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Abstract: In the past, most threshold models considered a single threshold variable. However, for
some practical applications, models with two threshold variables may be needed. In this paper,
we propose a two-threshold-variable integer-valued autoregressive model based on the binomial
thinning operator and discuss some of its basic properties, including the mean, variance, strict
stationarity, and ergodicity. We consider the conditional least squares (CLS) estimation and discuss
the asymptotic normality of the CLS estimator under the known and unknown threshold values. The
performances of the CLS estimator are compared via simulation studies. In addition, two real data
sets are considered to underline the superior performance of the proposed model.
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1. Introduction

Integer-valued time series data often occur in real applications, such as in the number
of births at a hospital for several consecutive months; in the number of workers that are fired
from a factory each month; in the number of claims and in information transmission times of
insurance companies every month; and, particularly, in health studies as the daily number
of infected patients or deaths due to a virus. The binomial thinning operator proposed by
Steutel and van Harn [1] has been widely used to construct the autoregressive model, i.e.,
the integer-valued autoregressive (INAR) model (Al-Osh and Alzaid [2], McKenzie [3]),
which is a popular method to analyze the integer-valued time series data and is defined
as follows:

Xt = α ◦ Xt−1 + εt, t = 1, 2 . . . ,

where {εt} is a sequence of independently and identified distributed (i.i.d.) random
variables and is independent of Xs, ∀s > t, “α◦" is the binomial thinning operator with

α ◦ X := ∑X
i=1 Bi, ∀X ∈ N,

and Bi is independent of X and is a sequence of i.i.d. Bernoulli random variables with P(Bi =
1) = α ∈ (0, 1) = 1− P(Bi = 0). See Du and Li [4], Silva and Oliveira [5], Silva and Silva [6],
and Zhang et al. [7] for more extensions of the INAR model, among others.

However, the above INAR model and its extensions aim to analyze the integer-valued
time series with a linear structure and are unavailable to analyze the integer-valued time
series with a nonlinear structure. Scotto et al. [8] proposed a discrete counterpart of the
conventional max- autoregressive process of order one. It is based on the binomial thinning
operator and driven by a sequence of i.i.d. non-negative integer-valued random variables
with either a regularly varying right tail or an exponential-type right tail. Aleksić and
Ristić [9] introduced a new minification INAR model of the first-order to solve the problem,
which can arise when the binomial thinning operator or the negative binomial thinning
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operator is used. Namely, if one of these thinning operators is used in the construction of
the minification model then it is possible that the model becomes zero constantly over time.

The threshold autoregressive (TAR) model proposed by Tong [10] provides an effi-
cient method with which to handle continuous-valued time series data with a nonlinear
structure. Boero and Marrocu [11] and Potter [12] applied threshold models to econ-
omy and finance. Dueker et al [13] proposed a contemporaneous TAR model for the
bond market. See Tong [14] for more discussion on continuous-valued threshold mod-
els. Li and Tong [15] proposed a faster approach (called the nested sub-sample search
algorithm) to fit a threshold model using the least squares method. In an analogy to the
TAR model, Monteiro et al. [16] introduced an integer-valued self-exciting threshold autore-
gressive process (SETINAR(2,1)), which is driven by an independent Poisson-distributed
random variable. Wang et al. [17] proposed a self-excited threshold Poisson autoregressive
model, which assumes a two-regime structure of the conditional mean process according
to the magnitude of the lagged observations. Yang et al. [18] proposed an integer-valued
threshold autoregressive process driven by an independent negative-binomial distributed
random variable and the negative binomial thinning operator. To explore the relationship
between stock return autocorrelation and trading volume, Zhang et al. [19] proposed a
multiple-threshold-variable autoregressive model and applied it to analyze quarterly U.S.
real GNP data. But the multiple-threshold-variable autoregressive model is restricted to
a continuous-valued time series, and few studies have discussed a similar model for the
nonnegative integer-valued time series. To fill this gap, we propose a new two-threshold-
variable INAR (2-TINAR) model, which provides an alternative way to analyze nonnegative
integer-valued time series with a nonlinear structure.

The paper is organized as follows. Section 2 defines the 2-TINAR model and estab-
lishes its stability properties. Section 3 considers conditional least squares (CLS) estimation.
Section 4 gives a simulation study. Section 5 considers two real data applications to illustrate
the effectiveness of the proposed model. Section 6 concludes.

2. Two-Threshold-Variable Integer-Valued Autoregressive Model

In this paper, we first give the definition of the 2-TINAR model and then discuss some
properties of the model.

Definition 1. The 2-TINAR process {Xt} is defined as

Xt = ∑4
j=1(αj1 ◦ Xt−1 + αj2 ◦ Xt−2 + εjt)Ijt(r, s), t = 1, 2, . . . , (1)

where

(1) (r, s) are the threshold parameters and

I1t(r, s) = I(Xt−1 > r, Xt−2 > s) = I(Xt−1 > r)I(Xt−2 > s),

I2t(r, s) = I(Xt−1 ≤ r, Xt−2 > s) = I(Xt−1 ≤ r)I(Xt−2 > s),

I3t(r, s) = I(Xt−1 ≤ r, Xt−2 ≤ s) = I(Xt−1 ≤ r)I(Xt−2 ≤ s),

I4t(r, s) = I(Xt−1 > r, Xt−2 ≤ s) = I(Xt−1 > r)I(Xt−2 ≤ s);

(2) αji ∈ (0, 1), 0 < ∑2
i=1 αji < 1, i = 1, 2, j = 1, 2, 3, 4, “ ◦ ” is the binomial thinning operator,

and the operators in αj1 ◦ Xt−1 and αj2 ◦ Xt−2 operate independently;
(3) ∀t, εjt ∼ Pois(λj) and for fixed j, εjt is i.i.d. and independent of αji ◦ Xt−i and Xt−i.

In the following, we consider the properties of the 2-TINAR model, including station-
arity, ergodicity, mean and variance, which will be given in the next three propositions,
whose proofs are delegated to Appendix A.
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Proposition 1. Let Yt = (Xt, Xt−1)
>; then,

(1) {Yt} is an irreducible, aperiodic, and positive recurrent Markov chain;
(2) {Yt} is an ergodic sequence, and a strictly stationary process satisfying (1) exists.

