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Abstract: This work addresses the problem of quantifying opacity for discrete event systems. We
consider a passive intruder who knows the overall structure of a system but has limited observational
capabilities and tries to infer the secret of this system based on the captured information flow.
Researchers have developed various approaches to quantify opacity to compensate for the lack of
precision of qualitative opacity in describing the degree of security of a system. Most existing works
on quantifying opacity study specified probabilistic problems in the framework of probabilistic
systems, where the behaviors or states of a system are classified as secret or non-secret. In this work,
we quantify opacity by a state-worth function, which associates each state of a system with the worth
it carries. To this end, we present a novel category of opacity, called worthy opacity, characterizing
whether the worth of information exposed to the outside world during the system’s evolution is
below a threshold. We first provide an online approach for verifying worthy opacity using the notion
of a run matrix proposed in this research. Then, we investigate a class of systems satisfying the
so-called 1-cycle returned property and present a worthy opacity verification algorithm for this class.
Finally, an example in the context of smart buildings is provided.

Keywords: discrete event systems; opacity; automata; smart building

MSC: 93C65

1. Introduction

With global urbanization, cities are growing in size and population, and the proportion
of people living in urban areas is expected to grow to 68% by 2050 [1], creating inevitable
challenges to urban residents due to limited resources and services. The concept of smart
cities has been proposed to efficiently deploy public resources, improve social governance,
and promote sustainable urban development. Currently, smart cities are being intensively
established around the world; for example, there are already more than 500 in China [2].

Buildings provide the physical space required for people to carry out various social,
economic, and cultural activities, and are one of the areas where the Internet of Things
(IoT) would make significant impacts [3]. Smart buildings improve the energy efficiency,
operational efficiency, security, and comfort of the living or working environment by
integrating advanced technologies and systems [4,5]. For example, people use the model
predictive control approach for temperature control in smart buildings, reducing operating
costs and improving thermal comfort [6,7]. However, IoT devices in smart buildings
generate a large amount of data, which can pose many potential threats. Deciding how to
analyze the security of smart buildings is becoming an increasingly important issue and
has attracted a lot of attention over the past few years [8–10].
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In this article, we study an information flow security property of great interest: opac-
ity, within the discrete event system (DES) framework, where DES can describe the state
transition relationships between events in an IoT, thereby assisting us in understanding and
analyzing IoT behavior. Opacity was originally introduced in 2004 for the analysis of cryp-
tographic protocols [11]. Later, it is taken as a general information flow security framework
for a DES interacting with a passive intruder. Many kinds of information flow security
properties can be formulated as opacity, such as non-interference [12], anonymity [13], etc.
Roughly speaking, opacity is a type of confidentiality property that characterizes whether
certain secret information from a system can be deduced by outside observers that may
be malicious.

In the context of DESs, opacity is classified into language-based and state-based opacity,
depending on the defined secret [14]. Language-based opacity has been studied with
models such as automata [13] and Petri nets [15], where the secret is defined as a language.
In general, this type of opacity can be further classified as strong and weak opacity, as
opposed to state-based opacity, which has a wide range of classifications depending on
the state of interest. For example, current-state opacity [16,17] has been proposed to
take the system’s current state as a secret and determine whether the system reveals this
secret during its evolution. Similarly, initial-state opacity [18] and initial-and-final-state
opacity [19] are suggested when the secret is defined as a set of initial states or a set of secret
state pairs. The notions of K-step opacity [20] and infinite-step opacity [21] are developed
when the delayed information of a system is concerned, and pre-opacity [22] is formulated
when the intention of a system needs to be kept secret.

All of the aforementioned notions of opacity describe a system in a binary way, where
the system is either opaque or non-opaque. It has been noted that qualitative opacity is
not accurate enough in assessing the information obtained by passive attackers [23]. For
instance, a system that violates qualitative opacity with a very low probability and one that
violates qualitative opacity with a very high probability are considered insecure. However,
their degree of security is different [24]. The authors of [25] introduce game theory’s ideas
into probabilistic automata and propose a model of probabilistic resource automata based
on which the current-state opacity is quantified.

The above-mentioned studies on quantification of opacity are basically based on
probabilistic systems. However, a probabilistic model is much more difficult to be abstracted
than a non-probabilistic version. The study in [26] is the first work that introduces the
quantification of opacity into non-probabilistic DES. Considering that the essence of opacity
is to explore the observational equivalent strings, the authors developed a method to
calculate the opacity degree of a system by computing the dispersion among non-secret
runs and secret equivalents.

In this work, we investigate the quantification of opacity from a new perspective by
describing the worth of information that each system state carries in terms of a state-worth
function. Then, we introduce a new type of opacity, called worthy opacity, to describe whether
the worth of information exposed to the outside world in the system’s evolution meets the
security requirements. We consider an intruder who knows the whole structure of a system but
has limited observation capabilities. Unlike the general notions of state-based opacity, we do
not explicitly treat a secret as a specific sub-set of states since the state-worth function describes
the importance of each system state. We show that current-state opacity is strictly weaker than
worthy opacity. The proposed notion of worthy opacity is closely related to the notion of opacity
degree in [26]. The contributions of this article can be summarized as follows:

• A novel notion of worthy opacity is proposed to quantitatively characterize the worth
of a system available to an intruder;

• An online algorithm is provided to verify worthy opacity;
• A system property called 1-cycle returned is defined, and an offline verification

algorithm for the system’s worthy opacity satisfying this property is presented;
• It is shown that worthy opacity provides a more granular partitioning of the system

than current-state opacity.
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The rest of this article is organized as follows. Section 2 recalls the necessary prelimi-
naries. The notion of worthy opacity is proposed in Section 3. In Section 4, two effective
algorithms for the verification of worthy opacity are reported. Finally, Section 5 concludes
this research.

