, there exists
t ∈ [0, 1] such that u1σ(t) < −P, and we can define

min
t∈[0,1]

u1σ(t) := u1σ(t0) < −P.

By (20), u1
′
σ(t0) = 0, u1

′′
σ(t0) ≥ 0, and, by (18), we obtain the contradiction

0 ≤ u1
′′
σ(t0) = σ v1(t0)− f (t0, u1σ(t0), u2ρ(t0), 0)

≤ µ v1(t0)− f (t0, u1σ(t0), u2ρ(t0), 0)
≤ µ1 v1(t0)− f (t0, u1σ(t0), u2ρ(t0), 0) < 0.

Then, −P ≤ u1σ(t) for all t ∈ [0, 1].
Using a similar method, by (19), it can be shown that −Q ≤ u2ρ(t) for all t ∈ [0, 1].
Therefore, by Theorem 1, there exists at least one solution (u1(t), u2(t)) of

Problems (1) and (2) for values of µ and λ such that µ ∈ [σ, µ1] and λ ∈ [ρ, λ1].

Claim 3: There exist µ0 and λ0 such that:
For µ < µ0 or λ < λ0, (1) and (2) have no solution;
for µ0 < µ ≤ µ1 and λ0 < λ ≤ λ1, (1) and (2) have at least one solution.

Consider the set

A = {(µ, λ) ∈ R2 : (1) and (2) has solution}, (21)

with the order relationship given by

(x, y) ≤ (z, w)⇔ x ≤ z ∧ y ≤ w.

The set A is not empty because, by Claim 1, (µ̄, λ∗) ∈ A, and we can thus define

(µ0, λ0) := infA. (22)

If (1) and (2) have a solution for all µ < µ1 and λ < λ1, then µ0 = −∞ and λ0 = −∞.
By Claim 1 and (22), µ0 ≤ µ̄ < µ1 and λ0 ≤ λ∗ < λ1. By Claim 2, (1) and (2) have at

least one solution for values of µ and λ such that µ0 < µ ≤ µ1 and λ0 < λ ≤ λ1.

Replacing f , g, y1, and y2 with − f , −g, −y1, and −y2, respectively, in Conditions (18)
and (19), we obtain a dual version of the previous theorem, whose proof follows the same
type of arguments.

Theorem 3. Let f , g : [0, 1] × R3 → R be continuous functions fulfilling the assumptions of
Theorem 1.

If there are µ1, λ1 ∈ R, p > 0, and q > 0 that satisfy

f (t, 0, 0, 0)
v1(t)

> µ1 >
f (t, y1, y2, 0)

v1(t)
, (23)
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for every t ∈ [0, 1], y1 ≥ p and y2 ∈ R,

g(t, 0, 0, 0)
v2(t)

> λ1 >
g(t, y1, y2, 0)

v2(t)
, (24)

for every t ∈ [0, 1], y1 ∈ R, and y2 ≥ q, then there exists µ0 > µ1 and λ0 > λ1 (with the
possibility of µ0 = +∞ and λ0 = +∞) such that the following hold true:

1. If µ > µ0 or λ > λ0, (1) and (2) have no solution;
2. If µ0 > µ ≥ µ1 and λ0 > λ ≥ λ1, (1) and (2) have at least one solution.

4. Multiplicity of Solutions

The multiplicity result is obtained for a particular case of Problems (1) and (2), namely,
a standard system where the differential equations are independent with
f , g : [0, 1]×R2 → R.

The arguments are based on the topological Leray–Schauder degree, along with strict
lower and upper solutions, as in the next definition.

Definition 3. i. A pair of functions (γ1, γ2) ∈ (C2(]0, 1[) ∩ C1([0, 1]))2 is a strict lower
solution of Problems (3) and (4) if, for all t ∈ [0, 1],

γ′′1 (t) + f (t, γ1(t), γ′1(t)) > µ v1(t),

γ′′2 (t) + g(t, γ2(t), γ′2(t)) > λ v2(t),
(25)

and
γi(0) < 0, γi(1) < 0, for i = 1, 2. (26)

ii. A pair of functions (φ1, φ2) ∈ (C2(]0, 1[) ∩ C1([0, 1]))2 is a strict upper solution of
Problems (3) and (4) if, for all t ∈ [0, 1],