Proposition 2. Assume that {Xt} is generated from (1); then, E(Xk
t ) < ∞, k = 1, 2, 3.

Proposition 3. Assume that {Xt} is generated from (1) and F = σ{Xt−i, i ≥ 1}. Then, the
mean and variance are

(1) E(Xt|Ft−1) = ∑4
j=1(αj1Xt−1 + αj2Xt−2 + λj)Ijt(r, s);

(2) E(Xt) = ∑4
j=1 pj(αj1uj + αj2u∗j + λj);

(3) Var(Xt|Ft−1) = ∑4
j=1(αj1(1− αj1)Xt−1 + αj2(1− αj2)Xt−2 + λj)Ijt(r, s);

(4) Var(Xt) = ∑4
j=1(α

2
j1(pj(vj + u2

j )− p2
j u2

j ) + α2
j2(pj(v∗j + (u∗j )

2)− p2
j (u
∗
j )

2)

+ 2(αj1αj2wj pj− αj1αj2 p2
j uju∗j )+ 2(αj1λj pjuj− αj1λj p2

j uj)+ 2(αj2λj pju∗j − αj2λj p2
j u∗j )+

αj1(1− αj1)pjuj + αj2(1− αj2)pju∗j + λj pj) + ∑6
m=1 Cm, m = 1, 2, . . . , 6,

where pj, uj, vj, u∗j , v∗j , wj and Cm are given in Appendix A.

3. Conditional Least Squares Estimation

In this section, we use the CLS method to estimate the parameters involved in the
2-TINAR model. Here, we consider the following two cases: the first one is that the
threshold values r and s are known and the second one is that the threshold values r and
s are unknown.

3.1. Known Case of (r, s)

In this part, we assume that {Xt, t = 1, ..., n} comprises observations generated by (1), ψj =

(αj1, αj2, λj)
> is the vector of regression parameters, j = 1, 2, 3, 4, φ = (ψ>1 , ψ>2 , ψ>3 , ψ>4 )> =

(φ1, ..., φ12)
>, and g(φ, Xt−1, Xt−2) = Eφ(Xt−1|Ft−1) = ∑4

j=1(αj1Xt−1 + αj2Xt−2 +λj)Ijt(r, s).
Then, the CLS estimate ψ̂j,CLS = (α̂j1,CLS, α̂j2,CLS, λ̂j,CLS)

> is obtained by minimizing the function

Q(φ) = ∑n
t=3(Xt − g(φ, Xt−1, Xt−2))

2 = ∑n
t=3 q2

t (φ), (2)

where qt(φ) = Xt −∑4
j=1(αj1Xt−1 + αj2Xt−2 + λj)Ijt(r, s). Then, the closed form of ψj,CLS

is obtained by the following equations:
∂Q(φ)

∂αj1
= −2 ∑n

t=3

(
Xt −∑4

j=1
(
αj1Xt−1 + αj2Xt−2 + λj

)
Ijt(r, s)

)
Xt−1 = 0,

∂Q(φ)
∂αj2

= −2 ∑n
t=3

(
Xt −∑4

j=1(αj1Xt−1 + αj2Xt−2 + λj)Ijt(r, s)
)

Xt−2 = 0,
∂Q(φ)

∂λj
= −2 ∑n

t=3

(
Xt −∑4

j=1(αj1Xt−1 + αj2Xt−2 + λj)Ijt(r, s)
)
= 0.

Denote

Aj =

 ∑n
t=3 Ijt(r, s)X2

t−1 ∑n
t=3 Ijt(r, s)Xt−1Xt−2 ∑n

t=3 Ijt(r, s)Xt−1

∑n
t=3 Ijt(r, s)Xt−1Xt−2 ∑n

t=3 Ijt(r, s)X2
t−2 ∑n

t=3 Ijt(r, s)Xt−2

∑n
t=3 Ijt(r, s)Xt−1 ∑n

t=3 Ijt(r, s)Xt−2 ∑n
t=3 Ijt(r, s)

,

Dj =
(
∑n

t=3 Ijt(r, s)XtXt−1, ∑n
t=3 Ijt(r, s)XtXt−2, ∑n

t=3 Ijt(r, s)Xt
)>.

Then, ψj,CLS = A−1
j Dj.

To study the asymptotic behaviour of the estimators, we make the following assump-
tions about the underlying process and the parameter space.

Assumption 1. If {Xt} is generated from (1), then the parameter space φ is a compact subset of
D× R4

+, and D = (0, 1)× (0, 1)× (0, 1)× (0, 1)× (0, 1)× (0, 1)× (0, 1)× (0, 1) is a compact
subset of R8

+.
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Assumption 2. The model (1) is identifiable, i.e., pφ 6= pφ0 , if φ 6= φ0, where pφ denotes the
marginal distribution of {Xt} with parameter φ.

For Assumption 1, assume the parameter space is compact so that the asymptotic
properties of the CLS estimator can be guaranteed, which is common in INAR models.
Parameter identifiability in Assumption 2 is a property that concerns whether the model
parameters can be uniquely determined, which is the foundation for parameter estimation.

The following theorem establishes the asymptotic porperties of the CLS estimator,
whose proof will be given in Appendix A.

Theorem 1. Under the Assumptions 1 and 2, φ̂CLS is strongly consistent and asymptotically
normally distributed with

√
T(φ̂CLS − φ0)

d−→ N(0, V−1WV−1),

where V = E
(

∂E(Xt |Ft−1)
∂φ

∂E(Xt |Ft−1)
∂φ>

)
and W = E

(
(qt(φ))2 ∂E(Xt |Ft−1)

∂φ
∂E(Xt |Ft−1)

∂φ>

)
.

3.2. Unknown Case of (r, s)

Under the unknown case of (r, s), we first estimate (r, s), which is obtained by mini-
mizing (2) by the following steps:

(1) For each candidate for (r, s) in CR, we estimate φ̂ by minimizing Q(φ, r, s), i.e.,

φ̂ = arg min
φ

Q(φ, r, s).

