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Abstract: Channel state information in millimeter wave (mmWave) and terahertz (THz) commu-
nications systems is vital for various tasks ranging from planning the optimal locations of BSs to
efficient beam tracking mechanisms to handover design. Due to the use of large-scale phased antenna
arrays and high sensitivity to environmental geometry and materials, precise propagation models
for these bands are obtained via ray-tracing modeling. However, the propagation conditions in
mmWave/THz systems may theoretically change at very small distances, that is, 1 mm–1 µm, which
requires extreme computational effort for modeling. In this paper, we first will assess the effective
correlation distances in mmWave/THz systems for different outdoor scenarios, user mobility patterns,
and line-of-sight (LoS) and non-LoS (nLoS) conditions. As the metrics of interest, we utilize the angle
of arrival/departure (AoA/AoD) and path loss of the first few strongest rays. Then, to reduce the
computational efforts required for the ray-tracing procedure, we propose a methodology for the
extrapolation and interpolation of these metrics based on the convolutional long short-term memory
(ConvLSTM) model. The proposed methodology is based on a special representation of the channel
state information in a form suitable for state-of-the-art video enhancement machine learning (ML)
techniques, which allows for the use of their powerful prediction capabilities. To assess the prediction
performance of the ConvLSTM model, we utilize precision and recall as the main metrics of interest.
Our numerical results demonstrate that the channel state correlation in AoA/AoD parameters is
preserved up until approximately 0.3–0.6 m, which is 300–600 times larger than the wavelength at
300 GHz. The use of a ConvLSTM model allows us to accurately predict AoA and AoD angles up to
the 0.6 m distance with AoA being characterized by a higher mean squared error (MSE). Our results
can be utilized to speed up ray-tracing simulations by selecting the grid step size, resulting in the
desired trade-off between modeling accuracy and computational time. Additionally, it can also be
utilized to improve beam tracking in mmWave/THz systems via a selection of the time step between
beam realignment procedures.

Keywords: millimeter wave; terahertz band; ray tracing; beam tracking; distance correlation; machine
learning; channel prediction

MSC: 68T07; 94A40

1. Introduction

With the advent of 5G new radio (NR) systems, operators promise to deliver radically
higher user data rates at the access interface, which will enable new applications such as
holographic communications, augmented/virtual reality (AR/VR), and high-resolution
streaming [1]. At the same time, the research community is already discussing 6G systems,
which will further enhance system throughput and diversify the service offerings [2,3].
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The fulfillment of the above-named promises is conditioned on the use of millimeter
wave (mmWave) and terahertz (THz) frequency bands, both characterized by extremely
short wavelengths. Due to the limitation of the effective antenna apertures, such systems
must utilize large-scale phased antenna arrays operating in the beamforming regime to
improve the coverage area [4–7]. Precise knowledge of the propagation conditions at
mmWave/THz frequencies is required at many stages of the system’s design [8]. At the
network planning stage, optimal locations of base stations (BS) maximizing the coverage
area need to be determined [9]. Further, utilizing the beamforming regime of antenna arrays,
one needs to develop an efficient beam tracking mechanism [10]. However, the use of such
arrays as well as complex propagation effects such as reflection, diffraction, and scattering
leads requires advanced channel models to predict channel conditions.

Ray tracing is conventionally utilized to develop accurate propagation models. By us-
ing either image or ray-launching methods, they allow precise information to be obtained
about the received signal strength at any given point by taking into account the geome-
try of the propagation environment and surrounding materials. However, ray tracing is
an inherently resource-consuming procedure, even at lower frequencies, and the use of
mmWave/THz bands in 5G/6G cellular systems requires much detailed resolution because
the channel state parameters may change at distances comparable to the wavelength. Thus,
obtaining detailed propagation maps is an extremely time-consuming procedure.

In light of the aforementioned limitations, several studies have suggested different
speed-up techniques for ray-tracing simulations; see Section 2 for a detailed review. How-
ever, all those either explicitly or implicitly assume that a correlation between channel state
parameters is preserved across distances larger than the wavelength. While this may indeed
be true for some propagation conditions, to the best of the authors’ knowledge, there has
been no detailed investigation into the effective correlation distances in typical propagation
environments. Furthermore, some studies aiming to improve the beam tracking procedures
for mmWave/THz systems, also implicitly assume this property.

In this paper, we first utilize a ray-tracing tool to quantitatively evaluate the effective
correlation distance between channel state parameters for typical outdoor propagation
environments, different user mobility patterns, and line-of-sight (LoS) and non-LoS (nLoS)
conditions. As metrics of interest, we utilize the angle of arrival/departure (AoA/AoD)
and path loss over the first few strongest paths. Having this information, we then propose
a methodology to further enhance the considered distance between ray-tracing points. The
methodology relies on representing the channel state parameters as frames similar to video
frames and applying state-of-the-art techniques for interpolation and extrapolation.

