. mathematics

Article

Efficient Harris Hawk Optimization (HHO)-Based Framework
for Accurate Skin Cancer Prediction

Walaa N. Ismail 1%*

check for
updates

Citation: Ismail, W.N.; Alsalamah,
H.A. Efficient Harris Hawk
Optimization (HHO)-Based
Framework for Accurate Skin Cancer
Prediction. Mathematics 2023, 11, 3601.
https://doi.org/10.3390/
math11163601

Academic Editors: Xujuan Zhou,

Lemai Nguyen and Guohun Zhu

Received: 27 July 2023
Revised: 16 August 2023
Accepted: 18 August 2023
Published: 20 August 2023

Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Hessah A. Alsalamah 34

Department of Management Information Systems, College of Business Administration,

Al Yamamah University, Riyadh 11512, Saudi Arabia

Faculty of Computers and Information, Minia University, Minia 61519, Egypt

College of Computer and Information Sciences, King Saud University, Riyadh 4545, Saudi Arabia;
halsalamah@ksu.edu.sa

Computer Engineering Department, College of Engineering and Architecture, Al Yamamah University,
Riyadh 11512, Saudi Arabia

*  Correspondence: w_abdelfattah@yu.edu.sa

Abstract: The prediction of skin cancer poses a number of challenges due to the differences in visual
characteristics between melanoma, basal cell carcinomas, and squamous cell carcinomas. These
visual differences pose difficulties for models in discerning subtle features and patterns accurately.
However, a remarkable breakthrough in image analysis using convolutional neural networks (CNNs)
has emerged, specifically in the identification of skin cancer from images. Unfortunately, manually
designing such neural architectures is prone to errors and consumes substantial time. It has become
increasingly popular to design and fine-tune neural networks by using metaheuristic algorithms that
are based on natural phenomena. A nature-inspired algorithm is a powerful alternative to traditional
algorithms for solving problems, particularly in complex optimization tasks. One such algorithm,
the Harris hawk optimization (HHO), has demonstrated promise in automatically identifying the
most appropriate solution across a wide range of possibilities, making it suitable for solving complex
optimization problems. The purpose of this study is to introduce a novel automated architecture
called “HHOForSkin” that combines the power of convolutional neural networks with meta-heuristic
optimization techniques. The HHOForSkin framework uses an innovative custom CNN architecture
with 26 layers for the analysis of medical images. In addition, a Harris hawk optimization algorithm
(HHO) is used to fine-tune the developed model for multiple skin cancer classification problems.
The developed model achieves an average accuracy of 99.1% and 98.93% F1 score using a publicly
available skin cancer dataset. These results position the developed optimization-based skin cancer
detection strategy at the forefront, offering the highest accuracy for seven-class classification problems
compared to related works.

Keywords: skin cancer; multi-class classification; Harris hawk optimization; CNN; CAD; computer-
aided systems; optimization; metaheuristic

MSC: 37N40

1. Introduction

Skin cancer is a prevalent and potentially life-threatening condition characterized
by the abnormal growth of skin cells [1,2]. Approximately 80% of all cancers diagnosed
worldwide are related to skin cancer, according to the World Health Organization (WHO);
https:/ /www.who.int/uv/faq/skincancer/en/index1.html (accessed on 20 May 2023) .

The primary cause of the condition is exposure to ultraviolet (UV) radiation, either
from the sun or from artificial sources such as tanning beds [3,4]. Skin cancer has become a
significant global health concern, prompting awareness campaigns, sun protection mea-
sures, and the development of improved detection and prevention strategies [1-3]. In order
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to reduce the impact of skin cancer on individuals and communities around the world, early
detection, education about sun safety practices, and regular skin examinations are essential.
The biopsy method is a medical procedure used to obtain a sample of tissue or cells from the
body for diagnostic purposes [1,4]. Often, a skin biopsy is conducted to determine whether
a skin lesion is cancerous or not. Biopsy results, along with other clinical information,
are used to determine the stage of the patient’s cancer and to devise an individualized
treatment plan [5,6]. In addition to the biopsy method, there are other screening methods
for detecting skin cancer. By performing a visual inspection, a healthcare professional
or dermatologist examines the skin in detail and looks for any abnormal lesions, moles,
or growths that could be indications of skin cancer. As part of this method, the healthcare
provider relies on their expertise and experience in identifying abnormal or concerning
features [6,7]. Dermoscopy, also known as dermatoscopy or epiluminescence microscopy,
uses a handheld device known as a dermatoscope to examine skin lesions [5]. A magnified
view of the skin allows healthcare professionals to assess whether the lesion is cancerous by
observing its structure, color, and pattern. Despite the fact that these screening methods are
helpful in detecting skin cancer in its early stages, they do not provide definitive automatic
diagnostic tools. A biopsy is typically necessary to confirm the presence of skin cancer.
Moreover, dermatologists continue to conduct professional skin examinations regularly to
ensure accurate diagnosis and follow-up of skin conditions.

Computer-aided design (CAD) systems may enhance the efficiency and accuracy of
skin cancer diagnosis by providing an automated and objective approach to analyzing
lesions on the skin [8-10]. Dermatologists and other healthcare professionals can use them
to leverage the power of computer vision and machine learning techniques to assist in the
early detection and prompt treatment of skin cancer, ultimately improving the health of
their patients [3,9]. An inherent limitation of CAD is the manual selection of features based
on human intuition and expertise. The system may fail to recognize relevant features that
are not readily apparent to human observers, resulting in decreased diagnostic accuracy.
By selecting features manually, a limited feature set may be selected that is not sufficiently
comprehensive to capture the complex and diverse features of skin lesions [11,12]. A CAD
system may suffer from decreased classification accuracy if important features are missed
during the selection process. Furthermore, CAD systems heavily rely on training data
in order to develop and fine-tune their algorithms [13-15]. CAD systems may have dif-
ficulty generalizing well to real-world scenarios if the training dataset is biased or does
not represent the diverse population and skin lesions of a particular region. Consequently,
when applied to cases that are unfamiliar or difficult to classify, the classification accu-
racy may be reduced [11,16]. The detection of skin cancer from images has become an
increasingly important area of research and medical practice as a result of advances in deep
learning. Using deep networks, it is possible to learn representations of input data that
are extremely complex and abstract [11,13,15]. The architecture of convolutional neural
networks (CNNs) often consists of multiple layers with deep architectures. These deep
architectures allow CNNs to capture both low-level and high-level features, allowing them
to extract meaningful information from images with varying qualities, lighting conditions,
and perspectives. Additionally, a CNN is capable of learning relevant features automati-
cally from raw data, eliminating the need for manual selection of features [12,15]. CNNs
can capture intricate patterns and subtle features necessary for accurate classification by
learning hierarchical representations of the input images [17-19]. The complexity of the
CNN architecture, however, can significantly influence the training time. Training deeper
networks with more layers and parameters generally takes longer and requires more com-
putational power [20,21]. In addition, CNNs may be prone to overfitting, particularly
when the model is complex and trained on a limited amount of data [20,21]. Furthermore,
the tuning of models” hyperparameters, such as learning rate, batch size, and regularization,
typically requires multiple training iterations [22]. The duration of the overall training
process may be extended as a result of this iterative process [20-22].
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Optimization techniques based on metaheuristic algorithms play a crucial role in
fine-tuning CNN models and improving their performance [23-26]. Metaheuristic algo-
rithms have the advantage of using random structures rather than gradient-based methods.
A simplified optimization process is thereby achieved [27,28]. Additionally, as the number
of complicated situations increases, traditional methods such as grid search cannot be
used to resolve these problems. On the other hand, these stochastic methods can provide
a near-optimal solution in a reasonably short period of time based on their stochastic
nature [29-31]. HHO is a metaheuristic algorithm that simulates Harris’s hawks’ coopera-
tive hunting behavior in order to optimize hawk hunting success by sharing information
and coordinating their actions [32-34]. A hawk’s search process is mimicked in this
algorithm to solve optimization problems [35,36]. Through this approach, optimal or near-
optimal weights and biases can be found for neural networks, improving their performance
in tasks such as image classification, object detection, and image segmentation [32-34].

