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Abstract: A generalization of the time-delayed Burgers–Fisher equation is studied. This partial
differential equation appears in many physical and biological problems describing the interaction
between reaction, diffusion, and convection. New travelling wave solutions are obtained. The
solutions are derived in a systematic way by applying the multi-reduction method to the symmetry-
invariant conservation laws. The translation-invariant conservation law yields a first integral, which
is a first-order Chini equation. Under certain conditions on the coefficients of the equation, the Chini
type equation obtained can be solved, yielding travelling wave solutions expressed in terms of the
Lerch transcendent function. For a special case, the first integral becomes a Riccati equation, whose
solutions are given in terms of Bessel functions, and for a special case of the parameters, the solutions
are given in terms of exponential, trigonometric, and hyperbolic functions. Furthermore, a complete
classification of the zeroth-order local conservation laws is obtained. To the best of our knowledge,
our results include new solutions that have not been previously reported in the literature.
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1. Introduction

The interaction between convection and diffusion, or reaction and diffusion, describes
several nonlinear phenomena including physical, biochemical, and biological processes.

The simplest convection–diffusion partial differential equation (PDE) is the Burgers
equation describing wave propagation in dissipative systems [1]. Another important PDE
is the Fisher equation. This reaction–diffusion equation was first studied by Fisher, Kol-
mogorov, Petrovsky, and Piscounov as a model for the transmission of a mutant gene [2,3].

A PDE governing a wide range of these processes is the well-known Burgers–Fisher
equation [4],

ut + puux − uxx = qu(1− u), p, q ∈ (0, ∞), (1)

which describes the interplay of the reaction mechanism, convection effect, and diffusion
transport. If q = 0, PDE (1) transforms into the Burgers equation; if p = 0, PDE (1)
becomes the Fisher equation. The Burgers–Fisher Equation (1) has important applications
in different fields such as gas dynamics [5] and traffic flow [6], among other problems in
mathematical physics.

Later on, a generalized Burgers–Fisher equation was presented,

ut + pusux − uxx = qu(1− us), p, q, s ∈ (0, ∞). (2)

Both equations have been widely studied. Many works have been conducted to find ex-
act solutions of the generalized Burgers–Fisher Equation (2) by using direct methods [7–11]
and by applying nonlinear transformations [12].
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Memory effects are an important feature in reaction–diffusion and convection–diffusion
systems. If memory effects are considered, i.e., if particle dispersal is not mutually inde-
pendent, diffusion processes are drastically altered. Therefore, for a given concentration
gradient, successive movements of the diffusing particles might be interpreted as a delay
in the flow. Recent works have been published including a time delay in this type of
systems [13–17].

In real-world applications, it is of interest to consider more general models including
a time delay, such as the time-delayed Burgers–Fisher equation

τutt + [1− τ fu]ut = uxx − puux + f (u), f (u) = qu(1− u). (3)

This motivates the study in this paper of the generalized time-delayed Burgers–Fisher
equation

τutt + [1− τ fu]ut = uxx − g(u)ux + f (u), (4)

where τ > 0 is the time-delayed constant and f (u), g(u) are arbitrary functions. Another
so-called generalized time-delayed Burgers–Fisher equation is

τutt + [1− τ fu]ut = uxx − pusux + f (u), f (u) = qu(1− us), (5)

where s, p, and q are positive constants.
The widespread existence of wave phenomena in biomedical sciences motivates

studying travelling waves. Travelling wave solutions were determined for the generalized
time-delayed Burgers–Fisher Equation (5) through factorizations [18] and by using the
G′/G [19] and the first-integral [20] methods. In Ref. [21], travelling wave solutions were
studied for PDE (5) with s = 1, again by using the G′/G method. In Ref. [22], travelling
waves were derived for fractional power terms. Nevertheless, as far as we know, there has
not been any complete work conducted on travelling wave solutions for the generalized
time-delayed Burgers–Fisher Equation (4) with f (u) and g(u) arbitrary functions.

