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Abstract: Motivated by the electric vehicle battery life performance, we studied the optimal invest-
ment decision-making behaviour of duopoly automakers. Based on the framework of game theory,
this paper explores the influence of various parameters in the static game and dynamic game on
the results, in combination with consumers’ preference for the battery life of electric vehicles. In the
static game, a smaller investment coefficient is more beneficial to a firm that adopts an investment
strategy rather than a firm that does not. When the investment coefficient increases, the difference
between the two manufacturers will become smaller. The change of parameters in the dynamic game
system may lead to complex dynamic phenomena, and the system will experience period-doubling
bifurcation and N-S bifurcation from a stable state into a chaotic state. It will also significantly impact
the basins of attraction, which affect the decision-makers’ initial choice. Consequently, we can use the
control method to return the unstable system to stability. Based on these findings, some management
insights and suggestions are presented.

Keywords: duopoly; new energy vehicle; game theory; low carbon investment; complex system

MSC: 91A35

1. Introduction

With the consumption of fossil energy and the exhaustion of natural resources, au-
tomakers have begun to pay more and more attention to the research, development, and
production of new energy vehicles. Compared with other new energy vehicles, electric
vehicles are more convenient for consumers and widely favoured, so their sales share has
also increased year by year [1–3].

Nowadays, electric vehicles are widely used. However, electric vehicles have some
apparent disadvantages, such as long charging times and a low battery life. Compared with
fuel vehicles, these factors significantly affect the consumer experience. However, although
these problems have been improved in recent years, there is still a significant gap in the
actual use process. Therefore, it is worthy of consideration and research. Motivated by these
electric vehicle battery life issues, this paper examines the problem from a manufacturer’s
investment perspective.

After decades of development, electric vehicles now have a range of hundreds of
kilometres (consumer-grade electric vehicles) (As one of the world’s largest electric vehicle
manufacturers, Tesla has many car models, such as the Model 3, Model X, etc., and their
battery lives maintain a range of 400–600 km. Generally, the battery life of electric vehicle
models is between 300 and 600 km). Due to different climates and road conditions, the
battery life will change in actual use. However, the battery life has not changed significantly
in recent years, which is not helpful to consumers who usually need to drive long distances
or have no time to wait for charging. Therefore, this group of people prefers fuel vehicles.
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Faced with battery life issues and a high R&D investment, automakers will also make
choices and seek more beneficial methods for the company. Furthermore, consumers’ pref-
erence for the battery life of electric vehicles will affect the sales of electric vehicles, which
requires manufacturers to weigh different influencing factors and find an optimal strate-
gic plan. Therefore, this paper studies the optimal strategy of automobile manufacturers
from the perspective of battery investment to provide better decision-making suggestions
for manufacturers.

From the perspective of a static game, there will be a single-cycle game between
manufacturers [4–6]. In contrast, from a dynamic standpoint, the game process between
manufacturers will change over time, and some complex behaviours and characteristics will
appear [7–10]. Therefore, this paper will study and analyse both static and dynamic games.

Considering the impact of battery life on consumers’ purchasing enthusiasm, this
article models and solves the asymmetric investment of duopoly electric vehicle manufac-
turers. We provide control methods to maintain system stability in response to the chaotic
states that occur in the decision-making system. In reality, it is difficult for enterprises to
obtain all the market information. We assume that the manufacturer displays bounded
rationality, and the manufacturer’s decision is in a process of continuous adjustment. We
simulated the adjustment behaviour of enterprise decision-making, established a long-term
repeated game model, and obtained the conditions for the stability of the decision-making
system. This article aims to improve the production and operation level of enterprises
and provide theoretical as well as display guidance for the investment decisions of electric
vehicle manufacturers.

The content of this paper mainly includes the following contributions:

• An investigation of the optimal strategies for battery life investments among electric
vehicle manufacturers.

• An analysis of the impact of battery investment coefficients on electric vehicle manufacturers.
• A study and analysis of static and dynamic game behaviours.
• The study and control of the chaotic phenomenon in the dynamic game process.

The structure of this paper is divided into the following sections: Section 2 reviews
the relevant literature related to our study, Section 3 states the assumptions and establishes
the static model framework, a dynamic game model is constructed in Section 4, where the
stability analysis and numeric simulation are discussed simultaneously, and finally, we
summarise the essential findings and the managerial implications in Section 5.

