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Abstract: Fatigue is a prevalent subjective sensation, affecting both office workers and a significant
global population. In Taiwan alone, over 2.6 million individuals—around 30% of office workers—
experience chronic fatigue. However, fatigue transcends workplaces, impacting people worldwide
and potentially leading to health issues and accidents. Gaining insight into one’s fatigue status over
time empowers effective management and risk reduction associated with other ailments. Utilizing
photoplethysmography (PPG) signals brings advantages due to their easy acquisition and physio‑
logical insights. This study crafts a specialized preprocessing and peak detection methodology for
PPG signals. A novel fatigue index stems from PPG signals, focusing on the dicrotic peak’s posi‑
tion. This index replaces subjective data from the brief fatigue index (BFI)‑Taiwan questionnaire and
heart rate variability (HRV) indices derived from PPG signals for assessing fatigue levels. Correla‑
tion analysis, involving sixteen healthy adults, highlights a robust correlation (R > 0.53) between the
new fatigue index and specific BFI questions, gauging subjective fatigue over the last 24 h. Drawing
from these insights, the study computes an average of the identified questions to formulate the eval‑
uated fatigue score, utilizing the newfound fatigue index. The implementation of linear regression
establishes a robust fatigue assessment system. The results reveal an impressive 91% correlation co‑
efficient between projected fatigue levels and subjective fatigue experiences. This underscores the
remarkable accuracy of the proposed fatigue prediction in evaluating subjective fatigue. This study
further operationalized the proposed PPG processing, peak detection method, and fatigue index us‑
ing C# in a computer environment alongside a PPG device, thereby offering real‑time fatigue indices
to users. Timely reminders are employed to prompt users to take notice when their index exceeds a
predefined threshold, fostering greater attention to their physical well‑being.

Keywords: fatigue; photoplethysmography (PPG); heart rate variability (HRV); brief fatigue index
(BFI)‑Taiwan form

MSC: 62P10; 68T09

1. Introduction
“Fatigue” is a subjective feeling that everyone experiences. Fatigue slowsdown thebrain’s

ability to respond to stimuli, reduces personal performance, concentration, and judgment, and
causes negative emotional reactions. These effects can lead to accidents. In Taiwan, knowledge
about fatigue is still limited. According to a report from the Department of Health (Taipei city
government), approximately 30% of office workers in Taiwan (more than 2.6 million people)
suffer from chronic fatigue. Furthermore, fatigue is not limited to just workers; it can affect
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everyone. Fatigue can arise from factors such as insufficient sleep and heavy workloads and
may even be attributed to conditions like chronic fatigue syndrome or cancer [1]. If people can
understand their fatigue conditionwell over a longperiodof time, they cannot only adjust their
fatigue well but also reduce the occurrence of complications from other diseases and accidents.

Heart rate variability (HRV) is a widely utilized method for assessing levels of fa‑
tigue [2–4]. In order to compute HRV indices, many studies initially employ a specialized
device to measure the electrocardiogram (ECG) at three specific points, utilizing conduc‑
tive glue as the conducting medium. One electrode patch is directly attached to the uncov‑
ered chest area, minimizing interference from clothing. The other two measurement sites
are confined to the chest and hands. Subsequently, peak detection techniques can be ap‑
plied to identify intervals between successive heartbeats, enabling the derivation of HRV
values [5,6]. The ECG was susceptible to power noise and electromagnetic interference
(EMI) during the measurements, thus resulting in an inaccurate analysis of the HRV [7].
Power noise and EMI disrupt the ECG signal, distorting it and introducing unwanted sig‑
nals. This can obscure R‑wave peaks crucial for HRV analysis and complicate interval mea‑
surement. Furthermore, HRV assessment was vulnerable to external influences. Changes
in breathing patterns, increased parasympathetic nerve activity due to relaxation, or varia‑
tions in current mood could hinder the clear responsiveness of HRV indices to fatigue [8,9].
Factors such as physical activity [10], caffeine and medications [11], stress and emotional
state [12], as well as underlying health conditions [13], all have the potential to affect the
precision of HRV measurements.

In recent years, optoelectronic and electronic technologies have advanced, and photo‑
plethysmography (PPG) is a commonly used method to determine the condition of blood
vessels. With a combination of an appropriate preprocessing of the PPG signal and an ar‑
tificial intelligence (AI) algorithm, the variables for calculating physiological parameters
can be obtained, including heart rate [14,15], blood pressure [16], blood oxygen saturation
levels (SpO2) [17], biometric identification [15], and epileptic seizure detection [18]. Thus,
the utilization value of the PPG signal is very high. The measurement of PPG does not re‑
quire complex algorithms and devices. A PPG signal is convenient to detect, safe, and free
of cross‑infection. PPG signals provide people with a non‑invasive measurement method
and are a simple and effective method for monitoring human physiological signals. Al‑
though several previous studies adopted PPG to observe the fatigue index [19–21], most
of them used PPG to calculate the HRV index and then found the relationship between
HRV and fatigue. Thus, even after the use of PPG to calculate HRV, certain problems re‑
lated to HRV descriptions were still encountered [8,9].

When blood circulation is not smooth, metabolic waste accumulates in blood vessels,
stimulates nerve endings, and causes fatigue [22,23]. In such a case, PPG can be adopted
to observe the temporal intravascular blood volume changes [24] and assess the micro‑
circulation and intravascular fluid volume [25]. The motivation behind this study was to
assess and formulate novel fatigue indices utilizing PPG signals, with a specific focus on
analyzing fatigue based on the position of the dicrotic peak. The primary objectives in‑
cluded examining the correlation between various fatigue indices (such as HRV indices
and the newly proposed fatigue index) and fatigue levels as measured through question‑
naires. This analysis aimed to identify the types of indices that are most appropriate for
effectively analyzing and evaluating fatigue.