The main contributions of our study are as follows:

• Correlational properties between channel state parameters in mmWave/THz systems
are in the order of at least 30–60 cm, with AoD being characterized by much stronger
dependence as compared to AoA, which is 300–600 times higher than the wavelength
at 300 GHz;

• Representation of the channel state parameters in a form convenient for modern
state-of-the-art video frame interpolation and prediction techniques;

• ML prediction results, showing that reliable prediction accuracy of AoA and AoD
angles is feasible up to 60 cm distance, with AoA being characterized by a higher
mean squared error (MSE).

The rest of the paper is organized as follows. First, in Section 2, we overview the related
work. Further, in Section 3, by utilizing a ray-tracing tool, we quantify the correlation
properties of the main channel parameters. ML-based mechanisms for channel state
parameter prediction are introduced in Section 4, while their evaluation is provided in
Section 4.4. Conclusions are drawn in the last section.

2. Related Work

In this section, we overview the related work. We start with techniques proposed for
speeding up ray-tracing channel modeling. Further, we briefly overview the research on
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beam-tracking mechanisms, where channel state information produced via ray tracing is
heavily utilized.

2.1. Speeding-Up Techniques for Ray-Tracing Modeling

Ray-tracing-based channel models are the most efficient for mmWave/THz systems,
but involve extremely long computations, which grow substantially as the carrier frequency
increases. Many efficient ray-tracing models have been proposed in the literature. One
of the popular approaches is based on reducing the number of edges and planes of the
environment elements on which ray-tracing will be performed. The article [11] presented
a method based on the visibility graph: a tree-like list of elements with which rays can
interact on their way from the transmitter to the receiver. The authors of [12] also use
the visibility graph, but only consider beams that are in the 18 dB dynamic range, based
on ITU recommendations. As a result, they were able to increase the simulation speed
from 2 to 4 times, depending on the initial data. Another method based on the visibility
graph was proposed in [13], where the authors also took into account a transformation
of two dimensions (2D) to three dimensions (3D) using Fermat’s principle. In addition,
the authors analyzed the impact of the number of reflections taken into account on the
accuracy of the calculations. The proposed method requires additional preprocessing time,
as they need to find all the possible ray propagation paths before simulation. However, they
can significantly speed up the ray-tracing procedure without losing accuracy. Specifically,
the authors managed to reduce the simulation time for 1651 receivers from several hours to
several seconds after preprocessing.

A binary space-partitioning method (BSP) was proposed by the authors in [14]. This
method, in contrast to the graph of visibility, divides not the elements of the space but the
space itself, which led to a decrease in the load on the processor by about 60%. A similar
approach was employed in [15], where the authors used a visibility table. The authors
provided an efficient algorithm for a mobile transmitter; the model uses a precomputed
visibility table that makes it easy to determine visible walls and edges, which can accelerate
preprocessing time by up to 90%. In [16], a space-partitioning method was proposed to
model ray tracing efficiently. The method is based on the division of space into smaller ones
and the distribution of objects according to the areas where they are located. The main idea
of the method is to find the subspace into which the ray from the current subspace will enter
using the given direction and slope of the ray. This approach made it possible to achieve a
14% reduction in CPU time compared to traditional visibility methods. Another approach
divides the space into a mesh of triangles to simplify the modeling of the interaction of
the beam with the elements of the environment [17]. After division, groups of rays are
collected into frustums that are further utilized for modeling.

Another approach to speed up ray tracing is based on data simplification that does
not have a strong impact on the results. For example, the authors in [18] aimed to improve
ray-tracing performance by optimizing the object database. The article proposes to reduce
the number of objects that are not involved in ray tracing, as well as to simplify the
geometric shape of buildings, thereby significantly reducing the computation time without
a noticeable impact on accuracy. Based on the results of the experiments, the authors
managed to reduce the simulation time by a factor of more than 2. The article [19] proposed
a method for post-processing ray-tracing data modeled in urban environments. It was
proposed to combine rays that have undergone the same interaction into ray entities, which
made it possible to reduce the load on memory by 11–12 times.

Unfortunately, many of the aforementioned methods lose their effectiveness with the
increase in carrier frequency, especially in mmWave and THz bands. At these frequencies,
machine learning (ML) is often considered to speed up ray-tracing simulations. The authors
in [20] proposed a way to reduce the number of rays launched by the “shooting and bounc-
ing” (SBR) method. The latter involves the spherical launch of rays from the transmitter
in all possible directions with a fixed value of the angle between the rays. Using a neural
network, it was possible to reduce the number of launched rays by predicting intermediate
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rays. As a result, it was possible to reduce simulation time by 80% and memory consump-
tion by 70%. It should be noted, however, that the proposed method has not been tested
using high frequencies and simulations in urban environments. In a recent study [21],
the authors compared several neural networks with the aim of increasing the resolution
of radio channel simulation using ray-tracing. In continuation of their previous work,
the authors of [22] presented a method for accelerating ray tracing when simulating mobile
channels in urban environments in 5G mmWave systems using methods for combining sim-
ilar rays into clusters. Channel characteristics were predicted at intermediate points of the
mobile receiver trajectory. Experiments have shown that the proposed approach allows us
to accurately predict the received power compared to the traditional interpolation method.