φ′′1 (t) + f (t, φ1(t), φ′1(t)) < µ v1(t),

φ′′2 (t) + g(t, φ2(t), φ′2(t)) < λ v2(t),
(27)

and
φi(0) > 0, φi(1) > 0, for i = 1, 2. (28)

For the functional framework, we define the operators

L : (C2([0, 1]))2 → (C([0, 1]))2 ×R4

given by
L(u1, u2) = (u′′1 , u′′2 , u1(0), u1(1), u2(0), u2(1)) (29)

and
N(µ,λ) : (C1([0, 1]))2 → (C([0, 1]))2 ×R4

given by
N(µ,λ)(u1, u2) = (X, Y, 0, 0, 0, 0)

as
X := −θ f (t, δ1(t, u1(t)), u1

′(t)) + u1(t) + θ [µ v1(t)− δ1(t, u1(t))],

and
Y := −ϑ g(t, δ2(t, u2(t)), u2

′(t)) + u2(t) + ϑ [λ v2(t)− δ2(t, u2(t))].

Since L is invertible, we can define the completely continuous operator

T : (C2([0, 1]))2 → (C([0, 1]))2
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given by
T(θ,ϑ)(u1, u2) = L−1N(µ,λ)(u1, u2).

Clearly, the operator T is compact, and the following lemma allows us to evaluate the
topological degree, d(I − T , Ω, (0, 0)).

Lemma 2. Assume that there are strict lower and upper solutions of (3) and (4), γi(t), and φi(t),
respectively, with

γi(t) < φi(t), i = 1, 2, ∀t ∈ [0, 1],

where the continuous functions f , g : [0, 1] × R2 → R satisfy the Nagumo conditions as in
Definition 1 relative to the intervals [γ1(t), φ1(t)] and [γ2(t), φ2(t)].

Then, there is M > 0 such that, for

Ω =
{
(u1, u2) ∈ (C2([0, 1]))2 : γi(t) < ui(t) < φi(t), ‖u′i‖ < M, i = 1, 2

}
,

we have
d(I − T(1,1), Ω, (0, 0)) = ±1.

Remark 2. By Remark 1, it is possible to consider the same set Ω for Equation (3) regardless of µ
and λ, provided that γi(t) and φi(t) are strict lower and upper solutions of (3) and (4) and (µ, λ)
belongs to a bounded set.

Proof. Consider the truncated functions δi : [0, 1]×R→ R, i = 1, 2,

δi(t, yi) :=


φi(t) if yi > φi(t),

yi if γi(t) ≤ yi ≤ φi(t),
γi(t) if yi < γi(t).

(30)

For θ, ϑ ∈ [0, 1], consider the homotopic, truncated, and perturbed problem composed
by the system

u1
′′(t) + θ f (t, δ1(t, u1(t)), u1

′(t)) = u1(t) + θ [µ v1(t)− δ1(t, u1(t))],

u2
′′(t) + ϑ g(t, δ2(t, u2(t)), u2

′(t)) = u2(t) + ϑ [λ v2(t)− δ2(t, u2(t))],
(31)

and the boundary Condition (4).
With these definitions, Problems (31) and (4) are equivalent to the operator equation

T(θ,ϑ)(u1, u2) = (u1, u2). (32)

For i = 1, 2, take Ri > 0 such that, for every t ∈ [0, 1],

−Ri < γi(t) ≤ φi(t) < Ri,

µ v1(t)− f (t, γ1(t), 0)− R1 − γ1(t) < 0,

µ v1(t)− f (t, φ1(t), 0) + R1 − φ1(t) > 0, (33)

λ v2(t)− g(t, γ2(t), 0)− R2 − γ2(t) < 0,

λ v2(t)− g(t, φ2(t), 0) + R2 − φ2(t) > 0.