The aim of this work is to find new classes of travelling wave solutions for the gen-
eralized time-delayed Burgers–Fisher Equation (4) in a systematic way by using the
symmetry-invariance of conservation laws. This is achieved by applying the multi-
reduction method [23]. We also provide a complete classification of zeroth-order con-
servation laws in order to use the relation between them and symmetries admitted by PDE
(4) to find exact solutions for the generalized time-delayed Burgers–Fisher Equation (4).

In Section 2, the multiplier method [24,25] is applied to seek conservation laws. A
complete classification of zeroth-order conservation laws is presented. It is worth noting
that in this classification problem, no physical or biological considerations have been made
to model f (u) and g(u).

In Section 3, a second-order ordinary differential equation (ODE) is derived for travel-
ling waves. Then, by applying the multi-reduction theory [23], the translation-invariant
conservation law is reduced to a first integral of the travelling wave ODE. The first integral
corresponds to a Chini type equation, which can be solved for some particular values of
the parameters. Finally, considering special forms for f (u) and g(u), Equation (4) becomes
an equation of biological interest. This case is discussed and new travelling wave solutions
are obtained. Shock wave solutions are also shown and their basic physical feature is
described. For s = 1, the reduced first-order ODE becomes a Ricatti type equation, which is
completely solved.

A general treatment of conservation laws and symmetries for nonlinear PDEs can be
found in [26–29].

All computations have been performed using Maple 2021 software .
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2. Conservation Laws

Conservation laws are essential in the analysis of PDEs, providing physical conserved
quantities for all solutions. They are also employed for detecting integrability and lineariza-
tions, as well as checking numerical solution methods’ accuracy.

For further details on multipliers, conservation laws, and their applications to PDEs,
see Refs. [28,29].

A conservation law of the generalized time-delayed Burgers–Fisher Equation (4) is a
continuity equation

(DtT + DxΦ)|E = 0, (6)

which holds for all solutions u(t, x), with Dt and Dx denoting total derivatives. Here, T
represents the conserved density and Φ the spatial flux, which are functions of t, x, u, and
u derivatives. A conserved current is the pair (T, Φ).

If T = DxΘ and Φ = −DtΘ are satisfied for all solutions, with Θ a function of t, x, u,
and u derivatives, then the continuity equation holds identically, and such conservation
law is called trivial (it provides no interesting information about u(t, x) solutions). Two
conservation laws are said to be locally equivalent if they differ by a trivial conservation
law. Hence, only nontrivial conservation laws (up to local equivalence) are of interest.

On the space of solutions E , the integral of a nontrivial conservation law over the
spatial domain Ω ⊆ R yields a conserved integral

C =
∫

Ω
Tdx

∣∣
E (7)

satisfying
dC
dt

= −Φ|∂Ω
∣∣
E . (8)

This states that the rate of change of the density integral on Ω (7) is equal to the negative
of the net spatial flux passing through the boundary points ∂Ω as measured by the flux
integral. Under suitable boundary conditions, the net flux vanishes, and the conserved
integral C is time-independent.

Any local conservation law has an equivalent characteristic form, given by a diver-
gence identity

(τutt + [1− τ fu]ut − uxx + g(u)ux − f (u))Q = DtT̃ + DxΦ̃ (9)

holding for the solutions of the generalized time-delayed Burgers–Fisher Equation (4),
where T̃ and Φ̃ are, respectively, a conserved density and a spatial flux locally equivalent
to T and Φ, and Q is a function of t, x, u, and u derivatives, called a multiplier.

Multipliers are extremely important since conservation laws (up to local equivalence)
and multipliers have a one-to-one correspondence. All nontrivial conservation laws are
derived from multipliers [28,29].

A determining equation for multipliers is given by applying the Euler operator with
respect to u to the divergence expression (9),

Eu((τutt + [1− τ fu]ut − uxx + g(u)ux − f (u))Q) = 0 (10)

holding identically for all u(t, x) and not only for solutions of Equation (4). Equation (10)
splits with respect to the u derivatives not appearing in Q, yielding an overdetermined
linear system for Q.

