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Abstract: Simultaneous monitoring of the process parameters in a multivariate normal process has
caught researchers’ attention during the last two decades. However, only statistical control charts
have been developed so far for this purpose. On the other hand, machine-learning (ML) techniques
have rarely been developed to be used in control charts. In this paper, three ML control charts are
proposed using the concepts of artificial neural networks, support vector machines, and random
forests techniques. These ML techniques are trained to obtain linear outputs, and then based on the
concepts of memory-less control charts, the process is classified into in-control or out-of-control states.
Two different input scenarios and two different training methods are used for the proposed ML
structures. In addition, two different process control scenarios are utilized. In one, the goal is only the
detection of the out-of-control situation. In the other one, the identification of the responsible variable
(s)/process parameter (s) for the out-of-control signal is also an aim (detection–identification). After
developing the ML control charts for each scenario, we compare them to one another, as well as to the
most recently developed statistical control charts. The results show significantly better performance
of the proposed ML control charts against the traditional memory-less statistical control charts in
most compared cases. Finally, an illustrative example is presented to show how the proposed scheme
can be implemented in a healthcare process.

Keywords: process monitoring; machine-learning techniques; simultaneous process parameters
monitoring; multivariate normal process; simulation

MSC: 62P30; 68T20; 68T09; 62P10; 62H10; 62H12; 62-08

1. Introduction

When there are more than two quality characteristics to be monitored in a process,
multivariate control charts can be employed in the process monitoring context. In a
multivariate normal process, there are two process parameters, i.e., the mean vector and
the variance–covariance matrix. Simultaneous monitoring of these parameters is usually
preferred over monitoring only one of them due to its better overall performance. We have
two main simultaneous process parameters monitoring schemes: (i) a single-chart scheme
and (ii) a double-chart scheme. In a single-chart scheme, only one chart for both process
parameters is used, and in a double-chart scheme, one chart for each process parameter
is employed. A single-chart scheme is usually preferred due to its simplicity, considering
only one control chart should be administrated in a single-chart scheme in comparison
to the double-chart scheme, in which two control charts should be administrated at the
same time. Reynolds and Gyo-Young [1], Hawkins and Maboudou-Tchao [2], and Zhang
and Chang [3] studied double-chart cases, and Khoo [4], Zhang et al. [5], Wang et al. [6],
Sabahno et al. [7–9], Sabahno and Khoo [10], and Sabahno [11] investigated single-chart
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cases. Sabahno et al. [9] proposed new memory-less statistical control charts with fixed
and adaptive design parameters (sample size, sampling interval, and control limits) for
simultaneous monitoring of multivariate normal process parameters. They used two
statistics each for monitoring one process parameter, but in the end, they combined them
into one statistic.

Machine-learning techniques have been extensively used for process monitoring with
control charts for different reasons, such as dimension reduction, pattern recognition,
change point estimation, signal detection, identification, and fault diagnosis. Artificial neu-
ral network (ANN) is the most used ML technique in this regard. Some of the most notable
research that employed ML techniques in control charts are that conducted by Chang and
Ho [12], Niaki and Abbasi [13,14], Cheng and Cheng [15], Abbasi [16], Salehi et al. [17],
Hosseinifard et al. [18], Weese et al. [19], Escobar and Morales-Menendez [20], Apsemidis
et al. [21], Mohd Amiruddin et al. [22], Diren et al. [23], Yeganeh et al. [24], Moham-
madzadeh et al. [25], and Sabahno and Amiri [26], and Yeganeh et al. [27–29].

ML structures have rarely been used to construct control charts in the literature. Niaki
and Abbasi [14] developed a perceptron neural network for monitoring and classifying
mean shifts in multi-attribute processes. Hosseinifard et al. [18] developed three ANN
control charts for monitoring simple linear profile parameters (the intercept, the slope, and
the residual variance). One of their control charts was involved in detection and identifi-
cation, while the other two were only involved in detection. Mohammadzadeh et al. [25]
developed an SVR (support vector regression) control chart for monitoring a logistic profile
by extending Hosseinifard et al.’s [18] paper. Sabahno and Amiri [26] developed different
statistical and machine-learning-based control charts with fixed and variable design pa-
rameters to monitor generalized linear regression profiles. Yeganeh et al. [27] extended
Hosseinifard et al.’s [18] work for social network surveillance. Yeganeh et al. [28] proposed
an ANN-based control chart to monitor binary surgical outcomes, while in another study,
Yeganeh et al. [29] proposed ML-based control charts for monitoring autocorrelated profiles.

The previously mentioned papers have utilized machine-learning (ML) techniques
for regression to construct control charts. While our approach in this paper is similar to
theirs, by proposing a special input set for ML structures (our first input scenario), we
extend them to address multivariate processes and enable simultaneous monitoring of their
parameters. Moreover, while they employed a single ML structure to build their control
charts, we utilize multiple machine-learning techniques and extensively compare them in
different scenarios. Additionally, all the ML control charts mentioned above solely trained
their ML structures using a random shift size to represent out-of-control data. In contrast,
we employ an alternative method in addition to this approach.

In this paper, for the first time in the literature, the ANN, SVM (support vector
machine), and RF (random forest)-based control charts are proposed for simultaneous
monitoring of multivariate normal process parameters. We use two different input scenarios
(in one of them, for the first time the two statistics used by Sabahno et al. [9] are utilized
as the inputs) and two different control scenarios (detection and detection–identification).
We also use two training methods to see which types of datasets suit each ML structure
better (in one we train the ML structures with small shifts and in the other one, for the
first time, we train them with both small and large mean shifts). The ML control charts
are developed in the cases of two, three, and four quality characteristics, based on which
their performances with one another, and with the proposed statistical control charts by
Sabahno et al. [9], are compared.

This paper is structured as follows: In Section 2, machine-learning control charts are
developed. In Section 3, different models are developed, and then extensive numerical
analyses in each scenario under different separate and simultaneous shift sizes are con-
ducted. In Section 4, an illustrative example is presented. In Section 5, concluding remarks
and suggestions for future research are discussed.
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2. Machine-Learning Control Charts

In this section, three ML control charts are proposed. After obtaining the ML structure
for each control chart, which is explained later in Section 3, the upper control limit (UCL)
of each control chart is obtained using the after-mentioned algorithm. First note that the
design parameters in a control chart are the sample size n, the sampling interval t, and the
probability of type-I error α.

The monitoring strategy for each ML control chart is as follows:

• If at sample i, the ML structure’s output ≤ UCL, then the process is in control;
• If at sample i, the ML structure’s output > UCL, then the process is declared out-of-

control.

The following algorithm can be used to compute the UCLs:

Step 1. Choose a value for α and n;
Step 2. Choose and train an ML structure;
Step 3. Obtain the initial value of UCL by generating and sorting 10,000 in-control samples

in ascending order using the ML structure and choosing the [10,000(1− α)]th value
in the range;

Step 4. Run 10,000 simulations and adjust the UCL so that the average of 10,000 run lengths
(ARL) is 1/α .

The best way to estimate the UCL is to employ the above algorithm. However, it
might be very time- and energy-consuming, especially if one is conducting many numerical
analyses and should estimate many UCLs for different parameter settings. An easier way
with almost the same accuracy is to obtain the value of the UCL by generating and sorting
10,000 in-control samples in ascending order and then choosing the [10,000(1 − α )]th
value in the range, repeating this 10,000 times, and finally taking the average of these
10,000 values. This proposed approach works very well in memory-less schemes in most
cases; however, it is better to confirm its result using step 4 of the above algorithm.

Instead of using a statistic and developing a control chart using it, one can use super-
vised ML techniques. As in this research, we only need linear (continuous) outputs from
the ML techniques (because, as mentioned before, we then apply a classification method to
their linear outputs); the types of ML techniques that can be used are limited because not
all ML techniques are capable of regression. However, fortunately, the most popular ML
techniques, namely ANN, SVM, and RF, are also capable of generating linear (regression)
outputs.

In what follows in the next subsections, each of the ML techniques is shortly described.
It should also be noted that after the ML structures are trained, they are tested and validated
by achieving the desired in-control performance of the control chart. This is explained later
in Section 3.

2.1. ANN Control Chart

ANN is one of the most popular ML techniques that mimics human brain activity. It
has one input layer, a different number of hidden layers, and one output layer, and each
layer contains at least one node. ANNs with more than one hidden layer are called deep-
learning techniques. ANNs can be used for both classification and regression. Determining
the number of nodes in each layer and the number of hidden layers is very important in
ANNs, which can be carried out using the trial-and-error method. For simple problems,
one hidden layer usually works best. Regarding the number of nodes in the hidden layer,
although there are some rules of thumb, there is no solid rule in this regard, and the number
of nodes should be determined to obtain the desired performance.

Another problem in ANNs is determining the optimal values of the connection weights
and node biases. There are several optimization algorithms used in ANNs for this purpose,
among which are gradient descent, stochastic gradient descent, mini-batch gradient descent,
Broyden–Fletcher–Goldfarb–Shanno (BFGS), momentum, Nesterov accelerated gradient,
Adagrad, AdaDelta, and Adam. In this research, we use the BFGS optimization method,
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which is a variant of the gradient descent method. The reason for this is simply that it is
the only optimization method that our selected R package (‘nnet’ package) uses (for more
information about the computer package, refer to Section 3). The BFGS method overcomes
some of the weaknesses of the gradient descent method by seeking a stationary point of the
cost function; the cost function, in this case, is the mean-squared error (MSE) for regression
problems and the cross-entropy (negative log-likelihood) for classification problems.

In this paper, the ANN technique is used for regression, and the trained ANN’s
structure’s output for sample i is ANNi. Different input scenarios, training methods, and
output (control) scenarios that we use in this research for each ANN structure are explained
in Section 3.

2.2. SVR Control Chart

SVM is a kernel-based method and is a powerful classification and regression tech-
nique. It can be used for classification, novelty detection (one-class classification), and
regression (called SVR in this case). By ignoring errors that are smaller than a certain
threshold, and creating a tube around the true output, SVM can perform regression.

SVMs usually work in two main steps: (i) transformation of the input space to a higher-
dimensional feature space through a non-linear mapping function; and (ii) construction of
the separating hyperplane with maximum distance from the closest points (called support
vectors) of the training set. It has been shown that maximizing the margin of separation
improves the generalization ability of the classifier/regressor. Training of an SVM is finding
the solution for a quadratic optimization problem.

In SVMs, the calculation of dot products in a high-dimensional space can be avoided by
introducing a kernel function, which allows all the necessary computations to be performed
directly in the input space. The most popular kernel functions are linear, polynomial,
radial basis, and sigmoid. In this research, we use an R package (‘e1071’ package, which
is explained more in Section 3) for training and optimization, and we do not apply any
optimization algorithms on our own to find the optimal values of the SVM structure’s
parameters. However, there are several optimization algorithms for SVMs, some of which
are as follows: sequential minimization optimization (SMO), trust region Newton method
(TRON), and chunking. The computer package we chose uses the SMO algorithm. The SMO
algorithm solves the SVM’s quadratic problem without using any numerical optimization
steps. The adopted package also implements epsilon-support vector regression (ε-SVR) as
the cost function for regression problems. The cost function in ε-SVR aims to minimize the
deviations between the predicted values and the actual values using an ε-insensitive loss
function. It also implements the hinge loss function, which penalizes misclassifications by
introducing a linear error term, in classification problems. To construct a control chart, we
use the SVM technique for regression; therefore, it is called SVR.

The same as the ANN case, the trained SVR structure’s output at sample i is SVRi, and
the different input scenarios, training methods, and output (control) scenarios that we use
in this research for each SVR structure are explained in Section 3.

2.3. RFR Control Chart

Decision trees are tree-structured classifiers/regressors with three types of nodes:
(i) the root node, which is the initial node and represents the entire sample and may be
split further into more nodes; (ii) the interior nodes that represent the features of a dataset
that, with the branches that represent the decision rules, are connected to other nodes;
and (iii) the leaf nodes, which represent the outcome. In the regression case (the case we
use in this paper), they start with the root of the tree and follow splits based on variable
outcomes until a leaf node is reached and a real number-type result is given. Although
decision trees work best for classification, they work very well in regression cases as well.
The most popular decision tree algorithms are Iterative Dichotomiser 3 (ID3), C4.5, and
CART (classification and regression tree).
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Random forest (RF) is an ML technique that uses ensemble learning methods for
regression or classification. The ensemble learning method is a technique that combines
predictions (in the case of the RF technique, by taking the average in a regression case
(called RFR in the case of regression) or choosing the class with the maximum number of
occurrences in a classification case) from multiple machine-learning algorithms to make a
more accurate prediction than a single model (in the RF case, the single model would be a
decision tree). An RF technique is powerful and accurate, and it overcomes the over-fitting
issue of individual decision trees. It usually performs great on many problems, including
features with non-linear relationships. The most popular RF algorithm was introduced by
Leo Breiman. It builds a forest of uncorrelated trees using a CART-like procedure. The
computer package we use (‘randonForest’ package) employs a CART algorithm and uses
the mean-squared error (MSE) as the cost function for the regression problems and the
Gini impurity or the cross-entropy as the cost function for the classification problems. The
main problem in using RF is choosing the number of trees to be included in the model.
Using more trees is not always better as it might unnecessarily and significantly increase
the computational times. The best number of trees varies from problem to problem and
should be determined to obtain the minimum errors, as well as the desired performance.

The same as before, the trained RFR structure’s output at sample i is RFRi.

3. Model Development and Analysis

In this section, different control–input–training scenarios are modeled for the above
three ML control charts, based on which numerical analyses are conducted afterward. We,
for the first time, consider several input sets, training methods, and control scenarios to
see which works best for each ML structure for building a multivariate control chart for
simultaneous monitoring of process parameters. As there are two input scenarios for each
ML structure, two different training methods are used for each. The two training methods
are (i) training the ML structures with only a certain small shift size to familiarize them
with the out-of-control situations or, (ii) training them with a certain small and a certain
large shift size. We have the same number of in-control and out-of-control data in both
training cases. Note that in all training scenarios, training the ML structures is performed
with an output of 0 representing an in-control situation and an output of 1 representing an
out-of-control situation.

In the first input scenario, the two statistics employed by Sabahno et al. [9] are used.
They used them in their statistical structure to develop a multivariate control chart for
simultaneous monitoring of the process parameters. We, however, use these two statistics
for the inputs of the ML structures. By doing so, we easily enable the ML structures to
consider multivariate processes without adding complexity. These statistics are Hotelling
T2 and W.

When the in-control process parameters are known (µ0 and Σ0), the Hotelling T2

statistic is evaluated for each sample i to monitor the process mean vector (µ0) as follows:

T2
i = n(X i − µ0)

′
(Σ0)

−1(X i − µ0), (1)

where n is the sample size and X i is the sample’s mean.
Regarding the process variability (Σ0), they used the following statistic:

Wi =
(n− 1)|Si|1/p

|Σi|1/p , (2)

where Si is the sample’s variance–covariance matrix and p is the number of quality
characteristics.

In the second input scenario, however, we use all the elements of the sample mean
vector and variance–covariance matrix as the inputs.
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For example, in the case of two quality characteristics, we have five inputs as follows:

x1, x2, s2
1, s2

2, and s12 (covariance), where X = (x1,x2) and S =

[
s2

1 s12
s12 s2

2

]
.

Note that according to the above paragraphs, as the process dimension (the number
of quality characteristics) increases, the number of inputs in the second input scenario
also increases. However, the number of inputs in the first input scenario is always two
(T2 and W). This makes it easier and more efficient to use the first input scenario in
higher dimensions.

We also consider two types of control schemes in this paper. In the first type, the goal
is only the detection of the out-of-control situation, and in the other type, the goal is to
identify the responsible process parameters as well. In the first one, we only have one
chart/output with which we determine whether the process is in or out of control. In the
second one, we have several charts/outputs to identify the responsible variables, as well as
process parameters, for the out-of-control situation. In summary, two input scenarios, two
training scenarios, and two control scenarios are involved.

Moreover, three different numbers of quality characteristics are considered, i.e., p = 2,
p = 3, and p = 4. However, to reduce the paper’s size, we only consider the p = 3 case
with the first input scenario and the p = 4 case with the first input scenario and the first
control scenario (only detection). It should also be noted that as the process dimension (the
number of variables) increases, the amount of data and diversity of the dataset increases
as well in both training methods. In addition, since using the second input scenario is
directly affected by the number of variables, increasing the number of variables increases
the number of inputs in this scenario. In addition, as the dimension increases, the number
of control charts using the second control scenario increases as well, and that could increase
the false-alarm rates.

The ARL (average run length) and SDRL (standard deviation of run length) are used
in this paper to measure each chart’s performance, but in this section, we only make
comparisons based on the ARL. The ARL is the average number of runs before an out-of-
control signal is detected by a control chart. A larger ARL value is preferred when the
process is in control and as low as possible when out of control.

The ‘svm’ function of the ‘e1071′ package in R is employed to train the SVR structures,
the ‘nnet’ package for the ANN structures, and the ‘randomForrest’ package for the RFR
structures. In general, we try to use the default hyperparameters in each package, but those
we had to change are explained separately in each scenario. However, one thing we had
to change in all these packages is the output type, and we changed it from a classification
output (the default set) to a linear (regression) output.

Note that most of the mean shifts and variation shifts in both p = 2 and 3 cases are
chosen similarly to those of Sabahno et al. [9] to be able to compare the proposed control
charts in each scenario with their proposed statistical charts. To avoid adding additional
tables for the comparisons, we do not repeat their tables here and refer readers to see their
work (the ARLs in their Table 4 for p = 2 case and in their Table 5 for p = 3 case are subjects of
comparisons). Therefore, we only include the comparisons’ results in this paper. Moreover,
similar to Sabahno et al. [9], the sample size we use in this paper is 10 (n = 10).

