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Abstract: An attempt to construct a universal stabilisation system that ensures the object motion
along specified trajectory from certain class is presented. If such a stabilisation system is constructed,
then only the problem of optimal control is solved, but for a model of the object, which includes a
stabilisation system and a subsystem with a reference model for generating a specified trajectory. In
this case, the desired control is the control in the reference model. Statement of complete optimal
control problem includes two problems, optimal control problem and stabilisation system synthesis
problem for motion along given trajectory in the state space. Numerical methods for solving these
problems based on evolutionary computation and symbolic regression are described. It is shown that
when solving the stabilisation system synthesis problem, it is possible to obtain a universal system
that provides stabilisation of the object motion relative to any trajectory from a certain class. Therefore,
it is advisable to formulate an optimal control problem for an object with a motion stabilisation system.
A computational example of solving the problem for the spatial motion of a quadrocopter is given.

Keywords: optimal control; control synthesis; stabilisation system; evolutionary algorithm; symbolic
regression

MSC: 49M25; 68W50

1. Introduction

When solving the optimal control problem in the classical Pontryagin statement [1],
a solution is obtained in the form of a time-dependent control function. Such a solution
cannot be directly implemented in the real control object, since it leads to the construction
of an open-loop control system that is not sensitive to the real current position of the
control object. The control system without feedback is sensitive to small perturbations.
The control object with an open-loop control system cannot reach the terminal state with a
given accuracy and provide the optimum value of the given quality criterion. Therefore, in
most cases, the optimal control problem is considered as an initial problem for obtaining
an optimal program control and an optimal program trajectory. In order to implement
the obtained solution in a real control object, it is necessary to further solve the problem
of stabilisation system synthesis for the control object motion along the obtained optimal
program trajectory.

Two things should be noted here. First, solving the control synthesis problem is often
no less complicated than solving the original optimal control problem, because in the
synthesis problem, the control function is sought as a function of the state vector. Second,
solving the control synthesis problem changes the dynamics of the control object. The
mathematical model of the control object in the form of differential equations contains the
control function in the right side, so the optimal control found for the original mathematical
model may no longer be optimal for the mathematical model of the object with a motion
stabilisation system. In any case, a system that provides feedback control is necessary to
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implement the solution of the optimal control problem, although this does not follow from
the most classical statement of the optimal control problem.

The statement of the control problem, where it is necessary to find the control function
of the state vector, was also proposed by R. Bellman a long time ago [2]. To solve this
problem, a dynamic programming method was developed that allows numerically find
the value of the control vector for each value of the state vector. If we solve the problem
in the Bellman statement using the dynamic programming method for an initial state, as
in the Pontryagin statement, the resulting solution will also be sensitive to changes in
the initial conditions, and the dependence of the control function on the state vector will
not provide an adequate response to disturbances. Solving the Bellman optimal control
problem by dynamic programming for a set of initial states faces the problem of the curse
of dimensionality.

In [3], a refined statement of the optimal control problem is formulated. The classical
statement is complemented by the requirement that the resulting optimal trajectory has a
non-empty neighbourhood with attractor properties. It means that the resulting optimal
control should ideally be a special solution of the differential equation, an attractor. To
achieve this, the control is first sought as a function of time and state, and to implement the
stabilisation system, the initial state is replaced by the initial state domain.

Ensuring additional requirements can be obtained in various ways, for example, by
reformulating the optimal control problem into a problem of general control synthesis for a
given area of initial states [3]; then, each particular solution from a given area provides the
optimal value of a given quality criterion. Such a task is computationally difficult. Another
approach is to solve the control synthesis problem in order to ensure stability with respect
to the terminal state, but in this case, we do not guarantee that the optimal value of the
given quality criterion can be obtained.

To stabilise the movement of the control object along the optimal trajectory, theoretical
works [4] propose linearising the model relative to the trajectory and obtaining a linear non-
stationary model of the object. For the stability of such an object, linear feedback is proposed.
In general, stability for a non-stationary object is not an unsolved problem. In most practical
works, points are set on the tracked trajectory and the control object is made stable relative
to these points. PI and PID controllers are used for this purpose [5–8]. Movement on stable
trajectory points slows down the movement of the object near the stability point, so the
optimum value of the criterion is not maintained. In the work [9], a system for tracking
the trajectory of a quadcopter is built based on stabilization of the quadcopter speed in the
horizontal plane along a straight line. For this purpose, a proportional regulator is built
based on the Lyapunov function. Movement along the trajectory of straight segments with
a constant speed is not optimal. It is necessary to track the trajectory not only in space but
also in time.