Conservation laws for basic physical quantities such as energy and momentum arise
from multipliers of lower order than the order of the equation [29]. A classification of all low-
order conservation laws is, in principle, possible by the multiplier method [24,25]. However,
in the present problem, we seek zeroth-order multipliers of the form Q(t, x, u). It is straight-
forward to solve the full system using Maple software, leading to the following result.
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Proposition 1. The generalized time-delayed Burgers–Fisher Equation (4), with f (u) and g(u)
arbitrary functions satisfying f ′(u) 6= 0 and g′(u) 6= 0, admits only a zeroth-order multiplier

Q1 = et/τ . (11)

Additional zeroth-order multipliers are admitted in the following cases.

(i) For f (u) = f1(u + f0), with f0, f1 6= 0 arbitrary constants, and g(u) arbitrary function,

Q2 = e− f1t. (12)

(ii) For f (u) nonlinear function and g(u) = g1 f ′(u) + g0, with g0, g1 /∈ {0,±τ} arbitrary
constants,

Q3 = e
(g0τ−g1)x+(g0g1−1)t

g2
1−τ . (13)

(iii) For f (u) nonlinear function and g(u) = ±
√

τ f ′(u)± 1√
τ

,

Q4± = et/τ F(x± t√
τ
), (14)

with F an arbitrary function of its argument.

The use of any of the methods described in Ref. [29] yields the conserved currents
coming from these multipliers.

Theorem 1. For the generalized time-delayed Burgers–Fisher Equation (4), with f (u) and g(u)
arbitrary functions satisfying f ′(u) 6= 0, g′(u) 6= 0, the admitted local conservation law is

T1 = et/ττ(ut − f (u)), (15a)

Φ1 = et/τ

(
−ux +

∫
g(u) du

)
. (15b)

Additional zeroth-order local conservation laws are admitted in the following cases.

(i) For f (u) = f1(u + f0), with f0, f1 6= 0 arbitrary constants, and g(u) arbitrary function,

T2 = e− f1t(τut + u + f0), (16a)

Φ2 = e− f1t
(
−ux +

∫
g(u) du

)
. (16b)

(ii) For f (u) nonlinear function and g(u) = g1 f ′(u) + g0, with g0, g1 /∈ {0,±τ} arbitrary
constants,

T3 = e
(g0τ−g1)x+(g0g1−1)t

g2
1−τ

(
τ(ut − f (u)) + g1(g1−g0τ)

g2
1−τ

u
)

, (17a)

Φ3 = e
(g0τ−g1)x+(g0g1−1)t

g2
1−τ

(
−ux + g1 f (u) + g1(g0g1−1)

g2
1−τ

u
)

. (17b)

(iii) For f (u) nonlinear function and g(u) = ±
√

τ f ′(u)± 1√
τ

,

T4± = et/τ
√

τ
(√

τF(x± t√
τ
)(ut − f (u))∓ F′(x± t√

τ
)u
)

, (18a)

Φ4± = et/τ
(

F(x± t√
τ
)
(
−ux ±

√
τ f (u)± 1√

τ
u
)
+ F′(x± t√

τ
)u
)

, (18b)

with F an arbitrary function of its argument.
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3. Travelling Waves

A travelling wave is defined by

u(t, x) = U(x− ct), (19)

where c is the constant speed of the wave. This expression results from a group invariance
with respect to the translation symmetry

X = ∂t + c∂x, (20)

with ζ = x− ct and u = U being the invariants.
The substitution of the travelling wave expression (19) into the generalized time-

delayed Burgers–Fisher Equation (4) yields a second-order nonlinear ODE for U(ζ),

(c2τ − 1)U′′ + (cτ f ′(U) + g(U)− c)U′ − f (U) = 0. (21)