An automated early detection system for skin cancer is presented in the current study
through the use of a novel customized CNN architecture. A customized architecture can
be used to optimize the model size while maintaining or even improving performance.
This facilitates the deployment of the model in real-world applications. Furthermore,
HHO techniques will be employed to fine-tune the parameters of the CNN models, thus
reducing training time, improving convergence, and enhancing their performance in skin
cancer detection. To the best of our knowledge, this is the first study in the literature that
focuses on automated CNN fine-tuning using HHO for a multiple skin cancer classification
problem. The contribution of this paper can be summarized as follows:

1.  Anovel deep learning framework, HHOForSkin, is presented to improve the detection
of multiple skin cancers by using a CNN architecture.

2. Anovel custom CNN architecture comprising 26 layers was designed for the analysis
of skin cancer images and framed as an optimization problem addressed by an HHO
nature-inspired algorithm. This architecture was developed from scratch and trained
to accurately identify and delineate lesion regions in medical images.

3. By incorporating the Harris hawk optimization (HHO) algorithm, the developed con-
volutional neural network (CNN) undergoes fine-tuning for multi-class classification,
resulting in improved performance. This is achieved through the automatic selection
and fine-tuning of disease features and the model’s hyperparameters.

4. A comparative analysis and performance evaluation of HHOForSkin have been con-
ducted using a variety of performance metrics. The developed model was validated
using a well-known dataset, specifically, HAM10000, covering seven types of skin
cancer cases.

The paper is divided into five sections. In the Section 1, the problem addressed in this
paper is introduced, and a concise overview of the proposed solution is presented. Section 2
delves into a thorough examination of the significant advancements found in the literature
related to skin cancer detection. Section 3 outlines the materials and procedures utilized in
the proposed solution. Section 4 elucidates the algorithms and solutions proposed in this re-
search. The experimental results are then discussed in Section 5. Finally, Section 6 concludes
the paper by providing a comprehensive analysis and discussion of the findings obtained.

2. Related Work

Several studies have been conducted to aid medical practitioners in detecting skin
cancer at an early stage. Recent research has focused on the development of artificial intelli-
gence algorithms to automate the diagnosis of various types of skin cancer. An overview
of the recent literature regarding the use of DL models for the diagnosis of skin cancer is
provided in this section.

A novel method of detecting skin cancer using deep learning and machine learning
is presented by Tembhurne et al. [37]. The developed model uses state-of-the-art neural
networks to extract features from images, whereas the machine learning model processes
image features derived from techniques such as contourlet transform and local binary
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pattern histogram. A remarkable 93% accuracy is achieved by integrating manual and
automated skin features. Additionally, it demonstrates a recall rate of 99.7% for benign
cases and 86% for malignant cases of cancer using the ISIC archive. The study in [38]
proposed combining the strengths of EfficientNetV2S and swin-transformer models to
develop an ensemble model for the early detection of skin cancer. Specifically, the fifth
block of the EfficientNetV2S model was modified and the swin-transformer model was
integrated. The model accuracy was 99.10%, sensitivity was 99.27%, and specificity was
99.80%. An innovative approach for the classification of skin lesions based on deep learning
and machine learning was developed in [39]. This study involved several complex steps
including contrast amplification of skin lesion images, feature extraction, and feature
selection. An extreme learning machine (ELM) is used to classify the selected features based
on a modified canonical-correlation-based technique. On two different datasets, 93.40%
and 94.36% accuracy rates were achieved. Several convolutional neural networks (CNNs)
were employed in [40] to classify melanoma skin cancer, namely, ResNet50, EfficientNet
B6, Inceptionv3, and Xception. A total of 10,500 images were used to train these CNN
models. A deep-learning-based skin cancer classification network, DSCCNet, utilizing
a convolutional neural network (CNN) architecture, is presented in [41]. DSCCNet was
evaluated against three well-established benchmark datasets and scored 94.17% accuracy,
93.76% precise, and 94.28% F1 score.

Using dermoscopy images, Fu et al. [23] developed a robust pipeline approach that
detects melanoma accurately. The study involves image preprocessing followed by segmen-
tation of the region of interest (Rol) using kernel fuzzy C-means. The final detection is then
performed using an optimized classification approach based on MLP (multilayer percep-
tron). An enhanced version of the red fox optimization method is used for the optimization
of classification and feature selection. Another study [24] presents a novel DL-based archi-
tecture for the classification of a variety of skin tumor types, such as basal cell carcinoma,
benign keratoses, melanocytosis, and melanoma. SCDNet combines VGG-16 with CNN
to effectively classify different types of skin tumors. A computer-aided diagnosis method
based on the random Boolean networks (RBNs) model was proposed by Burada et al. [25]
for the detection of melanoma skin tumors. To remove noise and unwanted artifacts, color
images are converted into grayscale and filtered using a median filter. Once the segmented
images have been classified as benign or malignant, the RBN classifies them accordingly.
An innovative computer-aided approach was introduced in yet another study [42] to detect
skin cancer. In this method, DL is combined with wildebeest herd optimization (WHO),
which is a metaheuristic approach. Inception CNNs are used to extract the initial features,
and then the WHO algorithm is used to filter out the relevant features, thereby reducing
the complexity of the analysis.