In [10], an approach to solving the optimal control problem by the synthesized control
method is considered. According to this approach, first the synthesis problem to ensure the
stability of the object relative to the equilibrium point in the state space is solved, and the
optimal control problem in the original statement is solved at the second stage, where the
optimal positions of the stable equilibrium points are found. Optimal control is achieved by
changing the positions of stable equilibrium points after a given time interval. Synthesised
control is a universal approach to solving the optimal control problem in the class of feasible
systems, but in any particular case it may have several solutions. Each of the solutions may
be differently sensitive to disturbances of the initial conditions. The practical advantage
of the synthesized control is that the synthesis problem of ensuring the stability of the
equilibrium point is solved at a preliminary stage, i.e., at the stage of creating a control
system, and the solution of the optimal control problem by choosing the position of the
equilibrium points can be solved on the on-board computer for a specific current situation.
Solving the problem of synthesising a control system on an on-board computer is usually
complicated due to the high computational cost.
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The problem of synthesis of motion stabilisation along the optimal trajectory was
first considered in [11], where the method of symbolic regression was applied to solve
the synthesis problem. Before that, the symbolic regression method was used to solve the
problem of general control synthesis, without solving the optimal control problem. As
a result, we obtain a control system that includes a reference model for generating the
optimal trajectory in time. Studies have shown that the stabilisation system depends on
the type of optimal trajectory. In practice, it means that the use of such a control system is
difficult, that is, when the situation changes and a new optimal control problem arises, it is
necessary not only to solve the optimal control problem, but to re-solve the stabilisation
system synthesis problem, which is unacceptable for the on-board computer.

In contrast to the previous works, in this paper, it is proposed to use a universal
stabilisation system. The universality of the stabilisation system is that one system of
motion stabilisation for a particular object is obtained for different types of trajectories.
The obtained stabilisation system can be used for other trajectories as well. There may
be trajectories for which this stabilisation system is not suitable, but this requires addi-
tional research, which is currently underway. The stabilisation system should ensure the
stabilisation of control object motion along the given optimal trajectories from a certain
class. For this purpose, first the synthesis problem is solved for one stabilisation system
for several given trajectories. The class of trajectories is considered as a training set, and
the stabilisation system synthesis is the learning of control system for a given training set.
Next, this stabilisation system is applied to the motion along the trajectory that was not
included in the training set. To solve the stabilisation system synthesis problem, methods
of symbolic regression are applied [12,13].

The rest of the paper is organized as follows. The statements of optimal control
problems and the synthesis of a motion stabilisation system along a given trajectory, as
well as a new optimal control problem for an object that includes a reference model and a
motion stabilisation system relative to the trajectory obtained using the reference model in
the control system, are presented in Section 2. Such stabilisation system is called universal.
Next, the network operator method, one of methods of symbolic regression, is described
in Section 3. An example of the universal stabilisation system synthesis for the spatial
movement of a quadcopter and the use of this system when the quadcopter is moving
along a complex trajectory is given in Section 4. Computational experiments are followed
by a conclusion in Section 5 and a discussion in Section 6, respectively.

2. Statement of Complete Optimal Control Problem

We consider some statements of the optimal control problem that make it complete
in terms of implementing of the control problem solution in a real object. To implement
a solution, it is necessary to obtain a closed-loop control system, so that a found control
function depends on the state space vector.

The classical statement of the optimal control problem does not allow obtaining a
closed-loop control system, so a found control function depends only on time. In the
following, a classical statement of the optimal control problem is considered.

2.1. Optimal Control Problem

The mathematical model of a control object is given in the form of an ordinary differ-
ential equation system

ẋ = f(x, u), (1)

where x is a state vector of control object, x ∈ Rn, x = [x1 . . . xn]T , u is a control vector,
u ∈ U ⊆ Rm, U is a compact set that defines control constraints. For example, values of
control vector components can be bounded from above and below

u− 6 u 6 u+, (2)

u− = [u−1 . . . u−m ]T , u = [u1 . . . um]T , u+ = [u+
1 . . . u+

m ]
T .
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For System (1), the initial state is given:

x(0) = x0. (3)

The terminal state is given as
x(t f ) = x f , (4)

where t f is a terminal time of achievement of the terminal state. The terminal time is not
specified, but it is limited; t f 6 t+, t+ is a given time limit.

The quality criterion is given in the common integral form

J0 =

t f∫
0

f0(x, u)dt→ min
u∈U

. (5)

When solving the problem by direct numerical approach, the terminal state (4) is
reached with a certain accuracy, which is included in the quality criterion (5). Therefore,
the quality criterion for the numerical solution of the problem has the following form:

J1 =

t f∫
0

f0(x, u)dt + p1‖x f − x(t f )‖ → min
u∈U

, (6)

where p1 is a weight coefficient;

t f =

{
t, if t < t+and ‖x f − x(t)‖ 6 ε1

t+, otherwise
, (7)

where ε1 is an accuracy of achievement of the terminal state (4).
In the classical optimal control problem, a control function is sought as a function

of time:
u = v(t) ∈ U. (8)

To implement the solution of the optimal control problem, it is necessary to synthesise
the stabilisation system of a motion along the obtained optimal trajectory. This stabilisation
system should change the mathematical model of the control object in such a way that
the optimal trajectory in the state space acquires a non-zero neighbourhood with attractor
properties. In the statement of the optimal control problem, either these requirements
should be included and then the implementation of this property is conducted at the
discretion of the control system designer, or it is necessary to add a statement of the
stabilisation system synthesis problem of the motion along the optimal trajectory, and then
solve these two problems together sequentially.

Thus, the control synthesis problem for stabilising the motion along the optimal
trajectory is described as follows.

2.2. Stabilisation System Synthesis

The same mathematical model of control object as in the optimal control problem (1)
is used.