(2) The estimator for thresholds (r, s) is obtained by searching over all of the candidates
for (r, s) in CR, i.e.,

(r̂, ŝ) = arg min
(r,s)∈CR

Q(φ̂, r, s),

where CR is the set of candidates for estimators for (r, s) with CR= {X{i}, X{i+1}}, i =
(0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0, 5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8). To select a proper CR, we pro-
pose a validated method, which can put less pressure on the capacity of computing and
guarantee the accuracy of estimates; {X{i}, X{i+1}} are thirteen candidates for (r̂, ŝ). Actu-
ally, the estimators for (r, s) are searched for from X{0.20} to X{0.85}, and this is a sufficient
search range for the threshold. Hence, this method guarantees reasonable and sufficient
search ranges without too much pressure on computing.

Based on the initial setting of the parameter space, both of the thresholds r and s
are integers. Therefore, the consistency of r̂ means that r̂ = r utterly, and so does ŝ. It is
feasible that we estimate the other parameters by assuming that thresholds (r, s) are known,
which is similar to the discussion in Wang et al. [17] because the validity of the estimates
with unknown thresholds, as for the other parameters, is asymptotically identical to that
obtained with known (r, s). Hence, in this subsection, we treat the thresholds r and s as
known parameters and consider the consistency for φ = (αj1, αj2, λj)

>, j = 1, 2, 3, 4.

4. Simulation Study

In this section, we illustrate the finite sample property of the CLS estimates under the
known and unknown cases of (r, s). In the simulation, we use m = 10,000 replications and
set the sample size is T = 500, 1000, 2000 and 10,000.
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4.1. Known Case of (r, s)

In the simulation study, we consider the following parameter combinations:

(C1) (0.3, 0.2, 7, 0.2, 0.25, 6, 0.2, 0.3, 8, 0.3, 0.2, 6) with (r, s) = (13, 11),

(C2) (0.3, 0.35, 15, 0.3, 0.35, 20, 0.3, 0.4, 25, 0.35, 0.25, 15) with (r, s) = (55, 53).

As discussed in Li and Tong [15], if the proportion of observations in one regime
to the whole is less than 5%, the estimation results may not be reliable. To illustrate the
reasonableness of (r, s) given in (C1) and (C2), we give two sample paths of the sample
generated by the 2-TINAR model with (C1) and (C2) in Figure 1, which shows that the
proportion of the observations in each range is no less than 20%. In Figure 1, circle means
sample point, red dot line means the value of r, and blue dot line means the value of s.

5 10 15 20 25 30

5
10

15
20

25
30

(C1)

Xt−1

X
t−

2

30 40 50 60 70 80

30
40

50
60

70
80

(C2)

Xt−1

X
t−

2

Figure 1. Sample paths for combinations (C1) and (C2).

The mean and standard deviation (SD) of the estimates are summarized in Table 1,
from which we obtain that the CLS method performs reasonably well when (r, s) is known
because the mean gradually approaches the true value of the parameter and SD decreases
gradually, when the sample size is increasing.

To further account for the reasonableness of the CLS estimates, we present the boxplots
of the parameter combinations (C1) in Figure 2 (the boxplots of (C2) are similar, and we
omit them), and the QQ-plots of the parameter combinations (C1) and (C2) indicate the
asymptotic normality of the CLS estimator. For saving space, we omit the QQ-plots, which
are available upon request. All of them highlight that the good performances of the CLS
estimate under the case of (r, s) are known.
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Table 1. The mean and standard deviation (in brackets) of the estimates of 2-TINAR model with known (r, s).

T α11 α12 λ1 α21 α22 λ2 α31 α32 λ3 α41 α42 λ4

(C1) = (0.3, 0.2, 7, 0.2, 0.25, 6, 0.2, 0.3, 8, 0.3, 0.2, 6)
500 0.2913 0.1884 7.3424 0.2087 0.2495 6.0019 0.2090 0.3034 8.1320 0.3301 0.2921 6.5232

(0.1106) (0.0908) (2.1188) (0.1225) (0.1116) (2.0209) (0.1285) (0.1692) (2.1968) (0.2155) (0.2147) (4.1374)
1000 0.2951 0.1936 7.1725 0.2022 0.2493 5.9952 0.2000 0.2974 8.0702 0.3060 0.2373 6.1198

(0.0781) (0.0658) (1.4782) (0.0918) (0.0802) (1.4289) (0.0990) (0.1280) (1.5499) (0.1634) (0.1635) (3.1374)
2000 0.2978 0.1965 7.0862 0.2004 0.2497 5.9980 0.1991 0.2981 8.0362 0.3014 0.2110 6.0076

(0.0548) (0.0467) (1.0395) (0.0657) (0.0565) (0.9988) (0.0728) (0.0921) (1.0918) (0.1208) (0.1281) (2.3074)
10,000 0.2995 0.1994 7.0170 0.2001 0.2499 5.9998 0.1999 0.2997 8.0048 0.3001 0.1998 6.0013

(0.0244) (0.0209) (0.4650) (0.0294) (0.0252) (0.4464) (0.0328) (0.0413) (0.4897) (0.0537) (0.0645) (1.0270)

(C2) = (0.3, 0.35, 15, 0.3, 0.35, 20, 0.3, 0.4, 25, 0.35, 0.25, 15)
500 0.2955 0.3395 17.3932 0.3014 0.3460 20.2152 0.2978 0.3985 25.3153 0.3506 0.2493 15.7572

(0.1487) (0.1278) (11.5915) (0.1017) (0.1130) (8.1557) (0.1371) (0.1181) (6.2198) (0.1245) (0.1334) (8.8644)
1000 0.2948 0.3448 15.8756 0.3007 0.3482 20.0721 0.2974 0.3996 25.1709 0.3503 0.2479 15.1737

(0.1088) (0.0898) (8.7210) (0.0713) (0.0793) (5.7577) (0.1053) (0.0891) (5.2321) (0.0870) (0.0994) (6.5817)
2000 0.2969 0.3475 15.3461 0.3001 0.3489 20.0642 0.2986 0.4002 25.0691 0.3502 0.2483 15.0749

(0.0775) (0.0629) (6.4147) (0.0502) (0.0558) (4.0647) (0.0774) (0.0661) (4.1621) (0.0611) (0.0708) (4.7424)
10,000 0.2995 0.3495 15.0594 0.3001 0.3499 20.0017 0.2999 0.4001 25.0010 0.3500 0.2497 15.0124

(0.0343) (0.0279) (2.8665) (0.0223) (0.0250) (1.8115) (0.0363) (0.0311) (2.1124) (0.0272) (0.0317) (2.1158)
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Figure 2. Boxplots of (C1).
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4.2. Unknown Case of (r, s)

In this part, we first let (C3) (0.2, 0.25, 3, 0.25, 0.35, 5, 0.3, 0.3, 4, 0.3, 0.25, 6, 13, 14) and
(C4) (0.30, 0.25, 6, 0.25, 0.35, 6, 0.4, 0.3, 9, 0.3, 0.35, 8, 30, 31). Then, we use the approach given
in Section 3.2 to obtain (r̂, ŝ).