3.1. Scenario a: Control Charts for Detection

In scenario a, the cases in which only signal detection is important are investigated.
Since there is only one control chart involved, assuming that the probability of type-I error
is equal to 0.005, the performance measure is computed as ARL = 1/α = 200.

3.1.1. Scenario a1 (Control Type a, Input Set 1)

As mentioned before, only two inputs are considered for each ML control chart in this
scenario, and they are T2 and W statistics.
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Scenario a11 (Control Type a, Input Set 1, Training Method 1)

In this section, the shift size we select for the mean shifts is 0.2, and for the variance
and covariance shifts, it is 1.2 times the in-control values. We consider 250 data with only
µ1 shifted; 250 data with only µ2 shifted; 250 data with both means shifted; 250 data with
only σ2

1 shifted; 250 data with only σ2 shifted; 250 data with both σ2
1 and σ2

2 shifted; 250 data
with only covariance shifted; 250 data with σ2

1 , σ2
2 , and covariance shifted; and 250 data

with all the parameters shifted together. For the in-control dataset, the same amount of
data, i.e., 9 × 250 = 2250 data, are included. We train each ML structure with these in and
out-of-control datasets.

In this scenario, a linear kernel is used for the SVR structure and the RMSE is computed
as 0.51. For the ANN structure, four nodes (twice the number of inputs) in the hidden
layer are used and the trained ANN structure has an RMSE of 0.49. For the random forest
package, 100 trees are used with an RMSE of 0.53. The UCLs of the ANN, SVR, and RFR
control charts are computed as 0.7073, 1.016, and 0.920144, respectively. The result of this
analysis, which is reported in Table 1, shows that the SVR and ANN charts perform better
than the RFR chart. In general, as the mean shift increases, the SVR chart performs better,
and as the variation shift increases, the ANN chart performs better. Another interesting
result is that, as the shift size increases more than the values that the ML structure is trained
with, the RFR chart performs worse, such that under the mean shift of size 2, it is not even
able to detect the shift at all. However, this phenomenon does not happen in ANN and
SVR charts.

Moreover, by comparing the results of Table 1 to Sabahno et al.’s [9] Table 4, one can
see that in all cases, at least one of the ML control charts performs better than all their
proposed control charts (fixed parameters and adaptive ones). Although we do not use
any adaptive strategies, the proposed ML charts perform even better (much better in most
cases) than their adaptive control charts.

In the case of three quality characteristics (p = 3), for the out-of-control dataset, we
consider 150 data with only µ1 shifted; 150 data with only µ2 shifted; 150 data with only µ3
shifted; 150 data with both µ1 and µ2 shifted; 150 data with both µ1 and µ3 shifted; 150 data
with both µ2 and µ3 shifted; 150 data with only σ2

1 shifted; 150 data with only σ2
2 shifted;

150 data with only σ2
3 shifted; 150 data with both σ2

1 and σ2
2 shifted; 150 data with both

σ2
1 and σ2

3 shifted; 150 data with both σ2
2 and σ2

3 shifted; 150 data with only covariance
shifted; 150 data with all three variances and covariance shifted; and 150 data with all the
parameters shifted together. For the in-control dataset, we again include the same amount
of data, which in this case is 2250 data. The same hyperparameters as in the case of p = 2 are
used here as well for the ML structures. The RMSE of the ANN, SVR, and RFR structures
are computed as 0.49, 0.51, and 0.53, respectively, and the computed UCLs are 0.724, 0.9955,
and 0.9305, respectively. The results in Table 2 show that the RFR chart mostly performs
better in higher dimensions (compared with Table 1), especially under large mean shifts, in
which the deterioration in performance under shifts larger than the trained value is much
less noticeable. For the ANN and SVR charts, it is kind of mediocre (in some cases they
perform better, in some they perform worse); however, they perform better than the RFR
chart even in higher dimensions. The other conclusions derived for the case of p = 2 are
valid here as well.

Moreover, by comparing the results in Table 2 to Sabahno et al.’s [9] Table 5, it is evident
that in most compared cases, at least one of the proposed ML control charts performs better
than all their proposed control charts (fixed design parameters and adaptive ones). Only in
the case of (0.5, 0.8, 0.5) mean shift, together with no/small variation shift, does at least one
of their proposed charts perform a little bit better than the best of the three proposed charts
in this paper.
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Table 1. ARL, SDRL. Scenario a11, p = 2.

ANN SVR RFR ANN SVR RFR

(µ1, µ2) σ2
1 , σ2

2 , σ12 = 1, 1, 0.5 σ2
1 , σ2

2 , σ12 = 1.05, 1, 0.5

(0, 0) 200, 200 200, 200 200, 200 144.92, 145.2 154.96, 152.82 161.62, 158.7
(0.1, 0) 162, 160 138.66, 137.05 186.33, 189.21 122.4, 121.94 113.02, 116.26 152.91, 157.33

(0.1, 0.3) 62.19, 60.02 47.61, 48.63 140.32, 146.05 52.04, 51.61 41.22, 40.37 130.6, 125.98
(0.3, 0) 49.56, 49.55 35.99, 35.32 128.69, 125.66 40.8, 40.52 29.97, 30.13 116.94, 115.29

(0.5, 0.8) 5.12, 4.5 3.71, 3.18 60.35, 61.59 4.76, 4.3 3.46, 2.9 59.86, 58.94
(1, 1) 1.77, 1.17 1.54, 0.9 80.38, 78.19 1.83, 1.24 1.48, 0.82 74.51, 71.41
(2, 2) 1, 0 1, 0 >10,000 1, 0 1, 0 >10,000

(µ1, µ2) σ2
1 , σ2

2 , σ12 = 1.05, 1.05, 0.5 σ2
1 , σ2

2 , σ12 = 1.05, 1.3, 0.5

(0, 0) 107.32, 109.12 125.16, 121.37 146.96, 148.91 36.78, 36.65 51.55, 49.01 83.77, 81.68
(0.1, 0) 90.78, 89.31 95.82, 94.79 131.3, 129.98 32.13, 31.66 44.63, 44.43 84.89, 83.49
(0.1,0.3) 43.42, 43.17 34.9, 34.19 113.39, 105.59 17.99, 17.23 19.29, 18.62 72.91, 73.01
(0.3,0) 34.78, 33.34 29.68, 30.57 104.35, 99.9 16.6, 16.41 16.84, 16.49 68.34, 66.56

(0.5,0.8) 4.38, 3.81 3.38, 2.95 56.93, 59.03 3.18, 2.56 2.87, 2.17 45.87, 46.56
(1,1) 1.78, 1.17 1.48, 0.87 73.73, 72.28 1.57, 0.96 1.36, 0.7 64.34, 63.55
(2, 2) 1, 0 1, 0 >10,000 1, 0 1, 0 >10,000

(µ1, µ2) σ2
1 , σ2

2 , σ12 = 1.2, 1.2, 0.6 σ2
1 , σ2

2 , σ12 = 1.4, 1.4, 0.5

(0, 0) 43.95, 42.82 64.05, 62.16 90.6, 87.93 9.8, 9.55 19.51, 18.17 48.4, 45.87
(0.1, 0) 39.19, 37.37 52.2, 51.32 87.75, 90.61 9.13, 8.71 17.15, 16.7 47.2, 46.22

(0.1, 0.3) 20.18, 19.7 22.4, 22.59 71.62, 69.17 6.78, 6.28 10.3, 9.88 41.01, 39.85
(0.3, 0) 17.46, 16.44 17.58, 17.42 70.123, 69.91 5.88, 5.26 8.56, 8.3 40.36, 38.33

(0.5, 0.8) 3.37, 2.84 2.8, 2.26 47.63, 46.9 2.25, 1.65 2.29, 1.78 37.1, 34.78
(1, 1) 1.6, 0.97 1.38, 0.73 64.8, 70.47 1.35, 0.7 1.31, 0.64 58.83, 57.21
(2, 2) 1, 0 1, 0 >10,000 1, 0 1, 0 >10,000

(µ1, µ2) σ2
1 , σ2

2 , σ12 = 1.4, 1.4, 0.75 σ2
1 , σ2

2 , σ12 = 3, 3, 0.5

(0, 0) 17.5, 16.75 32.32, 31.66 61.28, 61.73 1.23, 0.53 2.79, 2.19 96.38, 94.14
(0.1, 0) 16.19, 15.61 27.22, 26.43 57.54, 56.92 1.22, 0.55 2.69, 2.12 94.52, 93.75

(0.1, 0.3) 10.5, 9.75 13.93, 13.28 53.38, 52.48 1.2, 0.5 2.46, 1.91 100.8, 94.77
(0.3, 0) 9.3, 9.08 12.07, 11.34 51.55, 49.99 1.21, 0.51 2.42, 1.85 96.16, 96.41

(0.5, 0.8) 2.75, 2.19 2.34, 2.02 40.78, 38.25 1.09, 0.33 1.51, 0.84 167.92, 165.58
(1, 1) 1.51, 0.876 1.37, 0.688 58.84, 60.1 1.04, 0.2 1.15, 0.41 325.44, 318.73
(2, 2) 1, 0 1, 0 >10,000 1, 0 1, 0 >10,000

In the case of four quality characteristics (p = 4), for the out-of-control dataset, we
consider 125 data with only µ1 shifted; 125 data with only µ2 shifted; 125 data with only
µ3 shifted; 125 data with only µ4 shifted; 125 data with µ1 and µ2 shifted; 125 data with
µ1 and µ3 shifted; 125 data with µ2 and µ3 shifted; 125 data with µ1 and µ4 shifted; 125 data
with µ2 and µ4 shifted; 125 data with µ3 and µ4 shifted; 125 data with µ1, µ2 and µ3
shifted; 125 data with, µ1, µ2 and µ4 shifted; 125 data with µ1, µ3 and µ4 shifted; 125 data
with µ2, µ3 and µ4 shifted; 125 data with only σ2

1 shifted; 125 data with only σ2
2 shifted;

125 data with only σ2
3 shifted; 125 data with only σ2

4 shifted; 125 data with σ2
1 and σ2

2 shifted;
125 data with σ2

1 and σ2
3 shifted; 125 data with σ2

2 and σ2
3 shifted; 125 data with σ2

1 and σ2
4

shifted; 125 data with σ2
2 and σ2

4 shifted; 125 data with σ2
3 and σ2

4 shifted; 125 data with σ2
1 ,

σ2
2 and σ2

3 shifted; 125 data with σ2
1 , σ2

2 and σ2
4 shifted; 125 data with σ2

1 , σ2
3 and σ2

4 shifted;
125 data with σ2

2 , σ2
3 and σ2

4 shifted; 125 data with only covariance shifted; 125 data with all
four variances and covariance shifted; and 125 data with all the parameters shifted together.
For the in-control dataset, we again include the same amount of data, which in this case is
3875 data. The same hyperparameters as in the case of p = 2 are used here as well for the
ML structures. The RMSE of the ANN, SVR, and RFR structures are computed as 0.49, 0.51,
and 0.52, respectively, and the computed UCLs are 0.7164, 1.0439, and 0.9332, respectively.



Mathematics 2023, 11, 3566 9 of 31

Table 2. ARL, SDRL. Scenario a11, p = 3.

ANN SVR RFR ANN SVR RFR

(µ1, µ2, µ3) σ2
1 , σ2

2 , σ2
3 , Cov = 1, 1, 1, 0.5 σ2

1 , σ2
2 , σ2

3 , Cov = 1.05, 1, 1, 0.5

(0, 0, 0) 200, 200 200, 200 200, 200 153.9, 156.8 158.9, 160 180.2, 179.7
(0.1, 0, 0.1) 150.8, 145.7 147.5, 147.7 181.6, 185.1 125.6, 124.1 113.3, 114.2 164.8, 170.4

(0.1, 0.3, 0.3) 53.19, 53.38 43.97, 43.62 96.25, 91.14 45.96, 44.98 37.58, 37.34 87.61, 86.93
(0.3, 0, 0) 53.66, 52.37 44.3, 44.42 95.67, 91.49 44.13, 42.38 35.45, 35.58 92.73, 93.9

(0.5, 0.8, 0.5) 5.51, 5.03 5.28, 4.65 27.19, 26.22 5.26, 4.745 4.81, 4.126 27.98, 27.18
(1, 1, 1) 1.73, 1.198 1.69, 1.06 21.56, 20.9 1.67, 1 1.65, 1.024 21.52, 19.81
(2, 2, 2) 1.02, 0.15 1, 0.03 33.14, 33.19 1.01, 0.11 1, 0 33.36, 33.13

(µ1, µ2, µ3) σ2
1 , σ2

2 , σ2
3 , Cov = 1.05, 1.05, 1.05, 0.5 σ2

1 , σ2
2 , σ2

3 , Cov = 1.05, 1.3, 1.05, 0.5

(0, 0, 0) 94.39, 93.96 105.5, 106.1 135.2, 133.7 34.38, 34.84 43.38, 41.55 81.86, 83.72
(0.1, 0, 0.1) 79.17, 78.14 80.75, 78.77 133.9, 128.4 31.71, 30.83 36.21, 35.35 77.94, 71.35

(0.1, 0.3, 0.3) 33.21, 32.77 28.43, 28.67 75, 78.04 17.3, 16.7 15.98, 15.44 58.63, 59.42
(0.3, 0, 0) 33.71, 32.65 28.68, 27.97 83.53, 87.01 18.44, 18.62 16.73, 15.74 55.94, 54.5

(0.5, 0.8, 0.5) 4.85, 4.32 4.28, 3.8 28.38, 27.23 3.77, 3.2 3.4, 2.847 27.64, 26.99
(1, 1, 1) 1.598, 0.99 1.53, 0.89 22.56, 21.6 1.55, 0.93 1.38, 0.71 21.04, 20.5
(2, 2, 2) 1.01, 0.09 1, 0.02 27.36, 25.29 1, 0.07 1, 0.02 19.81, 19.74

(µ1, µ2, µ3) σ2
1 , σ2

2 , σ2
3 , Cov = 1.2, 1.2, 1.2, 0.6 σ2

1 , σ2
2 , σ2

3 , Cov = 1.4, 1.4, 1.05, 0.5

(0, 0, 0) 34.11, 33.26 44.19, 43.62 79.7, 78.44 10.17, 9.71 15.38, 14.77 34.67, 35.8
(0.1, 0, 0.1) 28.58, 27.37 37.97, 38.48 73.85, 71.42 9.56, 9.17 14.02, 13.49 33.19, 31.55

(0.1, 0.3, 0.3) 16.5, 15.76 15.85, 14.85 59, 59.56 7.16, 6.69 8.18, 7.43 30.1, 29.57
(0.3, 0, 0) 16.31, 15.65 16.3, 15.62 57.71, 51.46 6.82, 6.53 7.86, 7.21 30.88, 31.9

(0.5, 0.8, 0.5) 3.72, 3.16 3.14, 2.56 27.61, 26.05 2.65, 2.07 2.44, 1.8 22.63, 21.41
(1, 1, 1) 1.51, 0.89 1.43, 0.77 21.26, 21.87 1.34, 0.68 0.68, 0.6 17.97, 18.27
(2, 2, 2) 1, 0.06 1, 0 20.33, 19.3 1, 0.02 1, 0 16.29, 15.34

(µ1, µ2, µ3) σ2
1 , σ2

2 , σ2
3 , Cov = 1.4, 1.4, 1.05, 0.75 σ2

1 , σ2
2 , σ2

3 , Cov = 3, 3, 1.4, 0.5

(0, 0, 0) 45.86, 44.37 52.07, 50.04 104.4, 105.9 1.14, 0.41 1.92, 1.35 4.28, 3.87
(0.1, 0, 0.1) 42.02, 40.68 43.13, 42.54 99.6, 105.9 1.14, 0.41 1.87, 1.26 4.26, 3.69

(0.1, 0.3, 0.3) 20.61, 19.97 18.29, 17.97 66.77, 66.11 1.14, 0.4 1.67, 1.03 4.68, 4.35
(0.3, 0, 0) 20.79, 20.67 18.76, 18.69 67.56, 63.59 1.12, 0.36 1.77, 1.12 4.76, 4.25

(0.5, 0.8, 0.5) 3.97, 3.49 3.6, 3.04 28.77, 28.26 1.05, 0.23 1.27, 0.58 7.36, 6.835
(1, 1, 1) 1.6, 0.99 1.55, 0.9 21.1, 19.75 1.01, 0.13 1.05, 0.23 21.84, 20.87
(2, 2, 2) 1, 0.08 1, 0.02 23.68, 22.4 1, 0 1, 0 54.86, 55.44

The results in Table 3 show that the RFR chart mostly performs better again in higher
dimensions (compared with both Tables 1 and 2). For the ANN and SVR charts, it is
again kind of mediocre (in some cases they perform better, in some they perform worse);
however, they still perform better than the RFR chart even in higher dimensions. The other
conclusions derived for the case of p = 2 are valid here as well.

Scenario a12 (Control Type a, Input Set 1, Training Method 2)

In this scenario, we use the same input set as before, but with the second training
method (trained with both small and large shifts). Here, for the out-of-control dataset, the
shift size for the small mean shifts is 0.2; for the large mean shifts, it is 1; for the small
variance and covariance shifts, it is 1.2 times the in-control values; and for the large variance
and covariance shifts, it is 2 times the in-control values. For the small shifts, the following
are considered: 150 data with only µ1 shifted; 150 data with only µ2 shifted; 150 data with
both means shifted; 150 data with only σ2

1 shifted; 150 data with only σ2
2 shifted; 150 data

with both variances shifted; 150 data with only covariance shifted; 150 data with both
variances and covariance shifted; and 150 data with all the parameters shifted together.
Similarly, for the large mean shifts, we have 150 data with only µ1 shifted; 150 data with
only µ2 shifted; 150 data with both means shifted; 150 data with only σ2

1 shifted; 150 data
with only σ2

2 shifted; 150 data with both variances shifted; 150 data with only covariance
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shifted; 150 data with both varianbces and covariance shifted; and 150 data with all the
parameters shifted together. The total number of out-of-control data in this scenario is 2700;
therefore, the same number of in-control data is used. For all the ML structures, the same
hyperparameters as in the previous case are used. The RMSEs for the ANN, SVR, and RFR
structures are 0.44, 0.53, and 0.47, respectively. The UCLs of ANN, SVR, and RFR control
charts are computed as 0.8658, 0.5958, and 0.9729, respectively. The results for this case are
reported in Table 4.