Most of the presented approaches are based on a simplification of the environment
or a transition from 3D to 2D. It is also worth noting that most methods were aimed at
indoor scenarios and may not be effective in outdoor deployments. Finally, most of the
ML-based studies did not characterize the environment statistically assessing the potential
for interpolation and extrapolation techniques.

2.2. Efficient Beam Tracking in mmWave/THz Systems

The problem of fast ray tracing is tightly related to the problem of efficient beam
tracking in mmWave/THz systems [23]. Indeed, in the former case, one wants to interpolate
or extrapolate the received signal strength based on the limited number of measurements,
e.g., launched rays. In beam tracking, the core problem is to determine the current direction
to BS/UE (User Equipment) based on the minimal number of measurements.

Numerous ML-based beam tracking methods have been proposed in the past to pro-
vide high tracking accuracy continuously in various scenarios. The main two advantages
of ML approaches are the ability to capture the dynamics of the channel and environment.
The authors in [24] proposed the beam-training approach to acquire channel state informa-
tion and select the optimal beam so that a target communication quality can be maintained.
In [25], the authors proposed a prediction model based on a long short-term memory
(LSTM) network. The model utilizes previously measured channel state information (CSI)
samples to estimate the channel. The authors in [26] proposed a deep neural network
(DNN)-based approach to determine the hidden relation between the received training
signal and the mmWave channel state. The authors of [27] proposed a data-driven beam-
tracking approach to find the beamforming/combining vectors. The proposed scheme
searches all the beamforming and combining vector configurations to achieve the target
quality of service (QoS) by minimizing the tracking error through a series of equivalent local
dynamic linearizations. The authors showed that the proposed algorithm can achieve reli-
able tracking performance with a much shorter alignment time as compared to traditional
schemes. In [28], the authors proposed to combine a deep learning-based tracking algorithm
(deep sort) and beamforming in 5G NR to predict and track the UE’s location. They showed
that the predicted UE location can help in focusing data toward their location without any
feedback mechanism. Thus, reducing the feedback improves the network efficiency.

Similarly to the task of speeding up the ray-tracing simulations, most of the studies
addressing the problem of efficiency did not carry out statistical studies to assess the
potential for inter- and extrapolation of consecutive signals to reduce the scanning space.
The goal of our work is to assess the correlation between the signals to accelerate the
ray-tracing simulations and beam-tracking process.

3. Data Analysis

In this section, we analyze dependencies in path loss data in different typical outdoor
deployments and channel states. We start this section by describing the utilized ray-tracing
tool and experimental setup, and then proceed with the data representation and statistical
data analysis.
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3.1. Tools

Numerous software packages allow for the simulation of the propagation of radio
waves. Each product is characterized by a different set of features and has both advantages
and shortcomings. Next, we briefly overview the popular software used in scientific and
engineering research.

MATLAB Communication toolbox [29]. It is a built-in library of the popular MATLAB
software. This software offers a variety of possibilities for ray-tracing modeling. Here,
one can use the mapping method or the SBR method and set basic parameters such as
the location of the receiver and transmitter, the size of their antenna arrays, the carrier
frequency, the parameters of materials, weather conditions, etc. Also, using this module,
one can calculate all the main parameters of the simulated system, such as propagation
losses, received power at the UE, BS coverage map, etc. As an environment, one can use
3D street maps in .osm format, which can be downloaded from the OpenStreetMap [30]
service, as well as 3D indoor models in .stl format. One of the main advantages of this tool
is compatibility with all popular operating systems. The shortcomings include the lack of
the ability to simulate ray tracing in combination with mobile objects, the limited choice
of materials for objects, as well as the inability to create a 3D environment directly via the
software interface.

Wireless Insite [31]. This software includes one of the largest feature sets and is the
most commonly used in scientific work. The SBR method is used to simulate ray-tracing.
This software allows for the incorporation of various 3D environments, adjusting the
materials of objects, and calculating and setting the entire range of parameters, such as the
location of receivers and transmitters, carrier frequency, power, propagation loss, etc. It
is possible to create a 3D environment through the program interface. The shortcomings
include the inability to simulate ray tracing in combination with mobile objects, and the
inability to select a ray-tracing method. This software is distributed on a commercial basis
and is compatible with the Windows operating system only.

Ansys HFSS [32]. Ansys software is extremely powerful in modeling radio wave
propagation. The main advantage is the ability to model objects with complex geometry
and materials, as well as simulate scenarios with mobile objects. In addition to the standard
features that are implemented in MATLAB Communication Toolbox and Wireless InSite,
there is the possibility for modeling extended physics of diffraction effects, the possibility
of accelerating the performance of modeling, and an advanced system for visualizing the
propagation of rays. Similarly to Wireless InSite, Ansys HFSS is a commercial tool.