A novel approach to diagnosis of melanoma by N. K. Priyadharshini combines the
strengths of learning-based optimization (TLBO) with extreme learning machines (ELMs).
The ELM is a feed-forward neural network with a single hidden layer that is fast and
accurate, while the TLBO algorithm is an optimization algorithm designed to optimize
the parameters of the network to enhance its performance. The proposed method lever-
ages these techniques to classify skin lesions as benign or malignant with an accuracy of
93.18%. Srilakshmi Ch et al. [43] propose a new method for the analysis of dermoscopic
images called DBOA-MMDLSCC. The DBOA-MMDLSCC technique utilizes ensemble
learning, combining three DL models with hyperparameter tuning using a metaheuristic
approach. DBOA-MMDLSCC uses the U-Net++ model for skin lesion segmentation as
well as multi-modal DL models that include Xception, ResNet, and SqueezeNet for feature
extraction. Additionally, the Dung Beetle Optimization Algorithm (DBOA) is used to tune
the hyperparameters of the DL models. The accuracy of the three-class classification of
melanoma, seborrheic keratosis, and nevus was 98.24% based on 2000 images.

Recent advancements in the field have demonstrated substantial headway in leverag-
ing the strengths of CNNs, as shown in Table 1, such as their capacity to acquire intricate
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features and their aptitude to effectively adapt to unfamiliar data. Nonetheless, it is crucial
to address several limitations that demand additional consideration.

Previous studies have predominantly depended on conventional machine learning ap-
proaches, focusing on a restricted set of skin cancer classes. Nevertheless, accurately
calculating the texture, shape, hue, and spectral properties of skin cancer images
necessitates a substantial dataset and a concise training period. The current study uti-
lized a more comprehensive perspective by examining multiple classes of skin lesions
and their relationships via a simple CNN architecture. In this manner, the modeling
process is streamlined and complexity is reduced.

There is a tendency in the literature on skin cancer classification to exaggerate the effect
of imbalanced datasets on classification outcomes. The literature tends to overstate the
actual impact of imbalanced data on classification results, although imbalanced data
can present difficulties, particularly in identifying minority groups. The usefulness
of the model developed in the present study was confirmed by validating the model
with both balanced and imbalanced well-known datasets encompassing seven distinct

Several literature studies have considered building and training complex DL-based
architectures, image segmentation, and feature selection approaches for skin lesion de-
tection, which can be computationally complicated and time consuming, particularly
if the model architecture involves several parameters. This may limit the scalability
and practicality of the approach in resource-constrained environments. An efficient
CNN model comprising 26 layers was developed and tested in this study to assimi-
late crucial insights regarding skin cancer by traversing individual layers of neurons

1.
2.
classes of skin cancer.
3.
N within its architecture.

Many studies have demonstrated the utility of fine-tuning CNNs for biomedical
image analysis, but the majority of these fine-tunings have been conducted only once
with available training samples without any active hyperparameter selection process.
This study utilizes the HHO algorithm to automatically determine the optimal CNN
hyperparameters for a multi-class classification problem. This endeavor seeks to
enhance skin cancer classification precision.

Table 1. State-of-the-art skin cancer detection methods.

Ref.

Pros Cons

Jaisakthi et al. [39]

- A high-performance classification is . .
- EfficientNet requires a

DenseNet and different
variants of EfficientNet
models.

achieved through the use of
EfficientNet.

- The EfficientNet architecture scales
the depth, width, and resolution of
the network automatically.

substantial amount of calculation
in order to be optimized.

- The study focused on a limited
number of skin cancer classes.

Tembhurne et al. [37]

For the detection of

skin lesions, a combination of
machine learning and DL algorithms
are used. In addition, skin cancer
features were selected using

a combination of manual

and automated methods.

The devised feature selection
algorithm improves the classification
of multiple skin cancers over
a manual selection approach.

This approach includes notable
computational complexity and

the time-intensive nature associated with
developing and training intricate

deep learning architectures,

in addition to utilizing techniques

such as image segmentation and

feature selection.

Tahir et al. [41]

An effective CNN-based
model; consists of 5
convolutional blocks.

The CNN-based model is capable of
learning more complex features
from images and accurately
classifying skin lesions compared

to baseline models.

- The developed model requires a
substantial amount of calculations
in order to be optimized.
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Table 1. Cont.

Ref.

Method

Pros

Cons

Rashid et al. [44]

A pretrained MobileNet-V2 model.

A high-performance classification is
achieved through the use of
MobileNet.

- Data accuracy decreases due to

the large gap between

the data domain and the target domain.
- The study focused on a limited
number of skin cancer classes.

- The model has been trained using
unbalanced and blurred data, which
may result in biased results.

Fu et al. [23]

A multilayer perceptron based on
red fox optimization algorithm.

For the detection of single skin lesions,
a high-performance classification
has been achieved.

- The study focused on a limited
number of skin cancer classes.

- An extensive amount of computational
complexity and time is required

for the development and

training of the developed

architectures.

Priyadharshini
etal. [45]

A machine learning approach
utilizing extreme learning
and teaching-learning-based
optimization.

For the detection of melanoma,
a high-performance classification
has been achieved.

- The study focused on a limited
number of skin cancer classes.

- The model has been trained using
unbalanced and blurred data, which
may result in biased results.

- The developed model requires

a considerable amount of time, as
techniques such as image
segmentation and feature

selection must be applied.

Huaping et al. [46]

A support vector machine classifier
and neural network metaheuristic
optimization algorithm.

For the detection of melanoma,
a high-performance classification
has been achieved.

- The study focused on a limited
number of skin cancer classes.

- The model has been trained using
unbalanced and blurred data, which
may result in biased results.

- The developed model requires

a considerable amount of time, as
techniques such as image
segmentation and feature

selection must be applied.

3. Proposed Framework

This section provides comprehensive explanations of the proposed methodology,
including a detailed description of the utilized dataset.

3.1. Dataset Collection

The study utilized a collection of skin cancer images obtained from various regu-
larly updated sources. Specifically, the skin cancer images used were sourced from the
HAM10000 dataset, comprising a total of 10,500 samples [47,48]. A single lesion in this
dataset is represented in multiple images acquired at different times and under different
lighting conditions, which further contributes to the variability in the data. The HAM10000
dataset encompasses a comprehensive representation of significant diagnostic categories
within the domain of pigmented lesions (shown in Figure 1).