Table 3. ARL, SDRL. Scenario a11, p = 4.

ANN SVR RFR ANN SVR RFR

(µ1, µ2, µ3, µ4) σ2
1 , σ2

2 , σ2
3 , σ2

4 , Cov = 1, 1, 1, 1, 0.5 σ2
1 , σ2

2 , σ2
3 , σ2

4 , Cov = 1.05, 1, 1, 1, 0.5

(0, 0, 0, 0) 200, 200 200, 200 200, 200 152.8, 154.7 175.2, 177 180.2, 174.3
(0.1, 0, 0.1, 0) 167.8, 173.3 138.6, 138 169.2, 171.5 132.8, 134.3 125, 120.6 152.7, 153.2

(0.1, 0.3, 0.3, 0.1) 79.52, 80.04 45.18, 42.7 101.4, 105.8 66.18, 65.77 40.66, 40.88 92.34, 92.61
(0.3, 0, 0, 0.3) 51.29, 50.1 27.61, 26.23 77.29, 73.17 43.4, 42.92 26.25, 25.07 71.88, 68.42

(0.5, 0.8, 0.5, 0.8) 5.4, 5.05 3.41, 2.83 19.91, 19.3 5.14, 4.65 3.31, 2.79 20.03, 19.75
(1, 1, 1, 1) 1.84, 1.26 1.5, 0.86 17.81, 17.81 1.83, 1.22 1.5, 0.88 17.47, 17.37
(2, 2, 2, 2) 1, 0 1, 0.02 >10,000 1, 0 1, 0 >10,000

(µ1, µ2, µ3, µ4) σ2
1 , σ2

2 , σ2
3 , σ2

4 , Cov = 1.05, 1.05, 1.05, 1.05, 0.5 σ2
1 , σ2

2 , σ2
3 , σ2

4 , Cov = 1.05, 1.3, 1.05, 1.3, 0.5

(0, 0, 0, 0) 80.29, 78.62 103.8, 104.2 118.4, 118.3 16.56, 15.96 29.58, 27.9 42.75, 42.33
(0.1, 0, 0.1, 0) 69.13, 69.04 78.11, 79.96 108.2, 117.8 15.13, 14.66 26.21, 26.3 41.4, 42.44

(0.1, 0.3, 0.3, 0.1) 40.03, 39.38 28.81, 27.94 71.83, 64.33 11.11, 10.62 13.11, 12.92 32.93, 31.47
(0.3, 0, 0, 0.3) 28.05, 28.22 18.5, 17.23 56.97, 56.89 9.82, 9.27 9.6, 9.15 29.23, 28.9

(0.5, 0.8, 0.5, 0.8) 4.57, 4.03 3.04, 2.52 21.23, 20.74 2.97, 2.37 2.38, 1.85 18.68, 18.81
(1, 1, 1, 1) 1.75, 1.12 1.4, 0.75 19.71, 19.52 1.53, 0.92 1.32, 0.66 24.26, 25.35
(2, 2, 2, 2) 1, 0 1, 0 >10,000 1, 0 1, 0 >10,000

(µ1, µ2, µ3, µ4) σ2
1 , σ2

2 , σ2
3 , σ2

4 , Cov = 1.2, 1.2, 1.2, 1.2, 0.6 σ2
1 , σ2

2 , σ2
3 , σ2

4 , Cov = 1.4, 1.4, 1.05, 1.05, 0.5

(0, 0, 0, 0) 25.26, 24.02 47.95, 46.88 62.73, 59.53 10.38, 9.69 20.91, 20.63 28.59, 28.24
(0.1, 0, 0.1, 0) 24.18, 23.71 38.09, 38.59 54.33, 55.11 10.39, 9.58 18.75, 18.68 29.28, 27.89

(0.1, 0.3, 0.3, 0.1) 16.12, 15.35 17.27, 16.97 42.41, 41.98 7.93, 7.43 10.35, 9.55 25.98, 25.84
(0.3, 0, 0, 0.3) 13.12, 12.61 11.73, 10.91 39.12, 42.09 6.86, 6.32 7.58, 6.97 22.48, 23.2

(0.5, 0.8, 0.5, 0.8) 3.44, 2.92 2.59, 2.05 21, 20.11 2.64, 2.08 2.21, 1.66 16.46, 16.63
(1, 1, 1, 1) 1.6, 0.95 1.37, 0.71 23.52, 21.43 1.47, 0.84 1.24, 0.56 23.3, 23.02
(2, 2, 2, 2) 1, 0 1, 0 >10,000 1, 0 1, 0 >10,000

(µ1, µ2, µ3, µ4) σ2
1 , σ2

2 , σ2
3 , σ2

4 , Cov = 1.4, 1.4, 1.05, 1.05, 0.75 σ2
1 , σ2

2 , σ2
3 , σ2

4 , Cov = 3, 3, 1.4, 1.4, 0.5

(0, 0, 0, 0) 135.3, 130.2 107.6, 108.6 166.1, 162.6 1.13, 0.39 2.28, 1.65 2.69, 2.12
(0.1, 0, 0.1, 0) 117.1, 118.2 79.76, 79.14 145.8, 141.2 1.14, 0.41 2.27, 1.67 2.82, 2.31

(0.1, 0.3, 0.3, 0.1) 55.12, 54.93 29.68, 29.4 83.9, 80.92 1.11, 0.36 2.12, 1.57 2.85, 2.23
(0.3, 0, 0, 0.3) 38.91, 38.39 22.2, 22.06 68.92, 69.37 1.12, 0.36 1.87, 1.32 2.98, 2.53

(0.5, 0.8, 0.5, 0.8) 4.78, 4.327 3.34, 2.78 22.08, 21.25 1.06, 0.26 1.3, 0.65 4.34, 3.7
(1, 1, 1, 1) 1.88, 1.32 1.54, 0.93 20.19, 20.95 1.02, 0.17 1.07, 0.28 9.06, 8.13
(2, 2, 2, 2) 1, 0 1, 0.02 >10,000 1, 0 1, 0 >10,000

The results in Table 4 show that the ANN and SVR charts perform mostly better with
the second training method, only in the cases of no/small variation shifts. On the contrary,
this training method suits the RFR chart the most, considering it performs better than the
previous training method in all the cases. In terms of which chart among the three performs
better in this scenario, despite the significant improvements in the performance of the RFR
chart, it still cannot outperform the ANN and SVR charts, as the ANN chart performs
better in most compared cases, and in the rest (no or small variation shifts), despite the
loss of performance in this training method, the SVR chart still performs better than the
others. In addition, unlike the previous training method, the RFR chart does not experience
a deterioration in performance as the shift size becomes larger than the trained value.
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Moreover, by comparing the results of Table 4 to Sabahno et al.’s [9] Table 4, one can
again see that in all the cases, at least one of the proposed ML control charts performs better
(mostly much better) than all their charts.

Table 4. ARL, SDRL. Scenario a12, p = 2.

ANN SVR RFR ANN SVR RFR

(µ1, µ2) σ2
1 , σ2

2 , σ12 = 1, 1, 0.5 σ2
1 , σ2

2 , σ12 = 1.05, 1, 0.5

(0, 0) 200, 200 200, 200 200, 200 155.48, 153.15 165.01, 161.56 156.21, 152.98
(0.1, 0) 154.13, 167.78 151.92, 149.84 158.22, 155.65 125.77, 118.97 119.68, 124.59 129.18, 121.49

(0.1, 0.3) 52.94, 50.03 43.71, 43.53 56.77, 56.35 46.37, 46.44 42.12, 41.52 56.99, 55.06
(0.3, 0) 37.56, 39.89 33.85, 32.85 47.98, 44.91 34.51, 34.49 28.73, 27.4 41.32, 39.63

(0.5, 0.8) 3.78, 3.23 3.38, 2.88 4.5, 3.95 3.69, 3.19 3.28, 2.72 4.55, 4.01
(1, 1) 1.53, 0.91 1.4, 0.76 1.75, 1.13 1.5, 0.87 1.43, 0.78 1.77, 1.2
(2, 2) 1, 0 1, 0 1.09, 0.3 1, 0 1, 0 1.09, 0.32

(µ1, µ2) σ2
1 , σ2

2 , σ12 = 1.05, 1.05, 0.5 σ2
1 , σ2

2 , σ12 = 1.05, 1.3, 0.5

(0, 0) 123.73, 124.92 141.1, 142.5 120.62, 118.66 45.01, 44.81 66.29, 65.08 47.93, 48.98
(0.1, 0) 102.23, 102.65 98.54, 95.45 104.1, 104.57 37.23, 36.58 56.49, 55.84 43.89, 43.52

(0.1, 0.3) 40.99, 41.03 35.92, 36.23 46.84, 47.33 20.49, 19.86 22.62, 21.77 22.76, 22.35
(0.3, 0) 30.97, 30.54 27.23, 26.92 37, 35.01 17.84, 17.01 20.25, 19.52 21.47, 20.87

(0.5, 0.8) 3.7, 3.15 3.15, 2.56 4.28, 3.82 3.25, 2.75 2.83, 2.19 3.94, 3.32
(1, 1) 1.47, 0.83 1.41, 0.76 1.74, 1.08 1.47, 0.8 1.39, 0.75 1.77, 1.18
(2, 2) 1, 0 1, 0 1.08, 0.3 1, 0 1, 0 1.08, 0.29

(µ1, µ2) σ2
1 , σ2

2 , σ12 = 1.2, 1.2, 0.6 σ2
1 , σ2

2 , σ12 = 1.4, 1.4, 0.5

(0, 0) 51.69, 50.41 80.46, 77.9 58.56, 56.6 11.5, 11.04 29.25, 29.02 13.79, 13.32
(0.1, 0) 46.38, 47.18 62.89, 60.51 48.64, 49.39 10.32, 9.458 24.92, 25.17 13.44. 12.6

(0.1, 0.3) 23.45, 23.36 25.63, 25.32 26.47, 25.15 7.87, 7.24 14.1, 13.59 9.72, 9.48
(0.3, 0) 20.17, 19.56 21.13, 19.76 21.94, 21.43 7.12, 6.69 11.42, 11.33 8.58, 7.85

(0.5, 0.8) 3.33, 2.8 3.05, 2.51 3.87, 3.39 2.52, 1.95 2.66, 2.06 3.08, 2.42
(1, 1) 1.53, 0.91 1.41, 0.75 1.74, 1.13 1.42, 0.76 1.33, 0.67 1.66, 1.05
(2, 2) 1, 0 1, 0 1.09, 0.31 1, 0 1, 0 1.08, 0.29

(µ1, µ2) σ2
1 , σ2

2 , σ12 = 1.4, 1.4, 0.75 σ2
1 , σ2

2 , σ12 = 3, 3, 0.5

(0, 0) 21.33, 20.72 46.28, 46.25 25.54, 24.71 1.2, 0.49 4.14, 3.6 1.49, 0.87
(0.1, 0) 19.5, 19.1 39.61, 38.78 24.42, 23.76 1.17, 0.46 4.08, 3.53 1.48, 0.84

(0.1, 0.3) 12.64, 11.76 18.49, 17.03 14.88, 14.3 1.16, 0.42 3.43, 2.9 1.47, 0.84
(0.3, 0) 11.19, 10.53 15.26, 14.42 13.72, 13.02 1.16, 0.45 3.36, 2.82 1.51, 0.89

(0.5, 0.8) 2.96, 2.36 2.79, 2.18 3.43, 2.97 1.08, 0.3 1.85, 1.2 1.27, 0.59
(1, 1) 1.49, 0.86 1.43, 0.76 1.77, 1.18 1.03, 0.18 1.31, 0.66 1.13, 0.39
(2, 2) 1, 0 1, 0 1.1, 0.32 1, 0 1, 0.3 1.02, 0.15

In the case of p = 3, for the out-of-control dataset, the following are considered: 125 data
with µ1 shifted 0.2 and 125 data shifted 1; 125 data with µ2 shifted 0.2 and 125 data shifted
1; 125 data with only µ3 shifted 0.2 and 125 data shifted 1; 125 data with µ1 and µ2
shifted 0.2 and 125 data shifted 1; 125 data with µ1 and µ3 shifted 0.2 and 125 data shifted
1; 125 data with µ2 and µ3 shifted 0.2 and 125 data shifted 1; 125 data with σ2

1 shifted
1.2 times and 125 data shifted 2 times; 125 data with σ2

2 shifted 1.2 times and 125 data
shifted 2 times; 125 data with σ2

3 shifted 1.2 times and 125 data shifted 2 times; 125 data
with σ2

1 and σ2
2 shifted 1.2 times and 125 data shifted 2 times; 125 data with σ2

1 and σ2
3

shifted 1.2 times and 125 data shifted 2 times; 125 data with σ2
2 and σ2

3 shifted 1.2 times and
125 data shifted 2 times; 125 data with only covariance shifted 1.2 times and 125 data shifted
2 times; 125 data with all three variances and covariance shifted 1.2 times and 125 data
shifted 2 times; 125 data with all the parameters shifted together with small shift sizes;
and 125 data shifted together with large shift sizes. For the in-control dataset, we include
the same amount of data, which in this scenario is 3750 data. By keeping the previous
hyperparameters, the RMSE of the ANN, SVR, and RFR structures are 0.44, 0.52, and 0.5,
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respectively. The UCLs are computed as 0.8635, 0.5781, and 0.9783, respectively. The results
are presented in Table 5.

Table 5. ARL, SDRL. Scenario a12, p = 3.

ANN SVR RFR ANN SVR RFR

(µ1, µ2, µ3) σ2
1 , σ2

2 , σ2
3 , Cov = 1, 1, 1, 0.5 σ2

1 , σ2
2 , σ2

3 , Cov =1.05, 1, 1, 0.5

(0, 0, 0) 200, 200 200, 200 200, 200 162.9, 170.9 167.6, 163 177.2, 186
(0.1, 0, 0.1) 148.9, 145.8 141.3, 136.4 145.8, 148.7 123.2, 125.3 119.5, 118.7 132.2, 131.8

(0.1, 0.3, 0.3) 44.9, 45.35 38.54, 37.57 52.27, 52.87 41.05, 38.39 34.83, 34.83 44, 44.2
(0.3, 0, 0) 44.83, 44.09 36.98, 35.26 55.52, 53.86 38.93, 37.94 33.9, 32.46 43.5, 43.37

(0.5, 0.8, 0.5) 4.55, 3.9 3.93, 3.21 5.74, 4.92 4.44, 4.04 3.9, 3.55 5.53, 4.97
(1, 1, 1) 1.47, 0.81 1.42, 0.79 1.69, 1 1.51, 0.87 1.4, 0.73 1.78, 1.17
(2, 2, 2) 1, 0 1, 0 1.05, 0.23 1, 0 1, 0 1.06, 0.25

(µ1, µ2, µ3) σ2
1 , σ2

2 , σ2
3 , Cov = 1.05, 1.05, 1.05, 0.5 σ2

1 , σ2
2 , σ2

3 , Cov = 1.05, 1.3, 1.05, 0.5

(0, 0, 0) 109.1, 110.3 117.8, 117.4 114.2, 120.1 46.17, 45.71 65.58, 67.24 48.03, 46.07
(0.1, 0, 0.1) 87.09, 88.44 93.44, 91.19 90.04, 94.33 39.46, 39.27 51.23, 49.16 40.36, 41.61

(0.1, 0.3, 0.3) 33.59, 32.73 30.85, 31.25 37.79, 36.54 19.72, 19.87 20.69, 21.13 21.6, 21.77
(0.3, 0, 0) 33.12, 33.06 29.23, 29.36 36.43, 35.96 20.39, 19.7 21.64, 21.35 21.92, 20.55

(0.5, 0.8, 0.5) 4.37, 3.84 3.81, 3.2 5.17, 4.93 3.76, 3.27 3.49, 2.82 4.42, 3.87
(1, 1, 1) 1.49, 0.88 1.35, 0.7 1.76, 1.16 1.47, 0.87 1.38, 0.71 1.7, 1.11
(2, 2, 2) 1, 0 1, 0 1.06, 0.24 1, 0 1, 0 1.07, 0.29

(µ1, µ2, µ3) σ2
1 , σ2

2 , σ2
3 , Cov = 1.2, 1.2, 1.2, 0.6 σ2

1 , σ2
2 , σ2

3 , Cov = 1.4, 1.4, 1.05, 0.5

(0, 0, 0) 42.13, 41.58 68.06, 67.12 44.54, 42.65 12.74, 12.42 25.15, 24.26 13.02, 12.54
(0.1, 0, 0.1) 37.37, 35.82 54.46, 55.72 39, 39.25 12.14, 12.15 22.95, 22.95 12.32, 12.16

(0.1, 0.3, 0.3) 20, 19.04 20.41, 20.32 20.24, 19.76 8.43, 7.74 13.01, 12.13 9.54, 8.17
(0.3, 0, 0) 19.19, 19.2 20.66, 19.71 20.83, 20.14 8.34, 7.62 12.11, 11.96 8.66, 8.44

(0.5, 0.8, 0.5) 3.83, 3.29 3.32, 2.82 4.42, 4.03 3, 2.4 2.9, 2.38 3.36, 2.76
(1, 1, 1) 1.49, 0.9 1.38, 0.73 1.69, 1.1 1.37, 0.73 1.32, 0.63 1.52, 0.88
(2, 2, 2) 1, 0 1, 0 1.06, 0.25 1, 0 1, 0 1.06, 0.27

(µ1, µ2, µ3) σ2
1 , σ2

2 , σ2
3 , Cov = 1.4, 1.4, 1.05, 0.75 σ2

1 , σ2
2 , σ2

3 , Cov = 3, 3, 1.4, 0.5

(0, 0, 0) 54.68, 54.76 69.61, 72.43 56.6, 55.83 1.2, 0.48 3.72, 3.25 1.36, 0.72
(0.1, 0, 0.1) 48.04, 48.68 52.62, 50.82 49.07, 49.57 1.19, 0.48 3.53, 3.1 1.36, 0.72

(0.1, 0.3, 0.3) 21.29, 21.31 20.82, 20.21 24.63, 23.86 1.17, 0.45 3.02, 2.5 1.3, 0.62
(0.3, 0, 0) 22.63, 22.02 19.92, 19.11 24.3, 24.31 1.19, 0.47 3.06, 2.42 1.34, 0.7

(0.5, 0.8, 0.5) 3.84, 3.32 3.39, 2.85 4.59, 4.16 1.1, 0.34 1.82, 1.23 1.25, 0.55
(1, 1, 1) 1.53, 0.89 1.47, 0.84 1.74, 1.2 1.03, 0.19 1.21, 0.52 1.08, 0.28
(2, 2, 2) 1, 0 1, 0, 02 1.08, 0.3 1, 0 1, 0 1.01, 0.11

This table shows that again under no/small variation shifts, the SVR chart mostly
performs better than the other two, but as the variation shift increases, the other two begin
to perform better than the SVR chart, with the ANN chart having the best performance. By
comparing Tables 2 and 5 (the first and second training methods), the conclusions driven
for the p = 2 case (comparing Tables 1 and 4) can be driven for the p = 3 case as well. By
comparing the cases of p = 3 and p = 2 (Tables 4 and 5), we realize that the conclusions are
similar to those of Scenario a11.