Here, a prime denotes a differentiation with respect to ζ.
It is known that any translation-invariant conservation law reduces to a first integral

of the travelling wave ODE [23]. This first integral has the form

Ψ = (Φ− cT)|u=U(ζ), Ψ′ = 0, (22)

where (T, Φ) is the conserved current.
Let us now focus on the case from Theorem 1 with the translation-invariant conserva-

tion law (17). For this case, g(U) must satisfy

g(U) = g1 f ′(U) + g0, g0 = cg1+1
cτ+g1

, cτ + g1 6= 0. (23)

The associated conserved current (17) yields a first integral of ODE (21). The resulting first
integral is given by

U′ + cτ+g1
c2τ−1 f (U)− C0

c2τ−1 e
ζ

cτ+g1 = 0, (24)

where C0 is an arbitrary constant and c2τ − 1 6= 0. Now, two cases are distinguished:
C0 = 0 and C0 6= 0.

3.1. For C0 = 0

The first-order ODE (24) is a Bernoulli equation, and each solution U(ζ) can be implic-
itly given by the quadrature ∫ U

U0

c2τ−1
(cτ+g1) f (U)

dU = −(ζ − ζ0), (25)

where U0 = U(ζ0) is an arbitrary constant, and ζ0 can be set to 0 by translation invariance.

Proposition 2. The quadrature (25) gives an implicit solution U(ζ) of the travelling wave
ODE (21), f (U) being an arbitrary function, g(U) a related function given by (23), and c, τ,
g1, and ζ0 arbitrary constants satisfying c2τ − 1 6= 0 and cτ + g1 6= 0.

3.2. For C0 6= 0

The first-order ODE (24) is a Chini type equation. As far as we know, there is no
general solution known for this type of equation. However, a family of these equations
appearing in Ref. [30] as I-55 can be solved. In order for ODE (24) to belong to this Chini
family, f (U) must satisfy

f (U) = c2τ−1
cτ+g1

( f2Un + f1U), (26)
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where f1 and f2 are arbitrary constants. Thus, the first-order ODE (24) becomes

U′ + f2Un + f1U − C0
c2τ−1 e

ζ
cτ+g1 = 0. (27)

Following Ref. [30] (p. 303), in order for ODE (27) to be solved, there should exist two
constants α and β such that

(
− C0

(c2τ−1) f2

)1/n
e

ζ
n(cτ+g1) = e− f1ζ

(
β + α

∫
C0

c2τ−1 e
(

f1+
1

cτ+g1

)
ζ

dζ

)
(28)

is satisfied. Consequently,

α = 0, β =
(
− C0

(c2τ−1) f2

)1/n
, f1 = − 1

n(cτ+g1)
(29)

must be verified. Therefore, the local change for the dependent variable U(ζ) given by

U(ζ) =
(
− C0

(c2τ−1) f2

)1/n
e

ζ
n(cτ+g1) Z(ζ), (30)

transforms Equation (27) into the first-order separable ODE

Z′ = κ e
(n−1)ζ

n(cτ+g1) (1 + Zn), κ = f 1/n
2

(
− C0

c2τ−1

) n−1
n , (31)

or, equivalently, ∫
dZ

Zn+1 + C1 = κ
n(cτ+g1)

n−1 e
(n−1)ζ

n(cτ+g1) , (32)

where C1 is an integration constant. The solution of Equation (31) or (32) is given by

1
n L(−Zn, 1, 1

n )Z + C1 = κ
n(cτ+g1)

n−1 e
(n−1)ζ

n(cτ+g1) , (33)

where L represents the Lerch transcendent function [31].

Proposition 3. The change of variables (30) transforms the first-order ODE (21) into the separable
ODE (31) whose general solution is given in terms of the Lerch transcendent function, with f (U)
and g(U) given by (26) and (23), respectively, and n > 1, c, τ, g1, f2, C0, and C1 are arbitrary
constants satisfying c2τ − 1 6= 0 and cτ + g1 6= 0.

4. Equations of Biological Interest: Exact Solutions

For f (u) = qu(1− us) and g(u) = pus, with s, p, and q positive parameters, Equation (4)
becomes an equation of biological interest. These types of functions are considered because
they introduce both the features of convective phenomena from the Burgers equation and
the diffusion transport as well as reaction from the Fisher equation.