2. Preliminaries

Symbols R, R≥0, N, and Z+ are specified to denote the sets of real numbers, non-
negative real numbers, non-negative integers, and positive integers, respectively. The
ceiling function of a real number x ∈ R, denoted as dxe, is defined as the smallest integer
that is not smaller than x. For a vector v, [v]i is used to denote the i-th entry of v. Given a
matrix M , its (i, j)-th entry is denoted as [M]i,j. The transpose of a vector v is denoted by
vT . Given a k-dimensional vector v, its 1-norm is defined as the sum of the absolute values
of each entry, i.e., ‖v‖ = ∑k

i=1|[v]i|. The L1-normalization of a vector v, denoted by norm(v)
in this article, is defined as norm(v) = v/‖v‖. Given an ordered pair c = (a, b), we use c(1)
and c(2) to denote its first and second components, namely, c(1) = a and c(2) = b.

2.1. System Model

We define an alphabet as any non-empty finite set of events, denoted by E. A string
over the alphabet E is a sequence of events taken out of E [27]. The length of a string s,
written as |s| (if X is a set, the notation |X| denotes the cardinality of X. The distinction
is usually clear from context), is the number of events contained in it, counting multiple
occurrences of the same event. The string without any events is called the empty string
and is denoted by ε with |ε| = 0. Given two strings s1 and s2, the concatenation of s1 and s2
is the sequence of events in s1 followed by the sequence of events in s2, denoted as s1 · s2 or
s1s2. We use the superscript notation sk to indicate that the string s is concatenated with
itself k times.

Given an alphabet E, we denote by Ek the set of all strings of length k, particularly,
E0 = {ε}. The set consisting of all finite-length strings defined over E is denoted by E∗,
i.e., E∗ = E0 ∪ E ∪ E2 ∪ · · · . Given an alphabet E, a language is a sub-set of E∗. Given two
languages L1 and L2, the concatenation of L1 and L2 is L1L2 = {s1s2 | s1 ∈ L1, s2 ∈ L2}.
In this article, we model a DES as a non-deterministic finite automaton , formally defined
as follows.

Definition 1 (Non-deterministic Finite Automaton). A non-deterministic finite automaton
(NFA) is a four-tuple G = (Q, E, f , Q0), where

• Q = {q1, q2, · · · , qN} is the finite set of states;
• E = {e1, e2, · · · , eM} is the finite set of events associated with G;
• f : Q× E→ 2Q (where 2Q is the power set of Q) is the transition function, and q′ ∈ f (q, e)

means that there is a transition labeled by e from state q to state q′;
• Q0 ⊆ Q is the set of initial states.

If Q0 in G is a singleton and the transition function of G is a partially defined function
Q× E→ Q, then G is called a deterministic finite automaton (DFA). The transition function
f can be extended recursively from the domain Q× E to the domain Q× E∗ : f (q, ε) = {q}
and f (q, se) =

⋃
q′∈ f (q,s) f (q′, e) for all states q ∈ Q, where s ∈ E∗ and e ∈ E. The

language generated by G from state q ∈ Q is L(G, q) = {s ∈ E∗ | f (q, s)!}, where f (q, s)!
indicates that f (q, s) is defined, i.e., f (q, s) 6= ∅. The language generated by G from a set
of states Q′ ⊆ Q is L(G, Q′) =

⋃
q∈Q′ L(G, q). Naturally, the language generated by G is

L(G) = L(G, Q0).
Formally an NFA G can be equivalently represented by a directed graph, with a set of

nodes Q denoting states and a set of edges {q e−→ q′ | q′ ∈ f (q, e)} denoting transitions.

A run in G starting from q(0) ∈ Q is a finite sequence of transitions r : q(0)
e(1)−→ q(1)

e(2)−→
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· · · q(k−1)
e(k)−→ q(k) (here, we use the numbers in parentheses to indicate the order in which

states or events appear in the run, that is to say, q(i) is not necessarily equal to qi and e(i)
is not necessarily equal to ei), and the events extracted from it in order form the string
associated with it, denoted by φ(r) = e(1)e(2) · · · e(k) (we also say that r is a run on φ(r) and
use last(r) = q(k) to denote the ending state). We define the length of a run r as the length of
the string φ(r) associated with it, i.e., |r| = |φ(r)|. Given a run from state q to q′ on a string
s, we denote it as q s−→ q′; if a specific string associated with the run is not of interest, we
denote it as q→ q′. The set of all runs starting from state q ∈ Q in G is denoted by Γ(G, q);
the set of all runs generated by G is Γ(G) = ∪q∈Q0 Γ(G, q). A run of length greater than
zero that begins and ends at the same state is called a cycle.

2.2. Intruder Model and Opacity

In the general setting of studying opacity in DESs, it is assumed that the intruder is
fully aware of the system’s structure but only partially observes the system’s behavior [14].
We follow this setting in our work and formalize it as the partial observability of events,
where the set of events E is divided into an observable event set Eo and an unobservable
event set Euo, i.e., E = Eo∪̇Euo. Given a string s ∈ E∗ generated by G, the intruder’s
observation is the output of the natural projection function P : E∗ → E∗o , which is defined
recursively as:

P(ε) = ε; P(e) =

{
e, if e ∈ Eo,
ε, otherwise;

P(se) = P(s) · P(e) for s ∈ E∗, e ∈ E.

The unobservable reach of a state q ∈ Q in G, denoted by UR(q), is UR(q) = {q′ ∈ Q |
∃t ∈ E∗uo : f (q, t)!, q′ ∈ f (q, t)}. This definition can be extended to a set of states Q′ ⊆ Q by
UR(Q′) =

⋃
q∈Q′ UR(q).

This work is an extension of state-based opacity, where the secret of a system is a
sub-set of states S ⊆ Q. When a system generates a string s ∈ E∗, the intruder observes
P(s) and infers whether the system is in a secret state based on this observation and the
system’s structure.

Definition 2 (Current-State Opacity [14]). Given a system G = (Q, E, f , Q0), a secret S ⊆ Q,
and a set of observable events Eo ⊆ E, G is current-state opaque with respect to S and Eo, written
as (S, Eo)-CSO, if

∀q ∈ Q0, ∀s ∈ L(G, q)[ f (q, s) ⊆ S]⇒ ∃q′ ∈ Q0, ∃s′ ∈ L(G, q′)[P(s) = P(s′), f (q′, s′) * S].