The aim of this studywas to substitute the fatigue index using PPG signals for the sub‑
jective data obtained from the (BFI)‑Taiwan form and the HRV indices obtained from PPG
signals to analyze fatigue and develop a fatigue evaluation system. Commercially avail‑
able instrumentation (COMGO, Giant Power Technology Biomedical Corp, New Taipei
City, Taiwan [26]) was adopted to collect the signals considered in this study. The mea‑
surement data were transmitted to the computer through the universal serial bus (USB),
and the proposed fatigue evaluation system was implemented using C# code executed in
a computer environment. Thus, the system could automatically analyze the fatigue value;
these results could be used to further prevent fatigue‑related problems.
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2. Related Works
Fatigue exerts a profound influence on both physical and mental well‑being. Prior re‑

search consistently underscores the detrimental implications of fatigue on health [27–29].
Recognizing the critical nature of fatigue assessment, if individuals can gain an extensive
comprehension of their fatigue levels over an extended period, they can adeptly regulate
their fatigue and potentially curtail the likelihood of complications arising from other ail‑
ments and accidents. Consequently, a plethora of subjective questionnaires have been de‑
vised to facilitate users’ direct comprehension of their fatigue status. Nonetheless, con‑
cerns often arise regarding the subjectivity of such questionnaires, raising questions about
their objectivity and scientific validation. In response, recent times have witnessed the
emergence of diverse methodologies that synergize varied physiological signals with AI
technology to comprehensively assess fatigue. The subsequent sections expound on the
distinct approaches employed for fatigue evaluation.

2.1. Subjective Fatigue Questionnaires
Subjective fatigue questionnaires involve assessing fatigue levels across various sce‑

narios and timeframes using a series of questions. Below are several commonly used ques‑
tionnaires for measuring fatigue, accompanied by brief explanations:
A. Brief Fatigue Index (BFI) [30]: A widely employed questionnaire assessing partici‑

pants’ fatigue levels within the previous 24 h;
B. Beck Fatigue Inventory (BFI) [31]: Evaluates subjective fatigue sensations and quality

of life, suitable for diverse populations;
C. Fatigue Severity Scale (FSS) [32]: Quantifies the severity of fatigue and helps discern

if fatigue impacts daily activities;
D. Multidimensional Fatigue Inventory (MFI) [33]: Assesses fatigue perceptions across

various dimensions, including physical, emotional, cognitive, and activity‑
related aspects;

E. Beijing Fatigue Questionnaire (BFQ) [34]: A Chinese questionnaire gauging the im‑
pact of fatigue on quality of life;

F. Fatigue Symptom Inventory (FSI) [35]: Evaluates different fatigue symptoms and im‑
pacts, applicable across various medical conditions;

G. Amsterdam Fatigue Questionnaire (AFQ) [36]: Designed for cancer patients, this
questionnaire measures the frequency and severity of fatigue.
While subjective fatigue questionnaires are advantageous for assessing fatigue levels,

they also possess limitations. These questionnaires directly capture participants’ subjec‑
tive perceptions of fatigue, providing insights into individual fatigue during specific time‑
frames. However, such subjective assessments can be influenced by participants’ emotions
and subjective biases, potentially introducing errors. Additionally, linguistic and cultural
factors may impact the questionnaires’ applicability, requiring cross‑cultural adaptation
and validation for effectiveness. Importantly, these questionnaires extend beyond office
workers, finding relevance among diverse global populations. In Taiwan, for instance,
around 30% of over 2.6 million office workers experience chronic fatigue. Yet fatigue tran‑
scends workplaces, affecting people worldwide and contributing to health issues and ac‑
cidents. Understanding individuals’ fatigue states supports effective fatigue management
and mitigates risks associated with other health conditions. While fatigue measurement
questionnaires have strengths, they also face limitations. Reliance on participants’ reports
may introduce subjective errors due to individual perceptions and emotions. Some ques‑
tionnaires rely on recalling fatigue experiences, subject to memory biases. Furthermore,
lifestyle factors like insufficient sleep or high workloads might not be fully considered,
impacting fatigue assessment. Language and cultural nuances may affect questionnaires’
applicability, necessitating adaptation and validation across diverse cultures.

In conclusion, fatigue measurement questionnaires offer valuable tools but require
careful consideration of their limitations. To comprehensively assess fatigue, integrating
objective physiological signals may yield more precise results.
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2.2. Objective Physiological Signals
The evaluation of fatigue using objective physiological signals encompasses a range

of methods that provide quantifiable insights into the body’s response to fatigue. These
approaches offer an invaluable alternative to subjective measures and play a pivotal role
in unraveling the intricate interplay between fatigue and physiological changes.

Among these methods, heart rate variability (HRV) stands out as a prominent and
widely used approach [2–4]. HRV leverages the variations in time intervals between heart‑
beats to gauge the activity of the autonomic nervous system. As fatigue can exert an in‑
fluence on autonomic function, HRV serves as a sensitive indicator of fatigue levels and
regulatory dynamics.

Skin Conductance [37], anothermethod, involves themeasurement of changes in elec‑
trical conductivity in response to stress and emotional states. Fatigue‑induced alterations
in skin conductance provide direct insights into the physiological impact of fatigue on the
body’s stress response.

Electroencephalogram (EEG) recordings capture the electrical activity of the brain and
offer insights into attention, focus, and cognitive states [38,39]. Changes in EEG patterns
due to fatigue signify cognitive fatigue and serve as a valuablemetric for evaluatingmental
fatigue. Furthermore, brainwave signal analysis, encompassing various frequencies like
alpha, beta, delta, and theta, reveals changes associated with attention, relaxation, and
concentration [40]. Brainwave signals furnish an objective measure of cognitive fatigue.