By Lemma 1, and applying the technique suggested in the proof of Theorem 1 (see [22],
Theorem 3.1) adapted to strict lower and upper solutions γi(t), and φi(t), there are positive
real numbers Mi, where i = 1, 2 such that

‖u′1‖ < M1, and ‖u′2‖ < M2,

independently of the parameters θ and ϑ.
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If we define

Ω1 = {(u1, u2) ∈ (C2([0, 1]))2 : ‖ui‖ < Ri, ‖u′i‖ < Mi, i = 1, 2},

then every solution of (32) belongs to Ω1 for all (θ, ϑ) ∈ [0, 1]2, (u1, u2) /∈ ∂Ω1, and, so,
the degree d(I − T(θ,ϑ), Ω1, (0, 0)) is well-defined for every (θ, ϑ) ∈ [0, 1]2.

For (θ, ϑ) = (0, 0), the equation T(0,0)(u1, u2) = (u1, u2), that is, the homogeneous
linear problems 

ui
′′(t)− ui(t) = 0,

ui(0) = 0,
ui(1) = 0, for i = 1, 2,

admits only the null solution. Then, by degree theory, d(I − T(0,0), Ω1, (0, 0)) = ±1, and
by the homotopy invariance

±1 = d(I − T(0,0), Ω1, (0, 0)) = d(I − T(1,1), Ω1, (0, 0)). (34)

Therefore, Problems (31) and (4) have, at least, a solution (ũ1, ũ2) for (θ, ϑ) = (1, 1).
Let us prove that (ũ1, ũ2) ∈ Ω. Assume, by contradiction, that there is t ∈ [0, 1] such

that γ1(t) ≥ ũ1(t) and define

max
t∈[0,1]

(γ1(t)− ũ1(t)) := γ1(t0)− ũ1(t0) ≥ 0.

By (4) and (26), t0 ∈]0, 1[, γ′1(t0) = ũ′1(t0) and γ′′1 (t0)− ũ′′1 (t0) ≤ 0. Therefore, by (16),
we have the contradiction

γ′′1 (t0) ≤ ũ′′1 (t0) = − f (t0, δ1(t0, ũ1(t0)), ũ1
′(t0)) + ũ1(t0) + µv1(t0)− δ1(t0, ũ1(t0))

= − f (t0, γ1(t0), γ′1(t0)) + ũ1(t0)− γ1(t0) + µv1(t0)

≤ − f (t0, γ1(t0), γ′1(t0)) + µv1(t0) < γ′′1 (t0).

Therefore, γ1(t) < ũ1(t) for all t ∈ [0, 1].
As the other inequalities can be obtained by similar arguments, we have

γ1(t) < ũ1(t) < φ1(t), γ2(t) < ũ2(t) < φ2(t), ∀t ∈ [0, 1],

and, therefore, (ũ1, ũ2) ∈ Ω .
For

M := max
i=1,2
{‖γi‖C1 , ‖φi‖C1 , Mi}, (35)

Ω ⊂ Ω1, and, by (34) and the excision property of degree theory, we have

±1 = d(I − T(1,1), Ω1, (0, 0)) = d(I − T(1,1), Ω, (0, 0)).

Remark 3. We remark that, from (30), if (u1, u2) ∈ Ω is a solution of Problems (31) and (4), then
it is a solution of (3) and (4) as well.

The multiplicity result requires extra assumptions for the nonlinearities.

Theorem 4. Let f , g : [0, 1]×R2 → R be continuous functions such that there are µ1, λ1 ∈ R,
p > 0, and q > 0 that satisfy

f (t, 0, 0)
v1(t)

< µ1 <
f (t, y1, 0)

v1(t)
(36)
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for every t ∈ [0, 1], y1 ≤ −p,

g(t, 0, 0)
v2(t)

< λ1 <
g(t, y1, 0)

v2(t)
(37)

for every t ∈ [0, 1], y2 ≤ −q, and

f (t, y1, y2), and g(t, y1, y2) are nonincreasing on y1, (38)

for all (t, y2) ∈ [0, 1]×R.
Assume that there are ki ∈ R, i = 1, 2 with k1 ≥ −p and k2 ≥ −q such that every solution

(u1(t), u2(t)) of (3) and (4) with µ0 < µ1 and λ0 < λ1satisfies

ui(t) < ki, i = 1, 2, ∀ ∈ [0, 1] (39)

and there exist mi ∈ R, i = 1, 2 such that

f (t, y1, y2) ≥ m1v1(t) (40)

for (t, y1, y2) ∈ [0, 1]× [−p, k1]×R and

g(t, y1, y2) ≥ m2v2(t) (41)

for (t, y1, y2) ∈ [0, 1]× [−q, k2]×R.
Thus, the numbers µ0, and λ0, given by Theorem 2, are finite, and the following are true:

1. If µ < µ0 or λ < λ0, there is no solution to Problems (3) and (4);
2. If µ = µ0 and λ = λ0, there is at least one solution to Problems (3) and (4);
3. If µ0 < µ ≤ µ1 and λ0 < λ ≤ λ1, there are at least two solutions to Problems (3) and (4).