In plain words, a system being current-state opaque means that an intruder cannot
infer whether the current state belongs to the secret, regardless of the sequence of events
occurring in the system. Given an observation ω ∈ P(L(G)), the current-state estimate
associated with ω is C(ω) = {q ∈ Q | ∃q0 ∈ Q0 : s ∈ L(G, q0), q ∈ f (q0, s), P(s) = ω}, and
the set of consistent strings is S(ω) = {s ∈ L(G) | P(s) = ω}.

Lemma 1 ([28]). Given a system G = (Q, E, f , Q0), a secret S ⊆ Q, and a set of observable events
Eo ⊆ E, G is (S, Eo)-CSO if and only if for any observation ω ∈ P(L(G)), C(ω) * S.

By Lemma 1, to verify current-state opacity, we can construct the observer Gobs of
system G and check whether there exists a state in observer Gobs that is a sub-set of S [16].

Definition 3. Given a system G = (Q, E, f , Q0) and a set of observable events Eo ⊆ E, its
observer is a DFA Gobs = (X, Eobs, fobs, x0), where
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• X ⊆ 2Q, with each state x ⊆ Q being a state estimate generated by an intruder based on the
evolution of G;

• Eobs = Eo is the set of events that can be observed by an intruder;
• fobs(x, e) =

⋃
q∈x UR( f (q, e));

• x0 = UR(Q0) is the initial state estimate.

Example 1. Consider the system G1 in Figure 1a, where S = {q2, q3} and Eo = {e1}. Clearly, by
constructing the observer of G1 as shown in Figure 1b, we can find that G is current-state opaque,
since no state of G1,obs is a sub-set of S.

q1 q2 q3

q4

e1

e2

e2

e1

e2

e1

(a)

{q1, q4}

{q1, q2, q4}

{q1, q2, q3, q4}

e1

e1

e1

(b)
Figure 1. (a) A system G1 and (b) the observer G1,obs with respect to G1.

2.3. Some Counting Principles

As an essential part of combinatorics, counting objects with specific properties is
indispensable for the study of DESs. Many different types of problems require us to count
items. For instance, some notions of diagnosability are defined in terms of fault counting
problems [29]. Counting is also required to determine the complexity of algorithms [30].
In addition, counting techniques are widely used in calculating the finite probability [31].
Our work is also inseparable from counting. This subsection recalls some critical counting
principles [32].

Lemma 2 (Addition Principle). Suppose that a set S can be partitioned into pairwise disjoint
parts S1, S2, · · · , Sm. The number of elements in S is the sum of the number of elements in each of
its part, i.e., |S| = ∑m

i=1|Si|.

We divide the problem into mutually exclusive cases for applying the addition princi-
ple. An alternative formulation of Lemma 2 is as follows: if there are m ways to complete a
task, where the i-th way has ki (i ∈ {1, 2, · · · , m}) choices, then there are ∑m

i=1 ki choices for
completing that task.

Example 2. Consider the system G1 in Example 1. Suppose we want to find the number of cycles of
length two in G1. We divide these cycles by listing their start and end states. The number of 2-length
cycles starting and ending in states q1, q2, q3, and q4 are 2, 2, 1, and 1, respectively. Therefore, the
number of cycles of length two in G1 is 2 + 2 + 1 + 1 = 6.

Lemma 3 (Multiplication Principle). Let S be a set of m-tuples (S1, S2, · · · , Sm), where the i-th
component Si comes from a set of size ai. The size of S is ∏m

i=1 ai.

The multiplication principle is a corollary of Lemma 2. A useful formulation of
Lemma 3 is as follows: suppose that a task can be decomposed into m consecutive steps. If
step i can be performed in ai ways, and for each of these, step i + 1 can be performed in
ai+1 (i ∈ {1, 2, · · · , m− 1}) ways, then the task itself can be accomplished in ∏m

i=1 ai ways.
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Example 3. Consider the system G1 in Example 1. The number of 2-length runs starting from
state q1, passing through state q2, and ending at state q3 is 1, as the number of 1-length runs from
state q1 to q2 and state q2 to q3 is 1, respectively.

Lemma 4 (Generalized Pigeonhole Principle [33]). If p objects are placed into q boxes, then at
least one box contains a minimum of dp/qe objects.

3. Notions of Worthy Opacity

In this section, we first provide the definition of worthy opacity for DESs, and then compare
it with the widely studied current-state opacity. Existing notions of state-based opacity, both
qualitative and quantitative, divide the set of states into secret or non-secret. However, various
degrees of confidentiality exist for different states that are part of the same secret. For example,
a spy trying to hide his/her tracks would wish neither his/her hiding place be exposed nor the
convenience store he/she regularly visits be discovered. Nevertheless, it is clear that the secrecy
of the hiding place is more valuable. To describe the degree of confidentiality of individual
states, we introduce the notion of state-worth function.

Definition 4 (State-worth Function). Given a system G = (Q, E, f , Q0), a state-worth function
is a mapping that assigns a non-negative number to a state, defined as ∆ : Q→ R≥0.

Note that instead of describing the degree of confidentiality of each state in the secret
(a sub-set of the state set), we define the state-worth function as assigning a worth to each
state of the system. This is a more general approach than splitting the states into two
categories. When linked to the conventional notion of secret, we can use this function to
divide secrets: each state possesses a worth, and states carrying worth above a certain
threshold are considered constituent elements of a secret.

Example 4. Suppose that we have a bank account with a deposit limit of $300 and a balance of
$100. The amount we deposit into our account or spend at a point of sale (POS) is $100 each time.
In addition, a private detective is lying in wait at the bank door and wants to know our financial
situation, and he can only find out that we deposit but not that we use POS spending.