MEL Ny BCC OF VASC

Figure 1. An example of skin cancer classes.
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These categories (shown in Table 2) include actinic keratoses and intraepithelial carci-
noma/Bowen’s disease (referred to as akiec), basal cell carcinoma (bcc), benign keratosis-
like lesions (such as solar lentigines/seborrheic keratoses and lichen-planus such as ker-
atoses, denoted as bkl), dermatofibroma (df), melanoma (mel), melanocytic nevi (nv),
and vascular lesions (comprising angiomas, angiokeratomas, pyogenic granulomas, hem-
orrhage, vasc). Additionally, data augmentation techniques such as translational, specular,
and rotational methods were applied to each class, resulting in a final set of 10,500 images.

Table 2. Dataset class distribution.

Class Name Number of Images Class Name Number of Images
NV 6705 BKL 1099
BCC 514 AKIEC 327
MEL 1113 VASC 142
DF 115

Figures 2 and 3 showcase a selection of skin cancer images to provide visual examples.

BKL BKL

Figure 2. An example of keratoses class images.

Figure 3. An example of basal cell carcinoma class images.

3.2. Dataset Preprocessing

The experimentation involved testing various image sizes, specifically, 256 x 256,
128 x 128, and 64 x 64 (2n). Larger images require more time and resources but tend to
yield higher accuracy. On the other hand, smaller images such as 64 x 64 run faster but



Mathematics 2023, 11, 3601

8 of 26

offer reduced accuracy. As a result, optimal performance was achieved with an image size
of 128 x 128. Consequently, all labeled skin cancer images were preprocessed and scaled to
a uniform size of 128 x 128 before training.

This dataset comprises a modest number of classes, but the distribution of classes
appears to be unbalanced. In some classes, fewer images are present than in others,
resulting in a dataset imbalance. The class with the lowest number of samples is VASC,
which initially contained 142 images. On the other hand, the class with the highest number
of samples is NV, which consists of 6705 images. This issue was addressed by implementing
data sampling techniques. Both size and class imbalances are effectively mitigated by these
techniques, ensuring that all image categories carry equal weight, resulting in the following
data shape: (46,935, 28, 28, 3). The shape of the data indicates that after the balancing
process, there were 46,935 final images in the dataset. Each image has dimensions of
128 x 128 pixels and consists of three layers, representing colored images.

The data balancing was carried out based on the principle of equalizing the number of
samples in the least represented class with the number of samples in the most represented
class within the dataset using the RandomOverSampler technique. RandomOverSampler
is a machine learning technique that is employed to address class imbalance in data [49]. It
involves selecting and duplicating multiple instances from the minority class randomly
and adding them to the dataset several times, potentially resulting in the two classes being
equally represented [49]. After the dataset had been balanced, 6705 images were created
for each of the seven types of skin cancer.

3.3. Customized Convolution Neural Network

The devised model utilizes a simple customized CNN model that has proven to be
highly effective in accurately classifying images of skin cancer.

The purpose of this approach is to construct a custom artificial network while empha-
sizing the importance of training deep learning models using both balanced and unbalanced
datasets. The devised model is designed to process an input tensor of shape (batch_size, 28,
28, 3). batch_size stands for the number of samples in each batch, while 28 x 28 stands for
the height and width of the input image, and 3 stands for the number of channels. Convo-
lutional and pooling operations are applied sequentially to the input tensor, followed by
fully connected layers for classification. In the input layer, filters are applied to the input
image in order to extract the essential elements. In the HHOForSkin model, the feature
map is represented as follows:

u v cC
Yiijk) = 0<Z Y ) W(u,v,c,k>X<<z'+u1>,<j+v1,c)>> )
u=10v=1c=1

In Equation (1), the activation values y; ; ) represent the activation value in the kth
feature map. The activation function ¢ is applied to the summation of the weighted
input values W, y 1) X((i4u-1),(j+0-1,)) where X; ; o) refers to the input channel value at
position (i, j) and W, , . x) refers to the weight value for the kth feature map at position
(u,v) of the cth input channel. The parameters U, V, and C represent the width, height,
and channel count of the filters, respectively.

The next layer, which is the convolution block, consists of four layers: two convolu-
tional layers with the same parameters as the previous layer; a maximum pooling layer
that reduces the spatial dimension of the output tensor by selecting the maximum value
within a 2 x 2 window; and a BatchNormalization layer that stabilizes the training pro-
cess and enhances it by standardizing the output of the convolutional layers. A similar
process is repeated with two additional convolutional blocks. Upon completion of the
final max pooling layer, the output is flattened into a vector and passed to a series of fully
connected layers responsible for classifying the data. The output is calculated using the
following equation:
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Equation (2) computes the output value yx), where ¢ is the activation function applied
to the weighted sum of the input values W, ; X; with the corresponding bias term by.

As part of the training process, the dropout layer randomly sets a fraction of the input
units to 0 during each update in order to prevent overfitting. A linear transformation is
performed on the input by four dense blocks, followed by an activation function. The out-
put of each dense layer is subsequently standardized by a layer of BatchNormalization.
To generate a probability distribution across the classes, the last output layer consists of
seven units, corresponding to the number of classes in the classification task. Figure 4 and
Table 3 present the devised model settings.

Table 3. The CNN’s model structure.

Layer Output Shape No. of Parameters
InputLayer (None, 28, 28, 3) 0
Conv2D (None, 28, 28, 256) 7168
Conv2D_1 (None, 28, 28, 256) 590,080
Max_Pooling2D (None, 14, 14, 256) 0
Batch_Normalization (None, 14, 14, 256) 1024
Conv2D_2 (None, 14, 14, 128) 295,040
Conv2D_3 (None, 14, 14, 128) 147,584
Max_Pooling2D_1 (None, 7, 7,128) 0
Batch_Normalization_1 (None, 7,7, 128) 512
Conv2D_4 (None, 7,7, 64) 73,792
Conv2D_6 (None, 7,7, 64) 36,928
Max_Pooling2D_2 (None, 3, 3, 64) 0
Batch_Normalization_2 (None, 3, 3, 64) 256
Conv2D_6 (None, 3, 3, 32) 18,464
Max_Pooling2D_3 (None, 1,1, 32) 0
Flatten (None, 32) 0
Dropout (None, 32) 0
Dense (None, 256) 8448
Batch_Normalization_3 (None, 256) 1024
Dense_1 (None, 128) 32,896
Batch_Normalization_4 (None, 128) 512
Dense_2 (None, 64) 8256
Batch_Normalization_5 (None, 64) 256
Dense_3 (None, 32) 2080
Batch_Normalization_6 (None, 32) 128
Dense (None, 7) 231

Total parameters: 1,224,679
Trainable parameters: 1,222,823
Non-trainable parameters: 1856

The training of the network on unbalanced data can reflect the inherent class im-
balance commonly encountered in many applications, by capturing the distribution of
the classes in the real world. As a result, the network is able to effectively differentiate
and classify minority classes. Meanwhile, when the network is trained on balanced data,
a different perspective is presented. In order to ensure an equal representation of each class
during training, we balance the distribution of classes. In this manner, the network can be
prevented from being biased in favor of the majority class and encouraged to learn more
about the distinctive features of each class.