Instead of the one initial state (3), a domain of initial states is specified. For a numerical
solution, the initial state domain is given in the form of a finite set of points

X0 = {x0,1, . . . , x0,K}. (9)

The terminal state is given (4).
The optimal trajectory is a time function

x∗(t), t ∈ (0; t f ). (10)
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It is necessary to find the optimal control as a function of the deviation of the state
space vector from the optimal trajectory

u = h(x∗ − x). (11)

If the control function (11) is placed in the right part of ODE system (1), then the
following system is obtained:

ẋ = f(x, h(x∗ − x)). (12)

The control function (11) should minimize the sum of maximum deviations of all
particular solutions of the system (12) from initial states of the given domain (9)

J2 =
K

∑
i=1

(
max

t∈(0;t f ,i)
‖x∗ − x(t, x0,i)‖+ p1‖x f − x(t f ,i)‖

)
→ min

u∈U
, (13)

where t f ,i is a time of achievement the terminal state of the particular solution from the
initial state x0,i defined by Equation (7), x(t, x0,i) is a particular solution of the system (12)
from the initial state x0,i.

There is an ambiguity in this problem statement: How to obtain the value of the
optimal trajectory (10) at a given time? When solving the optimal control problem in the
first stage, the optimal control function is sought as a function of time, but not an optimal
trajectory. When searching by a direct approach, the optimal control function is usually
approximated by a piece-wise continuous function. The result is an analytical mathematical
expression for the control function. The optimal trajectory in the general case has no
mathematical expression and it is obtained numerically after simulation of the control
object model (1) with the optimal control function. To obtain the optimal trajectory and use
it to solve the stabilisation system synthesis problem in the second stage, the results of the
simulation of the control object model (1) with the optimal control function can be kept as
an array of time points and values of the state space vector at this moment. Another way is
to simulate the control object model (1) with the optimal control function together with the
control object model used for the synthesis of the stabilisation system. Then, instead of the
control object model (1) and the optimal trajectory (10) in the statement of the stabilisation
system synthesis problem, a model with two subsystems is used:

ẋ = f(x, u),
ẋ∗ = f(x∗, u∗).

(14)

The first subsystem is the mathematical model of the control object with a sought-after
control function for stabilising the movement relative to the optimal trajectory. The second
subsystem is the reference model that generates the optimal trajectory.

It should be noted that the stabilisation system changes the dynamics of the control
object and the optimal control for the control object without a stabilisation system can be
non-optimal for the control object with a stabilisation system. In order to solve the synthesis
problem of the stabilisation system, a machine learning control by symbolic regression
is used. The stabilisation system in a common case cannot provide stabilisation for any
trajectory, and therefore it should be synthesised for each new optimal trajectory.

2.3. Optimal Control Problem for Object with Motion Stabilisation System

In this work, a universal stabilisation system synthesis problem is considered. This
universal stabilisation system provides motion of a control object along any trajectory from
some class. To solve the universal stabilisation system synthesis problem, machine learning
control by symbolic regression is performed for the same model of the control object and
for some given trajectories at the same time. Suppose such a universal stabilisation system
is obtained. If it is known that an optimal trajectory belongs to the class of trajectories
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stabilised by the universal stabilisation system, then the optimal control problem can be
solved for the control object with a stabilisation system.

The problem statement of the optimal control problem for a control object with a uni-
versal stabilisation system of movement along the trajectory has the following description.

The mathematical model of the control object with a universal stabilisation system
and with a reference model for the generation of the program trajectory is given as

ẋ = f(x, h(x∗ − x)),
ẋ∗ = f(x∗, u),

(15)

where the function of stabilisation system h(x∗ − x) satisfies the constraints on control for
any values of its arguments

h(x∗ − x) ∈ U. (16)

The initial state is given in (3). The terminal state is given in (4). The quality criterion
is as follows:

J3 =

t f∫
0

f0(x, h(x∗ − x))dt + p1‖x f − x(t f )‖ → min
u∈U

. (17)

It is necessary to find a control function as a time function

u = v∗(t) ∈ U, (18)

with the constraint (16) that the particular solution of the system (15) from the given
initial state (3) reaches the given terminal state (4) with the optimal value of the given
criterion (17).

In this problem, a control function is sought as a function of time and a closed-loop
system with feedback control is obtained.

3. Symbolic Regression for Solving the Control Synthesis Problem

Symbolic regression is a unique computational technique that allows finding the
mathematical expressions of the desired functions. Note that artificial neural networks
can also approximate any function, but they do not find the structure of the function. The
structure of an artificial neural network is determined by the type of network. It can vary
regularly over a certain range by changing the number of layers and the number of neurons
in each layer.

The universal approximation of functions by an artificial neural network is provided
by a large number of parameters. The determination of parameter values as a result of
network training allows obtaining the required values of the desired function for the entire
set of specified values of its arguments. The technique of using an artificial neural network
is similar to the technique of digging a hole using only a shovel. Obviously, any hole can
be dug with a shovel if a large number of workers is used; in the neural network, these are
parameters. But why is it impossible to use more advanced mechanisms, such as excavators,
in approximation problems? These are nonlinear transformations. They should not be used
just because they are difficult to use and require qualification.