To illustrate the reasonableness of (r̂, ŝ) given in (C3) and (C4), we give two sample
paths of the sample generated by 2-TINAR model with (C3) and (C4) in Figure 3, which
shows that the proportion of the observations in each range is no less than 20%. In Figure 3,
circle, red and blue dot line in figure are the same as Figure 1.

0 5 10 15 20 25

0
5

10
15

20
25

(C3)

Xt−1

X
t−

2

5 10 15 20 25
5

10
15

20
25

(C4)

Xt−1

X
t−

2

Figure 3. Sample paths of (C3) and (C4).

The mean and SD of the estimates are summarized in Table 2, from which we can see
that with the increase in sample size, the mean gradually approaches the true value of the
parameter and SD decreases gradually. The boxplots (C3) and (C4) are similar to (C1) and
(C2). We present the boxplots of the parameter combinations (C3) in Figures 4(the boxplots
of (C4) are similar and we omit them).

From Figures 4, the median of the estimator is closer to the true value and the quartile
range and overall range of the estimated values become narrower, both of which indicate
the consistency of the estimators. The QQ−plots of the parameter combinations (C3) and
(C4) indicate the asymptotic normality of the CLS estimator. For the same reason, we omit
the QQ-plots. All of them highlight that the good performances of the CLS estimate under
the case of (r, s) are unknown.
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Table 2. The mean and standard deviation (in brackets) of the estimates of 2-TINAR model with unknown (r, s).

T α11 α12 λ1 α21 α22 λ2 α31 α32 λ3 α41 α42 λ4 r s

(C3) = (0.2, 0.25, 3, 0.25, 0.35, 5, 0.3, 0.3, 4, 0.3, 0.25, 6, 13, 14)
500 0.3165 0.3882 9.6383 0.2897 0.4308 6.7583 0.3092 0.3000 3.9558 0.3908 0.2547 6.6819 9.9851 10.5800

(0.2458) (0.3007) (7.8787) (0.2093) (0.2878) (5.0400) (0.0655) (0.0590) (0.6470) (0.2612) (0.1715) (4.5692) (2.0175) (2.1507)
1000 0.2482 0.2966 6.6049 0.2544 0.3860 5.6138 0.3041 0.3012 3.9727 0.3370 0.2404 6.2223 11.3103 12.0423

(0.1764) (0.2082) (5.6639) (0.1584) (0.2204) (3.8261) (0.0471) (0.0419) (0.4652) (0.1945) (0.1337) (3.4623) (1.9055) (2.0830)
2000 0.2156 0.2634 4.5700 0.2486 0.3584 5.1460 0.3014 0.3007 3.9891 0.3127 0.2427 6.0176 12.3400 13.2323

(0.1327) (0.1540) (3.9383) (0.1235) (0.1626) (2.8763) (0.0325) (0.0291) (0.3225) (0.1352) (0.0971) (2.3564) (1.3604) (1.5242)
10,000 0.2003 0.2486 3.0470 0.2503 0.3491 5.0088 0.2996 0.2998 4.0057 0.3004 0.2501 5.9923 12.9962 13.9960

(0.0627) (0.0725) (1.4592) (0.0569) (0.0717) (1.3053) (0.0133) (0.0127) (0.1368) (0.0537) (0.0411) (0.8949) (0.1104) (0.1166)

(C4) = (0.30, 0.25, 6, 0.25, 0.35, 6, 0.4, 0.3, 9, 0.3, 0.35, 8, 30, 31)
500 0.5152 0.4893 22.8606 0.2621 0.3919 12.3190 0.3923 0.2849 9.5150 0.3138 0.3337 11.0724 26.5934 27.4885

(0.4299) (0.4219) (19.7688) (0.1613) (0.2612) (10.0337) (0.0666) (0.0647) (1.8098) (0.2115) (0.1714) (7.6731) (3.9233) (4.0751)
1000 0.3794 0.3437 14.3485 0.2502 0.3564 8.8832 0.3966 0.2933 9.2336 0.3006 0.3395 9.1092 28.5735 29.5242

(0.2716) (0.2547) (11.4391) (0.1216) (0.1978) (7.1729) (0.0465) (0.0458) (1.3281) (0.1619) (0.1253) (5.7439) (3.0484) (3.1956)
2000 0.3216 0.2811 10.0719 0.2491 0.3514 6.8234 0.3983 0.2983 9.0834 0.3009 0.3487 8.1454 29.6788 30.6630

(0.2052) (0.1911) (7.6392) (0.0876) (0.1446) (4.7774) (0.0321) (0.0307) (0.9129) (0.1163) (0.0873) (4.1778) (1.5502) (1.6476)
10,000 0.3007 0.2502 6.4417 0.2496 0.3498 6.0227 0.3996 0.2999 9.0131 0.3004 0.3492 8.0065 30.0000 31.0000

(0.1036) (0.0985) (4.0326) (0.0390) (0.0638) (2.2480) (0.0143) (0.0135) (0.4048) (0.0513) (0.0382) (1.8861) (0.0000) (0.0000)
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Figure 4. Boxplots of (C3).
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5. Two Real Examples

In this section, we use 2-TINAR(2) models to study two stock datasets listed in the
New York Stock Exchange (NYSE).

5.1. Siparex Croissance Stock

In this subsection, we consider the daily number of trades of a stock listed in the NYSE
(Siparex Croissance). By computation, the mean is 10.0190 and the variance is 129.7295,
which shows that this dataset is over-dispersed and implies that it may be better suited to
the piecewise structure. Figure 5 shows the path of the data, whose autocorrelation (ACF)
and partial autocorrelation functions (PACF) are presented in Figure 6.
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Figure 5. Path of the stock data.
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Figure 6. Daily number of trades of a stock data: (a). ACF (b). PACF.