Using both balanced and unbalanced data to train the network, we are able to produce
a more robust and versatile model. Having learned how to handle class imbalance scenarios,
it becomes adept at maintaining accuracy across all classes. In this way, the model is
capable of generalizing better and will perform more reliably in real-world applications
with imbalanced datasets.
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Figure 4. The proposed CNN's model structure.

3.4. Artificial Harris Hawk Optimization

An Al model consists of three basic components: data, network architecture, and its
parameters. An optimal balance between these elements is essential for maximizing the
efficiency of a deep learning model. A random initial set of parameters is used for each
trial of the model, and the model’s performance is evaluated in each trial to ensure that it is
suitable for use. When performing complex tasks such as multiple skin cancer detection,
the incorrect selection of the model’s hyperparameters can lead to suboptimal results,
and traditional trial and error approaches can take a long time to tune hyperparameters and
analyze results. Therefore, optimizing hyperparameters based on training data is crucial
to finding the best values. In HHOForSkin, we use the Harris hawk optimization (HHO)
algorithm, which is a metaheuristic method based on Harris’s hawks’ hunting behavior to
solve the multiple skin cancer optimization problem.

The Harris hawk optimization (HHO) algorithm is implemented by a function named
HHO, which optimizes an objective function, objf, given a set of inputs. As indicated in
Algorithm 1, the function requires several parameters. Initialization is performed (lines 1-2)
within the function in order to determine the rabbit’s position and energy level as well as
the Harris’s hawks” locations. For each individual i (ranging from 1 to N) and dimension j
(ranging from 1 to D), generate a random value, rand, between 0 and 1 and compute the
initial value, Xij, (exploration phase given by Equation (3)):

X} = X/ + rand() - (Upper§ — Lower}), &)

Upper’ and Lower} are two randomly selected upper and lower hawk limits for the
jth dimension of X. The HHO guides the optimization process using the MaxIter number.
During each iteration, each Harris’s hawk’s location is evaluated using the objf function
(lines 3—4), which returns the accuracy and loss metrics of a machine learning model trained
with the current set of hyperparameters for Xi,i = 1,2,..., N. The algorithm updates the
best solution found so far and maintains a record of the rabbit’s location, which represents
the worst solution found so far (exploitation phase, as given in Equation (4)).

(Xp) + (X))

X = ==L 4 rand()- (X} - X}), @)
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X(t—l—l):{

mebit(t) — X(t) — E|]~(Xrabbit(t) — X(t))|, if r S 0.5. When r Z 0.5 and |E‘ Z 0.5.
Xravbit (1) — E|T-(Xrapvit (£) — X (£)) ], if r =0.5and [E[ = 0.5.

A wide exploration is conducted by the HHO algorithm in order to guide the op-
timization process by conducting random searches and diversifying the solution space.
The HHO algorithm employs four distinct methods for updating its location based on the
escape energy factor E and a random number between 0 and 1. Compute the energy factor,
A(t), using the following equation:

A(MaxIter) = 4(1 )

t 1

a Maxlter) % ln(;),
where r is a random value between 0 and 1. A value of r determines the likelihood that
the prey will escape before the surprise pounce. Prey cannot escape if r is equal to or
greater than 0.5, while prey can escape if r > 1. The first technique (i.e., “soft besiege”)
comes into play when the prey possesses sufficient energy to attempt an escape by jumping,
but ultimately fails to do so. Secondly, “hard besiege” occurs when the prey is captured by
low-energy hawks. The formula for updating the position of the hawk is as follows:

(6)

Moreover, the HHO algorithm updates the location of each Harris’s hawk by mim-
icking the hunting behavior using “soft besiege with progressive rapid dives” when the
rabbit has “soft besiege” with escape still being possible. Furthermore, it will randomly
apply “hard besiege with progressive rapid dives” when the prey is able to escape. As part
of the optimization process, the function also records the convergence curve, the accuracy
curve, and the loss curve of the best solution (lines 5-7). As soon as the HHO function
has been completed, it returns the convergence curve and the best solution found by the
HHO algorithm.

Algorithm 1 Function: Make Harris hawk’s POPULATION

Ensure: N[| — Harrishawk's
1: for (each h-hawks in H) do
2: Initialize the Harris’s hawks based on Equation (3). > Exploration Phase
Evaluate the population fitness function F(A)
F(A) — random Harris’s hawks using Equations (4) and (6).
Select the best-performing Harris’s hawks solutions h%.
Assemble n Harris’s hawk’s for each Harris’s hawk.
Align next generation by choosing the remaining (1 — /)% while updating their
values using Equations (4) and (6). > Exploitation Phase

8: Return N[]. > Selected Deep Neural Networks” Parameters.

The HOOForSkin framework is described in detail in Algorithm 2. Figure 5 illustrates
the block diagram of the designed HHOForSkin framework, depicting the entire work-
flow. The proposed approach entails the direct loading of skin cancer image data into the
HHOForSkin deep modeling framework, which facilitates the decision-making process
(Algorithm 2, lines 1-2). Initially, in the first step of the analysis process, the dataset was
collected and prepared and then divided into three distinct groups: training, validation,
and testing. The data preparation techniques were initially applied to the training sets,
following which they were applied to the test and validation sets. For skin cancer dis-
ease classification, a customized CNN model was developed and evaluated (Algorithm 2,
line 4). HHOForSkin’s framework utilized a nature-inspired evolutionary algorithm to au-
tomatically optimize the network’s hyperparameters based on their accuracy (Algorithm 2,
lines 5-7). The final step involved testing and evaluating the performance of the developed
models in classifying skin cancer into seven classes (Algorithm 2, lines 8-10).
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Figure 5. HHOForSkin Framework.

Algorithm 2 The suggested HHOForSkin framework pseudocode

Input: Processed Skin Cancer images SkinDataset, Ib: Solution Space lower bound, Ub: Solution
space upper bound, dim: Solution space dimensionality, SearchAgents#: number of Harris hawks,
MaxlIter: maximum number of iterations , Objective Function Objf

Output: BestFittingModel Architecture, Performance Evaluation Metrics.