Proof. Claim 1: Every solution (u1(t), u2(t)) of Problems (3) and (4) for (µ, λ)
∈ ]µ0, µ1]× ]λ0, λ1] satisfies

−p < u1(t) < k1, and − q < u2(t) < k2, ∀t ∈ [0, 1].

By (39), it will suffice to prove that any solution (u1(t), u2(t)) of (3) and (4) with (µ, λ)
∈ ]µ0, µ1]× ]λ0, λ1] satisfies

−p < u1(t), and − q < u2(t), ∀t ∈ [0, 1].

Assume, by contradiction, that there is µ ∈]µ0, µ1] such that u1(t) ≤ −p and define

min
t∈[0,1]

u1(t) := u1(t1) ≤ −p < 0.

By (4), t1 ∈ ]0, 1[, and, therefore,

u′1(t1) = 0, u′′1 (t) ≥ 0.

By (36), the following contradiction holds:

0 ≤ u′′1 (t1) = µv1(t1)− f (t1, u1(t1), u′1(t1))

≤ µ1v1(t1)− f (t1, u1(t1), 0) < 0.

Therefore,
−p < u1(t) < k1, ∀t ∈ [0, 1],
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and, by (37) and similar arguments, it can be proved that

−q < u2(t) < k2, ∀t ∈ [0, 1].

Claim 2: The numbers µ0 and λ0 are finite.

If, by contradiction, µ0 = −∞ and λ0 = −∞, then, by Theorem 2, Problems (3) and (4)
have a solution for any values of µ and λ such that µ ≤ µ1 and λ ≤ λ1.

Let (u1(t), u2(t)) be a solution of (3) and (4) for µ ≤ µ1 and λ ≤ λ1.
Then, by (41), we have

u′′1 (t) = µv1(t)− f (t, u1(t), u′1(t)) ≤ µv1(t)−m1v1(t) = (µ−m1)v1(t). (42)

Define
v10 := min

t∈[0,1]
v1(t) > 0,

and consider a µ small enough such that

m1 − µ > 0, and
(m1 − µ)v10

16
> k1.

By (4), there is t2 ∈]0, 1[ such that u′1(t2) = 0.
For t < t2 by (42),

u′1(t) = −
∫ t2

t
u′′1 (ζ)dζ ≥

∫ t2

t
(m1 − µ)v1(ζ)dζ ≥ (m1 − µ)(t2 − t)v10.

For t ≥ t2,

u′1(t) =
∫ t

t2

u′′1 (ζ)dζ ≤ (µ−m1)(t− t2)v10.

Choose I = [0, 1
4 ] or I = [ 3

4 , 1] such that |t2 − t| ≥ 1
4 for t ∈ I.

In the first case,

u′1(t) ≥
(m1 − µ)v10

4
, ∀t ∈ I,

and the following contradiction with (39) holds:

0 =
∫ 1

0
u′1(t)dt =

∫ 1
4

0
u′1(t)dt +

∫ 1

1
4

u′1(t)dt

≥
∫ 1

4

0

(m1 − µ)v10

4
dt− u1

(
1
4

)
=

(m1 − µ)v10

16
− u1

(
1
4

)
> k1 − u1

(
1
4

)
.

If I = [ 3
4 , 1], then

u′1(t) ≤
(µ−m1)v10

4
, ∀t ∈ I,

and, following the same technique, an analogous contradiction is obtained. Therefore, µ0
is finite.

Analogously, it can be shown that λ0 is finite.

Claim 3: For (µ, λ) ∈ ]µ0, µ1]× ]λ0, λ1], there is a second solution of (3) and (4).