Electromyography (EMG), used to assess muscle fatigue, captures electrical signals gener‑
ated by muscles during contraction [41]. This method is particularly valuable in studies involv‑
ing physical tasks and sports‑related fatigue, providing objective data on muscle fatigue levels.

Pupillary response analysis involves monitoring changes in pupil size in response to
light variations, offering insights into attention and cognitive states [42]. These responses
mirror the effects of fatigue on cognitive functioning.

These objective physiological signaling methods transcend the limitations of self‑
reported questionnaires by providing quantifiable metrics. They bridge the gap between
subjective experience and objective assessment, offering a deeper understanding of how fa‑
tigue impacts various bodily functions. By decoding these signals, researchers gain crucial
insights into the intricate connections between fatigue and physiological responses, facili‑
tating informed interventions and effectivemanagement strategies. Among thesemethods,
HRV is extensively utilized in fatigue assessment due to its sensitivity to changes in the
autonomic nervous system, which are influenced by fatigue. Fatigue can impact the func‑
tionality of the autonomic nervous system, leading to fluctuations in HRV. Consequently,
HRV serves as a reliable indicator of an individual’s fatigue levels, making it a valuable
tool in fatigue evaluation.

HRV can be derived from both ECG [5,6] and PPG signals [43,44]. The ECGmeasures
the electrical activity of the heart, providing precise information about the intervals be‑
tween consecutive heartbeats. On the other hand, PPG records changes in blood volume
and blood flow by analyzing the variations in light absorption or reflection, usually from a
fingertip or wrist. Both ECG and PPG can be employed to calculate HRV, which involves
analyzing the time intervals between successive heartbeats. HRV is a valuable indicator
of the autonomic nervous system’s activity and balance, reflecting the dynamic interplay
between the sympathetic and parasympathetic branches. By assessing HRV from ECG or
PPG signals, researchers gain insights into how the autonomic nervous system responds
to various physiological and environmental factors, including fatigue. The choice between
ECG and PPG for HRV analysis often depends on the study’s objectives, the availability
of equipment, and the desired level of accuracy. ECG is considered the gold standard for
HRV analysis due to its direct measurement of electrical activity, but PPG offers a more
convenient and non‑invasive alternative. Both methods contribute significantly to the un‑
derstanding of fatigue and its physiological implications, enhancing the spectrum of tools
available for fatigue assessment and management.
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However, the susceptibility of ECG and PPG to power noise and electromagnetic in‑
terference (EMI) hampers accurate heart rate variability (HRV) analysis [7,45]. Power noise
and EMI disrupt the ECG signal, distorting it and introducing unwanted signals. This can
obscure peaks crucial for HRV analysis and complicate interval measurement. EMI fur‑
ther weakens the signal, introduces artifacts, and distorts the ECG and PPG waveforms,
undermining HRV calculations. Inaccurate HRV analysis due to these disruptions can
misinterpret autonomic nervous system activity, impacting fatigue assessment and physi‑
ological insights. The PPGmethod is relatively easier to implement, as PPG signals can be
obtainedwithout the need for electrode patches and typically only require placing a sensor
on the skin. This approach is cost‑effective and more convenient to execute, making it po‑
tentially more straightforward to calculate HRV in certain scenarios. As mentioned above,
PPG signals can also be affected by power noise and EMI, leading to signal interference
and distortion. Tomitigate these interferences and analyze ECG and PPG features, the use
of appropriate filters is necessary to ensure that the signals obtained from PPG are stable
and accurate.

Even with careful acquisition of ECG or PPG signals and precise HRV calculation,
various factors (such as respiration, physical activity, caffeine and medications, stress, and
emotional state, aswell as underlying health conditions) can influence the accuracy ofHRV
measurements [8–13]. For instance, physical activity introduces variability as movement
and exertion can alter heart rate variability, while respiration patterns, particularly during
deep or rapid breathing, can impact HRV measurements.

When blood circulation is obstructed or compromised, metabolic waste products can
accumulate within blood vessels, stimulating nerve endings. This condition may lead to
a sensation of fatigue. This phenomenon is known as lactic acidosis or tissue hypoxia.
During this process, metabolic waste products like lactic acid accumulate in tissues, po‑
tentially stimulating pain receptors and affecting nerve transmission, thereby resulting in
feelings of fatigue or discomfort [22,23]. The status of blood vessel circulation can be ob‑
served using PPG technology to monitor changes in blood volume within vessels [24,25].
Charlton et al. conducted a study to evaluate the efficacy of various features within the
PPG pulse wave for assessing mental stress [46]. The findings from their study empha‑
sized that the crest time (duration from pulse onset to peak) and diastole duration (du‑
ration from dicrotic notch to pulse end) emerged as viable options for stress assessment.
Additionally, the analysis suggested that the radial artery was more suitable for stress as‑
sessment compared to the brachial or temporal arteries. Enhancing performance might
involve combining crest time and diastole duration with other attributes derived from the
second derivative of the PPG, which remains unaffected by heart rate variations. PPG
has diverse clinical applications, including physiological monitoring (oxygen saturation,
heart rate, blood pressure, respiration), vascular assessment (arterial health, compliance,
endothelial function, microvascular flow), and autonomic function evaluation (vasomotor
activity, blood pressure, heart rate variability). PPG’s pulse wave characterization reveals
these associations [47]. Therefore, this study departs from using the HRV method and in‑
stead examines the position of the dicrotic peak, which appears to vary under different
fatigue states. Thus, the position of the dicrotic peak is used to define the fatigue index.