: Create TD: Test Dataset, RD: Train Dataset, and VD: Validation Dataset;
: Set Dimension — dim, objf — Accuracy
: for Ttin TD do

Create a customized CNN model with random initial hyperparameters.

Create solution SLy +— Function (Make Harris’s hawks POPULATION) using Ib,
Ub, dim, SearchAgents_no, MaxIter. > Learn the CNN’s model hyperparameters for
MaxIter using HHO optimization algorithm

g N

6: Apply the retrieved HHO parameters for CNN > Scores and solutions using the
optimizer range that produces the best overall results
7. Validate CNN using SL, VD
8: Perform performance calculations based on the TD;
9: Classify skin cancer features into 7 classes: (Akiec, Bcc, Bkl, Df, Mel, Nv, and Vasc).
10: Return: Fine-tuned model architecture.

3.5. Experimental Setting

During the experimentation phase, the Google Colab environment was utilized, em-
ploying the Google Compute Engine backend (GPU) in conjunction with Tensorflow using
Python 3. The system configuration encompassed a total of 12.7 GB of RAM, of which
2.7 GB were available, a GPU RAM capacity of 15.0 GB, with 0.4 GB currently in use, and a
disk storage of 78.2 GB, with 23.6 GB currently allocated. To optimize the learning rate dur-
ing training, the ReduceLROnPlateau callback was employed. This callback automatically
reduces the learning rate when a plateau in the validation accuracy is detected, which can
enhance model performance and mitigate overfitting. The learning rate is reduced by a
factor of 0.5 (i.e., multiplied by 0.5) upon plateau detection, with a minimum learning rate
set to 0.00001. The HHOForSkin framework employs the HHO algorithm with specific
settings. These settings include a learning rate of 0.001, and a batch size of 32. The details
of the HHO algorithm settings can be found in Table 4.
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Table 4. The configuration parameters for HHO optimization.

Parameter Description Value

The fitness function used to evaluate a fitness value that represents objf = maximum (accuracy) and
CNN model effectiveness. minimum (loss)

The lower limit of the solution space. Ib=0

The upper limit of the solution space. ub=1

The dimensionality of the solution space. dim =10

The number of hawks utilized in the optimization algorithm. SearchAgent# = 30

The upper limit for the number of iterations in the optimization

algorithm. MaxIter = 2

3.6. Performance Parameters and Evaluation Metrics

The proposed HHOForSkin was evaluated based on multiple criteria including ac-
curacy, F1 score, sensitivity, and specificity. An accurate classification in a seven-class
classification problem represents the proportion of samples correctly classified out of the
total number of samples across all classes (Equations (7)—(10)). In each class, the true posi-
tive (TP) value indicates how many samples have been correctly classified as belonging to
that class. A true negative (TN) value represents the number of samples correctly identified
as not belonging to a specific category. A confusion matrix (CM) is employed in order to
evaluate HHOForSkin’s performance. During the execution of the method, these matrices
will provide insights into the characteristics of the classification performance.

B (TP + TN)
Accuracy = (TP+ EP + EN + TN) (7)
. TP

Sensitivity (Recall) = TPLEN) 8)
Specificity (Precision) = _rP )

pecificity ~ (TP + FP)

TP
Hloscore = Tp T 05(FP + FN)) (10

4. Results

Our study aimed to assess the precision of the optimized CNN model in classifying
skin cancer images. In the subsequent subsections, we will provide a comprehensive
overview of the experimental setup and the results obtained.

4.1. Performance Assessment of the CNN Models without Optimization

We first evaluated the performance of the developed CNN without taking into account
the HHO algorithm using a balanced dataset (named the first model) and an unbalanced
dataset (named the second model). The data were divided into three parts: training,
validation, and testing. The ratio of each subset in the case of the unbalanced dataset was
as follows: training (70%), validation (10%), and testing (20%). The corresponding number
of images for each subset was: training (7210 images), validation (802 images), and testing
(2003 images). On the other hand, for the balanced dataset, the data were also divided into
training, validation, and testing subsets. The distribution ratio remained the same: training
(70%), validation (10%), and testing (20%). The respective number of images for each subset
was: training (33,793 images), validation (3755 images), and testing (9387 images).

The performance of the proposed model for an imbalanced dataset graph can be seen
in Figures 6 and 7, which illustrate its performance during training and evaluation. This
graph illustrates the model’s progress as it learns during the training phase. A training
curve represents the evolution of a selected metric over a period of eight epochs. As an
independent measurement of the model’s ability to generalize, Figures 8 and 9 show the
model’s performance on the testing dataset.
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The confusion matrix is a table-like structure that is used for the description or evalua-
tion of the performance of a classifier. The matrix is generally easy to understand and easy
to use. For the devised non-optimized CNN model, confusion matrices are presented in
Figures 10 and 11 considering balanced and unbalanced datasets.

Custom model First Approach accuracy

0.725 {4 —— train
valid -""~H-H_J/,f//

0.700 [
-———_-/

0.675

0.650

0.625 +

Accuracy

0.600 +

0.575 1

0.350 4

T
4 6 8
Epoch

Figure 6. Non-optimized CNN accuracy based on an imbalanced dataset.
Custom model Second Approach accuracy

— train _——

0.9 1 valid

0.8

0.7

Accuracy

0.6

0.5

/

o] 2 4 5] 8
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0.4

Figure 7. Non-optimized CNN accuracy based on a balanced dataset.

Custom model First Approach Loss
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1.3

1.2 4
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Figure 8. Non-optimized CNN loss based on an imbalanced dataset.
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Custom model Second Approach Loss
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Figure 9. Non-optimized CNN loss based on a balanced dataset.
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Figure 10. Non-optimized CNN confusion matrix based on an imbalanced dataset.
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Figure 11. Non-optimized CNN confusion matrix based on a balanced dataset.
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Each model’s accuracy and additional evaluation metrics are shown in Table 5.
Figures 12 and 13 illustrate the predicted and actual output images obtained from the
non-optimized model utilized in this study.

Table 5. Non-optimized CNN classification accuracy.