Then, the above scenario can be modeled with the system of Example 1; event e1 represents
the deposit of $100 while event e2 represents the POS spending of $100. Each state represents the
balance of the bank account, and naturally, we can take the balance represented by each state as the
value of the state-worth function, i.e., ∆(q1) = 100, ∆(q2) = 200, ∆(q3) = 300, and ∆(q4) = 0.
If we treat a bank balance over $100 as a secret, then it is S = {q | ∆(q) > 100} = {q2, q3}, as
shown in Example 1.

In addition, the existing notions of opacity are not sufficiently refined for depicting the
evolution of a system. In fact, the most fundamental element of a system corresponding
to an observation is the set of runs rather than the set of strings, as shown in Figure 2.
Specifically, given a run r ∈ Γ(G) of a system G, we can obtain the string φ(r) ∈ L(G)
by extracting the sequence of events occurring in it, also commonly considered as the
logical behavior of a system, and then an intruder obtains the corresponding observation
ω ∈ P(L(G)) based on the observability of the events.

Γ(G) L(G) P P(L(G))
r φ(r) P(φ(r))

Figure 2. The generation of observations.

Definition 5. Given a system G = (Q, E, f , Q0) with a set of observable events Eo ⊆ E and an
observation ω ∈ P(L(G)), the set of consistent runs and the set of consistent runs ending in state
q ∈ Q are defined as Φ(ω) = {r ∈ Γ(G) | ∃s ∈ S(ω) : φ(r) = s} and Φq(ω) = {r ∈ Φ(ω) |
last(r) = q}, respectively.
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Intuitively, given an observation ω, the set of consistent runs Φ(ω) is the set of all runs
for which the system can generate that observation, and accordingly, the set Φq(ω) is the
set of all runs that cause the system to produce that observation and reach state q.

Definition 6 (Worthy Opacity). Given a system G = (Q, E, f , Q0) with state-worth function ∆,
a set of observable events Eo ⊆ E, and a non-negative value K ∈ R≥0, an observation ω ∈ P(L(G))
is worthy opaque with respect to Eo, ∆, and K (denoted by (Eo, ∆, K)-WO) if

∑
q∈Q

αω(q) · ∆(q) ≤ K, (1)

where αω(q) = |Φq(ω)|/|Φ(ω)|. System G is said to be worthy opaque with respect to Eo, ∆, and
K ((Eo, ∆, K)-WO) if all observations ω ∈ P(L(G)) are (Eo, ∆, K)-WO.

Note that αω(q) in Definition 6 can be viewed as the intruder’s probability estimate
of the current state of the system as q after observing ω, i.e., the probability of system G
in state q ∈ C(ω) when observation ω is generated is implicitly defined as the number of
runs in which the system generates observation ω and ends up in state q divided by the
number of all runs that can generate observation ω. Then, the left-hand side of (1) shows
the worth the system is expected to expose for generating the observation ω. That is to say,
a system is worthy opaque if the worth it exposes to the outside world during its evolution
does not exceed a certain threshold.

Example 5. Consider the situation in Example 4, which is modeled as the system G1 of Example 1.
Suppose that the private detective sees that we deposit $100 in the bank, i.e., the system G1 produces
the observation e1. We have Φ(e1) = {q1

e1−→ q2
e2−→ q1, q1

e2−→ q4
e1−→ q1, q1

e1−→ q2, q1
e2−→

q4
e1−→ q1

e2−→ q4, q1
e1−→ q2

e2−→ q1
e2−→ q4}. Thus, we have |Φq1(e1)| = 2, |Φq2(e1)| = 1,

|Φq4(e1)| = 2, and |Φ(e1)| = 5, leading to αe1(q1) = 2/5, αe1(q2) = 1/5, and αe1(q4) = 2/5.
By (1), we have ∑q∈Q αω(q) · ∆(q) = 2/5 · 100 + 1/5 · 200 + 2/5 · 0 = 80, implying that
observation e1 is (Eo, ∆, 80)-WO. In plain words, the worth of information revealed to the outside
world by observation e1 is 80, which is a reasonable inference that the private detective can make.

Notice that the probabilities implied in Definition 6 are based on a uniform distribution
over the set of consistent runs, which implies that the set Φ(ω) must be finite, since there is no
uniform distribution over infinite countable sets; otherwise the additivity of the probability
axioms [31] is violated. Therefore, we have the following assumption on system G.

Assumption 1. There are no unobservable cycles in the system G, where an unobservable cycle cu
is a cycle such that P(φ(cu)) = ε.

The above assumption ensures that, for each observation, the set of consistent runs
is finite (as shown in Proposition 1), and this assumption is also a general one when the
system is modeled as a Petri net and the problem is analyzed using the notion of a basis
reachability graph [28].

Proposition 1. Given a system G = (Q, E, f , Q0) with a set of observable events Eo ⊆ E, the
set Φ(ω) is finite for any observation ω ∈ P(L(G)) if there are no unobservable cycles in G.

Proof. We first show that system G can generate no more than Nk+1Mk runs of length
k, where N is the number of states and M is the number of events in G. Note that we
can consider a k-length run as a cross-arrangement of k + 1 states and k events, provided
that the transition function f is satisfied and q(0) ∈ Q0. The number of k-length runs is
maximized by setting Q0 = Q and f (q, e) = Q (for any q ∈ Q and e ∈ E). In this way,
each state and each event in a run can be arbitrarily selected from N states and M events,
respectively. In other words, the number of k-length runs cannot exceed Nk+1Mk.
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Then, we prove the proposition by contrapositive. Suppose that there exists an
observation ω = o(1)o(2) · · · o(l) such that the set Φ(ω) is infinite. The length of runs in set
Φ(ω) can be greater than any given positive integer L. Otherwise, the number of runs in
Φ(ω) cannot exceed ∑L

i=1 Ni+1Mi, which implies that Φ(ω) is finite.
Now, let L = N · (l + 2)− 1, we can find a run

rL = q(0)
e(1)−→ q(1)

e(2)−→ · · · q(N·(l+2)−1)
e(N·(l+2))−→ q(N·(l+2)),

whose length is greater than L. By Lemma 4, we can obtain that there is a state qd of G that
is duplicated at least l + 2 times in rL. This implies that there are at least l + 1 cycles in rL
that begin and end with state qd. Since the length of ω is l < l + 1, we conclude that at least
one of these l + 1 cycles is unobservable, which completes the proof.