Moreover, by comparing the results of Table 5 to Sabahno et al.’s [9] Table 5, we can
see that with the second training method, at least one of the ML control charts performs
better than all their control charts, in all the shift cases.

In the case of four quality characteristics (p = 4), for the out-of-control dataset, we
consider 100 data with only µ1 shifted 0.2 and 100 data shifted 1; 100 data with only µ2
shifted 0.2 and 100 data shifted 1; 100 data with only µ3 shifted 0.2 and 100 data shifted 1;
100 data with only µ4 shifted 0.2 and 100 data shifted 1; 100 data with µ1 and µ2 shifted 0.2
and 100 data shifted 1; 100 data with µ1 and µ3 shifted 0.2 and 100 data shifted 1; 100 data
with µ2 and µ3 shifted 0.2 and 100 data shifted 1; 100 data with µ1 and µ4 shifted 0.2 and
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100 data shifted 1; 100 data with µ2 and µ4 shifted 0.2 and 100 data shifted 1; 100 data with
µ3 and µ4 shifted 0.2 and 100 data shifted 1; 100 data with µ1, µ2 and µ3 shifted 0.2 and
100 data shifted 1; 100 data with µ1, µ2 and µ4 shifted 0.2 and 100 data shifted 1; 100 data
with µ1, µ3 and µ4 shifted 0.2 and 100 data shifted 1; 100 data µ2, µ3 and µ4 shifted 0.2
and 100 data shifted 1; 100 data with only σ2

1 shifted 1.2 times and 100 data shifted 2 times;
100 data with only σ2

2 shifted 1.2 times and 100 data shifted 2 times; 100 data with only
σ2

3 shifted 1.2 times and 100 data shifted 2 times; 100 data with only σ2
4 shifted 1.2 times

and 100 data shifted 2 times; 100 data with σ2
1 and σ2

2 shifted 1.2 times and 100 data shifted
2 times; 100 data with σ2

1 and σ2
3 shifted 1.2 times and 100 data shifted 2 times; 100 data

with σ2
2 and σ2

3 shifted 1.2 times and 100 data shifted 2 times; 100 data with σ2
1 and σ2

4
shifted 1.2 times and 100 data shifted 2 times; 100 data with σ2

2 and σ2
4 shifted 1.2 times

and 100 data shifted 2 times; 100 data with σ2
3 and σ2

4 shifted 1.2 times and 100 data shifted
2 times; 100 data with σ2

1 , σ2
2 and σ2

3 shifted 1.2 times and 100 data shifted 2 times; 100 data
with σ2

1 , σ2
2 and σ2

4 shifted 1.2 times and 100 data shifted 2 times; 100 data with σ2
1 , σ2

3 and σ2
4

shifted 1.2 times and 100 data shifted 2 times; 100 data with σ2
2 , σ2

3 and σ2
4 shifted 1.2 times

and 100 data shifted 2 times; 100 data with only covariance shifted 1.2 times and 100 data
shifted 2 times; 100 data with all four variances and the covariance shifted 1.2 times and
100 data shifted 2 times; and 100 data with all the parameters shifted together with small
shift sizes and 100 data shifted together with large shift sizes. For the in-control dataset, we
include the same amount of data, which in this scenario is 6200 data.

By keeping the previous hyperparameters, the RMSE of the ANN, SVR, and RFR
structures are 0.43, 0.53, and 0.46, respectively. The UCLs are computed as 0.856, 0.5108,
and 0.9735, respectively. The results are presented in Table 6.

This table shows that again under no/small variation shifts, the SVR chart mostly
performs better than the other two, but as the variation shift increases, the other two begin
to perform better than the SVR chart, with the ANN chart having the best performance.
By comparing Tables 3 and 6 (first and second training methods), the conclusions driven
for the p = 2 case (comparing Tables 1 and 4) can be driven for the p = 4 case as well. The
results in Table 6 show that all the charts mostly perform better in higher dimensions when
the second training method is used.

3.1.2. Scenario a2 (Control Type a, Input Set 2)

As mentioned before, different inputs for the ML structures are considered in this
scenario. The sample’s mean vector and variance–covariance matrix are used and in the
case of p = 2, there are going to be five inputs (individual variances, means, and covariance)
as described in the following subsections.

Scenario a21 (Control Type a, Input Set 2, Training Method 1)

In-control and out-of-control datasets are the same as in Scenario a11. In this scenario,
again, a linear kernel is used for the SVR structure, and the RMSE is computed as 0.51.
For the ANN control chart, 10 nodes (twice the number of inputs) are used in the hidden
layer and the trained ANN structure has an RMSE of 0.48. For the random forest structure,
again 100 trees are used with an RMSE of 0.5. The UCLs of the ANN, SVR, and RFR control
charts are computed as 0.8746, 1.0631, and 0.8143, respectively. The results of this analysis
are reported in Table 7. Based on these results, the SVR chart performs better than the
other two under all shift cases. By comparing their performance against the previous input
scenario (comparing Tables 1 and 7), we realize that the ANN chart mostly performs worse
when the second input scenario is used. The situation is kind of mediocre with the SVR
chart, and it seems that the input method overall does not affect its performance. The RFR
chart on the other hand, especially under moderate and large mean shifts, mostly performs
better in this input scenario, and the deterioration in performance as the shift size becomes
larger than the trained value is much less when this input set is used.
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Table 6. ARL, SDRL. Scenario a12, p = 4.

ANN SVR RFR ANN SVR RFR

(µ1, µ2, µ3, µ4) σ2
1 , σ2

2 , σ2
3 , σ2

4 , Cov = 1, 1, 1, 1, 0.5 σ2
1 , σ2

2 , σ2
3 , σ2

4 , Cov = 1.05, 1, 1, 1, 0.5

(0, 0, 0, 0) 200, 200 200, 200 200, 200 163.9, 158.3 174.04, 169.22 160.2, 170.4
(0.1, 0, 0.1, 0) 148, 149.2 133.58, 131.92 152.2, 159.5 127.9, 126.5 121.35, 122.85 127.7, 126.7

(0.1, 0.3, 0.3, 0.1) 52.81, 51.7 44.38, 43.31 58.32, 56.33 46.43, 44.73 37.04, 36.51 54.4, 54.9
(0.3, 0, 0, 0.3) 34.3, 34.65 25.74, 25.18 40.84, 40.07 29.85, 29.68 23.79, 23.6 35.56, 36.57

(0.5, 0.8, 0.5, 0.8) 3.72, 3.2 3.21, 2.67 4.79, 4.23 3.73, 3.19 3.15, 2.57 4.47, 3.93
(1, 1, 1, 1) 1.58, 0.98 1.44, 0.78 1.83, 1.19 1.53, 0.89 1.4, 0.74 1.79, 1.203
(2, 2, 2, 2) 1, 0 1, 0 1.02, 0.15 1, 0 1, 0 1.02, 0.16

(µ1, µ2, µ3, µ4) σ2
1 , σ2

2 , σ2
3 , σ2

4 , Cov = 1.05, 1.05, 1.05, 1.05, 0.5 σ2
1 , σ2

2 , σ2
3 , σ2

4 , Cov = 1.05, 1.3, 1.05, 1.3, 0.5

(0, 0, 0, 0) 90.44, 90.41 113.47, 112.57 92.41, 100.2 19.97, 19.34 38.03, 37.17 22.14, 21.16
(0.1, 0, 0.1, 0) 73.3, 72.54 80.82, 80.86 75.77, 81.53 18.39, 18.98 31.29, 30.39 20.76, 20.77

(0.1, 0.3, 0.3, 0.1) 32.89, 34.2 29.7, 30.17 35.04, 36.03 11.77, 11.75 15.89, 15.8 13.84, 12.81
(0.3, 0, 0, 0.3) 21.97, 21.22 18.94, 18.27 26.83, 27.45 9.25, 8.63 10.53, 9.91 10.68, 10.29

(0.5, 0.8, 0.5, 0.8) 3.3, 2.62 2.9, 2.38 4.18, 3.6 2.51, 1.92 2.43, 1.88 3.2, 2.61
(1, 1, 1, 1) 1.47, 0.8 1.37, 0.72 1.8, 1.17 1.36, 0.7 1.31, 0.62 1.65, 1.05
(2, 2, 2, 2) 1, 0 1, 0 1.02, 0.17 1, 0 1, 0 1.03, 0.19

(µ1, µ2, µ3, µ4) σ2
1 , σ2

2 , σ2
3 , σ2

4 , Cov = 1.2, 1.2, 1.2, 1.2, 0.6 σ2
1 , σ2

2 , σ2
3 , σ2

4 , Cov = 1.4, 1.4, 1.05, 1.05, 0.5

(0, 0, 0, 0) 31.71, 31.05 55.85, 54.67 36.09, 33.88 13.98, 13.43 27.48, 27.52 15.11, 15.02
(0.1, 0, 0.1, 0) 29.45, 28.48 45.9, 47.48 28.89, 28.02 12.06, 11.21 22.92, 22.49 14.42, 13.81

(0.1, 0.3, 0.3, 0.1) 16.28, 15.78 19.25, 18.42 18.4, 17.29 8.66, 8.11 12.33, 12.17 10.21, 10.01
(0.3, 0, 0, 0.3) 11.75, 11.49 13.26, 12.59 14.95, 14.45 6.87, 6.63 9.14, 8.6 8.51, 7.64

(0.5, 0.8, 0.5, 0.8) 2.75, 2.21 2.59, 2.08 3.56, 3.1 2.28, 1.69 2.3, 1.69 2.97, 2.32
(1, 1, 1, 1) 1.46, 0.81 1.36, 0.69 1.68, 1.06 1.31, 0.65 1.3, 0.61 1.54, 0.88
(2, 2, 2, 2) 1, 0 1, 0 1.04, 0.21 1, 0 1, 0 1.05, 0.24

(µ1, µ2, µ3, µ4) σ2
1 , σ2

2 , σ2
3 , σ2

4 , Cov = 1.4, 1.4, 1.05, 1.05, 0.75 σ2
1 , σ2

2 , σ2
3 , σ2

4 , Cov = 3, 3, 1.4, 1.4, 0.5

(0, 0, 0, 0) 111.4, 112.1 96.52, 96.41 120.3, 118.1 1.15, 0.41 2.99, 2.39 1.3, 0.63
(0.1, 0, 0.1, 0) 92.3, 90.43 79.73, 80.99 106.6, 99.79 1.18, 0.46 2.95, 2.49 1.3, 0.63

(0.1, 0.3, 0.3, 0.1) 35.14, 33.45 28.81, 28.11 41.53, 40.01 1.16, 0.42 2.64, 2.01 1.27, 0.57
(0.3, 0, 0, 0.3) 25.72, 25.52 21.05, 20.43 30.23, 28.25 1.17, 0.45 2.37, 1.84 1.26, 0.59

(0.5, 0.8, 0.5, 0.8) 3.55, 3.06 3.11, 2.68 4.1, 3.57 1.06, 0.26 1.44, 0.80 1.17, 0.44
(1, 1, 1, 1) 1.59, 0.95 1.5, 0.84 1.86, 1.25 1.02, 0.16 1.12, 0.37 1.07, 0.27
(2, 2, 2, 2) 1, 0.02 1, 0 1.03, 0.17 1, 0 1, 0 1.03, 0.17

Moreover, by comparing the results in Table 7 to Sabahno et al.’s [9] Table 4, it can
be seen that in most cases, at least one of the proposed ML control charts performs better
(mostly much better) than all their proposed control charts. Only in the case of (0.5, 0.8)
mean shift, together with no/small variation shift, at least one of their proposed charts
performs a little bit better than the best of ours.

Scenario a22 (Control Type a, Input Set 2, Training Method 2)

In-control and out-of-control datasets are the same as in Scenario a12. The same as
before, a linear kernel is used for the SVR structure, and the RMSE is computed as 0.48.
For the ANN control chart, 10 nodes (twice the number of inputs) in the hidden layer are
used and the trained ANN structure has an RMSE of 0.42. For the random forest structure,
100 trees are used again with an RMSE of 0.45. The UCLs of the ANN, SVR, and RFR
control charts are computed as 0.8846, 0.8136, and 0.894, respectively.
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Table 7. ARL, SDRL. Scenario a21, p = 2.

ANN SVR RFR ANN SVR RFR

(µ1, µ2) σ2
1 , σ2

2 , σ12 = 1, 1, 0.5 σ2
1 , σ2

2 , σ12 = 1.05, 1, 0.5

(0, 0) 200, 200 200, 200 200, 200 186.2, 187.6 142, 138.4 176.7, 177.4
(0.1, 0) 231.6, 222.2 162.3, 167.9 181.6, 174.8 212.4, 221.1 124.5, 121.7 181.7, 179.7

(0.1, 0.3) 39.04, 40.21 49.88, 49.47 50.44, 49.63 35.28, 34.55 40.77, 41.27 50.68, 48.63
(0.3, 0) 274.8, 282.8 116.7, 117.2 165.7, 171.1 225.2, 225.2 86.65, 84.26 168, 170.8

(0.5, 0.8) 5.17, 4.66 6.08, 5.38 12.31, 12.28 5, 4.38 5.52, 4.93 12.26, 11.75
(1, 1) 2.28, 1.74 2.39, 1.76 10.02, 8.69 2.17, 1.63 2.29, 1.69 10.06, 9.615
(2, 2) 1, 0.09 1, 0.08 11.04, 10.03 1, 0.08 1, 0.05 11.28, 10.79

(µ1, µ2) σ2
1 , σ2

2 , σ12 = 1.05, 1.05, 0.5 σ2
1 , σ2

2 , σ12 = 1.05, 1.3, 0.5

(0, 0) 150, 150.2 112.4, 111.3 178.2, 170.9 56.75, 53.19 35.34, 34.7 135.6, 133.3
(0.1, 0) 167.8, 165.7 91.67, 88.75 172.5, 167.6 63.89, 60 29.74, 30.07 108.6, 110.8

(0.1, 0.3) 31.64, 31.06 32.33, 32.36 46.03, 47.7 17.87, 17.33 13.91, 12.76 47.6, 45.41
(0.3, 0) 181.1, 185.6 66.24, 66.01 145, 139.8 70.16, 68.29 24.4, 23.79 98.41, 93.14

(0.5, 0.8) 4.89, 4.46 4.72, 4.41 12, 12.29 3.99, 3.49 3.11, 2.55 12.31, 11.62
(1, 1) 2.16, 1.6 2.18, 1.61 10.49, 9.53 2.01, 1.386 1.77, 1.172 11.4, 11.41
(2, 2) 1, 0.07 1, 0.05 11.06, 10.5 1, 0.08 1, 0.03 14.01, 13.45

(µ1, µ2) σ2
1 , σ2

2 , σ12 = 1.2, 1.2, 0.6 σ2
1 , σ2

2 , σ12 = 1.4, 1.4, 0.5

(0, 0) 82.78, 81.39 40.88, 41.09 112.5, 112.3 21.28, 20.96 9.24, 8.37 91.04, 88.54
(0.1, 0) 84.68, 82.83 35.39, 34.28 102, 101.2 22.17, 22.54 8.59, 7.91 86.13, 84.34

(0.1, 0.3) 22.31, 22.49 15.23, 14.85 35.87, 33.51 8.81, 8.45 5.02, 4.51 41.04, 42.17
(0.3, 0) 85.71, 88.17 27.79, 27.52 102, 106.5 21.26, 21.9 7.29, 6.61 74.15, 69.47

(0.5, 0.8) 3.84, 3.17 3.24, 2.67 9.72, 9.28 2.65, 2.13 1.91, 1.35 12.47, 12.18
(1, 1) 1.88, 1.29 1.79, 1.21 9.06, 8.25 1.59, 0.95 1.34, 0.66 12.14, 12.33
(2, 2) 1.01, 0.09 1, 0.06 10.77, 10.35 1, 0.06 1, 0.03 17.15, 16.48

(µ1, µ2) σ2
1 , σ2

2 , σ12 = 1.4, 1.4, 0.75 σ2
1 , σ2

2 , σ12 = 3, 3, 0.5

(0, 0) 42.26, 39.87 16.45, 15.6 75.73, 71.09 1.91, 1.3 1.2, 0.48 105.9, 108.5
(0.1, 0) 41.82, 39.94 15.16, 14.77 68.19, 70.49 1.98, 1.4 1.22, 0.53 92.67, 90.9

(0.1, 0.3) 13.78, 14.03 7.58, 7.1 26.01, 24.69 1.49, 0.86 1.13, 0.38 57.07, 56.54
(0.3, 0) 40.9, 40.55 12.26, 11.34 65.37, 64.64 1.97, 1.39 1.17, 0.45 84.41, 78.99

(0.5, 0.8) 3.02, 2.45 2.39, 1.84 8.55, 8.2 1.17, 0.47 1.03, 0.19 23.51, 23.63
(1, 1) 1.67, 1.04 1.54, 0.9 7.81, 7.57 1.11, 0.35 1.01, 0.12 22.48, 21.63
(2, 2) 1, 0.08 1, 0.07 10.28, 9.77 1, 0.08 1, 0 59.71, 60.83

According to the results of this analysis (reported in Table 8), the ANN chart is the
worst-performing in all the compared cases. Under zero variation shift, the RFR chart
performs better than the SVR chart. Other than that, under small variation shifts, together
with small mean shifts, the SVR chart performs better, and together with moderate and
large mean shifts, the RFR chart performs better. In large variation shift cases, the SVR
chart performs better. By comparing the first and second training cases (Tables 7 and 8), it
is evident that the ANN and RFR charts perform better with the second training method
being applied, in all the shift cases. On the other hand, under no or small variation shifts,
the SVR chart also performs better with the second training method, but under larger
variation shifts, the chart performance is rather the same no matter which training method
is used. In addition, no deterioration in performance as the shift size becomes larger than
the trained value is noticeable in any of the charts in this scenario. By comparing Tables 4
and 8 (different input sets), we realize that all the charts mostly perform better with the
second input scenario, with the RFR chart having the least improved cases.
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Table 8. ARL, SDRL. Scenario a22, p = 2.