Note that nonlinear effects are characteristic of physical and natural phenomena. Many
models of physical processes are nonlinear. Only for nonlinear differential equations it
is possible to obtain a stable limit cycle or an attractor property for a manifold of non-
zero dimension.

There are problems that are difficult to solve with an artificial neural network. One
example is the control synthesis problem. In this problem, it is necessary to find a function
that is part of the mathematical model of the control object. Each new function changes
the dynamic properties of the object, so we cannot define the behaviour of the object with
the optimal control function in advance since the form of the desired function is unknown
at the time of the search. The lack of a training example complicates the application of an
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artificial neural network. The function should be searched only by the value of the quality
criterion. Paper [14] explicitly states that the future of artificial intelligence is not connected
with incomprehensible neural networks, but with quite clear symbolic regression.

Here, the symbolic regression method is used to solve the control synthesis problem.
All symbolic regression methods encode mathematical expressions in the form of special
codes. To encode a mathematical expression, first, the alphabet of elementary functions
is defined. The search for a mathematical expression is performed by a special genetic
algorithm on the space of codes of mathematical expressions. In a special genetic algorithm,
the crossover operation is performed taking into account the code of the mathematical
expression so that after the crossover operation, two correct codes of new mathematical
expressions are obtained.

The best known symbolic regression method is genetic programming (GP) [15]. GP
encodes a mathematical expression in the form of a computational tree. On the leaves of
the tree are the arguments of the mathematical expression. Each node of the tree represents
an elementary function. The number of branches leaving the node is equal to the number
of arguments of the elementary function. The crossover operation in GP involves randomly
selecting nodes in the parent trees and swapping the subtrees originating from those nodes.
GP is not the most convenient method of symbolic regression because after the crossover
operation the codes of mathematical expressions change length and the number of identical
arguments of a mathematical expression should be equal to the number of occurrences of
that argument in the desired mathematical expression. GP has also been applied to solve
control problems [16,17].

There are now about twenty symbolic regression methods. In this paper, one of them,
the network operator method (NOP) [12], is used to solve the control synthesis problem.
NOP uses only functions with one or two arguments in the alphabet of elementary functions.
It encodes a mathematical expression in the form of a directed graph. Source nodes of the
graph are associated with the arguments of the mathematical expression. Other nodes of
the graph are associated with the functions of two arguments. The edges of the graph are
associated with functions of one argument.

We consider an example of encoding a mathematical expression by the network
operator method. A mathematical expression is given:

y = a exp(−bx1)(sin(cx2) + cos(dx2)), (19)

where a, b, c, d are constant parameters, x1, x2 are variables. Parameters and variables are
arguments of mathematical expression (19).

To encode the mathematical expression, we use the following functions:

(1) functions with one argument:

F1 = { f1,1(z) = z, f1,2(z) = −z, f1,3(z) = exp(z),
f1,4(z) = sin(z), f1,5(z) = cos(z)}; (20)

(2) functions with two arguments:

F2 = { f2,1(z1, z2) = z1 + z2, f2,2(z1, z2) = z1 · z2}. (21)

Functions with two arguments should be commutative, associative and have a unit
element,

f2,i(ei, z) = f2,i(z, ei) = z,

where ei is a unit element of function f2,i(z1, z2).
Figure 1 shows the directed graph of NOP for mathematical expression (19).



Mathematics 2023, 11, 3556 8 of 20

Figure 1. The network operator graph for the mathematical expression.

In the network operator graph, the arguments of the mathematical expression are
shown in the source node. The numbers of functions with two arguments are shown in
other nodes. Numbers of functions with one argument are displayed next to the edges. The
nodes are indexed in their upper parts. If the node indices are sorted such that the index of
node where the edge comes out is of a lesser value than that of the index of nodes where
the edge comes in, then the network operator matrix is upper triangular.

In PC memory, the network operator is presented as an integer matrix, that has a
structure like that of the network operator graph adjacency matrix. The network operator
matrix for the graph in Figure 1 has the following form:

Ψ = [ψi,j] =



0 0 0 0 0 0 2 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 2 0 0 0 3
0 0 0 0 0 0 0 2 0 4 0
0 0 0 0 0 0 0 0 2 5 0
0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 2



, i, j = 1, . . . , L = 11, (22)

where L is a number of nodes in the network operator graph, dim(Ψ) = L× L.
In the network operator matrix, lines with zeros on the main diagonal are linked with

source-nodes. Other non-zero elements on the main diagonal are the function numbers
with two arguments. Non-zero elements above the main diagonal ψi,j 6= 0 are function
numbers with one argument.

For calculation values of the mathematical expression by network operator, a vector
of nodes is defined. Initially, the vector of nodes consists of mathematical expression
arguments and unit elements of the corresponding functions with two arguments.

For considered mathematical expression, the initial vector of nodes has the following
form:

z(0) = [x1 x2 a b c d 1 1 1 0 1]T , (23)

where 1 is a unit element for function of multiplication f2,2(z1, z2) = z1 · z2, 0 is a unit
element for function of summary f2,1(z1, z2) = z1 + z2.