For these special forms of f (u) and g(u), the generalized time-delayed Burgers–Fisher
Equation (4) is written as

τutt + [1− τq(1− (s + 1)us)]ut = uxx − pusux + qu(1− us). (34)

The first integral (24) becomes

U′ + cqτ(s+1)−p
(c2τ−1)(s+1) (U −Us+1) + C0

c2τ−1 e
q(s+1)ζ

cqτ(s+1)−p = 0, (35)
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where C0 is a constant, and c must satisfy

c = p2+q(s+1)2

p(qτ+1)(s+1) . (36)

This relation for the speed of the wave comes from holding the previous condition (23) for
these special forms of f (u) and g(u). It is clear from the previous relation (36) that the
soliton’s velocity is affected by the time-delayed constant τ. As the time-delayed constant
τ increases, the speed of the wave decreases.

In the particular case in which the time delay is not considered, i.e., τ = 0, this first
integral (35) coincides with the first integral appearing in Ref. [32], and (36) coincides
with the condition appearing in [10,11] for the existence of travelling wave solutions for
PDE (34).

Setting C0 = 0, the first-order ODE (35) is obviously a Bernoulli equation. It is
straightforward to solve it, explicitly obtaining a solution for U(ζ),

U(ζ) =

(
1 + e

(q(s+1)cτ−p)sζ

(s+1)(c2τ−1) U0

)−1/s

, (37)

where U0 is an integration constant. This solution has already been obtained using a
factorization technique [18] and a first-integral method [20].

Physically, this solution describes a bright kink soliton (shock wave) solution. This type
of solution is distinguished by the feature that the wave amplitude transitions exponentially
between two asymptotically constant values. These waves are characterized by an almost
vertical front. Figure 1 (left) shows a plot of the shock wave profile for different values of τ.
The effect of the time delay is to smooth the shock wave nature of the shock wave solution.
The wave leads to a less smooth behaviour with a larger slope when the time-delayed
constant τ increases. Figure 1 (right) shows a space-time plot of the shock wave front.

Figure 1. Shock wave solution (37) (left) for q = 1, s = 2, p = 1, U0 = 1, and c defined by (36), where
τ = 0 (solid), 0.5 (dot), and 1 (dash). Shock wave space-time (37) (right) for q = 1, s = 2, τ = 1, p = 1,
u0 = 1, and c defined by (36).

For s = 1

This model describes a density-dependent diffusion with a logistically growing popu-
lation [33].

The first integral (35) becomes

U′ + 2cqτ

2(c2τ−1) (U −U2) + C0
c2τ−1 e

2qζ
2cqτ−p = 0, (38)

which is of Ricatti type.
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The transformation
U = k V′

V , (39)

where
k = − 2(c2τ−1)

2cqτ−p , (40)

maps ODE (38) into the linear second-order ODE

V′′ + 2cqτ−p
2(c2τ−1)V′ − C0(2cqτ−p)

2(c2τ−1)2 e
2qζ

2cqτ−p V = 0. (41)

Setting
ν = ±2cqτ ∓ p, µ = c2τ − 1, (42)

ODE (41) can be rewritten as

V′′ ± ν
2µ V′ ∓ C0ν

2µ2 e
±2qζ

ν V = 0. (43)

Then, setting δ2 = C0ν
2µ2 , this ODE can be again rewritten as

V′′ ± ν
2µ V′ ∓ δ2e

±2qζ
ν V = 0. (44)

It is straightforwardly solved, giving its general solution in terms of Bessel [34] or elemen-
tary functions.