As both µ0 and λ0 are finite, by Theorem 2, there exist µ−1 < µ0 or λ−1 < λ0 such that
(3) and (4) have no solution for µ = µ−1 or λ = λ−1.

In the first case, by Lemma 1 and Remark 1, it is possible to consider ρ > 0 that is large
enough such that the estimation ‖u′i‖ < ρ, i = 1, 2 holds for every solution (u1(t), u2(t)) of
(3) and (4), where µ ∈ [µ−1, µ1] or λ ∈ [λ−1, λ1].
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Consider
M∗ := max{p, q, |ki|, i = 1, 2}, (43)

and the set

Ω∗ = {(u1, u2) ∈ (C2([0, 1]))2 : ‖ui‖ < M∗, ‖u′i‖ < ρ, i = 1, 2}. (44)

Together with the linear operator L, given by (29), we define the nonlinear operator

N ∗(µ,λ) : (C1([0, 1]))2 → (C([0, 1]))2 ×R4

by

N ∗(µ,λ)(u1, u2) =

 µv1(t)− f (t, u1(t), u1
′(t)),

λv2(t)− g(t, u2(t), u2
′(t)),

0, 0, 0, 0

,

and we define the completely continuous operator

T ∗ : (C2([0, 1]))2 → (C([0, 1]))2

given by
T ∗(µ,λ)(u1, u2) = L−1N(µ,λ)(u1, u2).

By the definition of Ω∗ and Claim 1, the degree d(I − T ∗(µ,λ), Ω∗, (0, 0)) is well-defined
for every (µ, λ) ∈ [µ−1, µ1]× [λ0, λ−1], and, by degree theory,

d(I − T ∗(µ−1,λ−1)
, Ω∗, (0, 0)) = 0.

Therefore, for the homotopy H : [0, 1]→ R2 on the parameters (µ, λ) given by

H(s) = ((1− s)µ−1 + sµ1, (1− s)λ−1 + sλ1),

it is clear that the degree d(I − T ∗H(s), Ω∗, (0, 0)) is well-defined for every s ∈ [0, 1] and
(µ, λ) ∈ [µ−1, µ1]× [λ−1, λ1].

By the invariance under homotopy,

0 = d(I − T ∗(µ−1,λ−1)
, Ω∗, (0, 0)) = d(I − T ∗(µ,λ), Ω∗, (0, 0)) (45)

for (µ, λ) ∈ [µ−1, µ1]× [λ−1, λ1].
Take (µ∗, λ∗) ∈]µ0, µ1]×]λ0, λ1] ⊂ [µ−1, µ1] × [λ−1, λ1] and let (u∗1(t), u∗2(t)) be a

solution of (3) and (4) with (µ, λ) = (µ∗, λ∗), which exists by Theorem 2.
By Claim 1 and (43), it is possible to consider εi > 0, i = 1, 2 such that

|u∗i (t) + εi| < M∗, i = 1, 2, for t[0, 1]. (46)

For the functions given by

ũ1(t) := u∗1(t) + ε1, ũ2(t) := u∗2(t) + ε2,

the pair (ũ1(t), ũ2(t)) is a strict upper solution of (3) and (4) for µ∗ < µ ≤ µ1 and
λ∗ < λ ≤ λ1 as we have

ũ′′1 (t) = u′′∗1 (t) = µ∗v1(t)− f (t, u∗1(t), u∗′1 (t))

< µv1(t)− f (t, u∗1(t), ũ′1(t))

≤ µv1(t)− f (t, u∗1(t) + ε1, ũ′1(t))

= µv1(t)− f (t, ũ1(t), ũ′1(t)).
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Analogously, it can be proven that

ũ′′2 (t) = u′′∗2 (t) < λv2(t)− g(t, ũ2(t), ũ′2(t)).

Moreover, the pair (−p,−q) is a strict lower solution of (3) and (4) for µ ≤ µ1 and λ ≤
λ1 as, by (36) and (37),

0 > µ1 v1(t)− f (t,−p, 0) ≥ µ v1(t)− f (t,−p, 0),

0 > λ1 v2(t)− g(t,−q, 0) ≥ λ v2(t)− g(t,−q, 0).

By Claim 1,
−p < u∗1(t) < u∗1(t) + ε1 = ũ1(t),

and
−q < u∗2(t) < u∗2(t) + ε2 = ũ2(t), ∀t ∈ [0, 1].