ANN SVR RFR ANN SVR RFR

(µ1, µ2) σ2
1 , σ2

2 , σ12 = 1, 1, 0.5 σ2
1 , σ2

2 , σ12 = 1.05, 1, 0.5

(0, 0) 200, 200 200, 200 200, 200 123.77, 120.89 112.98, 110.77 146.04, 137.69
(0.1, 0) 175.12, 169.66 155.3, 149.36 122.8, 117.12 107.61, 104.76 87.61, 86.69 100.7, 94.8

(0.1, 0.3) 55.5, 53.37 49.26, 48.86 37.66, 35.35 40.88, 40.46 32.22, 32.18 30.83, 29.54
(0.3, 0) 68.36, 69.04 93.47, 91.08 33.89, 32.93 49.6, 46.63 57.54, 59.13 30.19, 30.05

(0.5, 0.8) 4.73, 4.28 5.52, 5.12 3.47, 2.97 4.07, 3.59 4.19, 3.63 3.27, 2.64
(1, 1) 1.94, 1.35 2.1, 1.51 1.39, 0.72 1.77, 1.16 1.87, 1.26 1.36, 0.73
(2, 2) 1, 0.03 1, 0.03 1, 0.04 1, 0.05 1, 0.04 1, 0.05

(µ1, µ2) σ2
1 , σ2

2 , σ12 = 1.05, 1.05, 0.5 σ2
1 , σ2

2 , σ12 = 1.05, 1.3, 0.5

(0, 0) 119.7, 117.43 113.66, 111.26 145.8, 143.26 36.98, 36.29 35.36, 34.15 67.92, 71.98
(0.1, 0) 109.92, 110.25 91.58, 89.65 94.87, 95.08 32.44, 31.9 28.9, 29.51 57.81, 57.1

(0.1, 0.3) 39.17, 38.3 31.75, 30.94 32.75, 32.57 16.98, 16.67 13.64, 12.93 19.89, 19.42
(0.3, 0) 46.38, 46.47 57.45, 56.99 30.82, 28.69 21.45, 21.07 22.37, 21.61 26.26, 25.91

(0.5, 0.8) 4.2, 3.63 4.33, 3.76 3.36, 2.79 3.36, 2.75 3.03, 2.5 3.07, 2.52
(1, 1) 1.79, 1.18 1.9, 1.32 1.32, 0.68 1.63, 1.03 1.62, 0.98 1.36, 0.69
(2, 2) 1, 0.03 1, 0.02 1, 0.07 1, 0.04 1, 0.03 1, 0.07

(µ1, µ2) σ2
1 , σ2

2 , σ12 = 1.2, 1.2, 0.6 σ2
1 , σ2

2 , σ12 = 1.4, 1.4, 0.5

(0, 0) 49.03, 47.37 43.5, 43.13 70.52, 70.58 8.71, 8.04 9.21, 8.72 26.31, 26.03
(0.1, 0) 46.69, 46.07 35.71, 37.08 50.66, 50.53 7.93, 7.31 8.41, 7.83 22.27, 21.87

(0.1, 0.3) 21.07, 20.83 15.34, 14.99 20.19, 19.52 5.9, 5.29 5.08, 4.4 10.86, 10.34
(0.3, 0) 26.63, 25.92 24.93, 24.83 22.78, 23.16 6.36, 6.04 6.86, 6.31 12.83, 12.98

(0.5, 0.8) 3.61, 3.05 3.18, 2.74 2.86, 2.32 2.23, 1.56 1.89, 1.27 2.41, 1.76
(1, 1) 1.66, 1.05 1.64, 1 1.39, 0.75 1.39, 0.76 1.28, 0.59 1.3, 0.66
(2, 2) 1, 0.05 1, 0.05 1, 0.03 1.01, 0.12 1, 0 1, 0, 07

(µ1, µ2) σ2
1 , σ2

2 , σ12 = 1.4, 1.4, 0.75 σ2
1 , σ2

2 , σ12 = 3, 3, 0.5

(0, 0) 21.16, 20.8 17.8, 17.78 29.82, 28.27 1.26, 0.57 1.26, 0.58 2.01, 1.5
(0.1, 0) 19.72, 19.11 15.32, 14.3 25.04, 24.31 1.24, 0.53 1.2, 0.48 1.96, 1.32

(0.1, 0.3) 11.45, 10.87 7.954, 7.319 11.55, 10.3 1.26, 0.58 1.14, 0.39 1.67, 1.09
(0.3, 0) 14.49, 13.59 11.25, 10.4 13.41, 12.79 1.2, 0.47 1.18, 0.46 1.85, 1.26

(0.5, 0.8) 2.93, 2.43 2.26, 1.67 2.57, 2 1.23, 0.54 1.03, 0.2 1.26, 0.57
(1, 1) 1.59, 0.97 1.42, 0.76 1.34, 0.7 1.22, 0.54 1.01, 0.12 1.1, 0.35
(2, 2) 1, 0.09 1, 0.07 1, 0.04 1.345, 0.67 1, 0 1, 0, 05

Moreover, by comparing the results in Table 8 to Sabahno et al.’s [9] Table 4, we can
again see that in all the cases, at least one of the proposed ML control charts performs
better (mostly much better) than all their control charts. Therefore, when the second input
scenario is used, if the second training method is utilized, the proposed scheme performs
better under all shift sizes and types, unlike the first training method (Scenario a21).

3.2. Scenario b: Control Charts for Detection and Identification

In scenario b, several ML structures are involved, and consequently, so are several
control charts in each control scheme. Each process parameter has its output (control chart),
and if the corresponding chart signals, it means that this parameter (and consequently the
variable associated with it) has shifted. However, as the number of quality characteristics
increases, the number of control charts (outputs) also increases in this scenario. This might
increase the false-alarm rates. As such, this scenario should be used with more caution,
especially in larger dimensions. In addition, even before conducting any numerical analysis
(next subsections), overall, worse performance compared to scenario a is expected in this
scenario because more than one control chart is being monitored together. Having said
that, the advantage of this scenario is not its performance, but helping one to identify the
responsible variable parameter by allowing a little bit of performance to be sacrificed.
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In the case of p = 2, since we have five process parameters, namely µ1, µ2, σ2
1 , σ2

2 and
σ12, five ML structures, each with its own control chart, are therefore required. These
charts are monitored together and obtaining a signal from either one of them means that
the process is out of control. Before we start developing control charts for each scenario,
we should mention that it was more difficult to choose suitable hyperparameters for this
scenario to obtain the desired ARL performance, especially in the case of p = 3. Therefore,
we tried many combinations of hyperparameter values for the ML structures to obtain the
desired overall performance. The desired performance, in this case, is computed (assuming
the independency of control charts as well as equality of their type-I error probability)
as follows: αoverall = 1− (1− α)m, where m is the number of control charts, and ARL =

1
αoverall

= 1
0.005 = 200. Consequently, for the case of p = 2, in which a maximum of five control

charts is required (m = 5), by using the above formulae, we have α = 0.001. This means
that each control chart’s performance is 1

0.001 = 1000, but they all together should have a
performance of 1

0.005 = 200. Similarly, for the case of p = 3, individual αs are computed as
0.000716, which results in ARL = 1

0.000716 = 1396.6. Note that, for simplicity, we assume that
all the covariances are equal in the case of p = 3. Therefore, we only have one control chart
for monitoring the covariance, making a total of seven control charts (m = 7, i.e., three to
monitor the means, three to monitor the variances, and one to monitor the covariance).

3.2.1. Scenario b1 (Control Type b, Input Set 1)

Similar to Scenario a1, the inputs, in this case, are T2 and W statistics. Again, two
different training methods are applied on each control chart (one trained with only small
shifts and the other one trained with small and large shifts).

Scenario b11 (Control Type b, Input Set 1, Training Method 1)

In this scenario, the ML structures are trained with only small shift sizes. First, we
generate 1000 in-control data that are going to be used in all control charts. Second, we
generate 1000 out-of-control data with 0.2 shifts in µ1 and use it for the control chart that
monitors µ1; 1000 out-of-control data with 0.2 shifts in µ2 and use it for the control chart
that monitors µ2; 1000 out-of-control data with shifts of 1.2 times the in-control σ2

1 and use
it for the control chart that monitors σ2

1 ; 1000 out-of-control data with shifts of 1.2 times the
in-control σ2

2 and use it for the control chart that monitors σ2
2 ; and 1000 out-of-control data

with shifts of 1.2 times the in-control σ12 and use it for the control chart that monitors σ12.
Now that we have five datasets, we need to train five different ML structures. For the ANN
scheme, for monitoring µ1, µ2, σ2

1 , σ2
2 and σ12, we use 5, 5, 5, 5, and 4 nodes in the hidden

layers, respectively, to obtain an overall performance of 200. The RMSE of these ANN
structures, respectively, are 0.49, 0.49, 0.48,0.48, and 0.49. Finally, the UCLs are, respectively,
computed as 1.0292, 1.1628, 0.8846, 1.048, and 0.8393.

For the SVR scheme, the major difference was that the linear kernel did not work for
all the structures in this scenario, and we had to try the radial kernel as well (other kernel
types did not work at all). The kernel types we used for µ1, µ2, σ2

1 , σ2
2 and σ12 control

charts are, respectively, radial, radial, radial, radial, and linear. The RMSEs and UCLs
are as follows. The RMSEs are 0.52, 0.52, 0.52, 0.53, and 0.51, and the UCLs are 1.1174,
1.1204, 1.1089, 1.0972, and 1.283. Regarding the RFR scheme, 100 trees still worked well
for each structure in this scenario. The RMSEs and UCLs for the RFR charts are computed
as follows. The RMSEs are 0.53, 0.54, 0.52, 0.52, and 0.52, and the UCLs are 0.9576, 0.9409,
0.9597, 0.9681, and 0.9433.

According to the reported results in Table 9, all the control charts mostly experience a
deterioration in performance compared to when only one control chart is used (Table 1).
However, the RFR scheme mostly performs better in this control case when the mean shift
is large. The worst deterioration in performance can be seen in the SVR scheme. It even
experiences a deterioration in performance under shifts larger than the trained value in
this scenario (unlike Table 1). The RFR scheme, however, experiences that effect only when
the variation shift size is very large in this scenario. Out of these three, the ANN is the
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best-performing scheme. Its performance is even very close to that of being reported in
Table 1 (used only for detection).

Table 9. ARL, SDRL. Scenario b11 (with identification), p = 2.

ANN SVR RFR ANN SVR RFR

(µ1, µ2) σ2
1 , σ2

2 , σ12 = 1, 1, 0.5 σ2
1 , σ2

2 , σ12 = 1.05, 1, 0.5

(0, 0) 200, 200 200, 200 200, 200 149.42, 151.52 201.87, 203.46 181.8, 177.7
(0.1, 0) 160.4, 155.4 173.9, 176.6 186.7, 191 124, 120 184.7, 191.4 180.1, 189

(0.1, 0.3) 62.01, 58.38 110.02, 110.37 155.2, 158.5 52.15, 50.89 109.1, 107.4 143, 151.4
(0.3, 0) 48.04, 46.43 93.51, 90 136.3, 138.5 40.94, 40.87 97.53, 97.58 139.4, 143.1

(0.5, 0.8) 4.75, 4.3 36.58, 36.75 49.6, 49.63 4.55, 4.16 38.09, 38.81 51.89, 50.52
(1, 1) 1.79, 1.15 51.36, 49.96 29.7, 30.33 1.77, 1.19 47.34, 46.34 31.93, 32.45
(2, 2) 1, 0.03 >10,000 19.38, 18.91 1, 0.03 >10,000 20.84, 20.32

(µ1, µ2) σ2
1 , σ2

2 , σ12 = 1.05, 1.05, 0.5 σ2
1 , σ2

2 , σ12 = 1.05, 1.3, 0.5

(0, 0) 118.52, 119.79 202.07, 207.02 180.8, 175.1 39.63, 39.97 168.7, 169 131.2, 131.3
(0.1, 0) 97.77, 99.47 172.9, 172.1 176.5, 178.1 36.89, 36.02 161.9, 158.9 130.8, 130.4

(0.1, 0.3) 43.95, 44.88 108.1, 106.8 138.2, 133 20.56, 20.27 102.3, 103.9 113.9, 116.9
(0.3, 0) 35.95, 35.47 95.47, 93.45 134.1, 128.2 19.35, 19.4 88.08, 86.51 122.5, 117.7

(0.5, 0.8) 4.422, 3.934 38.92, 37.7 56.43, 55.79 3.69, 3.19 39.36, 39.55 74.89, 70.93
(1, 1) 1.76, 1.16 47.73, 44.82 34.79, 32.97 1.77, 1.16 47.39, 47.61 52.86, 50.55
(2, 2) 1, 0.02 >10,000 22.8, 22.2 1, 0.05 >10,000 35.4, 34.89

(µ1, µ2) σ2
1 , σ2

2 , σ12 = 1.2, 1.2, 0.6 σ2
1 , σ2

2 , σ12 = 1.4, 1.4, 0.5

(0, 0) 47.96, 47.6 186.1, 183.4 132.9, 133.4 11.57, 11.02 146.5, 145.7 94.65, 99.79
(0.1, 0) 41.51, 40.24 157.3, 157.5 144.8, 156.5 11.2, 10.7 135.7, 139.9 97.2, 96.26

(0.1, 0.3) 23.57, 22.57 104.1, 106.2 126.2, 117.9 8.69, 8.15 103.9, 105.3 94.03, 94.87
(0.3, 0) 20.93, 20.87 88.51, 86.74 122.6, 121.7 7.41, 6.69 87.51, 88.02 96.93, 95.25

(0.5, 0.8) 3.79, 3.23 38.36, 38.36 69.34, 69.38 3, 2.4 43.3, 44.68 106.1, 105.8
(1, 1) 1.83, 1.24 48.31, 49.39 49.93, 52.86 1.65, 1.08 56.18, 54.86 109.8, 109.8
(2, 2) 1, 0.04 >10,000 33.44, 32.79 1, 0.07 >10,000 91.38, 85.05

(µ1, µ2) σ2
1 , σ2

2 , σ12 = 1.4, 1.4, 0.75 σ2
1 , σ2

2 , σ12 = 3, 3, 0.5

(0, 0) 19.79, 18.66 160.9, 161.4 108, 107.1 1.27, 0.6 725.8, 726.7 222.9, 221.5
(0.1, 0) 19.09, 18.97 141.7, 132.8 103.9, 106.7 1.27, 0.6 700.6, 692.5 206.9, 200.7

(0.1, 0.3) 13.15, 12.39 99.46, 98.47 104.4, 106 1.26, 0.58 735.2, 706.8 217.9, 228.2
(0.3, 0) 11.99, 10.93 88.22, 83.6 108.71, 104.8 1.28, 0.58 709.2, 712.3 221.7, 215.4

(0.5, 0.8) 3.46, 3.03 41.47, 41.09 94.66, 93.9 1.13, 0.38 643.3, 611.6 436.7, 432.3
(1, 1) 1.81, 1.18 53.56, 55.79 69.6, 75.21 1.08, 0.28 812.3, 578 1434, 1027
(2, 2) 1, 0.08 >10,000 59.42, 58.75 1, 0.02 >10,000 >10,000

Moreover, by comparing the results of Table 9 to Sabahno et al.’s [9] Table 4, one can
still see that in most cases (except mostly in the case of (0.5, 0.8) mean shift together with
no/small variation shift), at least one of the proposed ML control charts performs better
than all their proposed control charts, even though their control charts are only designed
for detection. In the case of three quality characteristics, the construction of the dataset is
the same as the case of p = 2, except here we add the following: 1000 out-of-control data
with 0.2 shifts in µ3 and use it for the control chart that monitors µ3 and 1000 out-of-control
data with shifts 1.2 times the in-control σ2

3 and use it for the control chart that monitors σ2
3 .