3. Method
Figure 1 shows the overall workflow of this study. In this study, the subjective fa‑

tigue scores were derived from the BFI Taiwan questionnaire, while PPG signals were cap‑
tured using the COMGO measurement device. Subsequently, to address potential noise
interference and individual variations inherent in PPG signals during measurements, a
preprocessing step was employed to suppress signal noise and standardize the data. Fol‑
lowing preprocessing, the signals underwent the peak detection methods introduced in
this paper to identify key points—pulse onset, systolic peak, dicrotic notch, and diastolic
peak—for each cycle within the PPG signal. Once these four distinctive points were estab‑
lished for each PPG cycle, the systolic peak was utilized to define the HRV index, whereas
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the diastolic peak and systolic peak were employed to define the proposed fatigue index.
Subsequent to this, the relationship between NHF within the HRV index, the proposed fa‑
tigue index, and the subjectively assessed fatigue state gleaned from the questionnaire was
evaluated using the correlation coefficient. Utilizing the correlation coefficient, this study
determined which subjective fatigue items in the questionnaire exhibit strong correlations
with the NHF and the proposed fatigue index. Given the questionnaire’s multiple fatigue
feedback items, this step aimed to identify thosemost closely alignedwith theNHF and the
proposed fatigue index. Subsequently, a linear regression analysis was conducted to estab‑
lish a model wherein the corresponding subjective fatigue state is the output, while NHF
and the proposed fatigue index serve as inputs. This model offers flexibility to predict the
subjective fatigue state using either the NHF or the proposed fatigue index. Furthermore,
the correlation coefficient was employed to assess the relationships between predicting
the subjective fatigue state using either the NHF or the proposed fatigue index and the ac‑
tual subjective fatigue state. This evaluation helps discern which index is better suited for
predicting the subjective fatigue state. The resultant linear regression function was then
translated into a C# implementation, giving rise to a real‑time fatigue analysis system that
facilitates on‑the‑fly assessment of fatigue levels. Subsequent sections of this paper will
provide detailed elaborations on each of these methods.
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3.1. Participants
Sixteen healthy adults (16 males, ages: 22–24) participated in this study. None of the

participants had chronic illnesses or sleep disorders. The Institutional Review Board of the
National Yang Ming Chiao Tung University approved the experimental protocol (NCTU‑
REC‑109‑001F) used in this study. None of the participants were aware of the hypotheses
being tested. All of the participants provided their informed consent prior to any experi‑
mentation. The experiment took place in the afternoon (2–3 PM). The tester explained the
measurement questionnaires: Brief fatigue index (BFI)‑Taiwan form [30]. Once the partici‑
pants understood the content of these questionnaires, they could fill them out easily. Next,
the tester explained the operation mode of the cardiovascular measuring instrument and
let the participants understand how to use the instrument to measure the PPG signals in
order to avoid the possible termination of the experiment caused by the participants’ lack
of understanding of how to use it. Beforemeasuring the PPG signals, the participants were
asked to rest for 5–10 min until they felt relaxed.

This study was to represent an initial exploration of the relationship between novel
fatigue indices derived from PPG signals, with a specific emphasis on assessing fatigue
based on the position of the dicrotic peak. In the future, we aim to expand the scope of
our research by including a broader range of age groups and gender diversities, thereby
enhancing the comprehensiveness of our analysis.

3.2. Data Acquisition
Two types of data were considered in this study: behavior data and PPG signals. The

behavior data were the subjective data obtained from a brief fatigue index (BFI)‑Taiwan
questionnaire [30]. The PPG signals were the objective data measured using the COMGO
device (Giant Power Technology Biomedical Corp., New Taipei City, Taiwan [26], Taiwan
Food and Drug Administration No. 007249) and adopted to develop the objective index
for fatigue. Behavior data encompassed subjective assessments of fatigue levels across var‑
ious situations and time periods through questionnaires. In contrast, PPG signals were em‑
ployed to capture physiological indices, encompassingHRV indices and a newly proposed
fatigue index in this study. The novel fatigue index was defined based on the position of
the dicrotic peak. Subsequently, a sequential analysis can be conducted to determine the
physiological indices that exhibit correlations with fatigue.

3.2.1. Behavior Data
This study adopted the brief fatigue index (BFI)‑Taiwan questionnaire [30] to evaluate

the subjective fatigue state. The BFI questionnaire is a simple survey used to assess indi‑
viduals’ fatigue levels in different situations and time periods. Its design aims to rapidly
collect participants’ subjective fatigue perceptions, allowing for a quick and convenient
quantification of their fatigue levels. Additionally, since the participants are all Taiwanese,
the questionnaire is more easily understood by them due to its content being tailored to
their cultural context. The aim of this study was to determine the type of features that
could reflect the fatigue status of the previous day. In the BFI‑Taiwan form [30], there
were nine questions in all, as shown in Table 1. Each question was assigned a score of 0 to
10 for the subject to choose, and the grading standard is presented in Table 2. The defini‑
tions presented in Tables 1 and 2 originate from the BFI‑Taiwan form itself [30]. However,
considering that the questionnaire is in Chinese, this study has undertaken the task of
translating the content into English to facilitate readers’ comprehension.
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Table 1. Nine questions in the questionnaire.

Item Questions in BFI‑Taiwan Form

1 Current level of fatigue
2 Level of general fatigue in the past 24 h
3 Level of most exhaustion in the past 24 h
4 Fatigue affects the level of general activity in the past 24 h
5 Fatigue affects the level of mood in the past 24 h
6 Fatigue affects the level of walking ability in the past 24 h

7 Fatigue affects the level of Daily work (including going out to work and housework) in
the past 24 h

8 Fatigue affects the level of social interaction in the past 24 h
9 Fatigue affects the level of enjoyment of life in the past 24 h

Table 2. Grading standard in BFI‑Taiwan Form.