By Lemma 1 and Remark 2, there is ρ0 > 0 independent of µ and λ such that for the set

Ωε =

{
(u1, u2) ∈ (C2([0, 1]))2 : −p < u1(t) < ũ1(t),
−q < u2(t) < ũ2(t), ‖u′i‖ < ρ0, i = 1, 2

}
we have the degree

d(I − T ∗(µ,λ), Ωε, (0, 0)) = ±1, for (µ, λ) ∈]µ0, µ1]×]λ0, λ1]. (47)

Assuming, in (44), there is ρ > 0 large enough such that, by (46), Ωε ⊂ Ω∗, then, by
(45) and (47) and the additivity property of the degree,

d(I − T ∗(µ,λ), Ω∗ −Ωε, (0, 0)) = ∓1, for (µ, λ) ∈]µ0, µ1]×]λ0, λ1].

Then, for (µ, λ) ∈]µ0, µ1]×]λ0, λ1], Problems (3) and (4) have at least two solutions: a
solution in Ωε and another one in Ω∗ −Ωε since (µ, λ) is arbitrary in ]µ0, µ1]×]λ0, λ1].

Claim 4: For (µ, λ) = (µ0, λ0) Problems (3) and (4) have at least one solution.

Consider the sequence (µn, λn) such that (µn, λn) ∈]µ0, µ1]×]λ0, λ1], lim µn = µ0, and
lim λn = λ0.

By Theorem 2, for each (µn, λn), Problems (3) and (4) have, at least, a solution
(u1n(t), u2n(t)).

From the estimations given in Claim 1 and (43), ‖(u1n, u2n)‖ < M∗, and by Lemma 1,
there is a ρ > 0 sufficiently large such that∥∥(u′1n, u′2n)

∥∥ < ρ,

independently of n. Then, the sequence (u′′1n, u′′2n) is bounded in C([0, 1]), and, by the
Arzèla–Ascoli theorem, there is a subsequence of (u1n(t), u2n(t)) that converges in C2([0, 1])
to a solution (u1(t), u2(t)) of (3) and (4) for (µ, λ) = (µ0, λ0).

A dual version of Theorem 4 can be given, as below.

Theorem 5. Let f , g : [0, 1]×R2 → R be continuous functions such that there are µ1, λ1 ∈ R,
p > 0, and q > 0 that satisfy

f (t, 0, 0)
v1(t)

> µ1 >
f (t, y1, 0)

v1(t)
, (48)

for every t ∈ [0, 1], y1 ≥ p,
g(t, 0, 0)

v2(t)
> λ1 >

g(t, y1, 0)
v2(t)

, (49)
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for every t ∈ [0, 1], y1 ≥ q, and

f (t, y1, y2), and g(t, y1, y2) are nonincreasing on y1 (50)

for all (t, y2) ∈ [0, 1]×R.
Assume that there are ki ∈ R, where i = 1, 2 with k1 ≤ p, and k2 ≤ q, such that every

solution (u1(t), u2(t)) of (3) and (4), where µ0 > µ1, and λ0 > λ1, satisfies

ui(t) > ki, i = 1, 2, ∀ ∈ [0, 1], (51)

and there exist mi ∈ R, where i = 1, 2, such that

f (t, y1, y2) ≤ m1v1(t) (52)

for (t, y1, y2) ∈ [0, 1]× [k1, p]×R and

g(t, y1, y2) ≤ m2v2(t) (53)

for (t, y1, y2) ∈ [0, 1]× [k2, q]×R.
Then numbers µ0, and λ0, given by Theorem 3, are finite, and the following hold true:

1. If µ > µ0 or λ > λ0, there is no solution to Problems (3) and (4);
2. If µ = µ0, and λ = λ0, there is at least one solution to Problems (3) and (4);
3. If µ0 > µ ≥ µ1 and λ0 > λ ≥ λ1, there are at least two solutions to Problems (3) and (4).

5. Application in a Lotka–Volterra Steady-State System with Migration

The Lotka–Volterra equations are often used to represent interactions between species.
In their original version, they describe prey–predator competition models. However,
there are many other types of interaction occurring between species, such as mutualism
and neutralism. The study of population dynamics between two species can be considered
the most elementary way to describe interspecific and introspecific interactions.