WinProp [33]. WinProp is another fairly popular software for ray-tracing simulations.
It has a set of features similar to the Wireless Insite and MATLAB Communication toolbox
and is widely used in the scientific community. Among the advantages, we note the built-
in graphical user interface (GUI) capable of creating both urban outdoor environments
and various indoor premises. Also, the advantages include proprietary algorithms for
accelerating ray tracing for image methods and SBR, as well as the ability to apply ray
tracing to mobile objects. Among the shortcomings are distribution on a commercial basis,
limited visualization capabilities, the inability to model complex objects, and compatibility
only with the Windows operating system.

In our study, we utilize the MATLAB Communication toolbox, as it allows for modifi-
cations of the ray-tracing mechanisms, a detailed configuration of the considered scenarios,
utilization of user-defined output data formatting, and built-in statistical functions.

3.2. Experimental Setup and Metrics

We consider an urban deployment where a receiver (Rx) moves along a street and the
transmitter (Tx) is fixed at a certain height. We explore different LoS/nLoS conditions of
the channel between Tx and Rx by considering the following three scenarios:

• SceLoS: Rx moves in a straight line in the line of sight of Tx (Figure 1a),
• SceNLoS: Rx moves in a straight line not in the line of sight of Tx (Figure 1b),
• SceTurn: Rx makes a 90-degree turn moving from LoS to nLoS of Tx (Figure 2).
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Before performing the ray-tracing modeling, we divide a considered Rx trajectory T
into S segments of length ∆s. A receiver, Rxs, is then placed at the starting point of each
segment, and ray-tracing between Tx and Rxs is performed separately for each s = 1, . . . , S.
In what follows, we refer to the position of Rxs as step s of trajectory T, and to ∆s as the
step size. Note that depending on the considered application—speeding-up ray-tracing
simulations or beam tracking—the step size may correspond to the size of the grid utilized
for beam tracking or time intervals between beam-tracking events.

(a) SceLoS (b) SceNLoS

Figure 1. Straight−line scenarios, ∆s = 30 cm.

(a) ∆s = 1 cm (b) ∆s = 30 cm

Figure 2. Considered Rx trajectories for scenario SceTurn with different step sizes ∆s.

Our task is to determine the similarity in the data between steps of the Rx’s trajectory.
We focus on three parameters of interest: (i) angle of arrival (AoA), (ii) angle of departure
(AoD), and (iii) path loss. For each step s = 1, . . . , S of a trajectory T, the ray-tracing
procedure yields a set IT(s) = {is,1, is,2, . . . } of rays that have reached Rxs within the preset
number of reflections. Because we usually consider one trajectory at a time, index T is
omitted whenever practical. We denote the cardinality of the set by I(s) = |I(s)| ≥ 0
and index the rays therein according to their path loss so that ray is,1 is the strongest.
For each ray is,j ∈ I(s), we collect (i) its azimuth and elevation angles of arrival, which we
denote by ϕAoA

s,j and θAoA
s,j , respectively; (ii) its azimuth and elevation angles of departure,

denoted by ϕAoD
s,j and θAoD

s,j , respectively; and (iii) the path loss in dB, denoted by PLs,j.

Thus, the elements of I(s) are tuples of the form is,j =
(

ϕAoA
s,j , θAoA

s,j , ϕAoD
s,j , θAoD

s,j , PLs,j

)
.

However, it can be practical to conduct analysis from the perspective of Tx using AoD and
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from the perspective of Rx using AoA separately. Therefore, we split the previous tuples
and consider two sets of triplets:

IAoA(s) =
{(

ϕAoA
s,j , θAoA

s,j , PLs,j

)
:
(

ϕAoA
s,j , θAoA

s,j , ϕAoD
s,j , θAoD

s,j , PLs,j

)
∈ I(s)

}
,

IAoD(s) =
{(

ϕAoD
s,j , θAoD

s,j , PLs,j

)
:
(

ϕAoA
s,j , θAoA

s,j , ϕAoD
s,j , θAoD

s,j , PLs,j

)
∈ I(s)

}
. (1)

3.3. Clustering and Data Representation

Radio channel simulation between Tx and Rx using ray tracing can result in several
hundreds, and even thousands, of rays with similar characteristics. Ray clustering [22]
involving grouping similar beams into groups called clusters is often used in the litera-
ture [22] and standards [34]. In this work, we also employ this approach and group together
beams that have close AoA or AoD values.

As mentioned previously, AoA and AoD are characterized by two angles—azimuth
and elevation—which are measured in degrees and vary in the ranges (−180, 180] and
[−90, 90], respectively. To benefit from the powerful ML techniques developed for video
processing, and also to perform clustering, we represent each data point, i.e., a set I(s),
in the form of two images or video-like frames: one for AoA reflecting Rx’s perspective
and one for AoD, and hence, Tx. The following procedure is performed for IAoA(s) and
IAoD(s) separately, and indices AoA and AoD are therefore omitted.