2. Literature Review

The main research in this paper is whether it is necessary for enterprises to invest in
battery life. When an enterprise carries out this investment, it means that the enterprise
will incur additional costs, but at the same time, in return, the enterprise may be accepted
by more consumers. Below, we will briefly summarise the contributions and deficiencies of
the related papers.

2.1. Investment in Battery Life

With the improvement in consumers’ requirements for product experience, the battery
life of electric vehicles has become one of the critical indicators for consumers to purchase
vehicles. So, electric vehicle manufacturers will increase their investment and R&D efforts
to enhance their brand’s sense of technology and consumer experience.

Different investment strategies of a company can significantly impact its profits.
Dong et al. [11] studied whether a company in the supply chain should make green in-
vestment decisions. Comparing different profit scenarios can provide decision-makers
with better decision-making suggestions. Zheng et al. [12] studied the duopoly manu-
facturers’ decision-making considering green technology investment, and the optimal
production capacity, price, and green technology investment of the duopoly manufacturers
were obtained.
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To identify the optimal green investment strategy under a government subsidy policy,
Sun et al. [13] studied the strategy of green investment for manufacturers and material
suppliers in a two-echelon supply chain. There is a lot of investment-related content worth
examining and learning. For example, Li et al. [14] studied the impact of different subsidy
policies on enterprise investment and conducted a comparative analysis. Liu et al. [15]
studied the dynamic investment strategy of green technology in a manufacturer-supplier
supply chain and explored the optimal government subsidy incentive and its impact on
investment and sustainable production decisions. Li et al. [16] investigated the impact of
government subsidy schemes and channel power structure on the level of innovation in a
two-tier supply chain. It was found that consumer subsidies are more effective than pro-
ducer subsidies in promoting innovation investment for a given channel power structure.

Enterprise investment is an effective way to improve the technical level and re-
duce production risks. Li et al. [17] investigated the impact of retailer innovation in-
vestment and its spill over effect on competitive dual-channel supply chain pricing and
optimisation strategy.

Similar to consumers’ green preference (Zhang et al. [18], Hong et al. [19], Chen et al. [20]),
consumer preference for EV battery life will also have an impact on EV sales. Because
electric vehicles currently have the characteristics of a short battery life and long charging
time, consumers will also fully consider the inconvenience caused by these factors when
purchasing. Correspondingly, if electric vehicles have more advantages, consumers will
also be more likely to buy electric vehicles. In this paper, we will examine electric vehicle
manufacturer investment in long battery life technology while taking consumer preferences
for a longer battery life into account.

2.2. Duopoly Game and Complexity

Conventional research methods only discuss single-stage game behaviour, while
nonlinear dynamics effectively study game systems’ long-period behaviour and complex
characteristics. When considering the long-term game behaviour of the players, the game
system can be better characterised by the complex dynamics method, which can provide
decision-makers with rich decision-making suggestions. Under information asymmetry,
Ueda [21] studied a dynamic Cournot duopoly game with bounded rationality and in-
vestigated the chaotic behaviour by theory and numerical simulation; this study shows
how one player’s possession of information affects the system stability. Yang et al. [22]
investigated the complex dynamics of a duopoly game with bounded rational players
too. Lou and Ma [23] studied the complex behaviour in a Bertrand household appliance
supply chain system. They pointed out that the adjustment parameters would affect the
stability and should take suitable adjustment speeds. Elsadany and Awad [24] presented a
mixed duopoly game that contained price and quantity competition and gave a numerical
simulation to analyse the dynamic behaviours.

Analysing the basins of attraction will help the enterprise control the initial state to
better identify the stable area in the subsequent repeated game process. Zhow et al. [25]
constructed a two-stage Cournot duopoly game model and analysed the model’s stability
conditions and explained the phenomenon of periodic attractors and chaos in the system.
In this model, four types of coexistence of attractors were illustrated through the basin of
attraction. Askar and Al-khedhairi [26] presented two different nonlinear duopoly game
models to explore the local and global properties of the equilibrium point of the system.