We compare the proposed model with the max-INAR(1) model with geometric innova-
tions (Scotto et al. [8]), the min-INAR(1) model (Aleksić and Ristić [9]), the Poisson INAR(2)
(P-INAR) model (Du and Li [4]), and the SETINAR(2,1) model (Monteiro et al. [16]) with
Zt ∈ Pois(λj) to fit the data set by the CLS method and compare their mean squared error
(MSE) and mean absolute deviation error (MADE), where

MSE =
1

T − 3

T

∑
t=3

(xt − x̂t)
2, MADE =

1
T − 3

T

∑
t=3
|xt − x̂t|.

For each model, we obtain the values of the CLS estimates of the parameters, include the
SD of the estimates, and include the in-sample and out-of-sample MSE and MADE values.
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For the in-sample values, all of the observations are used to estimate the parameters,
while for the out-of-sample values, the first 3618 observations are used to estimate parameters;
we predict that the last m = 15 observations, the r for SETINAR(2,1) model, and (r, s) for the
2-TINAR(2) model are obtained by the method described in Section 3.2.

The results of the CLS estimates, MSE and MADE, are summarized in Table 3, from
which we can see that the max-INAR(1) model and the min-INAR(1) model are not well
fitted, so these two models are not suitable for the kind of datum applied in this paper. The
2-TINAR(2) model takes the smallest MSE and MADE values; hence, 2-TINAR(2) is more
appropriate for this data set.

5.2. Westar Energy Stock

In this subsection, we consider the number of trades in 5-min intervals between
9:45 a.m. and 4:00 p.m. of a stock listed in the NYSE (Westar Energy, Inc. (WR)), which
belongs to the industry subsector conventional electricity. The time period covered is the
first quarter of 2005 (3 January 2005–31 March 2005) with 61 trading days; the sample size
is T = 4575. Data are taken from the Trades and Quotes (TAQ) dataset. By computation,
the mean is 9.6070 and the variance is 34.8908, which shows it is overdispersed and implies
that the piecewise structure may be more suitable for this set of data. Figure 7 shows the
path of the data, whose autocorrelation (ACF) and partial autocorrelation functions (PACF)
are presented in Figure 8.
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Figure 7. Path of the stock data.
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Figure 8. The number of trades of a stock data: (a). ACF (b). PACF.

Like in Section 5.1, we compare the proposed model with the max-INAR(1) model
with geometric innovations (Scotto et al. [8]), the min-INAR(1) model (Aleksić and
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Ristić [9]), the Poisson INAR(2) (P-INAR) model (Du and Li [4]), and the SETINAR(2,1)
model (Monteiro et al. [16]) with Zt ∈ Pois(λj) to fit the data set by the CLS method
and compare their MSE and MADE. For each model, we obtain the values of the CLS
estimates of the parameters, include the SD of the estimates, and include the in-sample
and out-of-sample MSE and MADE values.

For the in-sample values, all observations are used to estimate parameters, while for
the out-of-sample values, the first 4560 observations are used to estimate the parameters;
we predict that the last m = 15 observations, r for the SETINAR(2,1) model and (r, s) for
the 2-TINAR(2) model, are obtained by the method described in Section 3.2. The results
of the CLS estimates, MSE and MADE, are summarized in Table 4, from which we can
see that the max-INAR(1) model and the min-INAR(1) model are not well fitted, so these
two models are not suitable for this kind of data again. The 2-TINAR(2) model takes the
smallest MSE and MADE values; hence, 2-TINAR(2) is more appropriate for this data set.

Obviously, we can see that as one of the main novelties of the proposed model, it
means that the regime of r and s is determined by considering lots of past information,
which makes it more practical. Compared with other models, the 2-TINAR(2) model
distinguishes innovations in different regions, which makes our model more flexible, but
at the same time it also increases the parameters of the model and makes the model more
complex. Therefore, we can find that the 2-TINAR(2) model is more suitable for the analysis
of the scattered dataset, such as two real examples mentioned in this paper, but it is not
suitable for data with small variances and variations.
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Table 3. Fitting results of the Siparex Croissance data.

Model in Sample Estimate MSE MADE

max-INAR(1)
α̂1 q̂

0.4967 0.1208
(1.8621) (0.0627) 21.1591 3.9308

min-INAR(1)
α̂1 µ̂

1.5074 8.7789
(50.3267) (414.5962) 37.8780 5.2950

P-INAR(2)
α̂1 α̂2 λ̂

0.3714 0.2228 4.0663
(0.0316) (0.0279) (0.2790) 21.1386 3.8917

SETINAR(2)
r = 9

α̂11 α̂12 λ1 α̂21 α̂22 λ2
0.4015 0.2295 3.7634 0.3497 0.2155 5.0422

(0.0373) 0.0312) (0.2895) (0.0485) (0.0392) (1.1459) 21.3504 3.8975

2-TINAR(2)
r = 14, s = 17

α̂11 α̂12 λ1 α̂21 α̂22 λ2 α̂31 α̂32 λ3 α̂41 α̂42 λ4
0.3544 0.1413 9.0932 0.7353 0.1464 2.8976 0.3666 0.2699 3.7258 0.3490 0.2022 4.2198

(0.0739) (0.0583) (2.4291) (0.1802) (0.0796) (2.5865) (0.0379) ( 0.0314) (0.2639) (0.0630) (0.1057) (1.5101) 20.5577 3.7951

out of sample

max-INAR(1)
α̂1 q̂

0.4967 0.1208
(1.8660) (0.0629) 25.3317 4.0658

min-INAR(1)
α̂1 µ̂

1.5074 8.7789
(49.6399) (408.9382) 40.6800 4.4990

P-INAR(2)
α̂1 α̂2 λ̂

0.3717 0.2224 4.0767
(0.0316) (0.0279) (0.2796) 22.3961 3.1670

SETINAR(2)
r = 9

α̂11 α̂12 λ1 α̂21 α̂22 λ2
0.4058 0.2282 3.7572 0.3497 0.2155 5.0422

(0.0374) (0.0313) (0.2898) (0.0485) (0.0392) (1.1459) 22.9152 3.2409

2-TINAR(2)
r = 14, s = 17

α̂11 α̂12 λ1 α̂21 α̂22 λ2 α̂31 α̂32 λ3 α̂41 α̂42 λ4
0.3544 0.1413 9.0932 0.7353 0.1464 2.8976 0.3710 0.2681 3.7213 0.3490 0.2022 4.2198

(0.0737) (0.0582) (2.4241) (0.1798) (0.0795) (2.5812) (0.0380) (0.0315) (0.2636) (0.0629) (0.1055) (1.5070) 17.3452 2.9123
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Table 4. Fitting results of the WR data.