The calculation of mathematical expression is performed by the following equation:

z(i)j ←

 f2,ψj,j(z
(i−1)
j , f1,ψi,j(z

i−1
i )), if ψi,j 6= 0

z(i−1)
j , otherwise

, i = 1, . . . , L− 1, j = i + 1, . . . , L. (24)
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To find an optimal mathematical expression by the network operator method, the vari-
ation genetic algorithm is used. This algorithm implements the principle small variations
of basic solution [18]. According to this principle, small variations of code are defined and
only one basic solution is encoded. Other possible solutions are coded as sets of small
variations. A code of small variation is an integer vector of four components,

w = [w1 w2 w3 w4]
T , (25)

where w1 is a type of small variation, w2 is the line number, w3 is the column number,
w3 ≥ w2, w4 is a new value of a network operator matrix element.

In the network operator, four types of small variations are used: w1 = 0 is an exchange
of the function with one argument: if ψw2,w3 6= 0, then ψw2,w3 ← w4; w1 = 1 is an exchange
of the function with two arguments: if ψw2,w2 6= 0, then ψw2,w2 ← w4; w1 = 2 is an insertion
of the additional function with one argument: if ψw2,w3 = 0, then ψw2,w3 ← w4; w1 = 3 is
an elimination of the function with one argument: if ψw2,w3 6= 0 and ∃ψw2,j 6= 0, j > w2,
j 6= w3 and ∃ψi,w3 6= 0, i 6= w2, then ψw2,w3 ← 0.

In the search algorithm, a population of possible solutions is used. Any possible
solution other than the basic solution is encoded as a set of small variation vectors

Wi = {w1,1, . . . , wi,d}, i = 1, . . . , H, (26)

where d is a depth of variation, a parameter of the search algorithm, H is a number of
possible solutions in the population.

Any possible solution Ψi is obtained by small variations of the basic solution Ψ0.
Variation vector is an operator changing of the network operator matrix. Therefore, for any
possible solution, one can write the following equation:

Ψi = Wi ◦Ψ0 = wi,d ◦wi,d−1 ◦ · · · ◦wi,1 ◦Ψ0. (27)

To perform a crossover operation, two possible solutions are selected randomly:

Wα = {wα,1, . . . , wα,d},
Wβ = {wβ,1, . . . , wβ,d}. (28)

The crossover point is selected randomly, c ∈ {1, . . . , d}. Two new possible solutions
are obtained by the exchange of tails after the crossover point of selected possible solutions

WH+1 = {wα,1, . . . , wα,c−1, wβ,c, . . . , wβ,d},
WH+2 = {wβ,1, . . . , wβ,c−1, wα,c, . . . , wα,d}. (29)

4. Computation Experiment

Consider the optimal control problem of the spatial motion of a quadcopter. The
mathematical model of the control object is

ẋ1 = x4,
ẋ2 = x5,
ẋ3 = x6,
ẋ4 = u4(sin(u3) cos(u2) cos(u1) + sin(u1) sin(u2)),
ẋ5 = u4 cos(u3) cos(u1)− g,
ẋ6 = u4(cos(u2) sin(u1)− cos(u1) sin(u2) sin(u3)),

(30)

where g = 9.80665.
For a given model of the control object, it is necessary to build a system for stabilising

the motion along a given spatial trajectory, where the shape of the trajectory is not known
in advance. For this purpose, we first create a universal stabilisation system. Solving
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the optimal control problem, we obtain several different trajectories, and then solve the
stabilisation system synthesis problem for all the trajectories.

4.1. Synthesis of Universal Stabilisation System

Usually, the development of a system for stabilising the movement of an object along
a given trajectory [19] is to study the mathematical model of the control object, determine
the control channels, determine the deviation of the object from the trajectory or from the
nearest point [7] located on the trajectory and inserting the regulator into the control channel
for qualitative compensation of the deviation. Sometimes model predictive controls with a
simplified model of the control object are used to quickly determine the deviation [20]. In
this work, an attempt is made to develop a universal system for stabilising the movement
along a given trajectory based on machine learning control by symbol regression. In this
approach, the analytical study of the mathematical model of the control object is entrusted
to the computer, which itself finds the necessary control channels and inserts the necessary
regulators there.

To generate program trajectories, we formulate an optimal control problem for a given
object (30).

Initial and terminal states are given as

x(0) = x0 = [0 5 0 0 0 0]T , (31)

x(t f ) = x f = [10 5 10 0 0 0]T , (32)

where t f is a time of achievement of the terminal state, t f is not given, but limited,
t f 6 t+ = 5.6.

Phase constraints are included in the quality criterion,

ϕi(x) = ri −
√
(x1,i − x1)2 + (x3,i − x3)2 6 0, i = 1, . . . , M, (33)

where M is a number of obstacles, M = 2, ri is a radius of obstacle i, r1 = 2, r2 = 2,
(x1,i, x3,i) are coordinates of their centers, x1,1 = 2.5, x3,1 = 2.5, x1,2 = 7.5, x3,2 = 7.5.