For the ANN scheme, for monitoring µ1, µ2, µ3, σ2
1 , σ2

2 , σ2
3 and the covariance, we use 5,

5, 5, 5, 5, 5, and 4 nodes in the hidden layers, respectively, with RMSEs of 0.49, 0.49, 0.49,
0.49, 0.49, and 0.48, and UCLs of 0.9169, 1.2852, 0.9164, 0.822, 0.8787, 0.8193, and 0.7305.
For the SVR scheme, the used kernels, respectively, are radial, radial, radial, radial, radial,
radial, and linear. The RMSEs are 0.51, 0.51, 0.51, 0.52, 0.52, 0.52, and 0.52, and the UCLs
are 1.1506, 1.0763, 1.0906, 1.0908, 1.1556, 1.0914, and 1.6437. Regarding the RFR scheme,
the least numbers of trees that we had to use for each structure (to obtain the overall ARL
of 200), respectively, 100, 100, 100, 500, 100, 300, and 100. The RMSEs are 0.53, 0.53, 0.53,
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0.53, 0.52, 0.53, and 0.52, and the UCLs are 0.9485, 0.9585, 0.9474, 0.9577, 0.9647, 0.9647, and
0.9677. The results of this analysis are reported in Table 10.

Table 10. ARL, SDRL. Scenario b11 (with identification), p = 3.

ANN SVR RFR ANN SVR RFR

(µ1, µ2, µ3) σ2
1 , σ2

2 , σ2
3 , Cov = 1, 1, 1, 0.5 σ2

1 , σ2
2 , σ2

3 , Cov = 1.05, 1, 1, 0.5

(0, 0, 0) 200, 200 200, 200 200, 200 173.2, 170 200, 197 180.7, 171.2
(0.1, 0, 0.1) 162.7, 158.5 191.7, 180.4 193.2, 182.2 140.1, 139.8 184.4, 186.3 169.1, 178.3

(0.1, 0.3, 0.3) 65.37, 63.74 112.4, 113.3 140.2, 136.4 62.19, 58.74 104.3, 106.4 137.1, 134.9
(0.3, 0, 0) 70, 68.85 112.1, 108.8 145.3, 147.1 62.41, 62.24 105.7, 102.8 136.1, 129.4

(0.5, 0.8, 0.5) 8.79, 8.26 39.13, 40.1 67.1, 65.66 8.88, 8.04 39.58, 38.35 64.91, 66.47
(1, 1, 1) 2.45, 1.88 41.89, 39.86 85.13, 79.04 2.41, 1.79 40.68, 41.82 81.15, 81.58
(2, 2, 2) 1, 0 >10,000 >10,000 1, 0 >10,000 >10,000

(µ1, µ2, µ3) σ2
1 , σ2

2 , σ2
3 , Cov = 1.05, 1.05, 1.05, 0.5 σ2

1 , σ2
2 , σ2

3 , Cov = 1.05, 1.3, 1.05, 0.5

(0, 0, 0) 119.6, 120.1 166.9, 173.5 185.3, 174.1 58.1, 56.94 117, 121.3 122, 123.7
(0.1, 0, 0.1) 111.3, 112 161.5, 155.2 152, 144.9 53.26, 53.94 113.3, 114.5 114.6, 112.5

(0.1, 0.3, 0.3) 54.7, 54.6 98.81, 95.89 113.1, 106.3 34.07, 34.35 79.56, 82.71 98.41, 96.06
(0.3, 0, 0) 53.08, 51.83 96.81, 100.2 117.3, 121.1 32.76, 32.4 83.34, 78.16 106.1, 108

(0.5, 0.8, 0.5) 8.64, 7.86 39.58, 37.68 64.28, 62.58 6.88, 6.14 41.4, 40 70.57, 68.66
(1, 1, 1) 2.43, 1.86 41.77, 42.75 89.83, 86.32 2.27, 1.63 47.5, 45.62 99.91, 96.18
(2, 2, 2) 1, 0.04 >10,000 >10,000 1, 0.03 >10,000 >10,000

(µ1, µ2, µ3) σ2
1 , σ2

2 , σ2
3 , Cov = 1.2, 1.2, 1.2, 0.6 σ2

1 , σ2
2 , σ2

3 , Cov = 1.4, 1.4, 1.05, 0.5

(0, 0, 0) 54.77, 54.89 115.1, 112 126.4, 129.6 17.75, 16.96 71.26, 68.07 74.38, 82.69
(0.1, 0, 0.1) 51.34, 48.68 108.7, 106.1 113.1, 105.3 17.79, 17.88 70.62, 71.74 79.58, 83.47

(0.1, 0.3, 0.3) 32.2, 32.72 81.05, 76.15 90.85, 86.53 13.11, 13.1 59.12, 58.77 71.82, 68.78
(0.3, 0, 0) 31.45, 30.61 77.98, 76.26 94.03, 86.58 12.84, 12.08 61.83, 58.73 80.5, 82.38

(0.5, 0.8, 0.5) 6.52, 5.72 40.93, 40.51 70.07, 71.17 4.77, 3.92 50.43, 49.86 76.7, 73.9
(1, 1, 1) 2.21, 1.58 47.82, 46.98 105.9, 98.5 1.96, 1.33 60.61, 61.3 138.3, 146.4
(2, 2, 2) 1, 0 >10,000 >10,000 1, 0.03 >10,000 >10,000

(µ1, µ2, µ3) σ2
1 , σ2

2 , σ2
3 , Cov = 1.4, 1.4, 1.05, 0.75 σ2

1 , σ2
2 , σ2

3 , Cov = 3, 3, 1.4, 0.5

(0, 0, 0) 72.1, 76.37 130.7, 130 135.9, 136.5 1.24, 0.58 132.5, 133.2 66.75, 65.52
(0.1, 0, 0.1) 66.25, 67.53 129.3, 128.7 126.2, 122.1 1.25, 0.57 140.8, 132.4 72.06, 71.05

(0.1, 0.3, 0.3) 38.7, 39.57 90.35, 95.11 101.9, 105.1 1.22, 0.52 174.8, 182.1 80.7, 78.22
(0.3, 0, 0) 35.49, 36.39 84.25, 83.67 103.4, 106.2 1.2, 0.47 141.8, 138.7 72.15, 73.2

(0.5, 0.8, 0.5) 7.22, 6.9 43.91, 44.9 72.57, 70.33 1.16, 0.45 320.2, 319.3 167.3, 171.3
(1, 1, 1) 2.24, 1.62 43.59, 42.46 106.5, 100.2 1.06, 0.26 953.8, 947.7 944.5, 964.4
(2, 2, 2) 1, 0.05 >10,000 >10,000 1, 0 >10,000 >10,000

According to the results in Table 10, the ANN chart performs better than the others. By
comparing Tables 2 and 10, one can conclude that when the identification is a goal as well,
all the schemes perform worse. Also, both the SVR and RFR schemes experience significant
deterioration in performance as the shift size becomes larger than the trained value in this
scenario. By comparing Tables 9 and 10 (p = 2 and p = 3 cases), we realize that the ANN
scheme mostly performs worse in higher dimensions and the SVR scheme mostly performs
better (except under no variation shift). Regarding the RFR scheme, only under small mean
shifts and very large variation shifts, it mostly performs better in higher dimensions.

Moreover, by comparing the results in Table 10 to Sabahno et al.’s [9] Table 5, we can
see that the number of cases in which at least one of our control charts performs better
than all their charts is almost equal to the cases that at least one of their proposed charts
performs better than ours. Once again, their charts are designed for detection, and in this
scenario, we are looking for both detection and identification; therefore, the performance
deterioration is normal.
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Scenario b12 (Control Type b, Input Set 1, Training Method 2)

In this scenario, the ML structures are trained with both small and large shift sizes.
Here again, 1000 in-control data are generated to be used in all control charts. Regarding
the out-of-control dataset, we generate 500 out-of-control data with 0.2 shifts and 500 out-
of-control data with 1 shift in µ1 and use it for the control chart that monitors µ1; 500 out-of-
control data with 0.2 shifts in µ2 and 500 out-of-control data with 1 shift in µ2 and use it for
the control chart that monitors µ2; 500 out-of-control data with shifts 1.2 times that of the
in-control σ2

1 and 500 out-of-control data with shifts 2 times that of the in-control σ2
1 and

use it for the control chart that monitors σ2
1 ; 500 out-of-control data with shifts 1.2 times

that of the in-control σ2
2 and 500 out-of-control data with shifts 2 times that of the in-control

σ2
2 and use it for the control chart that monitors σ2

2 ; and finally, 500 out-of-control data with
shifts 1.2 times that of the in-control σ12 and 500 out-of-control data with shifts 2 times that
of the in-control σ12 and use it for the control chart that monitors σ12. As five datasets are
considered, five different ML structures for each scheme are required.

For the ANN scheme, for µ1, µ2, σ2
1 , σ2

2 and σ12, we use five nodes in all the hidden
layers. The RMSE of these ANN structures, respectively, are 0.42, 0.42, 0.46, 0.46, and 0.43.
Finally, the UCLs are computed as 1.1086, 0.9762, 0.9519, 0.985, and 1.007. For the SVR
scheme, we use the radial kernel for all the structures. The RMSEs and UCLs are as follows.
The RMSEs are 0.45, 0.44, 0.49, 0.49, and 0.46, and the UCLs are 1.0793, 1.1018, 1.0266,
1.0194, and 1.0103. Regarding the RFR scheme, 100 trees worked well for each structure.
The RMSEs and UCLs for the RFR charts are as follows. The RMSEs are 0.45, 0.45, 0.49,
0.49, and 0.45, and the UCLs are 0.9998, 0.9998, 0.9937, 0.9961, and 0.999.

The results in Table 11 show that in most cases, the ANN scheme performs better than
the other charts. However, under no variation shift, and small variation shifts when the
mean shift is also small, the RFR scheme performs better. By comparing the results of this
table with its equivalent scenario when only detection was the goal (comparing Tables 4
and 11), one can see the performance deterioration in all the schemes when identification
is added to the goal as well. However, again same as in the previous case (Scenario b11),
deterioration is at its lowest for the ANN chart. In addition, by comparing the results
of two training methods (Scenario b11/Table 9 and Scenario b12/Table 11), one can see
that the SVR and RFR schemes benefit from the second training method, with the RFR
benefiting the most so that we do not see any deterioration in performance under shifts
larger than the trained value. The ANN scheme, however, experiences a slight deterioration
in performance in most cases.

Moreover, by comparing the results in Table 11 to Sabahno et al.’s [9] Table 4, we realize
that although more cases are added to the ones in which at least one of their proposed
control charts performs better, we can still see that the cases in which at least one of the
proposed ML schemes performs better than all their proposed control charts are more, even
though their control charts are only designed for detection.

In the case of three quality characteristics, the construction of the dataset is similar
to the p = 2 case, with the only difference being that since two more process parameters
(µ3 and σ2

3 )/charts are added in the case of p = 3, 500 out-of-control data with 0.2 shifts
and 500 out-of-control data with 1 shift in µ3 are generated to be used for the control chart
that monitors µ3, and 500 out-of-control data with shifts 1.2 times that of the in-control σ2

3
and 500 out-of-control data with shifts 2 times that of the in-control σ2

3 are considered to be
used for the control chart that monitors σ2

3 .
For the ANN control charts to monitor µ1, µ2, µ3, σ2

1 , σ2
2 , σ2

3 , and the covariance, five
nodes are utilized in each hidden layer, with RMSEs of 0.38, 0.38, 0.38, 0.45, 0.44, 0.44, and
0.27 as well as UCLs of 0.913, 0.9082, 0.96518, 0.9581, 0.9339, 0.9797, and 0.9951. For the SVR
control charts, the used kernels are all radial. The RMSEs and UCLs are as follows. The
RMSEs are 0.39, 0.39, 0.39, 0.48, 0.48, 0.48, and 0.29, and the UCLs are 1.0722, 1.0839, 1.1073,
1.0892, 1.0128, 1.0823, and 1.0281. Regarding the RFR control charts, the least numbers
of trees that we had to use for each structure (to obtain the overall ARL of 200) are 100,
100, 100, 500, 300, 300, and 100. The RMSEs are 0.4, 0.4, 0.4, 0.45, 0.46, 0.46, and 0.29, and
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the UCLs are 0.7026, 0.7052, 0.7254, 0.3872, 0.4453, 0.4077, and 0.8023. Note that for the
RFR structures in this scenario, for the first time, we had to activate a feature that the
‘randomForest’ package offers, and it is called ‘corr.bias’, which performs bias correction
for the regression model. Without that feature being activated, we were not able to obtain
the desired performance, no matter how many trees we tried.

Table 11. ARL, SDRL. Scenario b12 (with identification), p = 2.

ANN SVR RFR ANN SVR RFR

(µ1, µ2) σ2
1 , σ2

2 , σ12 = 1, 1, 0.5 σ2
1 , σ2

2 , σ12 = 1.05, 1, 0.5

(0, 0) 200, 200 200, 200 200, 200 167.4, 170.5 193.6, 186.8 172.1, 177.2
(0.1, 0) 171.1, 171.3 181.2, 203.5 166.5, 145.6 139, 139.6 167.5, 170.9 157.8, 164

(0.1, 0.3) 79.9, 78.78 99.75, 105.6 63.04, 65.82 69.15, 70.55 83.67, 75.27 70.87, 68.67
(0.3, 0) 62.84, 59.85 75.31, 76.62 50.5, 52.81 53.81, 54.14 75.63, 74.51 44.89, 40.81

(0.5, 0.8) 5.51, 5.04 30.7, 35.05 5.29, 4.51 5.57, 5.1 24.71, 23 5.65, 4.97
(1, 1) 1.92, 1.27 31.48, 30.6 2.01, 1.36 1.89, 1.24 28.24, 25.56 2.01, 1.29
(2, 2) 1, 0.03 >10,000 1.22, 0.5414 1, 0.03 >10,000 1.26, 0.6

(µ1, µ2) σ2
1 , σ2

2 , σ12 = 1.05, 1.05, 0.5 σ2
1 , σ2

2 , σ12 = 1.05, 1.3, 0.5

(0, 0) 133.9, 131.2 157.5, 144.2 127.9, 123.6 52.48, 51.18 109.5, 115 55.23, 53.85
(0.1, 0) 116.3, 115.4 144.6, 145.5 119.3, 116.9 47.29, 46.04 102.5, 108.9 54.11, 51.69

(0.1, 0.3) 54.95, 57.15 83.44, 89.2 56.89, 56.27 26.13, 26.2 66.23, 71.56 29, 01, 30.95
(0.3, 0) 45.51, 45 74.85, 71.91 44.08, 41.1 23.33, 22.87 56.56, 56.35 28.85, 28.8

(0.5, 0.8) 5.32, 4.73 23.63, 21.63 4.93, 4.2 4.29, 3.84 18.89, 20 5.05, 4.82
(1, 1) 1.83, 1.22 27.98, 25.33 1.98, 1.28 1.73, 1.09 22.17, 19.72 2.07, 1.56
(2, 2) 1, 0 >10,000 1.26, 0.51 1, 0 >10,000 1.34, 0.71

(µ1, µ2) σ2
1 , σ2

2 , σ12 = 1.2, 1.2, 0.6 σ2
1 , σ2

2 , σ12 = 1.4, 1.4, 0.5

(0, 0) 60.34, 59.04 124.5, 132.4 75.91, 77.46 14.94, 14.66 58.04, 54.73 25.81, 25.53
(0.1, 0) 55.62, 53.89 107.8, 98.68 65.75, 63.07 14.1, 14.42 53.29, 48.72 21.36, 20.77

(0.1, 0.3) 31.88, 31.27 62.41, 56.23 34.39, 33.71 10.38, 9.79 36.14, 35.83 15.69, 15.49
(0.3, 0) 26.52, 25.58 55.24, 51.44 33.01, 31.47 9.14, 8.97 34.89, 34.84 14.04, 13.73

(0.5, 0.8) 4.41, 3.95 21.47, 22.07 5.49, 4.335 3.03, 2.45 15.77, 14.66 4.94, 4.5
(1, 1) 1.76, 1.18 24.05, 24.97 2.04, 1.35 1.55, 0.92 21.01, 21.06 2.38, 1.64
(2, 2) 1, 0.03 >10,000 1.29, 0.6 1, 0 3684.07, 2428.36 1.61, 0.98

(µ1, µ2) σ2
1 , σ2

2 , σ12 = 1.4, 1.4, 0.75 σ2
1 , σ2

2 , σ12 = 3, 3, 0.5

(0, 0) 27.24, 26.27 79.79, 76.59 35.43, 35.04 1.5, 0.85 64.87, 66.76 14.6, 14.12
(0.1, 0) 24.84, 23.87 70.3, 71.4 33.03, 32.2 1.49, 0.85 63.42, 63.09 14.04, 13.35

(0.1, 0.3) 16.94, 16.28 45.1, 47.75 21.66, 21.23 1.44, 0.8 62.29, 61.14 12.93, 11.99
(0.3, 0) 14.64, 13.86 42.77, 41.06 19.98, 19.13 1.46, 0.81 60.07, 59.96 12.91, 12.09

(0.5, 0.8) 3.5, 2.93 19.98, 19.23 4.85, 4.39 1.34, 0.64 55.18, 50.77 11.38, 10.41
(1, 1) 1.71, 1.12 22.8, 21.87 2.25, 1.657 1.16, 0.45 79.59, 74.07 11.11, 10.37
(2, 2) 1, 0.03 4761.09, 5179.76 1.4, 0.73 1, 0.04 4256.1, 4516.53 11.47, 10.73

The result of this analysis is reported in Table 12. This table shows that in this case,
the RFR scheme performs better than the other two in all the shift cases. By comparing
this case with the first training method (Tables 10 and 12), we realize that the RFR scheme
performs better with the second training method, and on the contrary, the ANN and SVR
schemes mostly perform worse. Comparing the p = 3 and p = 2 cases (Tables 11 and 12), the
RFR scheme mostly performs better in higher dimensions. On the other hand, the ANN
and SVR charts mostly perform worse in higher dimensions (however, under very large
mean shifts, the SVR scheme performs better). The highest deterioration in performance
belongs to the ANN scheme. By comparing two process control scenarios (Tables 5 and 12),
one can see that all the schemes experience deterioration in performance, more so for the
SVR scheme, as unlike the previous control case, it experiences a significant deterioration
in performance as the shift size becomes larger than the trained value.
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Table 12. ARL, SDRL. Scenario b12 (with identification), p = 3.