Model in Sample Estimate MSE MADE

max-INAR(1)
α̂1 q̂

0.2461 0.3982
(1.2089) (2.4770) 150.0196 11.5280

min-INAR(1)
α̂1 µ̂

1.7625 1.6307
(50.1349) (27.6055) 175.1617 12.6286

P-INAR(2)
α̂1 α̂2 λ̂

0.3362 0.2187 4.2795
(0.0192) (0.0172) (0.1804) 25.1577 4.4766

SETINAR(2)
r = 14

α̂11 α̂12 λ1 α̂21 α̂22 λ2
0.3325 0.2424 4.0595 0.2586 0.1499 6.9125

(0.0227) (0.0186) (0.1909) (0.0634) (0.0396) (1.1693) 23.9746 4.4016

2-TINAR(2)
r = 11, s = 12

α̂11 α̂12 λ1 α̂21 α̂22 λ2 α̂31 α̂32 λ3 α̂41 α̂42 λ4
0.1855 0.0458 10.8460 0.4619 0.0985 5.3952 0.3116 0.3009 3.8049 0.3660 0.1952 4.3789

(0.0848) (0.0919) (2.2813) (0.0962) (0.0585) (1.4106) (0.0233) (0.0225) (0.1971) (0.0884) (0.0942) (1.6380) 23.5336 4.4005

out of sample

max-INAR(1)
α̂1 q̂

0.2461 0.3982
(1.2109) (2.4811) 179.5401 12.6882

min-INAR(1)
α̂1 µ̂

1.7625 1.6307
(50.2126) (27.6483) 178.7166 12.7448

P-INAR(2)
α̂1 α̂2 λ̂

0.3359 0.2172 4.2877
(0.0192) (0.0172) (0.1808) 73.5537 7.7076

SETINAR(2)
r = 14

α̂11 α̂12 λ1 α̂21 α̂22 λ2
0.3310 0.2412 4.0759 0.2630 0.1479 6.8355

(0.0227) (0.0186) (0.1909) (0.0637) (0.0397) (1.1741) 73.8454 7.7045

2-TINAR(2)
r = 11, s = 12

α̂11 α̂12 λ1 α̂21 α̂22 λ2 α̂31 α̂32 λ3 α̂41 α̂42 λ4
0.1885 0.0458 10.7683 0.4550 0.0984 5.4278 0.3105 0.3004 3.8135 0.3706 0.1892 4.3368

(0.0849) (0.0922) (2.3067) (0.0961) (0.0583) (1.4070) (0.0233) (0.0224) (0.1969) (0.0887) (0.0948) (1.6435) 71.6180 7.5889
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6. Conclusions

In this paper, we propose a new two-threshold-variable INAR(2) model, which is a
generalization of existing INAR models. We consider the CLS estimate with known (r, s)
and unknown (r, s), respectively. To verify the asymptotic behaviour of the estimators, we
give the results of the simulation in each case. A superior performance of the proposed
model in real example is demonstrated.

In model (1), we use Xt−1 and Xt−2 as threshold variables, while other variables can
also be used as threshold variables, i.e., the method considered here can be easily extended
to other INAR models, such as INAR models with explanatory variable or covariate defined
in Enciso-Mora et al. [20],

Xt = α ◦ Xt−1 + Zt, Zt ∼ Pois(exp(wtγ)),

or

Xt = αt ◦ Xt−1 + Zt, αt = [1 + exp(wtδ)]
−1, Zt ∼ Pois(exp(wtγ)),

where wt is explanatory variable or covariate; then, we can use Xt−1 and wt as threshold
variables.

Furthermore, there should be more efficient methods of determining the search
range for the threshold estimates, and the possibility of extending this model to the high-
dimensional situation is worthy of attention. Moreover, we can extend the results to the
three-threshold-variable case. These remains topics of future study. Extensions to the
models in Chen et al. [21], Qian and Zhu [22], Su and Zhu [23] and Zhang et al. [7] are
similar. Details will be discussed in a future project.
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Appendix A

Proof of Proposition 1. (1) It is easy to see that {Yt} is a Markov chain with state space N0,
and the transition probability of the 2-TINAR(2) process is

P(Yt = (j, l)>|Yt−1 = (l, m)>) =
min(m,j)

∑
k=0

(
m
k

)
αk

j2(1− αj2)
m−kP(R = j− k),

note that P(R = j− k) =
min(l,j−k)

∑
b=0

(
j− k

b

)
αb

j1(1− αj1)
l−bP(εjt = j− k− b),

P(Yt = (j, l)>|Yt−1 = (l, m)>) > 0; thus, we can see that {Yt} is an irreducible, aperiodic
Markov chain. To prove that Yt is positive recurrent, let Yt = A ∗Yt−1 + (εjt, 0)>, ρ(Aj) < 1,
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where Aj =

(
αj1 αj2
1 0

)
. The definition of ∗ can be expressed as

(
α1 α2
α3 α4

)
∗
(

X1
X2

)
:=(

α1 ◦ X1 + α2 ◦ X2
α3 ◦ X3 + α4 ◦ X4

)
; then, based on Proposition 2.1 in Yang et al. [18], we can know that

{Yt} is a positive recurrent Markov chain.
(2) It is the direct conclusion of (1); thus, we can see the existence of a strictly stationary

distribution of (1).