With the parameter change, the game system potentially enters a chaotic state which is
unwilling to be seen by the decision-makers. Therefore, an effective chaotic control method
is also sought to keep it stable. Wu and Ma [27] considered an epiphytic supply chain
game model with two players and horizontal product diversification. The equilibrium
points, stable regions, and bifurcation were investigated simultaneously and a nonlinear
feedback method was adopted to control the chaos. Its economic significance was presented
from the standpoint of expectation theory. Similarly, Wang and Ma [28] considered a
Cournot–Bertrand mixed duopoly model with different expectations and assumed the
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two players had bounded rational and static expectations. In their model, the complex
dynamic behaviours were analysed and economic explanations were also given. Ma and
Sun [29] investigated the pricing strategy of the manufacturers and that of a common
retailer, including their after-sale investment in a risk-averse supply chain. The study
showed that the faster the adjustment speed the more profits the retailer can make, but on
the other hand, this is not good for manufacturers. A feedback control method was used to
control the chaos in the supply chain.

In this paper, to prevent the game system from entering a chaotic state, we adopted a
chaos control method for timely control to bring it back to a stable state (Nobakhti et al. [30]).

3. The Model

Since some consumers prefer electric vehicles with higher levels of battery life, electric
vehicle manufacturers must decide whether to invest in battery technology to seek higher
levels of battery life and attract more consumers.

This paper assumes that duopoly manufacturers adopt different investment strategies.
One of the manufacturers will invest in battery life technology and another one will not.
The basic structural framework of the model is shown in Figure 1.
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As shown in Figure 1, one of the manufacturers adopts an investment strategy while
the other maintains the current technology level. So, in this particular scenario, the optimal
strategies of the two manufacturers will also be different and will be discussed in the
following sections.

3.1. Notation and Model Construction

We briefly note the symbol marks used in this paper and summarise them in Table 1.
First of all, we give the general inverse demand functions of the two manufacturers:

pi = max
(qi ,qj)
{0, a− b1qi − b2qj + θgi}, i 6= j, i, j = 1, 2 (1)

where the product price and parameters of a, b1, b2, θ are positive constants and b1 > b2 > 0
should be held.

The marginal cost manufacturer i is ci, and the cost function is Ci = ciqi. In this
model, we consider one of the manufacturers investing in battery technology to improve
the battery life level. If the manufacturer adopts such a strategy, it will incur additional
costs. In this paper, we assume the investment cost function is quadratic, i.e., Cgi =

1
2 ηg2

i ,
this means that the investment costs will increase as the battery life level increases [31–33].

Then, the profit function can be formulated as:

πi = max
(qi ,qj)
{0, (a− b1qi − b2qj + θgi − ci)qi −

1
2

ηg2
i }, i 6= j, i, j = 1, 2 (2)

Since the marginal cost gap between the two homogeneous products is small, we
assume that c1 = c2 in the following sections.
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Table 1. Summary of Notations.

Notation Explanation

Parameters

a Positive constant

bi
Positive constant which stands for the impact of sales on the price of their
own quantity, bi > 0, bi > bj, i < j, and i, j = 1, 2

ci
Constant marginal cost of manufacturer 1 and manufacturer 2, ci > 0,
ci < a, i = 1, 2

θ Coefficient of the battery life level, θ > 0

η Coefficient of the investment cost function, η > 0

Decision variables

qi Quantity of manufacturer 1 and manufacturer 2, qi > 0, i = 1, 2

gi
Battery life level of the electric vehicle; it is up to the manufacturer to
implement investment in battery technology, gi > 0

Others

πi Profit of manufacturer 1 and manufacturer 2, πi > 0, i = 1, 2

3.2. One Manufacturer Invests in Battery Life

Without loss of generality, we assume that one of the manufacturers invests in battery
life technology, i.e., manufacturer 1 adopts the investment strategy, and we have g1 > 0,
g2 = 0. Hence, the profits of the two manufacturers are given by:{

πm1 = (a− b1q1 − b2q2 + θg1 − c1)q1 − 1
2 ηg2

1

πm2 = (a− b1q2 − b2q1 − c2)q2
(3)

In this model, the two manufacturers choose quantity and investment simultaneously
and consider the other party’s decision. According to the first order condition, the best
response functions are: 

q1 = a−c1−b2q2+g1θ
2b1

g1 = q1θ
η

q2 = a−c2−b2q1
2b1

(4)

Then, we find the equilibrium solution of model (3) is:

E∗(q1, g1, q2) =

(
(2ab1−ab2−2b1c1+b2c2)η

4b2
1η−b2

2η−2b1θ2 ,

(2ab1−ab2−2b1c1+b2c2)θ

4b2
1η−b2

2η−2b1θ2 , (2ab1−ab2+b2c1−2b1c2)η+(−a+c2)θ
2

4b2
1η−b2

2η−2b1θ2

) (5)

The profits of the two manufacturers are then as follows:
π1 = (2ab1−ab2−2b1c1+b2c2)

2η(2b1η−θ2)

2(−4b2
1η+b2

2η+2b1θ2)
2

π2 = b1(b2c1η+a(2b1η−b2η−θ2)+c2(−2b1η+θ2))
2

(−4b2
1η+b2

2η+2b1θ2)
2

(6)

Proposition 1. To ensure the game system has the optimal solution and keep qi > 0, g > 0,
η > θ2

2b1−b2
should be satisfied.