Score Fatigue State

0 No feeling of fatigue at all
1–3 A little tired (not tired most of the time, but occasionally a little tired)
4–6 Moderately tiring and tolerable (tired for about half the time)
7–9 Quite tired (feeling tired most of the time)
10 Very tired (feeling tired all the time)

3.2.2. PPG Signals
In this study, the COMGO device was used to measure the PPG signals for 2 min at a

sampling rate of 200 Hz. In the Taiwanese market, wearable devices with comprehensive
physiological sensing are rare. The COMGO device stands out by merging smart health
bracelet features and offering various functions. Unlike similar products focusing on heart
rate alone, COMGO encompasses blood pressure, oxygen levels, body temperature, ECG,
and vascular elasticity monitoring. Utilizing simultaneous finger artery measurements
for PPG signals, it transmits data via Bluetooth to a smartphone, then to the cloud via a
network (4G, 5G, or Wi‑Fi). Portable and compact, COMGO enables convenient and rapid
PPG measurements, vital for identifying fatigue‑related traits.

3.3. PPG Preprocessing
Whenmeasuring PPG signals, it is possible to encounter various types of noise. These

noises can originate from multiple sources, including environmental, physiological, and
equipment‑related factors, resulting in abnormalities or variations in PPG signals [48,49].
Therefore, during the processing and analysis of PPG signals, appropriate data preprocess‑
ing and filteringmethods are necessary tomitigate the impact of these noises on the results.
In this study, the received PPG signals (Figure 2a) were sequentially processed by using
a bandpass filter from 0.5 to 8 Hz in order to remove the DC offset and the PPG drift that
occurred when the fingers were shaking (Figure 2b) and normalized, which set the value
of the filtered PPG signal to be in the range of −1 to 1 (Figure 2c) [50].

Figure 2b shows that the filter frequency between 0.5 Hz and 8 Hz could not only
eliminate the drift voltage but also maintain the amplitude of the original signal [50]. The
signals at other frequencies would have the same obvious attenuation. After filtering the
PPG signal, the mean normalization method was employed for subsequent analysis and
comparison. This step aimed to confine the amplitude range of each individual’s PPG
signal between −1 and 1, thereby addressing the significant data gap [51,52] as outlined
by Equation (1):

Xnormalize = 2 × x
xmax − xmin

(1)

where xmax indicates the maximum of the filtered PPG signal, and xmin represents the min‑
imum of the filtered PPG signal.
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3.4. Peak Detection Methods
When the preprocessing was completed, the peak of the PPG signal was captured

using the proposed peak detection method. The definition of a cycle in the PPG signal
was from the beginning of the heart contraction to the next contraction. That is, the time
period between two adjacent troughs in each cycle. In order to capture the physiological
information from the PPG signal, it was necessary to calculate the positions of the pulse
onset, systolic peak, dicrotic notch, and diastolic peak in each cycle.

3.4.1. Systolic Peak
PPG was a continuous and fixed‑frequency signal, therefore requiring the definition

of how to calculate a computing cycle interval while simultaneously encompassing pulse
onset, systolic peak, dicrotic notch, and diastolic peak. The highest peak in a single‑cycle
PPG signal was the systolic peak. This peak was formed by the direct transmission of the
pressure of the cardiac contraction to the end of the measuring device, which resulted in
the maximum volume and blood flow in the artery. The systolic peak was a representative
feature point in the PPG signal. Furthermore, the cycle had to be defined first to obtain the
systolic peak. This study adopted the derivative‑based approach by identifying the zero
crossing points [53,54] to evaluate the computing cycle as follows:
1. Extract a 10‑s normalized PPG signal (Figure 2c) to evaluate the computing cycle;
2. Define a suitable cycle during the 10‑s PPG signal. The default calculation cycle is

10 points;
A. Determine the maximum point point(n) within each of the 10 points by using

the max function (a MATLAB R2022bfunction).
B. Evaluate the adjacent maximum point to define it slope(n) according to

Equations (2) and (3):

i f point(n) < point(n + 1), slope(n) = 1 (2)
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i f point(n) ≥ point(n + 1), slope(n) = 0 (3)

C. Use the location of point(n) corresponding to slope(n) = 1 and slope(n + 1) = 0 to
find themaximum point from point(n) to point(n) + size of cycle. This maximum
point is the temple systolic peak.

D. Calculate the average difference among the adjacent temple systolic peaks and
then average the estimates divided by the sample rate (200 Hz); this is the
heart rate.

E. If the heart rate is smaller than 0.3 or greater than 1.5 s [55], add 5 points to the
cycle and go back to Step A.

3. Adopt the calculation cycle for the 2‑min normalized PPG signal and obtain the high‑
est peak in each cycle. Thus, the systolic peak is obtained.

3.4.2. Pulse Onset
The lowest peak in a single‑cycle PPG signal is the pulse onset. The pulse onset is

usually located between the previous diastolic peak and the systolic peak of the next cycle.
This study adopted the obtained calculation cycle for the 2‑min normalized PPG signal
and determined the pulse onset by using the min function (a MATLAB function).

3.4.3. Dicrotic Notch and Diastolic Peak
A dicrotic wave, including the dicrotic notch and the diastolic peak, is the critical

duration when the systole and the diastole occur (Figure 3). However, the turning point of
the dicrotic wave is not necessarily obvious. The location of the dicrotic wave is affected
by many physiological factors and causes the dicrotic wave to be inconspicuous [56], as
shown in Figure 3b. In contrast, Figure 3a shows the conspicuous dicrotic wave, and thus,
the dicrotic notch and the diastolic peak can be obtained easily.
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Figure 3. (a) Conspicuous dicrotic wave. (b) Inconspicuous dicrotic wave.