Recall that in the research of state-based opacity, the secret is defined as a sub-set of
system states. In general, secret states are more valuable than non-secret states. With this
consideration, we can relate current-state opacity to the proposed worthy opacity.

Proposition 2. Given a system G = (Q, E, f , Q0) with state-worth function ∆, a secret S =
{q | ∆(q) > K} (K ∈ R≥0), and a set of observable events Eo ⊆ E, G is (S, Eo)-CSO, if G is
(Eo, ∆, K)-WO.

Proof. By contrapositive, suppose that G is not (S, Eo)-CSO. By Lemma 1, there exists an
observation ω such that C(ω) ⊆ S. That is, for any q ∈ C(ω), ∆(q) > K holds, which leads
to the fact that G is not (Eo, ∆, K)-WO.

Note that the converse of the above proposition does not hold, as illustrated by the
following example.

Example 6. Consider the system G2 in Figure 3a, where Eo = E = {e1}. Let ∆(q1) = 50,
∆(q2) = 200, and S = {q | ∆(q) > 100} = {q2}. It is not difficult to verify that system G2 is
(S2, Eo)-CSO. By analysis, we see that the evolution of G2 satisfies Table 1. From Definition 6, we
find that the system is (Eo, ∆, 125)-WO, not (Eo, ∆, 100)-WO.

q1 q2

e1

e1

e1

e1

(a)

{q1}

{q1, q2}

e1

e1

(b)
Figure 3. (a) A system G2 and (b) the observer G2,obs with respect to G2.

Table 1. Number of runs in G2.

Observation ω (i ∈ Z+) |Φq1(ω)| |Φq2(ω)|

ε 1 0
e1

i 2i−1 2i−1

4. Verifying Worthy Opacity

Intuitively, to verify the worthy opacity of a given system G, we need to check whether (1)
holds for all ω ∈ P(L(G)), which means that the value of αω(q) needs to be computed for all
q ∈ Q. In general, this requires an exhaustive enumeration of all possible strings that can be
generated by G, which may require infinite memory and thus render the problem unsolvable.
In this section, we first provide an online verification procedure, and then propose an
algorithm to identify a particular class of systems and verify their worthy opacity.
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4.1. Online Verification of an Observation

Given an observation ω, we develop a notion of run matrix to compute the cardinality
of a set Φq(ω) (for any q ∈ Q) based on the transition matrix of automata.

Definition 7 (Transition Matrix [34]). Given an event e ∈ E of a system G = (Q, E, f , Q0),
the transition matrix Te is an N × N matrix, where the typical entry [Te]i,j is equal to one if
qi ∈ f (qj, e) and to zero otherwise.

Example 7. Consider the system in Example 1. The transition matrices associated with events e1
and e2 are, respectively:

Te1 =


0 0 0 1
1 0 0 0
0 1 0 0
0 0 0 0

, Te2 =


0 1 0 0
0 0 1 0
0 0 0 0
1 0 0 0

.

As runs are composed of transitions, we can utilize the transition matrix to calculate
the number of runs between two states on a given string s ∈ E∗. Based on the idea of a
transition matrix, we propose the notion of a run matrix.

Definition 8 (Run Matrix). Given a system G = (Q, E, f , Q0) and a string s ∈ E∗, the run
matrix Rs is an N × N matrix whose typical entry [Rs]i,j is equal to the number of runs from qj to
qi on string s.

Recall that the values of transition function f of system G are sub-sets of states rather
than multi-sets [35], which means that given a state q and an event e, the number of runs
from state q to q′ on the one-length string e is one if q′ ∈ f (q, e) and zero otherwise. This
coincides with the definition of the transition matrix; hence, Re = Te for all e ∈ E. For the
empty string ε, to fit the extended definition of transition function, we have Rε = I, where
I is an identity matrix of size N.

Remark 1. For a string s /∈ L(G, Q), its corresponding run matrix is a null matrix, indicating no
run on s in G from whatever state it starts in.

Even though we specify the run matrices associated with strings of length zero and
one for a given system G, it is still a problem to compute the run matrix associated with a
string s of length greater than one, which is a more general case. Before we introduce the
computation, we prove the following two properties of run matrices.

Proposition 3. Given two strings s1 and s2 that have corresponding run matrices Rs1 and Rs2 ,
respectively,

(1) In the case that s1 and s2 are not identical, the number of runs on string s1 or s2 can be
described by matrix Rs1+s2 = Rs1 + Rs2 , i.e., the number of runs from state qj to qi on
string s1 or s2 is [Rs1+s2 ]i,j;

(2) The number of runs on string s1s2 can be described by matrix Rs1s2 = Rs2 · Rs1 , i.e., the
number of runs from state qj to qi on string s1s2 is [Rs1s2 ]i,j.

Proof. (1) As s1 6= s2, a system cannot generate strings s1 and s2 simultaneously, whereas
the way the system generates a string is the number of runs it can generate on that string.
By Lemma 2, we have that the number of runs on string s1 or s2 is equal to the sum of the
number of runs on s1 and the number of runs on s2, which is [Rs1 ]i,j + [Rs2 ]i,j = [Rs1+s2 ]i,j.

(2) Clearly, a system generates a string s1s2 in the order that first yields s1 and then
generates s2. By Lemma 3, we have that the number of runs from state qj to qi on s1s2 is
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equal to the product of the number of runs from state qj to any state qk ∈ Q and the number
of runs from that state qk to state qi, which is ∑1≤k≤N [Rs1 ]k,j · [Rs2 ]i,k = [Rs1s2 ]i,j.

Remark 2. Given any string s ∈ E∗, we have Rs = Rs · Rε = Rε · Rs, which also meets the
definition of the concatenation of strings.