In [24], the importance of including spatial dependence in the Lotka–Volterra equa-
tions is shown since the models depend only on time. These equations assume that the
spatial distributions of populations are homogeneous, but in most biological systems, this
assumption is not valid.

In this paper, we present a steady-state model of interactive Lotka–Volterra equations
for two species, adapted from the works [25,26].

Consider the system of equations
d1u′′1 (x) + u1(x)(η1 − δ1u1(x) + ψ1u2(x)) = µ̄ v1(x),

d2u′′2 (x) + u2(x)(η2 + ψ2u1(x)− δ2u2(x)) = λ̄ v2(x), x ∈ [0, 1],
(54)

with the boundary conditions

aiui(0)− biu′i(0) = 0,
u′i(1) = 0, for i = 1, 2,

(55)

where ai, bi, di > 0 and ηi, δi, ψi ≥ 0 for i = 1, 2, with the following meanings:

• u1 and u2 are the population density;
• The first term in each equation is responsible for dispersion with species-specific

diffusion (di);
• The second term corresponds to the intrinsic growth of the species, with coefficients ηi

representing the growth rate of the species;
• δi is the intraspecific competition coefficient;
• ψi is the interspecific interaction coefficient;
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• v1(x) and v2(x) can be defined as physical and geographic conditions of the domain
region favoring, or not, the development of a species;

• The parameters µ̄ and λ̄ are the weight of attraction or repulsion of the terms v1(x)
and v2(x) for the respective populations.

5.1. Interaction by Mutualism

Mutualism is an example of an interspecific ecological relationship that benefits all
individuals involved in the interaction. In particular, the Lotka–Volterra model of mu-
tualism is the case where the interaction coefficients ψ1 and ψ2 of Problems (54) and (55)
are positive.

Consider a numerical example of (54) and (55), where d1 = 0.1, d2 = 0.2, η1 = 0.3,
η2 = 0.2, δ1 = 0.5, δ2 = 0.8, ψ1 = 0.2, ψ2 = 0.4, µ̄

d1
= µ, λ̄

d2
= λ, v1(x) = cos2(x),

and v2(x) = e−x.
Thus, we have the particular problem

u′′1 (x) + u1(x)(3− 5u1(x) + 2u2(x)) = µ cos2(x),

u′′2 (x) + u2(x)(1 + 2u1(x)− 4u2(x)) = λ e−x, x ∈ [0, 1]
(56)

with the boundary conditions

ui(0)− u′i(0) = 0,
u′i(1) = 0, for i = 1, 2.

(57)

At x = 0 and x = 1, the boundary conditions of zero density can be interpreted as an
inhospitable region, which the species cannot inhabit.

The assumptions of Theorem 3 are satisfied for every x ∈ [0, 1], and, by (23) and (24),
it is possible to give some estimations of the parameters µ1 and λ1 :

0 > µ1 > p(3− 5p + 2q)

and
0 > λ1 > q(1 + 2p− 4q)

for some p and q such that 
p(3− 5p + 2q) < 0,

q(1 + 2p− 4q) < 0.
(58)

Figure 1 shows the region of points (p, q) calculated by GeoGebra Classic 6.0.794.0,
where Condition (58) holds.

By Definition 2, the functions

(γ1(x), γ2(x)) ≡ (0, 0),

(φ1(x), φ2(x)) ≡ (p, q),

are, respectively, the lower and upper solutions of Problems (56) and (57) for

µ ∈ [p(3− 5p + 2q), 0], and λ ∈ [q(1 + 2p− 4q), 0]. (59)

Moreover, Problems (56) and (57) are a particular case of (1) and (2), where

f (x, y1, y2, y3) = y1(3− 5y1 + 2y2),

and
g(x, y1, y2, y3) = y2(1 + 2y1 − 4y2).
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These functions satisfy the Nagumo Conditions (7) and (8), relative to the intervals
y1 ∈ [0, p] and y2 ∈ [0, q]as

| f (x, y1, y2, y3)| = |y1(3− 5y1 + 2y2)|
≤ |p(3− 5p + 2q)| := ϕ1(|y3|),

|g(x, y1, y2, y3)| = |y2(1 + 2y1 − 4y2)|
≤ |q(1 + 2p− 4q)| := ϕ2(|y3|),

and, trivially, ∫ +∞

0

ds
ϕi(s)

= +∞, for i = 1, 2.