(i) For ν2 ± 2qµ 6= 0:

• If ν = 2cqτ − p, the general solution to ODE (44) is

V(ζ) = C1e
− νζ

4µ I
(

ν2

4qµ , δν
q e

qζ
ν

)
+ C2e

− νζ
4µ K

(
ν2

4qµ , δν
q e

qζ
ν

)
. (45)

Hence, the solution to ODE (38) is

U(ζ) = − 2µδ
ν e

qζ
ν

C1 I

 4qµ+ν2

4qµ , δν
q e

qζ
ν

−C2K

 4qµ+ν2

4qµ , δν
q e

qζ
ν


C1 I

 ν2

4qµ , δν
q e

qζ
ν

+C2K

 ν2

4qµ , δν
q e

qζ
ν

 (46)

where I and K denote the modified Bessel functions of first and second kind,
respectively, and C1 and C2 are integration constants.
Figure 2 shows a solitary wave solution given in terms of modified Bessel func-
tions, decaying from an asymptotically constant value.

• If ν = −2cqτ + p, the general solution to ODE (44) is

V(ζ) = C1e
νζ
4µ J
(

ν2

4qµ , δν
q e−

qζ
ν

)
+ C2e

νζ
4µ Y

(
ν2

4qµ , δν
q e−

qζ
ν

)
. (47)

Hence, the solution to ODE (38) is

U(ζ) = 2µδ
ν e−

qζ
ν

C1 J

 4qµ+ν2

4qµ , δν
q e−

qζ
ν

+C2Y

 4qµ+ν2

4qµ , δν
q e−

qζ
ν


C1 J

 ν2

4qµ , δν
q e−

qζ
ν

+C2Y

 ν2

4qµ , δν
q e−

qζ
ν

 (48)

where J and Y denote the Bessel functions of first and second kind, respectively,
and C1 and C2 are integration constants.
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Figure 2. Solution (46) (left) for q = ν = µ = C0 = C1 = C2 = 1, and δ2 = 1/2. Space-time
solution (46) (right) for same parameters and c = 1.

Figure 3 represents a solution given in terms of ordinary Bessel functions. This
solution becomes a singular solution if the denominator is equal to zero. Thus,
depending on the choice of the parameters, it leads to a singular solution. The
solution behaves as a rogue wave holding elevation peaks and deep humps.

,,----
--1 

3 X [ 06

2 X [ 06

2 

Figure 3. Solution (48) (left) for q = ν = µ = C0 = C1 = C2 = 1, and δ2 = 1/2. Space-time
solution (48) (right) for same parameters and c = 1.

(ii) For ν2 ± 2qµ = 0:

• If ν2 = 2qµ and ν = 2cqτ − p, the general solution to ODE (44) is

V(ζ) = C1e
− νζ

2µ sinh ( 2δµ
ν e

νζ
2µ ) + C2e

− νζ
2µ cosh ( 2δµ

ν e
νζ
2µ ). (49)

Hence, the solution to ODE (38) is

U(ζ) =
(C1ν−2C2δµe

νζ
2µ ) sinh (

2δµ
ν e

νζ
2µ )+(C2ν−2C1δµe

νζ
2µ ) cosh (

2δµ
ν e

νζ
2µ )

ν(C1 sinh (
2δµ

ν e
νζ
2µ )+C2 cosh (

2δµ
ν e

νζ
2µ ))

(50)

where C1 are C2 are integration constants.
Figure 4 shows a behaviour similar to Figure 2 and corresponds to the case
ν2 − 2qµ = 0.
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Figure 4. Solution (50) (left) for q = ν = µ = C0 = C1 = C2 = 1, and δ2 = 1/2. Space-time
solution (50) (right) for same parameters and c = 1.

• If ν2 = 2qµ and ν = −2cqτ + p, the general solution to ODE (44) is

V(ζ) = C1e
νζ
2µ sin ( 2δµ

ν e
− νζ

2µ ) + C2e
νζ
2µ cos ( 2δµ

ν e
−νζ
2µ ). (51)

Hence, the solution to ODE (38) is

U(ζ) =
(C1ν+2C2δµe

−
νζ
2µ ) sin (

2δµ
ν e
−

νζ
2µ )+(C2ν−2C1δµe

−
νζ
2µ ) cos (

2δµ
ν e
−

νζ
2µ )

ν(C1 sin (
2δµ

ν e
−

νζ
2µ )+C2 cos (

2δµ
ν e
−

νζ
2µ ))

(52)

where C1 and C2 are integration constants.
Figure 5 shows a behaviour similar to Figure 3 and corresponds to the case
ν2 − 2qµ = 0.