According to the different conditions of the dicrotic wave, this study proposed two
strategies to obtain the dicrotic notch and the diastolic peak as follows:
1. Extract the PPG signal from the cycle of the systolic peak to the cycle of the systolic

peak plus half of the time difference between the cycle of the systolic peak and the
next cycle of the pulse onset, and calculate the differential signal using the first‑order
derivatives (Equation (4)):

y[n] = x[n]− x[n − 1] (4)
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where y[n] denotes the first‑order derivatives of the normalized PPG signal. Next x[n]
represents the normalized PPG signal and n refers to the time point. If some values of
the first‑order derivatives are greater than zero, the locations of zero in the first‑order
derivatives are the dicrotic notch and the diastolic peak.

2. If no value of the first‑order derivatives is greater than zero, the first‑order derivatives
are adopted to y[n]. That is, this study applied the second‑order derivatives to the
normalizedPPG signal. Themaximumandminimumof the second‑order derivatives
were the dicrotic notch and the diastolic peak (Figure 4).
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3.5. HRV Indices
Some previous studies suggested that the HRV indices can respond to

fatigue [2,3,19–21]. Thus, this study also evaluated the relationship between HRV indices
and fatigue. TheHRV indices were calculated using the R‑R interval of the ECG signal [57].
The R‑R interval required the tracking of small changes (milliseconds) in the intervals be‑
tween successive heartbeats (the R peak) in the EEG signal. Furthermore, the R‑R interval
was similar to the interval between the adjacent systolic peaks of the PPG signal [58,59].
This study adopted the PPG signal to obtain the R‑R interval and then evaluated the HRV
indices as follows:
1. TheR‑R intervalwas calculated according to the interval between the adjacent systolic

peaks of the PPG signal, as shown in Figure 5. Each R‑R interval responded to the
time point of the previous systolic peak;

2. Furthermore, the R‑R interval was resampled in this study. The resample function
(Signal Processing Toolbox in MATLAB) was used to resample the R‑R interval to
250 Hz;
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3. The resampled R‑R interval was subjected to the fast Fourier transform with a Ham‑
mingwindow. This study focused on three frequency bands: theVLF (0.003–0.04 Hz),
LF (0.04–0.15 Hz), and HF (0.15–0.4 Hz) [60]. The powers of the LF and HF were nor‑
malized by the total powerminus the power of the VLF, representing the components
in normal units (NLF and NHF) as follows:

NLF =
LF

(totoal power−VLF)
× 100 (5)

NHF =
HF

(totoal power−VLF)
× 100 (6)

where total power = LF + HF +VLF. The representation in normalized units tended
to minimize the effects of the changes in total power on the values of LF and HF [61]
and attempted to separate out the influence of the sympathetic and parasympathetic
nervous systems on the sympathovagal balance [62]. The sympathovagal balancewas
calculated by using the ratio of the LF power to the HF power (LF/HF ratio);

4. Sympathetic andparasympathetic activitywere closely linked to emotion [63,64]. The
higher sympathetic tone (NLF) responded to the tense, anxious, and excited emotion,
and the higher parasympathetic tone (NHF) responded to the tired, calm, and happy
emotion [65]. In addition, Jeong et al. suggested that [4] the index of the parasympa‑
thetic nerve (NHF) was more obvious than that of the sympathetic nerve (NLF) with
respect to the fatigue index. Thus, this study attempted to evaluate the relationship
between NHF and fatigue. In addition, the range of values for NHF was from 0 to
100. The range of subjective fatigue and the proposed fatigue index were from 0 to
10. The range of NHF values had been changed to 0 to 10.
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Figure 5. The R‑R interval is defined as the time interval between adjacent systolic peaks (red *).

3.6. Fatigue Index
Whenblood circulation encounters obstruction, there’s a potential formetabolicwaste

products to accumulatewithin bloodvessels, subsequently stimulating nerve endings. This
scenario necessitates the heart to exertmore effort in processing the accumulatedmetabolic
waste, thereby resulting in fatigue [22,23]. From the perspective of the overall blood cir‑
culation, if the heart has to overcome excessive vascular pressure during its contraction,
this could impede the propagation of pressure waves during cardiac contractions, conse‑
quently leading to a relatively higher position of the dicrotic peak. Therefore, a relatively
higher position of the dicrotic peak may suggest alterations associated with fatigue [66].
Consequently, this study employed the position of the dicrotic peak to formulate the fa‑
tigue index (as depicted in Figure 6) using the following approach:
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1. Obtain the vertical height of the systolic peak as x, and define the half of x as the zero.
Then, the new range is defined from zero to the systolic peak and mapped to 0–10,
which corresponds to the score of the brief fatigue index (BFI)‑Taiwan form [30];

2. Calculate the position of the dicrotic peak from the defined range in each cycle. The
position is one fatigue index in one cycle of the PPG signal;

3. Calculate all the fatigue indices during the 2‑min measurement, and then calculate
the average of all of the fatigue indices. Thus, the average fatigue index is defined to
represent the objective index of fatigue for the participants.
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3.7. Linear Regression
A linear regression model is a regression analysis that estimates the relationship be‑

tween one or more independent variables and dependent variables. The common linear
regression is a least‑squares fit, which can fit both lines and polynomials, among other
linear models [67,68].

This study utilized linear regression to examine the association between the subjec‑
tive fatigue state assessed using the brief fatigue index (BFI)‑Taiwan form [30], the NHF,
and the proposed fatigue index. Additionally, linear regression was employed to predict
the fatigue state from the BFI‑Taiwan form, employing distinct predictors (NHF and the
proposed fatigue index). This approach aimed to develop a model that leveraged physio‑
logical indices for the prediction of fatigue levels. The regressionmodel could be described
as follows:

Y = a + bX (7)

where Y denotes the subjective fatigue state, while X can be NHF or the proposed fatigue
index. The regression coefficients a and b were determined using the MATLAB function
“regress” (Statistics Toolbox), which minimized the sum of the squared residuals of the
model.