Based on the second part of the above proposition, we have the following corollary,
which can be used to calculate the run matrix associated with a string s ∈ E∗ of length
greater than zero.

Corollary 1. The run matrix associated with a string s = e(1)e(2) · · · e(k) (k > 0) is

Rs = Te(k)Te(k−1) · · · Te(2)Te(1) . (2)

We can also extend the notion of run matrices to languages, i.e., given a language L,
the run matrix RL associated with it is an N × N matrix whose typical entry [RL]i,j is equal
to the total number of runs on all strings in L from qj to qi. It is not difficult to conclude
that RL = ∑s∈L Rs. Moreover, the extended run matrix has the following properties.

Proposition 4. Given two finite languages L1 and L2 that have corresponding run matrices RL1

and RL2 , respectively,

(1) In the case that L1 and L2 are disjoint, RL1∪L2 = RL1 + RL2 .
(2) RL1·L2 = RL2 · RL1 .

Proof. (1) As L1 and L2 are disjoint, the string in L1 ∪ L2 either belongs to L1 or to L2.
Therefore, we have RL1∪L2 = ∑s∈L1

Rs + ∑s∈L2
Rs = RL1 + RL2 .

(2) By L1L2 = {s1s2 | s1 ∈ L1, s2 ∈ L2}, and the definition of extended run matrices,
we have RL1·L2 = ∑s1∈L1,s2∈L2

Rs2 · Rs1 = (∑s2∈L2
Rs2) · (∑s1∈L1

Rs1) = RL2 · RL1 , where
the first equal sign is due to the second part of Proposition 3.

Remark 3. For any finite language L ⊆ E∗, we have RL = RL∩L(G,Q), as for any s ∈ L \
L(G, Q), we have Rs = O by Remark 1, where O is a null matrix.

Proposition 5. Given a system G = (Q, E, f , Q0), define an N-dimensional column vector π
such that [π]i = 1 if qi ∈ Q0 and [π]i = 0 otherwise. Then, [RL ·π]i is the total number of runs
generated by system G on strings in language L, where the ending state of these runs is qi.

Proof. It can be directly obtained from the definition of the multiplication of matrices and
the meaning of run matrices.

Based on the above discussions, we can use matrix operations to calculate the number
of runs between different states on observations. It is not difficult to find that given an
observation ω = o(1)o(2) · · · o(l), we have S(ω) = E∗uo{o(1)}E∗uo{o(2)}E∗uo · · · E∗uo{o(l)}E∗uo ∩
L(G). Based on Definition 5, we know that the cardinality of set Φq(ω) is the total number
of runs generated by the system on all strings in language S(ω) that can reach state q, i.e.,
|Φqi (ω)| = [RS(ω) ·π]i (1 ≤ i ≤ N). With Remark 3, once the run matrix corresponding
to the language E∗uo{o(1)}E∗uo{o(2)}E∗uo · · · E∗uo{o(l)}E∗uo is obtained, the cardinality of set
Φq(ω) for any q ∈ Q is calculated.

Clearly, for any e ∈ Eo, we have R{e} = Re = Te. The remaining problem is how
to determine the run matrix associated with E∗uo. Considering the set of unobservable
events Euo as a language, we have REuo = ∑e∈Euo Re = ∑e∈Euo Te. By the second part
of Proposition 4, we have REi

uo
= Ri

Euo
for i > 0. Note that by E0

uo = {ε}, there is
RE0

uo
= Rε = I.
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Theorem 1. Given a system G = (Q, E, f , Q0) with no unobservable cycles, the run matrix RE∗uo
associated with E∗uo is (I − REuo )

−1.

Proof. Since E∗uo = {ε} ∪ Euo ∪ E2
uo ∪ · · · and any two sets in {Ei

uo | i ∈ N} are disjoint, by
Proposition 4, we have RE∗uo = ∑i∈N REi

uo
. Suppose that there exists a run r of length N

generated by G with N + 1 states, where N is the number of states in G. By Lemma 4, we
can find a duplicate state qd in r. This indicates the existence of an unobservable cycle in
r, which violates the premise that there are no unobservable cycles in G. Therefore, the
length of unobservable runs generated by G cannot be greater than N. Naturally, we have
REi

uo
= O for all i > N. From this, we obtain RE∗uo = ∑N

i=0 REi
uo

.

RE∗uo · (I − REuo ) = (I + REuo + R2
Euo

+ · · ·+ RN
Euo

) · (I − REuo ) = I − REN+1
uo

= I (3)

Furthermore, by (3), we conclude that the matrix (I − REuo ) is invertible and
RE∗uo = (I − REuo )

−1.

Remark 4. In the following, we will notate the run matrix associated with E∗uo as Ruo for brevity of
notation. If there are no unobservable events in the system G, then REuo = O, leading to Ruo = I
without affecting the results below.

In light of the above discussion, it is natural to present Algorithm 1 for the online
verification of worthy opacity. Lines 1 to 6 are the initialization of the marker variable f lag
and the count vector π, where f lag is set to be True to indicate that the system is worthy
opaque, and the i-th entry of π indicates the number of system-generated runs ending in
state qi, inferred by an intruder from the observation. Lines 7 to 21 are the intruder’s online
judgment of worthy opacity, whereas lines 8 to 12 are calculations of the expected worth of
the currently revealed information. Once the expected worth exceeds K, which means that
the system is not worthy opaque, set the f lag to be False and stop observing as shown in
lines 13 to 16; otherwise, continue the observation as shown in lines 17 to 20. As regards
the complexity of Algorithm 1, we note that the complexity of the recursive step k (observe
the kth event) is O(k · N).