Proof of Proposition 2. Note that three of the four values I1t(r, s), I2t(r, s), I3t(r, s), I4t(r, s)
must be equal to 0; thus, from Silva and Oliveira [5], let max ρ(Aj) < 1, max ρ(Aj⊗ Al) < 1,
and max ρ(Aj⊗ Al ⊗ Ak) < 1. We can know that {Xt} is a 3-order stationarity process. The
3-order joint moment of Xt, Xt+s1 , Xt+s2 , for s1, s2 ∈ R is a function of 2 variables defined
by µX(s1, s2) = E(Xt, Xt+s1 , Xt+s2) with µX = E(Xt). Similar to Silva and Silva [6], we
let µji = E(Bi) = αji, σ2

ji = Var(Bi) = αji(1− αji), γji = E(B3
i ) = αji, γεjt = E(ε3

jt), Cji =

∑2
i=1(γji − 3αjiσ

2
ji − α3

ji). Then, for k > 0,

µX(0, 0) ≤
2

∑
i=1

2

∑
l=1

2

∑
k=1

max(αji)max(αjl)max(αjk)µX(j− l, j− k)

+ 3
2

∑
i=1

2

∑
l=1

max(αjl)max(σ2
ji)µX(i− l) + 3λj

2

∑
i=1

2

∑
l=1

max(αji)max(αjl)µX(i− l)

+ 3λj

2

∑
i=1

max(σ2
ji)µX +

2

∑
i=1

max(Cji)µX + γεjt ,

µX(0, k) ≤
2

∑
i=1

max(αji)µX(0, k− i) + λjµX(0),

µX(k, k) ≤
2

∑
i=1

2

∑
l=1

max(αji)max(αjl)µX(k− i, k− l) +
2

∑
i=1

max(σ2
ji)µX(k− i) + 2λjµX(k),

µX(k, m) ≤
2

∑
i=1

max(αji)µX(k, m− i) + λjµX(k), m > k,

the second-order moment of {Xt} is µX(0) ≤ ∑2
i=1 max(αji)µX(i) + λjµX + max(Vjp),

where Vjp = λj + µX ∑2
i=1 σ2

ji.

Proof of Proposition 3. (1) and (3) are obvious, so we just present the proofs of (2) and (4),
which are obtained by similar arguments after some tedious calculations.

(2). Let

p1 = P(Xt−1 > r, Xt−2 > s), p2 = P(Xt−1 ≤ r, Xt−2 > s),

p3 = P(Xt−1 ≤ r, Xt−2 ≤ s), p4 = P(Xt−1 > r, Xt−2 ≤ s),

u1 = E(Xt−1|Xt−1 > r, Xt−2 > s), u2 = E(Xt−1|Xt−1 ≤ r, Xt−2 > s),

u3 = E(Xt−1|Xt−1 ≤ r, Xt−2 ≤ s), u4 = E(Xt−1|Xt−1 > r, Xt−2 ≤ s),

u∗1 = E(Xt−2|Xt−1 > r, Xt−2 > s), u∗2 = E(Xt−2|Xt−1 ≤ r, Xt−2 > s),

u∗3 = E(Xt−2|Xt−1 ≤ r, Xt−2 ≤ s), u∗4 = E(Xt−2|Xt−1 > r, Xt−2 ≤ s),

v1 = Var(Xt−1|Xt−1 > r, Xt−2 > s), v2 = Var(Xt−1|Xt−1 ≤ r, Xt−2 > s),

v3 = Var(Xt−1|Xt−1 ≤ r, Xt−2 ≤ s), v4 = Var(Xt−1|Xt−1 > r, Xt−2 ≤ s),

v∗1 = Var(Xt−2|Xt−1 > r, Xt−2 > s), v∗2 = Var(Xt−2|Xt−1 ≤ r, Xt−2 > s),

v∗3 = Var(Xt−2|Xt−1 ≤ r, Xt−2 ≤ s), v∗4 = Var(Xt−2|Xt−1 > r, Xt−2 ≤ s),

w1 = E(Xt−1Xt−2|Xt−1 > r, Xt−2 > s), w2 = E(Xt−1Xt−2|Xt−1 ≤ r, Xt−2 > s),

w3 = E(Xt−1Xt−2|Xt−1 ≤ r, Xt−2 ≤ s), w4 = E(Xt−1Xt−2|Xt−1 > r, Xt−2 ≤ s).
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Hence,

E(Xt) = E[E(Xt|Ft−1)] = E
(
∑4

j=1(αj1Xt−1 + αj2Xt−2 + λj)Ijt(r, s)
)

= ∑4
j=1 Ijt(r, s)(αj1EXt−1 + αj2EXt−2 + λj) = ∑4

j=1 pj(αj1uj + αj2u∗j + λj).

(4). According to the variance formula, the variance of Xt is

Var(Xt) = Var((α11 ◦ Xt−1 + α12 ◦ Xt−2 + λ1)I1t(r, s) + (α21 ◦ Xt−1 + α22 ◦ Xt−2 + λ2)I2t(r, s)

+ (α31 ◦ Xt−1 + α32 ◦ Xt−2 + λ3)I3t(r, s) + (α41 ◦ Xt−1 + α42 ◦ Xt−2 + λ4)I4t(r, s))

= Var((α11 ◦ Xt−1 + α12 ◦ Xt−2 + λ1)I1t(r, s)) + Var((α21 ◦ Xt−1 + α22 ◦ Xt−2 + λ2)I2t(r, s))

+ Var((α31 ◦ Xt−1 + α32 ◦ Xt−2 + λ3)I3t(r, s)) + Var((α41 ◦ Xt−1 + α42 ◦ Xt−2 + λ4)I4t(r, s))

+ 2Cov((α11 ◦ Xt−1 + α12 ◦ Xt−2 + λ1)I1t(r, s), (α21 ◦ Xt−1 + α22 ◦ Xt−2 + λ2)I2t(r, s))

+ 2Cov((α11 ◦ Xt−1 + α12 ◦ Xt−2 + λ1)I1t(r, s), (α31 ◦ Xt−1 + α32 ◦ Xt−2 + λ3)I3t(r, s))

+ 2Cov((α11 ◦ Xt−1 + α12 ◦ Xt−2 + λ1)I1t(r, s), (α41 ◦ Xt−1 + α42 ◦ Xt−2 + λ4)I4t(r, s))

+ 2Cov((α21 ◦ Xt−1 + α22 ◦ Xt−2 + λ2)I2t(r, s), (α31 ◦ Xt−1 + α32 ◦ Xt−2 + λ3)I3t(r, s))

+ 2Cov((α21 ◦ Xt−1 + α22 ◦ Xt−2 + λ2)I2t(r, s), (α41 ◦ Xt−1 + α42 ◦ Xt−2 + λ4)I4t(r, s))