3.8. Correlation Coefficient
The correlation coefficient between two random variables serves as an indicator of

their degree of linear interdependence. Pearson’s correlation coefficient is a prevalent tech‑
nique for quantifying a linear correlation [69]. It gauges both the intensity and direction of
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the relationship between two variables by assigning a numerical value between −1 and 1,
as shown in Equation (8):

r = ∑n
i=1

(
Xi − X

)(
Yi − Y

)√
∑n

i=1
(
Xi − X

)2
√

∑n
i=1

(
Yi − Y

)2
(8)

where Xi and Yi denotes the data points of two variables, and each variable has n scalar
observations. X and Y represent the mean of two variables. In addition to its application
in linear regression within this study, Pearson’s correlation coefficient can be effectively
employed to measure the relationship between two variables. This encompasses various
scenarios, such as comparing the estimated subjective fatigue state obtained through linear
regression and the proposed fatigue index with the actual subjective fatigue state, evaluat‑
ing the connection between NHF and the actual subjective fatigue state, and investigating
the correlation between the proposed fatigue index and the real subjective fatigue state.

3.9. Fatigue Evaluation System
In this study, the proposed fatigue evaluation systemwas implemented usingC# code

that can be executed within a computer environment. Users are required to measure PPG
signals using the COMGO device and subsequently transfer the collected data to the sys‑
tem on a computer via USB. Following this, users have the option to input their name in
the designated field labeled ‘please enter a name’ and upload the recorded PPG file by
activating the ‘Open file and Test’ button (as depicted in Figure 7). Subsequently, the sys‑
tem automatically analyzes the fatigue index and displays the corresponding information,
including the name and fatigue index, in a table. If the fatigue index, as elaborated in
Section 3.6, exceeds a threshold of 6, the system provides a reminder to the participants to
take a rest.
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4. Results
4.1. Performance of PPG Peak Detection and Proposed Features for Fatigue Index

This study introduced PPG preprocessing and peak detectionmethods. Figure 8 illus‑
trates the performance of the PPG preprocessing and peak detection techniques employed
in this study. The outcomes demonstrate the accurate detection of pulse onset, systolic
peak, dicrotic notch, and diastolic peak utilizing the proposed method. This study pro‑
posed features for the fatigue index based on the PPG signal. This pattern was observed in
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our recording data, where the different amplitudes of diastolic peaks responded to differ‑
ent fatigue conditions. The development of the fatigue index was based on the amplitude
of diastolic peaks (Figure 6). Figure 8 shows that the different locations of the diastolic
peak could represent the fatigue index.
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4.2. Data Distribution of Subjective Fatigue State, NHF, and Proposed Fatigue Index
In all, 16 healthy adults participated in this study. The data considered in this study

included the subjective fatigue state obtained from the BFI‑Taiwan form, the objective
NHF, and the proposed fatigue index estimated from the PPG signals. Figure 9 shows
the data distribution of the subjective fatigue state, NHF, and the proposed fatigue index
of 16 healthy adults (histogram function inMATLAB). This study employed the Anderson‑
Darling test (adtest function, statistics, and machine learning toolbox in MATLAB), a sta‑
tistical method, to determine if a given dataset is drawn from a normal distribution. The
Anderson‑Darling test assesses the fit of the data to a theoretical normal distribution by
considering both themean and the variance of the data. It provides a quantitative measure
of how well the observed data aligns with the expected distribution, allowing researchers
to make informed judgments about the normality of the dataset under examination [70].
In MATLAB, the “adtest” function was utilized as a means of testing the null hypothesis
that the data within the vector “x” originated from a population characterized by a normal
distribution. The result h returned by the adtest function was 1 if the test rejected the null
hypothesis and then indicated that x was not from a populationwith a normal distribution.
Except for questions (3), (6), (8), and (9) and the proposed fatigue index, most of the data
had a normal distribution (h = 0).
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4.3. Relationship among Subjective Fatigue State, NHF, and Proposed Fatigue Index
Figure 10 shows the scatter plot for three datasets: the subjective fatigue state, the

NHF, and the proposed fatigue index. Because the aim of this study was to substitute the
fatigue index obtained using PPG signals for the subjective data obtained from the (BFI)‑
Taiwan form and the HRV indices estimated from PPG signals to analyze fatigue, the last
two rows of the scatter plot shown in Figure 10 were further explored; they revealed a line
relationship between the questions from the BFI‑Taiwan form and the proposed fatigue
index. Thus, this study adopted Pearson’s correlation coefficient to evaluate the relation‑
ship among the subjective fatigue state, NHF, and the proposed fatigue index, as shown
in Figure 11. The results revealed that only two questions were related to the proposed
fatigue index: (2) Level of general fatigue in the past 24 h (r = 0.8743) and (3) Level of
being most exhausted in the past 24 h (r = 0.5328).

In contrast, NHF had a low correlation for all nine questions ( r = −0.1510 ∼ 0.4787).
The reason why NHF was unable to respond to fatigue was that the participants adjusted
their breathing and the parasympathetic nerve effectively deepened, or the influence of
the current mood [8,9]. Previous research suggested that irregular respiration can change
sympathovagal activities or their balances, as reflected in the HRV indices [71–75]. Lin
et al. also showed that controlled breathing may be effective in controlling nausea and en‑
hancing autonomic function by decreasing sympathetic activity and increasing parasym‑
pathetic activity [9].