The control object should move through some specified areas. Changing the position
of the these areas affects the optimal trajectory shape. This condition is also included in the
quality criterion,

δ
(k)
i (x(t)) = min

06t6t f

{√
(z(k)1,i − x1(t))2 + (z(k)3,i − x3(t))2 − d(k)i

}
6 0, (34)

where (z(k)1,i , z(k)3.i ) are coordinates of the area centers on the horizontal plane, i = 1, . . . , S,

k = 1, . . . , P, d(k)i is a size of area, S is a number of areas, S = 4, d(k)i = 0.6, P is a number of
optimal control problems, P = 4, k is a current optimal control problem.

The quality criterion is

J(k)4 = t f + p1‖x f − x(t f )‖+ p2

M

∑
i=1

t f∫
0

ϑ(ϕi(x))dt + p3

S

∑
j=1

ϑ(δ(k)(x(t)))→ min
u∈U

, (35)

where p1 = 2, p2 = 3, p3 = 3, ϑ(α) is the Heaviside step function

ϑ(α) =

{
1, if α > 0
0, otherwise

. (36)
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To obtain a variety of trajectories, we consider the conditions for the object to pass
through specified areas when solving the optimal control problem. Various optimal trajec-
tories were obtained as a result of different locations of the specified areas.

The training set contained four trajectories in defined locations in the required areas.
The coordinates of required area centers are

z(1)1,1 = 2.5, z(1)3,1 = 0.4, z(1)1,2 = 5.0, z(1)3,2 = 2.0, z(1)1,3 = 7.5, z(1)3,3 = 4.5, z(1)1,4 = 9.6, z(1)3,4 = 7.5,

z(2)1,1 = 2.5, z(2)3,1 = 0.4, z(2)1,2 = 4.5, z(2)3,2 = 2.5, z(2)1,3 = 5.5, z(2)3,3 = 7.5, z(2)1,4 = 7.5, z(2)3,4 = 9.6,

z(3)1,1 = 0.0, z(3)3,1 = 2.0, z(3)1,2 = 2.0, z(3)3,2 = 5.0, z(3)1,3 = 5.0, z(3)3,3 = 8.0, z(3)1,4 = 8.0, z(3)3,4 = 10.0,

z(4)1,1 = 0.4, z(4)3,1 = 2.5, z(4)1,2 = 2.5, z(4)3,2 = 4.5, z(4)1,3 = 7.5, z(4)3,3 = 5.5, z(4)1,4 = 9.6, z(4)3,4 = 7.5.

When solving optimal control problems, we used a direct approach. For this purpose,
we divided the time axis into equal intervals and looked for the values of constant param-
eters at the boundaries of the intervals. Taking into account the control constraints, the
piecewise linear approximation of the control function has the following form:

u(k)
i =


u+

j , if ûk
j > u+

j

u−j , if ûk
j < u−j

ûk
j , otherwise

(37)

where
û(k)

j = q(k)j+mi + (q(k)j+m(i+1) − q(k)j+mi)
t− i∆t

∆t
, (38)

i = 1, . . . , N, j = 1, . . . , m, N is a number of time intervals, ∆t is a time interval,

N =

⌊
t+

∆t

⌋
=

⌊
5.6
0.4

⌋
= 14. (39)

For numerical solution a hybrid algorithm [21] was applied. A hybrid algorithm
is based on three well-known algorithms: the genetic algorithm [22], particle swarm
optimization [23], and the grey wolf optimizer [24].

The total (N + 1)m = 15× 4 = 60, q(k) = [q1 . . . q60]
T parameters were found.

The solutions of the optimal control problem obtained by the hybrid evolutionary
algorithm are given in the Data Availability section.

The parameters of hybrid evolutionary algorithm are the number of possible solutions
in population—1024, the number of generations—512, the number of evolutionary trans-
formations in each population—512. For GA, the number of bits for integer part—4, the
number of bits for fructional part—12, the probability of mutation—0.75. For GWO, the
number of leaders—4. For PSO, the parameters are kα = 0.729, kβ = 0.85, kγ = 0.15, kσ = 1,
and the number of randomly selected solutions to choose the informant—4.

The projections of optimal trajectories on the horizontal plane of the four optimal
control problems are shown in Figures 2–5. In the figures, red circles indicate obstacles that
define phase constraints of the problem. Small dotted circles indicate the specified areas
mandatory for trajectories to follow.

After obtaining the optimal program trajectories, the problem of synthesis of the object
motion stabilisation system along these trajectories was solved (1)–(2), (9)–(13). It was
necessary to find one stabilisation system for all four program trajectories from the training
set according to criterion (13). The domain of initial conditions (9) contained K = 26 vectors
of initial states.
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Figure 2. Projection of optimal trajectory 1 on the horizontal plane.

Figure 3. Projection of optimal trajectory 2 on the horizontal plane.

Figure 4. Projection of optimal trajectory 3 on the horizontal plane.
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Figure 5. Projection of optimal trajectory 4 on the horizontal plane.

To solve the synthesis problem, the network operator method [12] implemented in the
software package developed by the authors was used. The parameters of the algorithm were
the number of chromosomes in the initial population—512; the number of generations—
128; the number of couples in one generation—128; the dimension of network operator
36× 36; the number of variations of one possible solution—5. The computational time for
the universal stabilisation system synthesis on PC with CPU Intel Corei7 2.8 GHz for four
trajectories was approximately 10 min.