Consider IX(s), where X ∈ {AoA, AoD}. First, we choose azimuth and elevation
resolutions denoted by Kϕ and Kθ , respectively. We partition the range of azimuth angles
(−180, 180] into Kϕ equal intervals of the form

Φj = (−180 + (j− 1)× 360/Kϕ,−180 + j× 360/Kϕ], j = 1, . . . , Kϕ. (2)

Similarly, we partition the range of elevation angles [−90, 90] into Kθ intervals

Θ1 = [−90,−90 + 180/Kθ ],

Θj = (−90 + (j− 1)× 180/Kθ ,−90 + j× 180/Kθ ], j = 2, . . . , Kθ . (3)

Now, a cluster Cm,n(s) ⊂ IX(s) consists of such rays is,j ∈ IX(s) whose azimuth angle
belongs to Φn and elevation angle to Θm, i.e.,

Cm,n(s) = {(ϕs,j, θs,j, PLs,j) ∈ IX(s) : ϕs,j ∈ Φn, θs,j ∈ Θm}. (4)

Finally, we represent a data point IX(s) describing the channel state at step s of a
studied trajectory as a Kθ × Kϕ matrix VX(s) = (vm,n(s)) whose entries are obtained from
IX(s) by

vm,n(s) =

200, if Cm,n(s) = ∅,
min

is,j∈Cm,n(s)
PLs,j, if Cm,n(s) 6= ∅. (5)

Here, 200 is a blank value, indicating that no rays have been recorded for the cluster.
This value is larger than the path loss of all obtained rays. We refer to VX(s) as the s-th
frame of the studied trajectory.

By representing the ray-tracing output in the form (VAoA(s))s=1,...,S or (VAoD(s))s=1,...,S,
we represent a studied trajectory as a sequence of frames. Now, the performance of the
ray-tracing procedure can be improved via interpolation within a given sequence, i.e., by
predicting some intermediate frames based on their neighbors. We note that this task is
very similar to video frame interpolation (VFI), and therefore propose to use approaches
proven efficient in solving VFI problems to predict intermediate trajectory frames in our
ray-tracing scenarios. However, to validate such an approach, we first present a detailed
data analysis.
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3.4. Statistical Analysis

To validate the feasibility and scope of channel state prediction, we use ray-tracing data
to analyze channel changes from one trajectory step to another Theoretically, the channel
state can change over distances of a half wavelength. In practice, however, noticeable
changes should occur at larger scales in most cases. Furthermore, we expect the process of
spatial channel state evolution to retain some memory. Thus, in this section, we study at
what distances between trajectory steps the memory is preserved to allow for prediction
and interpolation.

As we use frame-like data presentation, to analyze the communication channel’s state
evolution, we utilize and compare the following three different distance measures suitable
for multivariate data:

• The L2, or Euclidean, distance between VX(s1) and VX(s2), given by

dL2(s1, s2) =

√√√√ Kθ

∑
m=1

Kϕ

∑
n=1

(vm,n(s1)− vm,n(s2))2. (6)

• The normalized cross-correlation (NCC) distance, employed to evaluate the similar-
ity between images [35], which is computed via the Pearson correlation coefficient
between VX(s1) and VX(s2) viewed as series of entries:

dNCC(s1, s2) = 1−

Kθ

∑
m=1

Kϕ

∑
n=1

(vm,n(s1)− v(s1))(vm,n(s2)− v(s2))√
Kθ

∑
m=1

Kϕ

∑
n=1

(vm,n(s1)− v(s1))2

√
Kθ

∑
m=1

Kϕ

∑
n=1

(vm,n(s2)− v(s2))2

, (7)

where

v(s) =
1

KθKϕ

Kθ

∑
m=1

Kϕ

∑
n=1

vm,n(s), s = 1, . . . , S. (8)

• The image Euclidean distance (IMED), proposed in [36] specifically for images and
takes into account spatial relationships of pixels, which is calculated as

dIMED(s1, s2) =√√√√ 1
2π

Kθ

∑
m,m′=1

Kϕ

∑
n,n′=1

e−
(m−m′)2+(n−n′)2

2 (vm,n(s1)− vm,n(s2))(vm′ ,n′(s1)− vm′ ,n′(s2)), (9)

with summation over all pixel coordinates (m, n) and (m′, n′).

Figures 3–6 show distance or dissimilarity matrices for the studied scenarios. Here,
distances are computed using the previous measures pairwise between all steps of a
trajectory. The diagonal elements are zero as they represent the distance between a frame
and itself. By analyzing the presented data, we can observe that AoA yields a substantially
blurrier picture than AoD. This can be explained by the shift in the coordinates at Rx due
to its movement and the corresponding shift of the reference point. As could be expected,
the image-oriented distance measures better cope with such a shift compared to the L2
distance (cf., e.g., Figure 3a,d vs. Figure 3b,e , or Figures 5a and 6a vs. Figures 5b and 6b).
It can be deduced that for channel state prediction in the context of AoA, more specific loss
functions could be worth considering instead of the MSE closely related to the L2 distance.