The degrees of subjective fatigue in the past 24 h could be represented by two ques‑
tions (2) and (3) (Figure 11) and related to the proposed fatigue index using the PPG signals.
This study attempted to average the scores for questions (2) and (3) in the BFI‑Taiwan form
to represent the revised subjective fatigue state of the participants. In addition, this study
adopted linear regression (the regress function of the statistics toolbox inMATLAB) to esti‑
mate the relationship between the revised subjective fatigue state and the proposed fatigue
index and NHF using PPG signals (Figure 12). The results shown in Figure 12 revealed
that Pearson’s correlation coefficient between the revised subjective fatigue state and the
proposed fatigue index was 0.907 and represented a high positive correlation. Therefore,
it could be suggested that the proposed fatigue index was positively correlated with the
fatigue level felt by the participants. In contrast, the linear regression of NHF relative to
the revised subjective fatigue was low (r = 0.14875). This observation corresponds to the
trends depicted in Figures 10 and 11, indicating a limited correlation between NHF and
the subjective fatigue state. On the other hand, the fatigue index introduced in this study,
derived from the position of the dicrotic peak, demonstrates a robust connection with the
subjective fatigue state. While earlier literature has suggested a link between NHF and
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fatigue [2–4], it is important to note that numerous studies have underscored the influence
of diverse factors (such as respiration, physical activity, caffeine and medications, stress
and emotional state, and underlying health conditions) on the accuracy of HRV measure‑
ments [8–13]. In contrast, the fatigue index proposed in this paper, relying on the PPG
dicrotic peak’s position, aligns with prior research highlighting the effectiveness of var‑
ious PPG pulse wave features in assessing mental states [46,47]. Moreover, it resonates
with the broad range of physiological monitoring applications encompassing oxygen sat‑
uration, heart rate, blood pressure, respiration for pulse wave characterization, arterial
health assessment, compliance, endothelial function, and microvascular flow for vascular
evaluation, as well as vasomotor activity and heart rate variability for autonomic function
assessment. This demonstrates that PPG signals extend beyond their role in HRV or heart
rhythm assessment, incorporating a diverse array of implications within their waveform
characteristics.
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Figure 12. Relationship between subjective fatigue state and proposed fatigue index and NHF us‑
ing PPG signals using linear regression. (a) Linear regression between subjective fatigue state and
proposed fatigue index. (b) Linear regression between subjective fatigue state and NHF.

The results shown in Figure 12 revealed that the subjective fatigue state could be ob‑
tained by Equation (9) using the proposed fatigue index using the PPG signals:

Subjective fatigue state = 0.6 × fatigue index+ 3.1 (9)

4.4. Fatigue Evaluation System
This study implemented PPG processing, peak detection method, fatigue index, and

Equation (9) using C# in a computer environment. The measurement file from COMGO
was transmitted and saved to the computer through the USB. The participants could enter
their names and upload the measurement file by pressing the button “Open file and Test”
(Figure 7). The system then automatically analyzed the fatigue index and reminded the
participants to take rest if the fatigue index was greater than 6 (Figure 13).
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Figure 13. Fatigue evaluation system in this study. The system reminded the subject to take rest if
the fatigue index was greater than 6. The確認 in the ‘Attention’ window indeed means to confirm
the content.

5. Conclusions
This study proposes a novel fatigue index derived from PPG signals, with a specific

focus on the position of the dicrotic peak. The proposed fatigue index is utilized to replace
subjective data collected through the (BFI)‑Taiwan form and the HRV indices obtained
from PPG signals in order to evaluate fatigue levels. This research departs from tradi‑
tional approaches by formulating the fatigue index based on distinct PPG waveform char‑
acteristics rather than relying on HRV. Additionally, a comparative analysis is conducted
to examine the relationship between the fatigue index derived from PPG waveform char‑
acteristics, HRV, and the subjective fatigue assessment in the BFI form. The study also
proposes PPG preprocessing and peak detection techniques. The findings demonstrate
a robust correlation between the scores of questions in the BFI‑Taiwan form and the pro‑
posed fatigue index. Of particular significance is the notable correlation observed between
two specific questions and the proposed fatigue index: (2) Level of general fatigue in the
past 24 h (r = 0.8743) and (3) Level of most exhaustion in the past 24 h (r = 0.5328). How‑
ever, the correlation with HRV (HF) remains moderate. As a result, this investigation cal‑
culates an average of the scores from questions (2) and (3) in the BFI‑Taiwan form to repre‑
sent participants revised subjective fatigue states. Through the application of Equation (9)
with the proposed fatigue index derived from PPG signals, a strong correlation (r = 0.907)
is established, validating the potential effectiveness of Equation (9). This equation can
seamlessly integrate into a C# framework to establish a comprehensive fatigue evaluation
system, thereby offering valuable insights for individuals seeking to effectively address
fatigue‑related concerns. The incorporation of timely reminders serves to alert users when
their index surpasses a predefined threshold, thereby cultivating heightened awareness
of their physical well‑being. Moreover, this study emphasizes that PPG signals surpass
their traditional role in HRV, or heart rhythm assessment, encompassing a diverse range
of implications within their waveform characteristics.

This study possesses three primary limitations, each offering opportunities for future
research enhancement. Firstly, the effect estimates utilized in the adopted approach relied
on a relatively modest sample size comprising only 16 healthy adults. To bolster the sta‑
tistical robustness, expanding participant numbers and encompassing diverse age groups
and genders would be advisable. Furthermore, integrating deep learning techniques for
estimating fatigue states could introduce advanced analytical capabilities. Secondly, it
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is plausible that there exist additional factors beyond those addressed in this study that
could impact fatigue state prediction. Elements like climatic variations, BMI, age, gender,
and others may also exert influence. Consequently, future investigations should consider
the inclusion of these variables to foster a more comprehensive grasp of the subject mat‑
ter. Thirdly, alternate equipment alternatives, such as Doppler ultrasoundmachines, offer
the capacity to visualize specific arteries and their blood flow dynamics through dynamic
imaging. By engaging diverse measurement devices, it may be feasible to scrutinize cor‑
responding vascular conditions or capture finer PPG‑related features. Delving into the
utilization of different measurement tools in forthcoming research would contribute valu‑
able insights, potentially unveiling supplementary features and augmenting the precision
of fatigue state prediction within our study.
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