The following solution was obtained:

ui =


u+

i , if ũi > u+
i

u−i , if ũi < u−i
ũi, otherwise

, (40)

where
ũ1 = µ(A) + ρ19(q2), (41)

ũ2 = (ũ1 − ũ3
1)ϑ(q6(x∗6 − x6) + q3(x∗3 − x3)), (42)

ũ3 = ũ2 + ρ17(q1 arctan(x∗1 − x1) + q4(x∗4 − x4)), (43)

ũ4 = ũ2
3 + sgn(B + µ(A) + ρ19(q2))

√
|B + µ(A) + ρ19(q2)|+

ϑ(C) + sin(D) + sgn(−A arctan(E)F) + arctan(G) + 3
√

F+
sin(q4(x∗4 − x4)) + exp(q2(x∗2 − x2)) +

√
q1,

(44)

A = q6(x∗6 − x6) + q3(x∗3 − x3) + ϑ(q6(x∗6 − x6)),

B = H + tanh(D) + exp(E) + 3√F + exp(q5(x∗5 − x5)),

C = D + tanh(−A arctan(E)F) + ρ18(F),

D = −A arctan(E)F +
3√G + sgn(A)+

sin(q1 arctan(x∗1 − x1) + q4(x∗4 − x4)) + cos(q3(x∗3 − x3)),

E = F3 + q1 arctan(x∗1 − x1) + q4(x∗4 − x4) + ϑ(q5(x∗5 − x5))+

arctan(q4)− (x∗6 − x6) + (x∗5 − x5)
2,
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F = sin(q6(x∗6 − x6)) + q5(x∗5 − x5) + (q2 + 1)(x∗2 − x2) + cos(q1)− (x∗2 − x2)
3,

G = ρ19(A) + E + ln(|q6(x∗6 − x6) + q3(x∗3 − x3)|) + exp(F)+

ϑ(q5(x∗5 − x5)) + sgn(x∗5 − x5) + (x∗2 − x2)
3,

H = exp(C) + cos(q6(x∗6 − x6)) + sgn(C)
√
|C|+ sgn(D)

√
|D|+ sin(q5(x∗5 − x5)),

ϑ(α) =

{
1, if α > 0
0, otherwise

,

µ(α) =

{
α, if |α| < 1
sgn(α), otherwise

,

ρ17(α) = sgn(α) ln(|α|+ 1),

ρ18(α) = sgn(α)(exp(|α|)− 1),

ρ19(α) = sgn(α) exp(−|α|),

q1 = 12.10181, q2 = 4.23291, q3 = 15.55688, q4 = 14.70337, q5 = 7.75635, q6 = 10.45923.
Figures 6–9 show projections of one optimal trajectory (in blue) and eight perturbed

trajectories (in black) from the domain of initial conditions (9). The figures show that the
same stabilisation system (40)–(44) provides the object motion in the neighbourhood of all
four optimal trajectories. It should be considered universal.

Figure 6. Projections of optimal trajectory 1 and perturbed trajectories from eight initial states on the
horizontal plane.
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Figure 7. Projections of optimal trajectory 2 and perturbed trajectories from eight initial states on the
horizontal plane.

Figure 8. Projections of optimal trajectory 3 and perturbed trajectories from eight initial states on the
horizontal plane.
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Figure 9. Projections of optimal trajectory 4 and perturbed trajectories from eight initial states on the
horizontal plane.

4.2. Solution of Complete Optimal Control Problem for Object with Motion Stabilisation System

In the second computational experiment, we solved the complete optimal control
problem for an object with a universal stabilisation system (40)–(44). The spatial motion of
the quadrotor along a closed trajectory was considered. The mathematical model of the
control object with a universal stabilisation system has the following form:

ẋ1 = x4,
ẋ2 = x5,
ẋ3 = x6,
ẋ4 = h4(x∗ − x)(sin(h3(x∗ − x)) cos(h2(x∗ − x)) cos(h1(x∗ − x))

+ sin(h1(x∗ − x)) sin(h2(x∗ − x))),
ẋ5 = h4(x∗ − x) cos(h3(x∗ − x)) cos(h1(x∗ − x))− g,
ẋ6 = h4(x∗ − x)(cos(h2(x∗ − x)) sin(h1(x∗ − x))

− cos(h1(x∗ − x)) sin(h2(x∗ − x)) sin(h3(x∗ − x))),
ẋ∗1 = x∗4 ,
ẋ∗2 = x∗5 ,
ẋ∗3 = x∗6 ,
ẋ∗4 = u4(sin(u3) cos(u2) cos(u1) + sin(u1) sin(u2)),
ẋ∗5 = u4 cos(u3) cos(u1)− g,
ẋ∗6 = u4(cos(u2) sin(u1)− cos(u1) sin(u2) sin(u3)),

(45)

where x = [x1 . . . x6]
T , x∗ = [x∗1 . . . x∗6 ]

T .
For the control object, the initial conditions coincide with the terminal conditions

x0 = x f = [0 5 0 0 0 0]T . (46)

Four phase constraints are

ϕi(x) = ri −
√
(x1,i − x1)2 + (x3,i − x3)2 6 0, i = 1, . . . , M, (47)

where M is the number of obstacles, M = 4, ri is the radius of obstacle i, ri = 2, i = 1, . . . , 4,
(x1,i, x3,i) are coordinates of their centers, x1,1 = 5, x3,1 = 0, x1,2 = 10, x3,2 = 5, x1,3 = 5,
x3,3 = 10, x1,4 = 0, x3,4 = 5.
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The three specified areas are as follows:

δi(x(t)) = min
06t6t f

{√
(z1,i − x1(t))2 + (z3,i − x3(t))2 − di

}
6 0, (48)

where (z1,i, z3.i) are the coordinates of the area centers on the horizontal plane, i = 1, . . . , S,
S is the number of areas, S = 3, di is the size of the area, di = 0.6.