Example 8. Consider the system G1 in Example 1, where its state-worth function is shown in
Example 4. Given an observation ω = e2

1, we verify online the (Eo, ∆, 100)-worthy opacity of
ω using Algorithm 1. Initially, ω is set to be the empty string, i.e., ω = ε. By Algorithm 1,
we have that the expected worth for this system is 50, which is less than 100, implying that the
null observation ε is (Eo, ∆, 100)-WO. Similarly, after observing e1, the value of worth becomes
80 < 100, so e1 is also (Eo, ∆, 100)-WO. Continuing to run the algorithm, after observing e1 again,
we have worth = 100, implying that e2

1 is (Eo, ∆, 100)-WO.
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Algorithm 1 Online verification of worthy opacity

Input: A system G = (Q, E, f , Q0) with E = Eo∪̇Euo, a state-worth function ∆, and a
non-negative value K

Output: (Eo, ∆, K)-WO of ω upon observing an event e
1: f lag← True, π ← 0
2: for i← 1 to N do
3: if qi ∈ Q0 then
4: [π]i ← 1
5: end if
6: end for
7: while f lag do
8: π ← Ruo ·π, worth← 0
9: πn ← norm(π)

10: for i← 1 to N do
11: worth← worth + ∆(qi) · [πn]i
12: end for
13: if worth > K then
14: f lag← False
15: end if
16: Output f lag
17: if f lag then
18: Wait until a new event e is observed
19: π ← Te ·π
20: end if
21: end while

4.2. Run Status Recorder and 1-Cycle Returned

It is not difficult to find that for any observation ω, there is Φq(ω) = ∅ if q /∈ C(ω),
which leads to αω(q) = 0 if q /∈ C(ω), and implies that we can narrow the computation
from {αω(q) | q ∈ Q} to {αω(q) | q ∈ C(ω)}. We call the set {αω(q) | q ∈ C(ω)} the
current-state probability distribution estimate associated with ω, denoted by A(ω). Note that
the observer mentioned in Definition 3 represents, in a compact structure, all possible
current state estimates during the evolution of a system. Inspired by this idea, it seems that
we can also represent all current-state probability distribution estimates in a finite structure.
Unfortunately, as the system evolves, there may be an infinite number of sets A(ω), as the
sets A(ω) and C(ω) do not correspond one-to-one.

By analyzing the evolution of a system, we find that if there is no cycle in its observer.
Then, the observations generated by that system are finite, which means that the number
of set A(ω) is also finite. Thus, the verification of worthy opacity can be achieved by
traversing all observations to determine whether (1) holds. In contrast, if there is a cycle in
the observer of a system, then this system can generate an infinite number of observations.

Given a cycle co of an observer, the system associated with that observer can generate
an infinite number of observations of the form ωci

o (i ∈ N), assuming that the observation
when the observer first enters the cycle is ω. If A(ω) = A(ωco), we say that the cycle is
1-cycle returned (1-CR), and if all cycles in an observer of a system are 1-CR, then we say
that this system is 1-CR. Fortunately, if a system G is 1-CR, then the current-state probability
distribution estimate that can be generated by G is finite, i.e., the worthy opacity of system
G is verifiable, as shown in Example 6.

Given a system G, we check whether G is 1-CR by Algorithm 2 and, if so, construct
a run status recorder, which is an automaton that enumerates all possible current-state
probability distribution estimates generated by system G (see Figure 4). The core idea of
Algorithm 2 comes from Proposition 6.
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G Is G 1-CR? Gr

NOT 1-CR

Yes

No

Figure 4. Input and output of Algorithm 2.

Proposition 6. Given two N-dimensional column vectors π1 and π1 that satisfy norm(π1) =
norm(π2), for any N × N matrix R, it holds that norm(R ·π1) = norm(R ·π2).

Proof. Let norm(π1) = norm(π2) = π. We have π1 = k1π and π2 = k2π, where k1 and
k2 are 1-norms of π1 and π2, respectively. Hence, one obtains

norm(R ·π1) =
R · k1π

‖R · k1π‖ =
k1R ·π

k1‖R ·π‖
=

k2R ·π
k2‖R ·π‖

=
R · k2π

‖R · k2π‖ = norm(R ·π2).

This completes the proof.

Algorithm 2 Construction of the run status recorder and and verification of the 1-CR of
system G

Input: A system G = (Q, E, f , Q0) with E = Eo∪̇Euo
Output: Run status recorder Gr = (Y, Eo, fr, y0)

1: for i← 1 to N do
2: if qi ∈ Q0 then
3: [π]i ← 1
4: end if
5: end for
6: π ← Ruo ·π
7: y0 ← (π, norm(π))
8: Y ← {y0}, ns← {norm(π)}
9: un← {y0}

10: while un 6= ∅ do
11: Select a state y ∈ un
12: for all e ∈ Eo do
13: π ← Ruo · Te · y(1)
14: if π 6= 0 and norm(π) /∈ ns then
15: if ∃y′ → y such that eig(y′(1)) = eig(π) then
16: return NOT 1-CR
17: end if
18: ns← ns ∪ {norm(π)}
19: yn ← (π, norm(π)), Y ← Y ∪ {yn}
20: un← un ∪ {yn}
21: else
22: Select yn ∈ Y with yn(2) = norm(π)
23: end if
24: fr(y, e)← yn
25: end for
26: un← un \ {y}
27: end while

Each state in the run status recorder Gr is an ordered pair of two vectors, whose first
component is the count vector mentioned in Algorithm 1, denoting the number of runs that
reach each state after the system generates a certain observation. Its second component
is the L1-normalization of the first vector. Proposition 6 shows that we can merge count
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vectors that have the same L1-normalization because we are only interested in the current-
state probability distribution estimates, which is why we use the second component of the
state to identify the different states.

Algorithm 2 works as follows: Lines 1 to 9 are the initialization of the key parameters
of the algorithm, where set ns includes all possible current-state probability distribution
estimates generated by the input system and set un contains the states generated by the
algorithm for which subsequent states are not computed. Function eig : NN → NN in
line 15 of Algorithm 2 is defined as [eig(π)]i = 1 if [π]i 6= 0 otherwise [eig(π)]i = 0,
representing a current-state estimate of system G. Once the judgment condition in line 15 is
satisfied, it means that the newly generated current-state probability distribution estimate,
which different from some previously calculated current-state probability distribution
estimate, corresponds to the same current-state estimate, i.e., this system is not 1-CR.