ANN SVR RFR ANN SVR RFR

(µ1, µ2, µ3) σ2
1 , σ2

2 , σ2
3 , Cov = 1, 1, 1, 0.5 σ2

1 , σ2
2 , σ2

3 , Cov = 1.05, 1, 1, 0.5

(0, 0, 0) 200, 200 200, 200 200, 200 231.6, 237.3 222.7, 234.9 168.8, 170.3
(0.1, 0, 0.1) 190.1, 196.3 191.7, 190.8 160.7, 155 216.5, 214.1 212.96, 212.47 147.2, 157.1

(0.1, 0.3, 0.3) 145.1, 157.2 143.6, 145.7 53.17, 54.18 171, 171.5 153.5, 157.2 47.92, 49.33
(0.3, 0, 0) 155.2, 150.9 143.7, 148.2 52.73, 53.01 152.1, 143.3 157.2, 155.2 49.32, 51.13

(0.5, 0.8, 0.5) 18.42, 17.86 72.88, 72.84 6.11, 5.824 18.61, 18.54 80.7, 75.61 5.48, 4.97
(1, 1, 1) 3.56, 2.95 58.57, 58.1 1.97, 1.44 3.58, 3.03 61.34, 61.48 1.87, 1.27
(2, 2, 2) 1.11, 0.37 1494, 1397 1.2, 0.5 1.11, 0.34 1504, 1629 1.2, 0.4738

(µ1, µ2, µ3) σ2
1 , σ2

2 , σ2
3 , Cov = 1.05, 1.05, 1.05, 0.5 σ2

1 , σ2
2 , σ2

3 , Cov = 1.05, 1.3, 1.05, 0.5

(0, 0, 0) 272, 274.4 277.6, 294.1 127.3, 127.9 389.4, 380.8 350.1, 358.3 57.92, 54.64
(0.1, 0, 0.1) 275.7, 287.7 268.9, 261.7 99.14, 94.62 361.7, 363.8 335.5, 331.6 54.21, 53.41

(0.1, 0.3, 0.3) 176.8, 173 184.2, 192.1 39.81, 39.34 191.4, 205.4 250.8, 270 27.95, 26.8
(0.3, 0, 0) 171.5, 174.2 172.6, 163.8 41.3, 39.46 224.7, 198.1 263.7, 257.4 30.73, 29.67

(0.5, 0.8, 0.5) 19.84, 19.12 88.31, 84.7 5.93, 4.911 23.47, 22.21 103.5, 104 5.5, 5.17
(1, 1, 1) 4.18, 3.65 62.5, 60.63 1.94, 1.35 4.89, 4.44 76.9, 73.98 1.93, 1.48
(2, 2, 2) 1.2, 0.5 1453.11, 1538 1.18, 0.45 1.32, 0.61 1120.58, 1064.46 1.28, 0.59

(µ1, µ2, µ3) σ2
1 , σ2

2 , σ2
3 , Cov = 1.2, 1.2, 1.2, 0.6 σ2

1 , σ2
2 , σ2

3 , Cov = 1.4, 1.4, 1.05, 0.5

(0, 0, 0) 427.05, 391.7 382.5, 392.9 62.2, 68.76 522.8, 501.9 602.7, 5, 583 22.73, 20.64
(0.1, 0, 0.1) 400.4, 414.5 333, 328.5 54.46, 54.61 426.9, 392.3 496.7, 505.2 21.92, 21.14

(0.1, 0.3, 0.3) 215.4, 216.1 228.3, 233.4 27.86, 26.09 219.6, 217.7 354.7, 347.3 15.05, 14.52
(0.3, 0, 0) 234.6, 226.5 263.7, 278.7 27.52, 26.72 173.5, 167 384.7, 382.9 14.34, 13.9

(0.5, 0.8, 0.5) 22.8, 22.6 116.9, 126.7 5.2, 4.68 29.7, 28.48 139, 149.3 4.61, 4.04
(1, 1, 1) 5.22, 5.02 66.91, 65.02 2.02, 1.35 8.44, 7.63 68.62, 67.18 2.21, 1.58
(2, 2, 2) 1.33, 0.65 932.7, 871.2 1.28, 0.66 1.73, 1.12 974.3, 982.5 1.32, 0.6323

(µ1, µ2, µ3) σ2
1 , σ2

2 , σ2
3 , Cov 1.4, 1.4, 1.05, 0.75 σ2

1 , σ2
2 , σ2

3 , Cov 3, 3, 1.4, 0.5

(0, 0, 0) 286.3, 291.4 285.6, 255.2 68.35, 64.36 63.12, 60.09 458.3, 432.8 2.47, 1.84
(0.1, 0, 0.1) 286.4, 284 271.5, 280 64.79, 74.13 63.15, 61.07 427.3, 411.2 2.5, 2.01

(0.1, 0.3, 0.3) 159.1, 150.6 189.4, 188.1 30.58, 30.93 55.69, 53.68 344, 340.6 2.51, 2.01
(0.3, 0, 0) 158.1, 165 219.4, 192.7 30.31, 31.45 50.76, 48.21 337.1, 351.6 2.45, 1.94

(0.5, 0.8, 0.5) 18.46, 16.9 106.8, 106.7 5.12, 4.67 29.64, 29.25 203.3, 191.9 1.97, 1.41
(1, 1, 1) 4.3, 4.01 70.44, 77.17 2.05, 1.33 19.25, 18.14 108, 110.8 1.48, 0.85
(2, 2, 2) 1.23, 0.51 803.2, 715.9 1.2, 0.49 13.82, 12.84 1979.95, 2028.43 1.13, 0.36

Moreover, by comparing the results in Table 12 to Sabahno et al.’s [9] Table 5, we can
see that in the cases of large mean shifts and/or large variation shifts, at least one of their
proposed charts performs better than all our proposed charts. Otherwise, at least one of
our charts performs better than all their charts.

3.2.2. Scenario b2 (Control Type b, Input Set 2)

The individual elements of each sample’s mean vector and variance–covariance matrix
are considered as the inputs in this scenario.

Scenario b21 (Control Type b, Input Set 2, Training Method 1)

The first training method is used in this scenario. The construction of in and out-of-
control datasets are the same as in Scenario b11. For the ANN scheme, 11 nodes in each
hidden layer are used. The obtained RMSEs are 0.45, 0.43, 0.46, 0.46, and 0.45. Also, the
computed UCLs are 0.9644, 1.1054, 1.3556, 1.1599, and 1.177. For the SVR scheme, we use
linear kernels in all the structures in this scenario. The RMSEs are 0.49, 0.47, 0.5, 0.51, and
0.5. The UCLs are 1.2462, 1.2957, 1.3706, 1.3492, and 1.1669. For the RFR scheme, we use
100 trees for each structure. The RMSEs are 0.49. 0.48, 0.49, 0.49, and 0.5. The UCLs are
0.8489, 0.9042, 0.88, 0.8534, and 0.8459. The result of this scenario is reported in Table 13.
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Table 13. ARL, SDRL. Scenario b21 (with identification), p = 2.

ANN SVR RFR ANN SVR RFR

(µ1, µ2) σ2
1 , σ2

2 , σ12 = 1, 1, 0.5 σ2
1 , σ2

2 , σ12 = 1.05, 1, 0.5

(0, 0) 200, 200 200, 200 200, 200 176.7, 177.2 141.8, 144.9 173.2, 178.9
(0.1, 0) 179.64, 185.25 165.69, 162.43 180.9, 184.9 160.4, 164.7 118.7, 121.7 172.2, 171.5

(0.1, 0.3) 105.6, 109.4 55.46, 54.82 124.8, 125.5 111.2, 112.3 51.25, 50.59 129.1, 127.6
(0.3, 0) 141, 140.7 40.08, 38.88 153.3, 148.8 126, 123.9 32.26, 31.24 143, 142.8

(0.5, 0.8) 52.1, 51.68 9.35, 8.8 117.3, 118.2 52.31, 52.34 8.49, 7.61 118.2, 111.6
(1, 1) 57.59, 58.31 5.07, 4.43 403.6, 369.5 52.29, 50.81 4.74, 4.28 382.2, 413.6
(2, 2) 48.33, 47.02 1.03, 0.19 >10,000 43.19, 41.41 1.04, 0.22 >10,000

(µ1, µ2) σ2
1 , σ2

2 , σ12 = 1.05, 1.05, 0.5 σ2
1 , σ2

2 , σ12 = 1.05, 1.3, 0.5

(0, 0) 169.6, 167.2 111.5, 114 160.3, 155.6 99.24, 98.47 30.91, 31.46 111.5, 107.7
(0.1, 0) 144.2, 142.4 98.1, 100.21 157, 157.8 85.06, 84.01 33.06, 31.67 116, 125

(0.1, 0.3) 117.3, 116.6 42.04, 39.82 121.8, 125.3 123.7, 127.8 16.58, 17.14 109.6, 106.4
(0.3, 0) 106.5, 110.8 31.94, 29.97 145.3, 143.2 56.9, 56.08 20.03, 18.95 117, 119.1

(0.5, 0.8) 54.98, 51.53 7.92, 7.35 125.4, 126.1 73.16, 72.22 6.06, 5.25 134, 136.4
(1, 1) 50.73, 49.55 4.52, 3.93 370.3, 353.2 55.04, 56.33 3.83, 3.26 318.4, 337.9
(2, 2) 41.48, 43.25 1.03, 0.19 >10,000 45.47, 43.74 1.04, 0.21 >10,000

(µ1, µ2) σ2
1 , σ2

2 , σ12 = 1.2, 1.2, 0.6 σ2
1 , σ2

2 , σ12 = 1.4, 1.4, 0.5

(0, 0) 138.6, 134.6 54.05, 54.47 132, 131.3 38.51, 36.3 8.93, 9.49 73.89, 75.73
(0.1, 0) 127.4, 131 50.91, 49.72 125.2, 117.8 32.91, 32.83 8.87, 8.62 72.35, 75.25

(0.1, 0.3) 122, 118.4 25.85, 24.53 108.3, 104.1 54.57, 52.75 6.55, 6.16 83.54, 83.87
(0.3, 0) 83.93, 82.46 21.56, 19.51 131.3, 130 24.62, 24.27 6.96, 6.24 82.86, 79.47

(0.5, 0.8) 60.66, 62.22 7.25, 6.57 123.7, 128.5 46.98, 45.42 3.75, 3.27 151.9, 146.2
(1, 1) 52.75, 54.07 3.99, 3.56 342.6, 346.2 32.56, 31.69 2.57, 2.02 364.4, 311.5
(2, 2) 45.81, 48.53 1.05, 0.24 >10,000 35.74, 34.2 1.03, 0.2 >10,000

(µ1, µ2) σ2
1 , σ2

2 , σ12 = 1.4, 1.4, 0.75 σ2
1 , σ2

2 , σ12 = 3, 3, 0.5

(0, 0) 112.3, 112.9 24.84, 23.7 118.8, 120.6 2.53, 2.05 1.16, 0.43 58.39, 58.91
(0.1, 0) 90.95, 95.76 24.12, 23.53 114.7, 114.9 2.53, 1.98 1.13, 0.38 62.33, 63.42

(0.1, 0.3) 121.1, 119.5 15.19, 15.28 95.5, 89.7 2.8, 2.16 1.15, 0.43 72.95, 70.41
(0.3, 0) 67.03, 68.44 13.98, 13.48 122.5, 120.3 2.55, 1.97 1.13, 0.36 66.19, 65.73

(0.5, 0.8) 68.94. 66.51 5.32, 4.85 113.6, 110.5 3.36, 2.78 1.11, 0.36 224.6, 232.5
(1, 1) 55.07, 52.25 3.34, 2.84 260.3, 259.9 3.44, 2.74 1.07, 0.29 679.6, 665.7
(2, 2) 54.17, 54.49 1.05, 0.23 >10,000 6.23, 5.54 1, 0.06 >10,000

It is clear from the results in Table 13 that in all cases, the SVR scheme performs better
than the other two in this scenario. By comparing Tables 7 and 13 (to its equivalent scenario
with only detection as the goal), we realize that the ANN scheme mostly performs worse in
this scenario. The RFR scheme mostly performs worse as well, but the deterioration is more
severe, especially as the mean shifts increase. The SVR scheme mostly performs worse too,
but the deterioration in performance in most cases is not that noticeable compared to the
ANN and RFR schemes. By comparing Tables 9 and 13 (two different input methods, but
the same training methods), we can see that the ANN scheme performs significantly worse
with the second input set. On the contrary, the SVR scheme performs significantly better
with this input set so that it does not experience any deterioration in performance under
large shifts. Regarding the RFR scheme, it performs better under small mean shifts, but as
the mean shift increases, its performance becomes significantly worse.

Moreover, by comparing the results in Table 13 to Sabahno et al.’s [9] Table 4, one can
see that the situation is improved compared to the previous scenario, and in most cases
(except in the case of (0.5, 0.8) mean shifts), at least one of the proposed ML control charts
performs better than all their proposed control charts again, even though their control
charts are only designed for detection.
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Scenario b22 (Control Type b, Input Set 2, Training Method 2)

The construction of in-control and out-of-control datasets is the same as in Scenario
b12. For the ANN scheme, 10 nodes in each hidden layer are used. The obtained RMSEs
are 0.38, 0.36, 0.41, 0.42, and 0.38. The UCLs are computed as 0.9637, 1.2445, 1.7237, 1.034,
and 1.061. For the SVR scheme, again linear kernels are used in all the structures, with the
RMSEs equal to 0.41, 0.4, 0.47, 0.47, and 0.43 and the UCLs computed as 0.8145, 0.8271,
0.9899, 0.9878, and 0.9457. Regarding the RFR scheme, 100 trees for each ML structure are
used. The obtained RMSEs are 0.42, 0.4, 0.45, 0.45, and 0.43. The computed UCLs are 0.9401,
0.9528, 0.9458, 0.9284, and 0.894. The results of this analysis are reported in Table 14.

Table 14. ARL, SDRL. Scenario b22 (with identification), p = 2.

ANN SVR RFR ANN SVR RFR

(µ1, µ2) σ2
1 , σ2

2 , σ12 = 1, 1, 0.5 σ2
1 , σ2

2 , σ12 = 1.05, 1, 0.5

(0, 0) 200, 200 200, 200 200, 200 178.1, 179.7 148.2, 152 153.3, 149.7
(0.1, 0) 153.9, 151.9 155.4, 152 148, 142 132.5, 132 117.4, 121.1 129.3, 133.3

(0.1, 0.3) 108.7, 107.5 54.17, 56.74 69.72, 70.86 118.4, 120.6 44.3, 44.38 65.13, 63.27
(0.3, 0) 44.82, 42.93 40.26, 39.92 47.45, 47.45 38.06, 36.72 32.54, 32.8 44.68, 47.01

(0.5, 0.8) 28.11, 29.32 8.69, 7.84 23.04, 21.48 30.53, 29.86 8.05, 7.17 22.21, 21.46
(1, 1) 16.27, 15.87 4.88, 4.32 60.94, 56.68 16.11, 14.79 4.57, 4.01 54.22, 54.52
(2, 2) 8.55, 8.31 1.02, 0.15 >10,000 9.41, 8.35 1.03, 0.18 >10,000

(µ1, µ2) σ2
1 , σ2

2 , σ12 = 1.05, 1.05, 0.5 σ2
1 , σ2

2 , σ12 = 1.05, 1.3, 0.5

(0, 0) 160.7, 165.5 117.5, 119.7 140.7, 146.2 68.12, 68.09 31.45, 31.49 65.31, 66.4
(0.1, 0) 115.2, 113.9 97.86, 100.5 110, 116.6 54.93, 53.79 30.67, 30.35 65.18, 64

(0.1, 0.3) 103.9, 106.1 36.53, 35.09 63.48, 61.96 65.09, 65.87 16.59, 15.88 44.09, 42.66
(0.3, 0) 35.67, 35.27 32.35, 31.18 42.7, 39.96 26.15, 26.13 20.27, 19.6 34.88, 33.61

(0.5, 0.8) 26.22, 26 7.21, 6.7 21.78, 21.91 16.03, 15.26 5.81, 5.3 22.63, 22.88
(1, 1) 14.59, 14.39 4.46, 3.8 54.27, 54.18 8.78, 7.95 3.76, 3.33 41.85, 42.24
(2, 2) 9.35, 8.75 1.04, 0.2 >10,000 8.85, 8.08 1.04, 0.21 >10,000

(µ1, µ2) σ2
1 , σ2

2 , σ12 = 1.2, 1.2, 0.6 σ2
1 , σ2

2 , σ12 = 1.4, 1.4, 0.5

(0, 0) 121.5, 126.7 55.63, 54.19 94.1, 97.06 26.39, 25.6 8.66, 8.15 28.33, 27.67
(0.1, 0) 84.17, 84.25 49.78, 50.41 75.83, 76.77 22.12, 21.59 8.36, 7.67 27.04, 25.97

(0.1, 0.3) 93.44, 92.86 24.24, 23.77 55.67, 56.03 33.73, 34.4 6.8, 6.24 26.5, 26.05
(0.3, 0) 28.67, 28.06 22.83, 22.92 34.83, 34.89 12.12, 11.71 7.4, 7.06 21.43, 20.75

(0.5, 0.8) 21.62, 20.51 6.47, 5.76 22.83, 22.38 15.73, 14.94 3.42, 2.81 21.8, 20.96
(1, 1) 11.13, 10.06 4, 3.5 48.59, 44.41 7.24, 6.82 2.66, 2.1 40.76, 38.22
(2, 2) 7.87, 7.28 1.04, 0.2 >10,000 8.43, 7.65 1.02, 0.16 >10,000

(µ1, µ2) σ2
1 , σ2

2 , σ12 = 1.4, 1.4, 0.75 σ2
1 , σ2

2 , σ12 = 3, 3, 0.5

(0, 0) 79.65, 74.89 26.41, 74.89 26.41, 26.34 2.99, 2.39 1.13, 0.37 12.99, 12.41
(0.1, 0) 55.06, 55.22 26.12, 25.51 64.21, 59.84 2.74, 2.13 1.15, 0.41 13.86, 13.97

(0.1, 0.3) 68.62, 71.7 15.83, 15.82 46.4, 44.21 3.19, 2.55 1.12, 0.35 14.38, 13.47
(0.3, 0) 22.16, 21.4 14.23, 13.54 33.38, 31.51 2.46, 1.87 1.13, 0.4 16.09, 15.11

(0.5, 0.8) 15.89, 15.82 5.39, 4.8 25.09, 24.34 2.82, 2.27 1.09, 0.31 23.9, 23.52
(1, 1) 8.03, 7.9 3.44, 2.83 51.26, 51.36 2.35, 1.74 1.08, 0.3 61.49, 58.96
(2, 2) 5.75, 5.25 1.03, 0.19 >10,000 1.85, 1.3 1, 0.08 >10,000

According to the results in Table 14, in most cases, the SVR scheme performs better
than the other two. By comparing Table 14 to Table 13 (two different training methods), we
realize that the ANN and RFR schemes perform better with the second training method. On
the other hand, on average, the performance of the SVR scheme is very similar in the two
training methods. By comparing Table 14 to its equivalent in scenario a (which is Table 8),
we can conclude that all the schemes mostly perform worse when the identification is a
goal and when the second training method is used. Having said that, the RFR scheme is
the most affected one, while the SVR scheme is the least affected. By comparing Table 14
to Table 11 (different input sets), we realize that the ANN scheme mostly performs worse
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with this input set. The RFR scheme mostly performs worse too, but it even experiences a
significant deterioration in performance as the shifts become larger than the training value
in this input set. The SVR scheme performs better with this input method such that there is
no deterioration in performance anymore as the shift size becomes larger than the trained
value (unlike the RFR scheme).