Model Accuracy F1 Score Sensitivity Specificity
First Approach 71.4% 60.66% 38.20% 100%
Second Approach 93.2% 90.61% 97.1% 100%
Pred: 4, Actual: 4 Pred: 0, Actual: 0 Pred: 4, Actual: 4 Pred: 4, Actual: 4
Correct Correct Correct Correct

Pred: 4, Actual: 6 Pred: 4, Actual: 4 Pred: 0, Actual: 2 Pred: 4, Actual: 4
Incorrect Correct Incorrect Correct

Pred: 0, Actual: 4 Pred: 0, Actual: 4 Pred: 4, Actual: 4 Pred: 0, Actual: 4
Incorrect Incorrect Correct Incaorrect

Pred: 4, Actual: 4 Pred: 4, Actual: 4 Pred: 4, Actual: 4 Pred: 4, Actual: 4
Correct Correct Correct Correct

Figure 12. Predicted output with non-optimized CNN model for an imbalanced dataset.
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Pred: 4, Actual: 4
Correct

Pred: 4, Actual: 4
Correct

Pred: 4, Actual: 4
Correct

Pred: 2, Actual: 2
Correct

Pred: 4, Actual: 4
Correct

Pred: 6, Actual: 4
Incorrect

|

Pred: 4, Actual: 4
Correct

Pred: 0, Actual: 0
Correct

Pred: 4, Actual: 4
Correct

Pred: 6, Actual: 6
Correct

Pred: 4, Actual: 4
Correct

Pred: 4, Actual: 4
Correct

Pred: 4, Actual: 4
Correct

Pred: 4, Actual: 4
Correct

[ m

A

Pred: 4, Actual: 4
Correct

Pred: 2, Actual: 4
Incorrect

A

Figure 13. Predicted output with non-optimized CNN model for a balanced dataset.

4.2. Performance Assessment of the CNN Models Optimized with HHO

By utilizing the same settings employed in the non-optimized experiment, we assessed
the performance of the HHOForSkin model provided by the valuable guidance of the
optimization process (Shown in Table 6). The progress of the objective function for the
fitness solution based on the validation accuracy is shown in Figures 14 and 15 and the
validation loss as shown in Figures 16 and 17.

Table 6. HHO-optimized CNN classification accuracy.

Model Accuracy F1 Score Sensitivity Specificity
First Approach 77.9% 75.29% 54% 83.1%
Second Approach 99.1% 98.93% 100% 100%

Optimization of a model’s performance often involves tuning its hyperparameters.
An assessment of convergence facilitates the determination of optimal hyperparameter
values by observing how different settings affect convergence behavior. It is considered
that the optimization algorithm has converged when further iterations do not result in the
objective function improving significantly. In Figures 18 and 19, we show that the HHO
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coverages for 10 epochs with 451 iterations per epoch for the unbalanced dataset and 2113
for the balanced dataset.

HHO Optimization Results F-A - Accuracy

0.81

0.80

0.79

0.78

Accuracy

0.77 4

0.76

0.75

0.74

0.0 0.2 0.4 0.6 0.8 1.0
lterations

Figure 14. HHO-optimized CNN accuracy based on an imbalanced dataset.

HHO Optimization Results S-A - Accuracy
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1.02 ~

1.00 4

Accuracy

0.98

0.96 1
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0.0 0.2 0.4 0.6 0.8 1.0
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Figure 15. HHO-optimized CNN accuracy based on a balanced dataset.

HHO Optimization Results F-A - Loss
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0.850
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T T T T T T
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Figure 16. HHO-optimized CNN loss based on an imbalanced dataset.
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HHO Optimization Results S-A - Loss

0.0495 ~

0.0490 +

0.0485 A

Loss

0.0480 A

0.0475 4

0.0470 A

0.0 0.2 0.4 0.6 0.8 1.0
lterations

Figure 17. HHO-optimized CNN loss based on a balanced dataset.

Using HHO, the best solution for skin cancer detection from an unbalanced dataset
could be represented by a 10-dimensional vector with the following values:

0.07959512 0.92146207 0.04792206 0.61868914 0.10053292
0.13538797 0.5871022  0.6579796  0.98288862 0.0629916

Secondly, based on the balanced skin cancer dataset, the best HHO solution is as
follows:

0.0126429 0.04964975 0.64299634 0.17452906 0.27200789
0.37095965 0.22626202 0.73419105 0.15275893 0.91497799

HHO Optimization Results F-A - Convergence

0.81 1

0.80 4

0.79 A

0.78 1

0.77 A

Convergence

0.76

0.75 1

0.74 A

0.0 0.2 0.4 0.6 0.8 1.0
lterations

Figure 18. HHO-optimized CNN convergence based on an imbalanced dataset.
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HHO Optimization Results S-A - Convergence
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1.00 A

Convergence

0.98
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0.0 0.2 0.4 0.6 0.8 1.0
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Figure 19. HHO-optimized CNN convergence based on a balanced dataset.

4.3. HHOForSkin Performance Compared to State of the Art

In this section, we present a comprehensive analysis of the efficiency of HHOForSkin
compared to state-of-the-art algorithms. A detailed comparison between the proposed
algorithm and its peers is presented in Table 7. The table is composed of six columns that
represent different aspects of the study: dataset name, skin cancer classification classes,
the model, accuracy, and the utilization of optimization algorithms. The results of the study
indicate that HHOForSkin achieves remarkable levels of accuracy for multi-class classifica-
tion problems, comparable to those of existing methods. The consistent performance of
HHOForSkin demonstrates its robustness and reliability as a classification solution.

Table 7. Performance comparison of HHOForSkin and state-of-the-art related works—deep neural
network (DNN), swin-transformer model (SWM), extreme learning machine (ELM), support vector
machine (SVM), neural network algorithm (NNA), red fox optimization (DRFO), teaching-learning-
based optimization (TLBO), dung beetle optimization (DBOA).

Ref. Dataset Type Model Accuracy Optimization
ISIC Benign, 99.7%
(371 archive malignant DNN 86% No
7 types of -
: EfficientNetV2S o
[38] HAM10000 isllii:gzzncer and SWM 99.1% No
[45] DermISdataset ~ DeTi8M ELM 93.18% TLBO
malignant
ResNet-152 89.32%
ISIC 2020 4 types of zggjg g;‘g%"
[41] HAM10000, skin cancer . ol No
DermlIS images Inceptionv3 91.12%
EfficientNet-BO  89.46%
MobileNet 91.82%
American
Cancer 6 types of
[46] Society skin cancer SVM 92.35% NNA
and P2 images
[23] ISIC 2020 Melanoma Multilayer 90.5% DRFO
perceptron
Melanoma, Xception 98.17%
[43] ISIC 2017 Keratosis ResNet 98.83% DBOA
! SqueezeNet 98.33%

nevus
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Table 7. Cont.