The coordinates of the required area centers are z1,1 = 10, z3,1 = 0, z1,2 = 10, z3,2 = 10,
z1,3 = 0, z3,3 = 10.

The optimal control problem was solved on the basis of the direct approach by a hybrid
evolutionary algorithm [21]. To solve the problem, we set t+ = 15.2 and time interval
∆t = 0.4. There were 38 intervals in total. For each interval boundary, M = 4 controls had
to be found. Thus, the total (N + 1)m = 39× 4 = 156, q = [q1 . . . q156]

T parameters were
found.

The values of the found parameters for optimal control are given in the Data Avail-
ability section. The value of the quality criterion (35) is J4 = 15.1221. Figure 10 shows the
projection of the new found optimal trajectory on the horizontal plane.

Figure 11 shows a new optimal trajectory (in blue) and eight perturbed trajectories (in
black) for an object with a universal stabilisation system. As it can be seen from the figure,
all perturbed trajectories are in the neighbourhood of the optimal trajectory and satisfy
the phase constraints. A value of the quality criterion (35) for the object with a universal
stabilisation system without perturbations (blue) is J4 = 16.341.

To estimate the results, a comparable experiment was performed. For models with and
without a stabilisation system, the initial states were subjected to random perturbations,

xi(0) = x0
i + 2β0(ξ(t)− 1), (49)

where ξ(t) is a random numbers generator. Function ξ(t) returns a random number from 0
to 1 after each call, β0 is a level of perturbations.

Figure 10. Projection of a new optimal trajectory on the horizontal plane.
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Figure 11. Projections of a new optimal trajectory (blue) and perturbed trajectories (black) on the
horizontal plane.

The values of quality criterion (35) for perturbed initial states at β0 = 0.1 for object
with and without stabilisation system are given in Table 1.

The last two lines show average value and standard deviation (SD) on experiments.
As it can be seen from Table 1, an object model without a stabilisation system is essentially
more sensitive to the perturbation of initial conditions.

Table 1. Sensitivity of solutions to perturbations of initial states.

No Direct Stabilisation

1 20.5112 16.4147
2 18.5402 16.4715
3 19.3551 16.4456
4 18.3839 16.3356
5 20.0805 16.4408
6 18.7307 16.4417
7 19.0710 16.4456
8 21.3337 16.4120
9 20.3913 16.4495

10 18.5464 16.4710

Avg. 19.4940 16.4323

SD 1.02170 0.04012

5. Conclusions

The paper presents a statement of the complete optimal control problem in which,
according to the classical statement, it is necessary to find the control function and the opti-
mal program trajectory, and to implement the solution, it is necessary to solve the synthesis
problem of motion stabilisation along the program trajectory. To solve the stabilisation
system synthesis problem, machine learning of control by the symbolic regression method
is used.

For the first time, it is proposed to synthesise a universal stabilisation system that
ensures the motion of an object along different trajectories from some class. To synthesise
a universal stabilisation system, a training set of different trajectories is generated. As a
result of solving the problem of stabilisation system synthesis, we obtain one universal
stabilisation system which provides object motion along all trajectories from the training set.
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The obtained solution was tested on stabilisation of the object motion along the
trajectory, which was not included in the training set. An example of solving the complete
optimal control problem for quadcopter motion in space with four obstacles was given.
The optimal trajectory was a closed curve, which passed through the specified areas and
avoided the obstacles.

Training of the stabilisation system was performed on trajectories that differed signifi-
cantly from the example. The training set included four trajectories that were obtained as a
result of solving the optimal control problem of quadcopter spatial motion from a given
initial point to a given terminal point in space with two phase constraints. The trajectories
differed in that they avoided obstacles from different sides. The computational experiment
showed that the universal stabilisation system provided qualitative motion of the object
along the closed optimal trajectory, which was not included in the training set.

6. Discussion

Future research is aimed at expanding of the class of trajectories that are included in
the training set. It is important to identify and investigate the properties of trajectories that
cannot be stabilised by the obtained stabilisation system, i.e., to determine the limits of
applicability of the proposed universal stabilisation system.

Furthermore, the construction of universal stabilisation systems for different control
objects will exclude the most time-consuming stage of synthesis of the trajectory motion
stabilisation system from the solution of the optimal control problem. If for some object it
is necessary to construct several stabilisation systems for different classes of trajectories, it
is necessary to synthesise such stabilisation systems and further use them to solve different
optimal control problems.
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