Proof. As described above, since the difference between the manufacturing costs of the two
manufacturers is small, it can be considered c1 = c2.
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According to the profit function in Equation (3), one can find the Hessian matrix, and
then we can discover that they are all concave functions so that there is an optimal solution
when η > θ2

2b1
.

Additionally, since the manufacturer’s output and endurance levels should be positive,
the following conditions also need to be met:

(1) With q1 > 0, we have{
(2ab1 − ab2 − 2b1c1 + b2c2)η > 0
4b2

1η − b2
2η − 2b1θ2 > 0

or
{

(2ab1 − ab2 − 2b1c1 + b2c2)η < 0
4b2

1η − b2
2η − 2b1θ2 < 0

, as

2ab1 − ab2 − 2b1c1 + b2c2 is greater than zero, so we have η1 > 2b1θ2

4b2
1−b2

2
.

(2) Based on (1), we know that 2ab1 − ab2 − 2b1c1 + b2c2 is greater than zero, so
(2ab1 − ab2 − 2b1c1 + b2c2)θ is greater than zero too, and g1 greater than zero as well.

(3) With q2 > 0 we have{
(2ab1 − ab2 + b2c1 − 2b1c2)η + (−a + c2)θ

2 > 0

4b2
1η − b2

2η − 2b1θ2 > 0
or{

(2ab1 − ab2 + b2c1 − 2b1c2)η + (−a + c2)θ
2 < 0

4b2
1η − b2

2η − 2b1θ2 < 0
, as we know that η1 > 2b1θ2

4b2
1−b2

2
, so

we only need to find (2ab1 − ab2 + b2c1 − 2b1c2)η + (−a + c2)θ
2 is positive, so we can

obtain η2 > θ2

2b1−b2
, as η2 − η1 = b2θ2

4b2
1−b2

2
> 0, and so we finally have η = η2 = θ2

2b1−b2
.

When g1 = 0, and θ= 0, it means that manufacturer 1 has not adopted an invest-
ment strategy and the optimal strategies of the two manufacturers are the same. The
corresponding equilibrium solution is:

E∗g=0(q1, g1, q2) =

(
2ab1 − ab2 − 2b1c1 + b2c2

4b2
1 − b2

2
, 0,

2ab1 − ab2 + b2c1 − 2b1c2

4b2
1 − b2

2

)
(7)

The profits of the two manufacturers are as follows:
π1 = b1(2ab1−ab2−2b1c1+b2c2)

2

(−4b2
1+b2

2)
2

π2 = b1(2ab1−ab2−2b1c2+b2c1)
2

(−4b2
1+b2

2)
2

(8)

In this case, the quantities and profits of the two manufacturers will be equal. As
shown in Figure 2, the solid black line stands for the quantity and profit if neither of the
two manufacturers invest in battery life technology. When one of the manufacturers adopts
the investment strategy, its quantity and profit will change to the green line. The blue line
represents the corresponding quantity and profit of the other manufacturer. �
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Proposition 2. The quantity and profit of the manufacturer will increase if they adopt the in-
vestment strategy, and the quantity and profit of the other manufacturer who does not adopt the
investment strategy will decrease whenη > θ2

2b1−b2
.

Proof. The proof is similar to Proposition 1 and is thus omitted. �

On the one hand, Proposition 2 shows that the manufacturer has the motivation
to adopt an investment strategy to improve its profit, especially when the investment
coefficient is small. That is to say, if the technology can be improved quickly through
investment, it is beneficial to those enterprises with rapid response-ability, and some
enterprises that are difficult to adapt to the market rhythm can be quickly eliminated. On
the other hand, with the increase in the investment cost coefficient and the rise in the
investment cost, more complicated phenomena may occur. From Figure 2, we know that
as the cost factor of battery life investment increases, the quantities and profits of the two
manufacturers will be the same. Combined with the difficulty and cycle of battery research
and development, manufacturers may have insufficient incentives to invest, especially
those with insufficient funds. However, enterprises with sufficient investment capabilities
will still benefit from it.