Let us now look in more detail at Figures 3 and 4. The plotted distance matrices
confirm that the SceLoS scenario is characterized by considerably more pronounced dy-
namics compared to SceNLoS, as can be seen from Figure 1. The sharp diagonal blocks in
Figure 3d–f can be explained by beam clustering: it takes several trajectory steps for the
strongest direct beam, in particular, to shift from one cluster to another, and this number
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grows as the angular distance between consecutive trajectory points diminishes. We also
see that the distance matrices of both trajectories are characterized by pronounced diagonal
blocks indicating trajectory segments with very similar data. However, sharp boundaries
between the blocks may indicate difficulties in prediction when transitioning from one
segment to another.

To obtain smoother transitions, two parameters can be adjusted: the frame resolution
Kθ × Kϕ and the step ∆s. Therefore, for the SceTurn scenario, we consider three trajectories
with ∆s set to 1, 10, and 30 cm. The trajectories are depicted in Figure 2 and the correspond-
ing distance matrices in Figures 5 and 6. It can be observed that by reducing the step ∆s,
not only do we obtain larger diagonal blocks, but also a smoother transition between them.
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Figure 3. Distance matrices for (VAoA(s))s=1,...,S and (VAoD(s))s=1,...,S for scenario SceLoS in Figure 1a.
(a) L2, AoA. (b) NCC, AoA. (c) IMED, AoA. (d) L2, AoD. (e) NCC, AoD. (f) IMED, AoD.
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Figure 5. Distance matrices for (VAoA(s))s=1,...,S for scenario SceTurn in Figure 2. (a) L2, ∆s = 1 cm.
(b) NCC, ∆s = 1 cm. (c) IMED, ∆s = 1 cm. (d) L2, ∆s = 10 cm. (e) NCC, ∆s = 10 cm. (f) IMED,
∆s = 10 cm. (g) L2, ∆s = 30 cm. (h) NCC, ∆s = 30 cm. (i) IMED, ∆s = 30 cm.
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Figure 6. Distance matrices for (VAoD(s))s=1,...,S for scenario SceTurn in Figure 2. (a) L2, ∆s = 1 cm.
(b) NCC, ∆s = 1 cm. (c) IMED, ∆s = 1 cm. (d) L2, ∆s = 10 cm. (e) NCC, ∆s = 10 cm. (f) IMED,
∆s = 10 cm. (g) L2, ∆s = 30 cm. (h) NCC, ∆s = 30 cm. (i) IMED, ∆s = 30 cm.

4. Channel State Prediction via ML Algorithms

Theoretically, the channel’s state characteristics may change over distances of a half
wavelength. So, dynamic channel variations could lead to rapid changes in the channel’s
state information, including AoA and AoD. However, as we have seen in Section 3, these
changes happen at much wider scales. Identifying the scale, where the channel state pre-
diction methods may still provide accurate approximations of AoA and AoD, are of critical
importance for both beam-tracking algorithms and speeding up ray-tracing simulations.

Recently, deep neural networks (DNNs) have received considerable attention due to
their decisive advantages: (i) DNNs can model complex non-linear relationships using
multiple layers of an artificial neural network, and (ii) DNNs can achieve low complexity
of mathematical operations. Thus, a DNN can be a suitable candidate for modeling the
temporal behavior of mmWave channels.

In this section, we propose a channel state prediction method that models rapidly-
varying mmWave channels using DNNs. We employ a convolutional long short-term
memory (ConvLSTM) architecture to predict the temporal evolution of VX(s), based on N
previous channel estimates VX(s− N), . . . , VX(s− 1).

4.1. Employed DNN Model

The channel state data representation introduced in Section 3 is characterized by spatial
and temporal components. Convolutional neural networks have the ability to capture
spatial features, while recurrent neural networks—and in particular, LSTM (long short-term
memory)—can induce dependence over time. However, by simply stacking these kinds
of layers, the dependence between space and time features may not be captured properly.
In [37], a network structure able to capture spatio-temporal dependencies, ConvLSTM,
is proposed. The ConvLSTM layer is a recurrent layer similar to LSTM, but internal
matrix multiplications therein are exchanged with convolution operations. ConvLSTM
can provide an effective tool for mmWave/THz channel estimations, as it has the ability to
handle prediction from time series, where convolutional operations capture features while
LSTMs capture time dependencies in the extracted features.

The proposed DNN model using ConvLSTM is shown in Figure 7. It is composed of
nine layers. The input of the network is a three-dimensional tensor (N, Kθ , Kϕ), where N
represents the number of previous frames that the DNN uses to predict the next frames. We
use N = 4 in our setup. The second and third dimensions, (Kθ , Kϕ), represent the size of
the input frame VX. The output of the network is a tensor of the size (Nout, Kθ , Kϕ), where
Nout is the number of predicted frames, which in our case is one.