Moreover, by comparing the results in Table 14 to Sabahno et al.’s [9] Table 4, one can see
that similar to the previous scenario, except in the case of (0.5, 0.8) mean shift, at least one of
the proposed ML control charts performs better than all their proposed control charts.

4. An Illustrative Example

A real case originally discussed by Hawkins and Maboudou-Tchao [2] regarding a
healthcare process for monitoring blood pressure and heart rate is used in this section to
illustrate the application of the proposed ML schemes. The main indicators, in this case,
are heart attack and stroke. The quality characteristics are x1 = systolic blood pressure,
x2 = diastolic blood pressure, and x3 = heart rate. They follow a multivariate normal
distribution with the following in-control parameter values.

µ0 = (126.61, 77.48, 80.95)′ and Σ0 =

15.04 8.66 10.51
8.66 5.83 5.56

10.51 5.56 15.17

.

To identify the quality characteristic and the process parameter responsible for the
chart signal, the second control scenario is used for this practical case. Based on the results
of the numerical analyses section, the first training method for the ANN and SVR schemes
and the second training method for the RFR scheme (because the results showed that the
RFR scheme performs better with the second training method) are utilized. The mean shift
size used for training is 0.2 × σ (note that in the numerical analyses section, since all the
standard deviations were equal to 1, we simply used 0.2 × 1 = 0.2) for small shifts, and
similarly, it is 1 × σ for large shifts. The shifted variances used for training are as they
were in Section 3 (because in both cases, they are multiplied by a coefficient). In addition,
we assume that detection of the covariance shift is not a priority for the quality system;
therefore, we only consider six control charts for monitoring µ1, µ2, µ3, σ2

1 , σ2
2 , and σ2

3 .
The UCLs are computed using the proposed algorithm in Section 2 with α = 0.005 and
n = 10. Also, the same R packages as in the simulations study section are used in this
section. Similarly, the only changes we carried out in those packages’ default settings
were changing the output type to regression and changing the number of trees in the RFR
scheme, the number of nodes in the hidden layer in the ANN scheme, and the kernel type
in the SVR scheme.

For the SVR scheme, radial kernels are used in all the structures. The RMSEs are
0.47,0.47, 0.51, 0.44, 0.46, and 0.52. The UCLs 1.0714, 1.0792, 1.0735, 1.0744, 1.0033, and
1.0932. For the ANN scheme, five nodes are used in the hidden layers. The RMSEs are
0.45, 0.45, 0.49, 0.42, 0.44, and 0.49. The UCLs are 0.9934, 1.7028, 1.0451, 0.9771, 0.9736,
and 0.8285. For the RFR scheme, each structure’s number of trees is as follows: 100, 100,
100, 300, 100, and 500, respectively. The bias correction feature is only turned on for the
last structure. The RMSEs are 0.4, 0.4, 0.43, 0.38, 0.41, and 0.47. The UCLs are 0.9858, 0.98,
0.9999, 0.9986, 0.9993, and 0.9914.

To see how each control chart would react in the case of an out-of-control situation,
we make an artificial shift to the process and take ten consecutive samples from the process.
To do so, we shift the third mean by 1.1 (µ3 = 80.95 + 1.1) and the third variance by
1.4 (σ2

3 = 1.4× 15.17). It should be noted that we use the detection plus identification
scenario; therefore, we have six control charts for each of the proposed ML schemes, and if
any of those six charts signal in each scheme, we call the process out of control.

The results of ten consecutive random samplings from the process for each control
scheme, i.e., SVR, ANN, and RFR, are reported in Tables 15–17, respectively. Note that,
since there are six control charts involved in each scheme (making it a total of 18 control
charts), to reduce the paper size, they are presented in tables.
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Table 15. The SVM scheme for the illustrative example.

Sample 1 2 3 4 5 6 7 8 9 10

input T2 6.5128 15.7031 1.3442 1.3567 3.2905 1.2372 6.0249 10.778 4.049 14.8453
W 7.2728 8.1192 6.4587 9.7029 5.818 6.3745 9.3089 7.5685 14.8656 16.7297

SVR1
output 0.8457 0.8835 0.1029 0.1004 0.0977 0.1025 0.9014 0.7506 0.1469 0.9076
UCL 1.0714 1.0714 1.0714 1.0714 1.0714 1.0714 1.0714 1.0714 1.0714 1.0714

status In-control In-control In-control In-control In-control In-control In-control In-control In-control In-control

SVR2
output 0.4584 0.411 0.0593 0.1037 0.0547 0.0609 0.9269 0.9038 0.4274 0.8055
UCL 1.0792 1.0792 1.0792 1.0792 1.0792 1.0792 1.0792 1.0792 1.0792 1.0792

status In-control In-control In-control In-control In-control In-control In-control In-control In-control In-control

SVR3
output 0.8544 0.2529 0.1407 0.2313 0.1673 0.137 0.8628 0.8551 0.1161 0.7355
UCL 1.0735 1.0735 1.0735 1.0735 1.0735 1.0735 1.0735 1.0735 1.0735 1.0735

status In-control In-control In-control In-control In-control In-control In-control In-control In-control In-control

SVR4
output 0.9032 0.9224 0.8991 0.0927 0.8993 0.8989 0.9874 0.9166 0.1002 0.4982
UCL 1.0744 1.0744 1.0744 1.0744 1.0744 1.0744 1.0744 1.0744 1.0744 1.0744

status In-control In-control In-control In-control In-control In-control In-control In-control In-control In-control

SVR5
output 0.9005 0.8972 0.9018 0.1064 0.9019 0.9049 0.9948 0.9173 0.0978 0.502
UCL 1.0033 1.0033 1.0033 1.0033 1.0033 1.0033 1.0033 1.0033 1.0033 1.0033

status In-control In-control In-control In-control In-control In-control In-control In-control In-control In-control

SVR6
output 0.8993 0.7554 0.8613 0.8612 0.3868 0.8588 0.9125 0.8946 0.0479 0.4052
UCL 1.0932 1.0932 1.0932 1.0932 1.0932 1.0932 1.0932 1.0932 1.0932 1.0932

status In-control In-control In-control In-control In-control In-control In-control In-control In-control In-control
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Table 16. The ANN scheme for the illustrative example.

Sample 1 2 3 4 5 6 7 8 9 10

input T2 6.5128 15.7031 1.3442 1.3567 3.2905 1.2372 6.0249 10.778 4.049 14.8453
W 7.2728 8.1192 6.4587 9.7029 5.818 6.3745 9.3089 7.5685 14.8656 16.7297

ANN1
output 0.5011 0.8582 0.2728 0.1333 0.1906 0.2616 0.4963 0.7294 0.3312 0.8917
UCL 0.9934 0.9934 0.9934 0.9934 0.9934 0.9934 0.9934 0.9934 0.9934 0.9934

status In-control In-control In-control In-control In-control In-control In-control In-control In-control In-control

ANN2
output 0.4603 0.8571 0.0971 0.0984 0.298 0.0894 0.4286 0.7975 0.3115 0.778
UCL 1.7028 1.7028 1.7028 1.7028 1.7028 1.7028 1.7028 1.7028 1.7028 1.7028

status In-control In-control In-control In-control In-control In-control In-control In-control In-control In-control

ANN3
output 0.5155 0.9792 0.1965 0.3162 0.2041 0.1703 0.4309 0.7775 0.3236 1.1416
UCL 1.0451 1.0451 1.0451 1.0451 1.0451 1.0451 1.0451 1.0451 1.0451 1.0451

status In-control In-control In-control In-control In-control In-control In-control In-control In-control Out-of-control

ANN4
output 0.7431 0.9343 0.6765 0.2614 0.8417 0.6917 0.4771 0.8653 0.0965 0.2469
UCL 0.9771 0.9771 0.9771 0.9771 0.9771 0.9771 0.9771 0.9771 0.9771 0.9771

status In-control In-control In-control In-control In-control In-control In-control In-control In-control In-control

ANN5
output 0.7848 0.9268 0.668 0.3124 0.8712 0.683 0.4604 0.8637 0.1478 0.535
UCL 0.9736 0.9736 0.9736 0.9736 0.9736 0.9736 0.9736 0.9736 0.9736 0.9736

status In-control In-control In-control In-control In-control In-control In-control In-control In-control In-control

ANN6
output 0.7737 0.8694 0.793 0.4344 0.7838 0.7943 0.6009 0.8315 0.3094 0.4433
UCL 0.8285 0.8285 0.8285 0.8285 0.8285 0.8285 0.8285 0.8285 0.8285 0.8285

status In-control Out-of-control In-control In-control In-control In-control In-control Out-of-control In-control In-control
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Table 17. The RFR scheme for the illustrative example.

Sample 1 2 3 4 5 6 7 8 9 10

input T2 6.5128 15.7031 1.3442 1.3567 3.2905 1.2372 6.0249 10.778 4.049 14.8453
W 7.2728 8.1192 6.4587 9.7029 5.818 6.3745 9.3089 7.5685 14.8656 16.7297

RFR1
output 0.1858 0.7008 0.0095 0.0045 0.412 0.02083 0.7746 0.9075 0.4241 1
UCL 0.9858 0.9858 0.9858 0.9858 0.9858 0.9858 0.9858 0.9858 0.9858 0.9858

status In-control In-control In-control In-control In-control In-control In-control In-control In-control Out-of-control

RFR2
output 0.1595 0.639 0.0875 0.0506 0.3076 0.1833 0.4221 0.7321 0.6366 0.9625
UCL 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98

status In-control In-control In-control In-control In-control In-control In-control In-control In-control In-control

RFR3
output 0.2488 0.9231 0.1631 0.3348 0.1533 0.1613 0.8306 0.5681 0.126 1
UCL 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999

status In-control In-control In-control In-control In-control In-control In-control In-control In-control Out-of-control

RFR4
output 0.7712 0.8366 0.7156 0.2556 0.7266 0.5866 0.7521 0.8556 0.4362 0.5173
UCL 0.9986 0.9986 0.9986 0.9986 0.9986 0.9986 0.9986 0.9986 0.9986 0.9986

status In-control In-control In-control In-control In-control In-control In-control In-control In-control In-control

RFR5
output 0.4531 0.8206 0.775 0.4805 0.948 0.7651 0.903 0.8585 0.4093 0.5771
UCL 0.9993 0.9993 0.9993 0.9993 0.9993 0.9993 0.9993 0.9993 0.9993 0.9993

status In-control In-control In-control In-control In-control In-control In-control In-control In-control In-control

RFR6
output 0.3192 0.4266 0.2557 0.2768 0.3157 0.379 0.3957 0.3162 0.1386 0.1974
UCL 0.9914 0.9914 0.9914 0.9914 0.9914 0.9914 0.9914 0.9914 0.9914 0.9914

status In-control In-control In-control In-control In-control In-control In-control In-control In-control In-control
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Regarding the SVM scheme (Table 15), none of its control charts signal during the first
ten consecutive samplings. Regarding the ANN scheme (Table 16), the ANN6 chart, which
is responsible for the detection of σ2

3 shifts, signals at samples no. 2 and no. 8, and the
ANN3 chart, which is responsible for the detection of µ3 shifts, signals at sample no. 10.
Regarding the RFR scheme (Table 17), its RFR1 and RFR3 charts, which are responsible for
the detection of µ1 and µ3 shifts, respectively, both signal at sample no. 10. Clearly in the
case of RFR1, we received a false alarm from the RFR scheme, considering there is no shift
in the first mean.

Note that, this was only a simple example to show how each proposed control scheme
can be implemented in practice, and based on only 10 samples, no comparisons can be
made. Performance comparisons were the purpose of the previous section.

5. Concluding Remarks

This paper proposed new control charts for simultaneous monitoring of multivari-
ate normal process mean vectors and the variance–covariance matrix. For the first time,
machine-learning techniques were used for this purpose. Three used ML techniques are
ANN, SVM, and RF. We received linear outputs from these ML structures and then applied
control chart rules to decide whether the process is in control or out of control. Two dif-
ferent input sets and two different training methods were employed for the proposed ML
structures. In the first input set, two statistics (one representing the process mean vector
and the other for the process variability) were employed, and for the second input set, we
used each process parameter for each quality characteristic separately as inputs. In the first
training method, we only trained the ML structures with a small shift size, and in the other
method, a small and a large shift size were considered. We also used two different process
control scenarios. In the first scenario, the only goal was the detection of the out-of-control
situation, regardless of which variable and process parameter is responsible for it. In
the second scenario, on the other hand, other than detection, identifying which variable
(s)/process parameter (s) is responsible for the signal was also a goal, which involved
several control charts to be monitored together.

For each of these control–input–training scenarios, the ML structures were trained,
and control charts were developed. Numerical analyses were performed for the cases of
two, three, and four quality characteristics. The results, in general, showed that depending
on which control-input-training scenario is used, as well as the number of variables, each
of these ML control charts performed better in some cases, and there is no absolute winner
among them. However, considering how its decision-making procedure works based on
dividing tree branches, the RFR scheme tended to mostly perform better when there were
more inputs, more diverse training, and more quality characteristics (higher dimension).
However, this did not happen in all cases (except for the diverse training part), and most
importantly, even if its performance was improved by all these diversities, it did mean that
it should perform better than the ANN and SVR charts (which actually in most cases it did
not). It was also concluded that when identification was also a goal, the charts performed
worse. However, this deterioration in performance was mostly at its lowest for one ML
scheme (it differed based on the scenario).

We also compared the proposed ML charts with some recently developed multivariate
statistical control charts with fixed and adaptive chart parameters (designed only for
detection). For the case of p = 2, the results showed that in the detection-only scenario and
with the first input set, at least one of the proposed ML charts performed better than all
their proposed charts in all the shift cases, even though our proposed schemes are all fixed
parameters. With the second input set together with the first training method, our proposed
charts performed better in most cases, and together with the second training method, they
performed better in all cases. Regarding the detection–identification scenario, our proposed
ML charts still performed better in more cases, even though their charts have only been
designed for detection and that usually by default means better performance. For the case
of p = 3, the results showed that in the detection-only scenario, at least one of the ML charts
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performed better than all their proposed charts in most shift cases, and with the second
training method, they performed better in all the shift cases. In the detection–identification
scenario, one can say that the cases in which at least one of our proposed schemes performed
better than all their charts and vice versa were almost the same. However, keep in mind
that, unlike their charts, our proposed charts are also capable of identification. Lastly, an
illustrative example based on a healthcare-related practical case was presented to show
how the proposed schemes can be implemented in practice.

Highlighting the primary focus of this paper, our investigation centered the utilization
of diverse machine-learning techniques in constructing control charts, effectively substitut-
ing traditional statistical methods. This exploration involved rigorous testing of different
input sets and training methodologies to surpass the performance of statistical control
charts. While our study concentrated on specific control charts, along with a limited selec-
tion of input sets and training approaches, it presents an opportunity for further exploration
of a wide range of control charts, as well as diverse input sets and training methods, thus
broadening the horizons of research in this field.

For future developments, one might be interested in trying different input sets, training
methods, and even output sets for ML structures. Adding adaptive features to the proposed
control charts would also be a major improvement. Since ML control charts have rarely been
developed, developing them for many other applications and comparing them to traditional
statistical control charts might also be interesting. In particular, since all the developed
ML control charts are so far memory-less, developing memory-type ML control charts and
comparing them to memory-type statistical control charts might also be interesting for some
researchers. In addition, how to train the ML structures in the case of unknown distributions
is another challenge that might be worth investigating by some other researchers.
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