4. Dynamic Game Model Analysis

The competition between manufacturers is very fierce. Therefore, once one manufac-
turer is in an advantageous position, he will maintain this advantage for some time, and
another manufacturer will find them difficult to overtake quickly. Thus, the resulting opti-
mal equilibrium solution is meaningful if one manufacturer adopts an investment strategy.

We can obtain the optimal equilibrium solution above through static model analysis
which the manufacturers will use to make their decisions based on the equilibrium solution.
Therefore, we present a repeated dynamic adjustment model in this section. To study the
long-term game process of manufacturers, we assume that a limited rational approach will
generally be adopted for the more forward-looking manufacturer when considering future
development, and the short-sighted manufacturer will adopt adaptive expectations [34–36].

Then, the quantity decision of the two manufacturers at t + 1 period can be described
as follows. Among them, α1 represents the adjustment magnitude of one manufacturer’s
output, α2 represents the adjustment range of their investment in battery life, and v repre-
sents the adjustment speed of the other manufacturer’s production capacity.

q1(t + 1) = q1(t) + α1q1(t)
∂π1(q1(t))

∂q1(t)

g1(t + 1) = g1(t) + α2g1(t)
∂π1(g1(t))

∂g1(t)

q2(t + 1) = (1− v)q2(t) + vq2(t)
∂π2(q2(t))

∂q2(t)

(9)

The stability and some of the complex phenomena of the dynamic game model will be
analysed in the following subsection.

4.1. Equilibrium Points and Local Stability Analysis

A stable system is more conducive for decision-makers to judge and make decisions.
In this subsection, we analyse the local stability of adversarial game systems. According to
System (9), the equilibrium solution of the dynamic game system can be obtained. However,
although the solution containing zero values is mathematically essential, it is not necessary
for the manufacturer to consider the profit. Therefore, we only carry out the non-zero
equilibrium solution here.
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E∗(q1, g1, q2) =


q1 = (2ab1+b2−ab2−2b1c1+b2c2)η

4b2
1η−b2

2η−2b1θ2

g1 = (2ab1+b2−ab2−2b1c1+b2c2)θ

4b2
1η−b2

2η−2b1θ2

q2 = −2b1η+2ab1η−ab2η+b2c1η−2b1c2η+θ2−aθ2+c2θ2

4b2
1η−b2

2η−2b1θ2

(10)

Then, we investigate the local stability of E∗ using the Jacobian Matrix of System (9).
The Jacobian Matrix is:

J =


j11 j12 j13

j21 j22 j23

j31 j32 j33



=


1− 2b1q1α1 + α1(a− c1 − 2b1q1 − b2q2 + g1θ1) q1α1θ1 −b2q1α1

g1α2θ1 1− g1α2η + α2(−g1η + q1θ1) 0

−b2q2v 0 1− v− 2b1q2v + (a− c2 − b2q1 − 2b1q2)v


(11)

The Eigenvalues of J are the solutions of the cubic equation of λ. As it is complicated,
we give a brief expression here:

f (λ) = λ3 + Aλ2 + Bλ + C = 0 (12)

where A, B, and C are the coefficients which are determined by J.
A = (−j11 − j22 − j33)

B = (−j12 j21 + j11 j22 − j13 j31 + j11 j33 + j22 j33)

C = j13 j22 j31 + j12 j21 j33 − j11 j22 j33

According to the Jury stability criterion, which gives a condition that all Eigenvalues
must be inside the unit circle, the Nash equilibrium point is locally stable if the following
four conditions are satisfied:

f1 = f (1) = 1 + A + B + C > 0

f2 = (−1)3 f (−1) = −1 + A− B + C > 0
f3 = 1− C2 > 0

f4 =
(
1− C2)2 − (B− AC)2 > 0

(13)

Based on Equation (13), we have:

(2ab1 + b2 − ab2 − 2b1c + b2c)2vα1α2ηθ
(
2b1(−1 + a− c)η + b2cη + θ2 + cθ2 − a

(
b2η + θ2))(

−4b2
1η + b2

2η + 2b1θ2
)2 > 0

According to known conditions, we have:
(
2b1(−1 + a− c)η + b2cη + θ2 + cθ2 − a

(
b2η + θ2)) > 0,

so it will always be held, when a > 2b1+2b1c−b2c
2b1−b2

and η > −θ2+aθ2−cθ2

−2b1+2ab1−ab2−2b1c+b2c .