The construction of a run status recorder shows that the number of its states is re-
lated to the number of cycles in the observer of the input system G. The number of
cycles in an observer of system G containing i different states is (2N

i )(i − 1)!, where the

observer is considered as the worst case. Then, these (2N

i )(i − 1)! cycles can produce

i · (2N

i )(i− 1)! = (2N)!/(2N − i)! different states in Gr in the worst case. Therefore, the com-
plexity of Algorithm 2 isO(2N !). Although the complexity of Algorithm 2 looks formidable,
there are few systems that can reach the worst case that we analyze. If there is no cycle in
the observer of a system, then the complexity of Algorithm 2 is reduced to O(2N).

Theorem 2. Given a system G = (Q, E, f , Q0) with state-worth function ∆, a set of observable
events Eo ⊆ E, and a non-negative value K ∈ R≥0, if system G is 1-CR, then construct the run
status recorder Gr = (Y, Eo, fr, y0) as in Algorithm 2. System G is worthy opaque with respect to
Eo, ∆ and K if and only if for any states y ∈ Y, ∆ · y(2) ≤ K holds, where ∆ is an N-dimensional
row vector with [∆]i = ∆(qi).

Proof. (Sufficiency) By contrapositive, assume that there exists a state y in Gr such that
∆ · y(2) > K. Let ω be the observation that leads to y from y0. By the construction of Gr,
we have that, for the observation ω, ∑q∈Q αω(q) · ∆(q) > K holds. By Definition 6, G is not
worthy opaque with respect to Eo, ∆ and K.

(Necessity) Also by contrapositive, assume that G is not worthy opaque with respect to
Eo, ∆ and K. By Definition 6, there exists an observation ω′ such that ∑q∈Q αω′(q′) · ∆(q) > K.
By the construction of Gr, we conclude that there is a state y′ ∈ Y with ∆ · y(2) > K.

Example 9. Consider a single-story smart building with five rooms marked with R1, R2, R3, R4,
and R5, as shown in Figure 5a. A bi-directional door exists between R1 and R2, R3 and R4, R3 and
R5, R1 and R5, while R2 to R4 have a uni-directional door. And these five rooms are provided to
three different departments according to R1 and R2, R3 and R4, and R5. A smart vehicle provides
different services to staff depending on the department, with sensors inside the vehicle that identify
the current department. Five levels of confidential documents need to be stored in these five rooms,
ranging in value from 1 to 5. Now, suppose that an intruder can read the sensor data of a smart
vehicle; how does one allot the five rooms to store confidential documents such as to minimize the
worth of information exposed by the vehicle?

The vehicle’s trajectory can be represented by the model shown in Figure 5b. The five states
q1 to q5 correspond to the five rooms R1 to R5, respectively. Events e1 to e3 represent the sensor
readings of the vehicle reaching each room, respectively. Since the intruder does not know the
exact location of the vehicle but can obtain the sensor readings, the initial state of this model is
Q0 = Q = {q1, q2, q3, q4, q5} and the observable event set is Eo = E = {e1, e2, e3}. Now, running
Algorithm 2 with system G3 as input, we can obtain the corresponding run status recorder Gr,3 as
shown in Figure 6.
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R1 R2

R3
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(a)

q1

q2

q5 q3

q4

e1 e1

e2

e3

e1

e2 e2

e3

e2

(b)
Figure 5. (a) A single-story building with five rooms and (b) the constructed automaton model G3.

y0 = ([1, 1, 1, 1, 1]T ,
[ 1

5 , 1
5 , 1

5 , 1
5 , 1

5 ]
T)

y1 = ([2, 1, 0, 0, 0]T ,
[ 2

3 , 1
3 , 0, 0, 0]T)

y2 = ([0, 0, 2, 2, 0]T ,
[0, 0, 1

2 , 1
2 , 0]T)

y3 = ([1, 2, 0, 0, 0]T ,
[ 1

3 , 2
3 , 0, 0, 0]T)

y4 = ([0, 0, 0, 0, 2]T ,
[0, 0, 0, 0, 1]T)

y5 = ([0, 0, 1, 0, 0]T ,
[0, 0, 1, 0, 0]T)

y6 = ([0, 0, 0, 1, 0]T ,
[0, 0, 0, 1, 0]T)

e1 e2

e1e1

e3

e3

e3

e2
e2

e2

e2

e3

e3

Figure 6. The run status recorder of G3.

By assumption, the state-worth function ∆ of system G3 is a one-to-one mapping from Q
to {1, 2, 3, 4, 5}. Let ∆ be an N-dimensional row vector with [∆]i = ∆(qi). Then, the problem
of allotting the rooms where the confidential documents are to be stored is transformed into how
to define the function ∆ such that the maximum value in {∆ · yi(2) | i = 0, 1, 2, 3, 4, 5, 6} is
minimized. Based on states y4, y5, and y6, we know that the two documents with the highest level
of confidentiality can only be placed in rooms R1 and R2, respectively. Once this is done, it is not
difficult to verify that max{∆ · yi(2) | i = 0, 1, 2, 3, 4, 5, 6} = ∆ · y0(2) = 3, which means the
system G3 is (E0, ∆, 3)-WO.

In plain words, we only need to place the documents with the highest and second-highest level
of confidentiality in rooms R1 and R2, respectively; then, no matter how the sensor data of the
vehicle is exposed, the worth of the information it reveals to the outside world will not exceed 3.

5. Conclusions

In this article, we introduce a notion of worthy opacity to quantify the worth of
information released by a partially observed DES modeled with an automaton. We propose
an online verification algorithm that considers an intruder who waits and observes the
occurrence of observable events and determines whether the observation is worthy opaque.
We also present a 1-CR system to verify the worthy opacity offline.

We believe that there are multiple interesting directions for future work related to the
notion of worthy opacity. An attractive direction is to synthesize a supervisor that enforces
worthy opacity when the verification result is negative. Also, we would like to apply the
notion of worthy opacity to more complex, realistic environments.
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