Figure 5. Solution (52) (left) for q = ν = µ = C0 = C1 = C2 = 1, and δ2 = 1/2. Space-time
solution (52) (right) for same parameters and c = 1.

• If ν2 = −2qµ and ν = 2cqτ − p, the general solution to ODE (44) is

V(ζ) = C1 sinh ( 2δµ
ν e
− νζ

2µ ) + C2 cosh ( 2δµ
ν e
− νζ

2µ ). (53)

Hence, the solution to ODE (38) is

U(ζ) = 2δµ
ν e
− νζ

2µ C2 sinh (
2δµ

ν e
−

νζ
2µ )+C1 cosh (

2δµ
ν e
−

νζ
2µ )

C1 sinh (
2δµ

ν e
−

νζ
2µ )+C2 cosh (

2δµ
ν e
−

νζ
2µ )

(54)
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where C1 and C2 are integration constants.
Figure 6 shows a solitary wave solution decaying to an asymptotically constant
value and corresponds to the case ν2 + 2qµ = 0. This solution is an exponen-
tial sheet.

Figure 6. Solution (54) (left) for q = ν = µ = C0 = C1 = C2 = 1, and δ2 = 1/2. Space-time
solution (54) (right) for same parameters and c = 1.

• If ν2 = −2qµ and ν = −2cqτ + p, the general solution to ODE (44) is

V(ζ) = C1 sin ( 2δµ
ν e

νζ
2µ ) + C2 cos ( 2δµ

ν e
νζ
2µ ). (55)

Hence, the solution to ODE (38) is

U(ζ) = − 2δµ
ν e

νζ
2µ C2 sin (

2δµ
ν e

νζ
2µ )−C1 cos (

2δµ
ν e

νζ
2µ )

C1 sin (
2δµ

ν e
νζ
2µ )+C2 cos (

2δµ
ν e

νζ
2µ )

(56)

where C1 and C2 are integration constants.
Figure 7 represents a solution given in terms of trigonometric functions and
corresponds to the case ν2 + 2qµ = 0. This solution becomes a singular solution if
the denominator is equal to zero. Thus, depending on the choice of the parameters,
it leads to a singular solution. The solution behaves as a rogue wave holding
elevation peaks and deep humps.

Figure 7. Solution (56) (left) for q = ν = µ = C0 = C1 = C2 = 1, and δ2 = 1/2. Space-time
solution (56) (right) for same parameters and c = 1.

The change of variable (19) yields exact travelling wave solutions of PDE (34). The
exact solutions (33), (46), (48), (50), (52), (54) and (56) with τ > 0 and C0 6= 0, as far as we
know, are new and have not appeared in the literature before.
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5. Conclusions

In this paper, travelling wave solutions of the generalized time-delayed Burgers–Fisher
Equation (4) were studied. This PDE has a wide applicability, especially in biological phe-
nomena. New travelling wave solutions were obtained by using the multi-reduction theory.

The symmetry-invariant conservation law was reduced to a first integral that corre-
sponded to a first-order Chini equation. This ODE was solved under some conditions
leading to solutions written in terms of the Lerch transcendent function.

For a particular case of biological interest, the equation became a Bernoulli equation,
whose solution was implicitly given by a quadrature, yielding a one-parameter exact
solution corresponding to a shock wave. For s = 1, the equation described a density-
dependent diffusion with a logistically growing population and the first integral became
a Ricatti equation, whose solutions were given in terms of exponential, trigonometric,
hyperbolic, and Bessel functions.

To the best of our knowledge, solutions (33), (46), (48), (50), (52), (54) and (56) are new
and have not been previously obtained.

Additionally, a complete classification of zeroth-order conservation laws was presented
with all specific time-delayed Burgers–Fisher equations of the general form (4) for which a
conserved quantity of the zeroth-order derivatives of u(t, x) was admitted.
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