The first layer of the DNN is the input layer accepting N = 4 frames of size Kθ × Kϕ.
The second and sixth layers are ConvLSTM with 32 filters and a convolutional kernel of
size 3× 3 to extract spatio-temporal features of the input data. The fourth is a convLSTM
layer with 64 filters and a convolutional kernel of size 5 × 5 to extract more detailed
spatio-temporal feature information. The activation function of the convLSTM layers is of
type tanh, which helps regulate the values passed through the network. After the second
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and fourth layers, there is a normalization layer that normalizes the output and provides
better convergence. There is a dropout layer after the last normalization layer with a 50%
probability in accordance with the recommended rates between 0.5 and 0.8 for hidden
layers [38,39]. The dropout layer is added to enhance the robustness of the network and
avoid overfitting. The output layer is Conv3D with a single filter and size 3× 3× 3.

ConvLSTM
32@3x3

ConvLSTM
32@3x3

ConvLSTM
32@3x3

ConvLSTM
32@3x3

BatchNormalization BatchNormalization BatchNormalization BatchNormalization

ConvLSTM
64@5x5

ConvLSTM
64@5x5

ConvLSTM
64@5x5

ConvLSTM
64@5x5

BatchNormalization BatchNormalization BatchNormalization BatchNormalization

ConvLSTM
32@3x3

ConvLSTM
32@3x3

ConvLSTM
32@3x3

ConvLSTM
32@3x3

Conv3D
1@3x3x3

Input frame 1 Input  frame 4Input  frame 3Input  frame 2

BatchNormalizationBatchNormalization

Output frame

Dropout(0.5)

ConvLSTM layer with
32 filters and 

convolutional kernel
size of 3 x 3

Dropout layer with
a 50% probability.

The input data is
composed of 4

previous frames

The predicted
frame

ConvLSTM layer with
64 filters and 

convolutional kernel
size of 5 x 5

Figure 7. Architecture of the employed DNN.

The previous model was implemented and trained in Python using the TensorFlow plat-
form. We used the Adam algorithm and updated the network parameters with learning rate
0.001 and mini-batch size of 50 samples for 50 epochs. MSE was used as the loss function.

4.2. Data Acquisition and Preprocessing

Ray tracing for data acquisition was performed with a 28 GHz carrier frequency, and
the propagation environment was modeled to obtain propagation paths between Tx and
Rx with the number of reflections up to 3. The data were collected from 10 different maps,
and in each map, 10 different transmitter’s positions for 10 trajectories were modeled.
Separate datasets were created for AoA and AoD and for various step size values, namely
for ∆s = 1, 30, 60, 100 cm. Each dataset DX,∆s, X ∈ {AoA, AoD}, was then populated
with sequences of size S = 5 of consequent frames extracted from longer trajectories.
Finally, the size of the datasets for each step size was set to 30,000 observations. Each
dataset was split so that 70 % was used for training the model and 30 % for testing. We
processed each dataset separately, so in what follows, indices X and ∆s are omitted when
no confusion arises.

To improve prediction performance, we rescaled data in a dataset so that all entries lay
in the range [0, 1] with 0 corresponding to empty clusters. More formally, let

(
Ṽ(i)(s)

)
s=1,...,S

denote the original (before scaling) i-th data point of a dataset D, i = 1, . . . , |D|, and let
ṽ(i)m,n(s) denote the corresponding matrix entries, as previously. Then, after preprocessing,
the dataset’s data points have the entries
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v(i)m,n(s) =
200− ṽ(i)m,n(s)

200− vmin(D)
(10)

for all i = 1, . . . , |D|, s = 1, . . . , S, m = 1, . . . , Kθ , n = 1, . . . , Kϕ, where

vmin(D) = min
i,s,m,n

ṽ(i)m,n(s). (11)

We also note that in each data point
(

V(i)(s)
)

s=1,...,S
, frame V(i)(S) represents the

label and frames
(

V(i)(s)
)

s=1,...,S−1
the features.

4.3. Metrics of Interest

As we described in Section 3.3, the row and column of a non-zero (or not equaling
200 before preprocessing) entry in an AoA/AoD frame V(s) characterize the angles of
the received/departed rays, and the value of the element corresponds to the path loss of
the received ray. Thus, such a frame-like data representation makes our prediction task
a combination of classification and regression problems, because we need to predict the
positions of non-zero elements in the matrix and also their values.

Keras provides various metrics for evaluating regression and classification tasks [40].
To assess the performance of our proposed approach, we utilize the metrics Precision and Re-
call to quantify the accuracy of the coordinates and the mean squared error (MSE) to quantify
the regression accuracy for the path loss value prediction. Let V̂(i) = (v̂(i)m,n)m=1,...,Kθ ,n=1,...,Kϕ

denote the predicted value of V(i)(S). Denote by 1{A} the indicator function such that
1{A} = 1 if A is true and 1{A} = 0 otherwise. Then, the numbers of true positive (TP),
false positive (FP), and false negative (FN) results in the i-th data point can be computed,
respectively, by

N(i)
TP =

Kθ

∑
m=1

Kϕ

∑
n=1

1{v̂(i)m,n > ε}1{v(i)m,n(S) > ε}, (12)

N(i)
FP =

Kθ

∑
m=1

Kϕ

∑
n=1

1{v̂(i)m,n > ε}1{v(i)m,n(S) < ε}, (13)