Ref. Dataset Type Model Accuracy Optimization
DenseNet
ISIC 2019 Melanoma, and different o
39 and ISIC 2020 non-melanoma variants of 77.65% No
EfficientNet models
Melanoma,
melanocytic ResNet50 95.21%
) nevi, AlexNet 93.14%
(241 I5IC 2019 basal cell, VGG-19 94.25% No
carcinoma, Inceptionv3 92.54%
benign keratosis
Proposed 7 types of Non-optimized 93.2%
HAM10000 skin cancer CNN, ! Oo HHO
Model ; e 99.1%
images optimized CNN

5. Discussion

The incidence rate of skin cancer is experiencing a global increase, positioning it
as one of the most prevalent forms of cancer. Early detection of skin cancer presents
an opportunity for timely intervention, reducing the necessity for invasive treatments
and potentially preventing its spread. A range of approaches has been developed to
tackle the complexities associated with skin cancer detection, encompassing traditional
clinical assessment to advanced computer-aided diagnostic systems. Promising results
have emerged from the utilization of machine learning and deep learning techniques,
notably convolutional neural networks (CNNSs), in automating skin cancer detection. These
approaches leverage large datasets of annotated skin lesion images to learn patterns and
features indicative of malignancy, thereby enhancing their understanding of skin lesions.
Optimizing hyperparameters in deep learning models plays a vital role in enhancing their
performance for specific tasks. This study investigates how the accuracy of skin cancer
detection can be improved using a customized CNN architecture.

In order to avoid bias in the classification accuracy of the developed DL model, balance
and imbalance among classes should be considered. When there is a skewed distribution
of classes in the dataset, relying solely on overall balanced accuracy can lead to misleading
results. To address this, we evaluated the developed CNN over the same dataset twice,
including the imbalanced and balanced data (shown in Figures 6 and 8). The training and
test results after eight iterations of training. There is a tendency for validation accuracy
to be higher during the initial iterations compared to training accuracy. As the epochs
progress, test and validation accuracies are likely to become more similar. The correlation
between the training and test reached approximately 70%. A balanced HAM10000 dataset
with 46,935 images was initially validated with a 50% degree of accuracy (Figures 7 and 11).
A 0.2 loss was recorded after the sixth epoch, and the percentage reached 90% for both the
test and validation sets (Figure 9). A number of additional metrics have been generated
after training the model has been completed, which can be viewed in Table 5 and Figure 12.
The first model has a 100% specificity (true positive rate) and a 38.2% sensitivity (true
negative rate), indicating that it can primarily predict instances of the majority class (i.e.,
NV and BKL cases), but not accurately identify instances of the minority class. As the
second approach training process does not involve class imbalance, an F1 score of 90
indicates an acceptable model performance.

There are a number of hyperparameters that can affect the model’s ability to capture
complex patterns in skin cancer data. In order to improve classification accuracy, these
hyperparameters can be optimized to find the right balance between underfitting (too
simple model) and overfitting (too complex model). Utilizing the HHO over the developed
CNN, we have been able to fine-tune a number of hyperparameters to optimize the model’s
performance. These parameters include batch size, dropout rate, learning rate, and regu-
larization, which results in improving the classification accuracy (Figures 14 and 20) and
performance on the imbalanced dataset to 77.9%. In the second experiment, the HHO
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algorithm achieved accuracy values of 99.1% (as shown in Figures 15 and 21) with 0.04.
There is, however, a discrepancy between the true positive rate and the true negative
rate for the imbalanced and balanced datasets as shown in Figures 22 and 23. Based on
these results, it is evident that the customized deep learning models, with their optimized
hyperparameters, are capable of accurately classifying the collected skin cancer information.
The effectiveness of the proposed HHOForSkin surpasses that of traditional techniques.
However, the optimized architecture necessitates a high-performance computer to handle
the high-dimensional input data. The model did not consistently achieve optimal sensitivity
and specificity. In order to resolve this issue, we will add image masks to the preprocessing
steps, such as contour and semantic segmentation masks, which label or color different
parts of the image, such as lesions or healthy skin.

Convergence is an important criterion in the evaluation of optimization algorithms
in order to determine the speed at which solutions are discovered. Slow convergent
algorithms require more iterations to reach a satisfactory solution, whereas fast convergent
algorithms can achieve good results in fewer iterations. Based on Figure 19, our HHO
algorithm converged after undergoing multiple iterations, resulting in a solution of x = 0.99.
In this solution, the gradient is almost zero, indicating that the objective function has nearly
flattened out. The algorithm, thus, appears to have located a solution that is close to the
optimal one, eliminating the need for further iterations. The algorithm has iteratively
adjusted x = 0.77 for the imbalanced dataset (Figure 18), and at this point more adjustments
or iterations may not be necessary to significantly improve the objective function’s value.

Skin cancer detection is a complex process that requires the collaboration of derma-
tologists, pathologists, computer scientists, and engineers. In comparison to prior studies,
our approach has achieved significant advancements in addressing demanding multi-class
classification problems (see Table 7). In addition, the optimization network produced highly
satisfactory results, establishing HHOForSkin as the top-performing model with excep-
tional adaptability and flexibility across various classification scenarios. Furthermore, our
method consistently outperforms both uni-class and multi-class learning-based methods
employing grid search and other optimization algorithms such as NNA, DBOA, or TLBO.

Confusion matrix First Approach
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Figure 20. HHO-optimized CNN confusion matrix for an imbalanced dataset.
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Confusion matrix Second Approach
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Figure 21. HHO-optimized CNN confusion matrix for a balanced dataset.
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Figure 22. Predicted output with HHO-optimized CNN model for an imbalanced dataset.
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Correct Correct Correct Correct
Pred: 0, Actual: 0 Pred: 3, Actual: 3 Pred: 1, Actual: 1 Pred: 1, Actual: 1
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Figure 23. Predicted output with HHO-optimized CNN model for a balanced dataset.

6. Conclusions

To enhance the accuracy, efficiency, and accessibility of skin cancer detection, there is
great potential in combining advanced imaging technologies, machine learning algorithms,
and medical expertise. The purpose of the present study is to present a novel approach to
categorizing seven types of skin cancer using pruned machine learning techniques. Using
a 26-layer conventional neural network, “HHOForSkin” is an automated end-to-end model
for classifying skin cancer images. In order to fine-tune the parameters of the CNN model,
the proposed methodology incorporates the metaheuristic algorithm HHO. For multi-class
skin classification problems, the proposed method exceeded existing optimization strategies
by achieving an accuracy of 99.1% through a series of experiments. This detection accuracy
outperforms all other optimized approaches for skin cancer detection.
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