+ 2Cov((α31 ◦ Xt−1 + α32 ◦ Xt−2 + λ3)I3t(r, s), (α41 ◦ Xt−1 + α42 ◦ Xt−2 + λ4)I4t(r, s))

:= V1 + V2 + V3 + V4 + C1 + C2 + C3 + C4 + C5 + C6. (A1)

In the following, we compute these quantities in (A1). First, we have

V1 = Var((α11 ◦ Xt−1 + α12 ◦ Xt−2 + λ1)I1t(r, s))

= Var(E((α11 ◦ Xt−1 + α12 ◦ Xt−2 + λ1)I1t(r, s)|F ))
+ E(Var((α11 ◦ Xt−1 + α12 ◦ Xt−2 + λ1)I1t(r, s)|F ))
= Var(α11Xt−1 I1t + α12Xt−2 I1t + λ1 I1t) + E(α11(1− α11)Xt−1 I1t + α12(1− α12)Xt−2 I1t + λ1 I1t)

= α2
11Var(I1tXt−1) + α2

12Var(I2tXt−2) + 2Cov(α11Xt−1 I1t, α12Xt−2 I1t) + 2Cov(α11Xt−1 I1t, λ1 I1t)

+ 2Cov(α12Xt−2 I1t, λ1 I1t) + α11(1− α11)p1u1 + α12(1− α12)p1u∗1 + λ1 p1

= α2
11(p1(v1 + u2

1)− p2
1u2

1) + α2
12(p1(v∗1 + (u∗1)

2)− p2
1(u
∗
2)

2)

+ 2(α11α12w1 p1 − α11α12 p2
1u1u∗1) + 2(α11λ1 p1u1 − α11λ1 p2

1u1) + 2(α12λ1 p1u∗1 − α12λ1 p2
1u∗1)

+ α11(1− α11)p1u1 + α12(1− α12)p1u∗1 + λ1 p1. (A2)

By the same arguments as above, it follows that

Vj = Var((αj1 ◦ Xt−1 + αj2 ◦ Xt−2 + λj)Ijt(r, s))

= α2
j1(pj(vj + u2

j )− p2
j u2

j ) + α2
j2(pj(v∗j + (u∗j )

2)− p2
j (u
∗
j )

2)

+ 2(αj1αj2wj pj − αj1αj2 p2
j uju∗j ) + 2(αj1λj pjuj − αj1λj p2

j uj) + 2(αj2λj pju∗j − αj2λj p2
j u∗j )

+ αj1(1− αj1)pjuj + αj2(1− αj2)pju∗j + λj pj, j = 2, 3, 4. (A3)

We can see that Cj takes the form

C1 = 2Cov((α11 ◦ Xt−1 + α12 ◦ Xt−2 + λ1)I1t(r, s), (α21 ◦ Xt−1 + α22 ◦ Xt−2 + λ2)I2t(r, s))

= −2E((α11 ◦ Xt−1 + α12 ◦ Xt−2 + λ1)I1t(r, s))E((α21 ◦ Xt−1 + α22 ◦ Xt−2 + λ2)I2t(r, s))

= −2(α11u1 p1 + α12u∗1 p1 + λ1 p1)(α21u2 p2 + α22u∗2 p2 + λ2 p2), (A4)

C2 = 2Cov((α11 ◦ Xt−1 + α12 ◦ Xt−2 + λ1)I1t(r, s), (α31 ◦ Xt−1 + α32 ◦ Xt−2 + λ3)I3t(r, s))

= −2(α11u1 p1 + α12u∗1 p1 + λ1 p1)(α31u3 p3 + α32u∗3 p3 + λ3 p3), (A5)

C3 = 2Cov((α11 ◦ Xt−1 + α12 ◦ Xt−2 + λ1)I1t(r, s), (α41 ◦ Xt−1 + α42 ◦ Xt−2 + λ4)I4t(r, s))

= −2(α11u1 p1 + α12u∗1 p1 + λ1 p1)(α41u4 p4 + α42u∗4 p4 + λ4 p4), (A6)
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C4 = 2Cov((α21 ◦ Xt−1 + α22 ◦ Xt−2 + λ2)I2t(r, s), (α31 ◦ Xt−1 + α32 ◦ Xt−2 + λ3)I3t(r, s))

= −2(α21u2 p2 + α22u∗2 p2 + λ2 p2)(α31u3 p3 + α32u∗3 p3 + λ3 p3), (A7)

C5 = 2Cov((α21 ◦ Xt−1 + α22 ◦ Xt−2 + λ2)I2t(r, s), (α41 ◦ Xt−1 + α42 ◦ Xt−2 + λ4)I4t(r, s))

= −2(α21u2 p2 + α22u∗2 p2 + λ2 p2)(α41u4 p4 + α42u∗4 p4 + λ4 p4), (A8)

C6 = 2Cov((α31 ◦ Xt−1 + α32 ◦ Xt−2 + λ3)I3t(r, s), (α41 ◦ Xt−1 + α42 ◦ Xt−2 + λ4)I4t(r, s))

= −2(α31u3 p3 + α32u∗3 p3 + λ3 p3)(α41u4 p4 + α42u∗4 p4 + λ4 p4), (A9)

then, (4) follows by replacing (A2)–(A9) in (A1).

Proof of Theorem 2. It can easily be seen that the conditions in Klimko and Nelson [24]
are verified; we can see that

g(φ, Xt−1, Xt−2),
∂g(φ, Xt−1, Xt−2)

∂φi
,

∂g2(φ, Xt−1, Xt−2)

∂φi∂φj
,

∂g3(φ, Xt−1, Xt−2)

∂φi∂φj∂φk

satisfy all the regularity conditions for i, j, k = 1, · · · , 12. Thus, the CLS estimator is strongly
consistent. Moreover, when proving asymptotic normality we first have to check the
following conditions:

(1) E(Xt|Xt−1, . . . , X0) = E(Xt|Xt−1, Xt−2), t ≥ 3, a.s.;

(2) E(q2
t (φ)|

∂g(φ,Xt−1,Xt−2)
∂φi

∂g(φ,Xt−1,Xt−2)
∂φj

|) < ∞, i, j = 1, · · · , 12;

(3) V is non singular,

then, we know from Klimko and Nelson [24] that the CLS estimation is asymptotically
normal with the asymptotic variance V−1WV−1.
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