N(i)
FN =

Kθ

∑
m=1

Kϕ

∑
n=1

1{v̂(i)m,n < ε}1{v(i)m,n(S) > ε}, (14)

where ε is a threshold between 0 and 1.
Now, the Precision metric (or the positive predictive value, PPV), which measures

the percentage of correctly identified non-empty clusters among all clusters predicted as
non-empty, can be computed, for a dataset D, as

Precision(D) = ∑
|D|
i=1 N(i)

TP

∑
|D|
i=1 N(i)

TP + ∑
|D|
i=1 N(i)

FP

. (15)

Recall (or sensitivity), which measures the percentage of non-empty clusters that were
identified, is given by

Recall(D) = ∑
|D|
i=1 N(i)

TP

∑
|D|
i=1 N(i)

TP + ∑
|D|
i=1 N(i)

FN

. (16)

We note that Precision and Recall are often interrelated, and improving Precision typi-
cally reduces Recall, and vice versa. Therefore, we tuned the threshold ε of the two metrics
to obtain the best value of prediction for both of them.
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Finally, MSE is closely related to the L2 distance considered previously, and is given by

MSE(D) = 1
|D|KθKϕ

|D|

∑
i=1

Kθ

∑
n=1

Kϕ

∑
m=1

(v̂(i)m,n − v(i)m,n(S))2. (17)

4.4. Numerical Results

In this section, we present model performance evaluation results from several exper-
iments, in which we trained and tested the proposed DNN on the datasets DX,∆s with
X ∈ {AoA, AoD} and ∆s = 1, 30, 60, 100 cm.

We start with Figure 8, presenting the achievable accuracy of predicting the coordinates
of the elements in the frame via the considered metrics with respect to various values of
the step size. As one may observe, the prediction probability of the AoD is better than
the prediction probability of the AoA. The rationale is that, as we have seen in Section 3,
the correlation between the consecutive frames is higher for the departing rays as compared
to the incoming rays. Also, the proposed model can achieve approximately 97 % prediction
accuracy for the step size of 1 cm, and the achieved prediction decreases to 75 % for the
step size of 100 cm. This behavior is expected as the dependence between the consecutive
frames decreases when the step size between two points on the trajectory increases.

0 20 40 60 80 100
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Figure 8. Model accuracy as a function of the step size ∆s.

Further, in Figure 9, we present the observed MSE associated with predicting the
path loss of the elements of the frame with respect to various values of the step size.
The proposed model can achieve 5× 10−4 MSE for the step size of 1 cm. As one may
observe, MSE remains almost intact up until the step size of 60 cm, and then it quickly
increases to 5× 10−3 for the step size of 100 cm.
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Figure 9. MSE as a function of the step size ∆s.
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Figure 10 shows the model accuracy vs. the dataset size |D| obtained via 5-fold
cross-validation. We observe that the model accuracy does not improve substantially after
|D| = 20,000, which justifies our choice of the dataset size.

0 5000 10,000 15,000 20,000 25,000 30,000 35,000
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10%
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80%

90%
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Figure 10. Model accuracy as a function of the dataset size |D| for step size ∆s = 30 via 5-fold
cross-validation.

Finally, in Figure 11, we present some frame predictions. Here, three data points
corresponding to consecutive Rx trajectory steps were chosen randomly from validation
subsets of datasets DAoA,1, DAoA,60, and DAoA,100. Predicted frames are shown next to their
ground-truth values, so as to illustrate the frame dynamics from step to step as well as the
prediction efficiency. As one may observe, the difference between the true and predicted
frames increases as the step size becomes larger. Specifically, for ∆s = 1 cm, the proposed
algorithms predict the actual values almost perfectly for all the frame numbers, while for
∆s = 100 cm, there are occasional spikes in predicted data that become larger as the frame
number increases.
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(a) AoA, ∆s = 1 cm
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Figure 11. Cont.
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Figure 11. Illustration of the true and predicted results for AoA and step sizes ∆s = 1, 60, 100 cm.

5. Conclusions

In this paper, motivated the by the need for speeding up ray-tracing simulations
and efficient beam tracking in future mmWave/THz systems, we first investigated the
correlational properties of the channel state information in terms of AoD, AoA, and path loss
in practical outdoor deployment scenarios. Then, we proposed a new data representation
that makes it feasible to utilize a large set of powerful ML-based video frame interpolation
and extrapolation techniques without substantial modification. Finally, we demonstrated
how to predict channel state parameters and reported the prediction accuracy.

Our results show that the dependence in the AoA, AoD, and path loss is rather high,
even at distances that are k ≈ 300–600 times larger than the wavelength at 300 GHz. This
implies that one may expect good interpolation and extrapolation results in ray tracing
when the grid size is kλ, which drastically improves the simulation times. From the
beam-tracking perspective, this implies that the beam-tracking interval can be as long
as t = kλ/v, where v is the velocity of the UE. ML prediction results show that reliable
prediction accuracy of AoA and AoD angles is feasible up to 60 cm distance with AoA
being characterized by a higher MSE.
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