Therefore, by Theorem 1, for the values of µ and λ fulfilling (59), Problems (56) and
(57) have at least one solution (u1(x), u2(x)) such that

0 ≤ u1(x) ≤ p, and 0 ≤ u2(x) ≤ q,

for all x ∈ [0, 1].
Therefore, by Theorem 3, there are µ0 > µ1 and λ0 > λ1 such that Problems (56)

and (57) have no solution for µ > µ0 > 0 or λ > λ0 > 0 and have at least one solution for

0 > µ ≥ µ1 > p(3− 5p + 2q), and 0 > λ ≥ λ1 > q(1 + 2p− 4q).

Figure 1. Region of points (p, q).

5.2. Interaction by Neutralism

Neutralism is an ecological relationship in which there is no interspecific interaction
and the two species evolve independently, i.e., when both interaction parameters are null.
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Consider in (54) ψ1 = 0 and ψ2 = 0. Consider also the numerical Problems (56) and
(57) with the same values for the other parameters:

u′′1 (x) + u1(x)(3− 5u1(x)) = µ cos2(x),

u′′2 (x) + u2(x)(1− 4u2(x)) = λ e−x, x ∈ [0, 1],
(60)

with boundary conditions

ui(0) = ui(1) = 0, for i = 1, 2. (61)

The assumptions (48) and (49) of Theorem 3 are satisfied for every x ∈ [0, 1], and the
estimations of the parameters are given by

0 > µ1 > p(3− 5p), when p >
3
5

,

and
0 > λ1 > q(1− 4q), when q >

1
4

.

Let 0 > ε1 > 3
5 − p and 0 > ε2 > 1

4 − q be real numbers. Then, the functions

(γ1(x), γ2(x)) = (ε1, ε2),

(φ1(x), φ2(x)) = (p, q),

are, respectively, strict lower and upper solutions of Problems (60) and (61) according to
Definition 3 for

µ ∈ (p(3− 5p), ε1(3− 5ε1)), and λ ∈ (q(1− 4q), ε2(1− 4ε2)). (62)

Moreover, Problems (60) and (61) are a particular case of (3) and (4), with

f (x, y1, y2) = y1(3− 5y1),

and
g(x, y1, y2) = y1(1− 4y1).

These functions satisfy the Nagumo Conditions (7), and (8) relative to the intervals
y1 ∈ [ε1, p] and y2 ∈ [ε2, q] as

| f (x, y1, y2)| = |y1(3− 5y1)|
≤ |p(3− 5p)| := ϕ̄1(|y2|),

|g(x, y1, y2)| = |y1(1− 4y1)|
≤ |q(1− 4q)| := ϕ̄2(|y2|),

and, trivially, ∫ +∞

0

ds
ϕ̄i(2)

= +∞, for i = 1, 2.

Thus, by Theorem 1, for the values of µ and λ fulfilling (62), Problems (60) and (61)
have at least a solution (u1(x), u2(x)) such that

ε1 < u1(x) < p and ε2 < u2(x) < q (63)

for all x ∈ [0, 1].
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By Theorem 3, there are µ0 and λ0 such that there is no solution if µ > µ0 = 0
or λ > λ0 = 0.

6. Conclusions and Further Works

To the best of our knowledge, the present study represents the first time that sufficient
conditions are given to apply the Ambrosetti–Prodi alternative to systems of differential
equations with different parameters. The existence and non-existence of solutions are
obtained for coupled systems, that is, for cases where there are strong relationships between
the two unknown functions. However, the existence of multiple solutions was proved only
for independent systems, that is, without the interaction of both variables. We underline
that the assumptions rely only on local monotone assumptions about the nonlinearities
and on the existence of a kind of bifurcation of the values of the parameters.

Several issues still remain open, justifying future work. For example:

• In the coupled systems, what are the assumptions that are necessary to allow the
nonlinearities to depend on the first derivatives of both variables?

• How do we obtain the multiplicity result for the coupled system case?
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