The other three constraints are complex expressions containing three adjustment
parameters; it is very difficult to obtain the analytical solution directly, so we mainly
combine the numerical simulation in the following analysis.

Since the theoretical results are complex and inconvenient to observe, we combine
the numerical simulation to give a graphical illustration to satisfy the constraints. Based
on the constraint conditions of the parameters in the above propositions, the parameter
values that satisfy the conditions can be given as a = 5, b1 = 1.6, b2 = 1.1, c1 = 0.8,
c2 = 0.8, θ = 1.6, and η = 4. As shown in Figure 3, according to the Jury stability
condition in Equation (13), we can find the stable region in the three-dimensional space of
the adjustment parameters.

Figure 3a shows the stable region in the three-dimensional space of (α1, α2, v), it can
be seen that there are many fine black lines on the surface of the stable region, which
intersect with the definition domain and indicate that the boundary surface is not smooth,
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which also shows the complexity of the stability domain. Figure 3 also indicates that the
system will remain stable only when the parameters are in this region. For a more intuitive
understanding, we perform dimensionality reduction processing. As shown in Figure 3b,
i.e., g = 0.5, the stable region is shown by the yellow colour.
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Figure 3. (a) The stable region in the α1, α2, v-space; (b) The stable region in the α1, α2-plane.

There are many complex features and phenomena in System (9) that should be at-
tended to and investigated. For example, when the adjustment parameters change, the
manufacturer’s decision will also change, and after a certain period, it may enter a bifur-
cation or a chaotic state. At this time, the decision-makers need to pay more attention to
the long-term evolution process of the game system. As shown in Figure 4, α1 represents
the adjustment of production by manufacturer 1. Assuming that α2 and v are fixed, we can
observe the impact of α1 on system stability. As shown in Figure 4a, when the adjustment
speed α1 is less than a certain critical value, the system is in a stable state and there is an
equilibrium solution. When α1 is greater than a certain critical value, the system will enter
a bifurcated state, and as α1 continues to increase, the system will enter a chaotic state.
Correspondingly, the state change of the system can be observed more intuitively through
the largest Lyapunov exponent graph in Figure 4b. The Lyapunov exponent reflects the
distance between iterative motion trajectories. If the Lyapunov exponent is less than zero, it
indicates that the motion trajectory exhibits a contraction trend as the number of iterations
increases. Conversely, it indicates that the iteration trajectory tends to diverge. The part
less than zero corresponds to the stable range of the system and the part greater than zero
corresponds to the unstable range of the system.
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Figure 4 indicates that when the decision-makers make decisions, it is necessary to
consider the value range of the parameter and the impact of parameter changes on the
system entirely. Otherwise, it will make the system unstable or uncontrollable. Parameters
such as α2 and v have similar properties; the bifurcation and the largest Lyapunov exponents
are shown in Figures 5 and 6, respectively.
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Figure 6. (a) Bifurcation diagram of System (9) when v ∈ [0, 1] and (b) the largest Lyapunov exponents
corresponding to (a).

Decision-makers do not want the system to enter a bifurcated or chaotic state because
it will make it difficult for decision-makers to predict and control the system. Therefore, the
decision-maker will want to control the value of the tuning parameter within a stable range.

With the change of the adjustment parameters, the system will experience period-
doubling bifurcation, from a stable state to an unstable state. As shown in Figure 7a, we
can observe that the yellow region is stable. When the parameters stay in the yellow
region, the system only has a single-cycle solution and indicates a steady state. Different
colours indicate other periods. For example, the orange region is the cycle of period 2;
the light blue region is the cycle of period 4; the light blue region is the cycle of period 8,
and so on. The crimson region is for chaos, and the dark blue region is for divergence.
Figure 7b,c has a similar meaning, where Figure 7d shows the corresponding periodic slices
in three-dimensional space. The colours in Figure 7d represent the same system status
as above.
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Figure 7. (a) Two-dimensional bifurcation diagram in the (α1, α2) plane; (b) two-dimensional bifurca-
tion diagram in the (α1, v) plane; (c) two-dimensional bifurcation diagram in the (α2, v) plane; and
(d) three-dimensional periodic slice diagram in the (α1, α2, v) space.

To observe the impact of the adjustment parameters on System (9), Figure 8 shows the
influence of the two-parameter change on the system’s stability, periodicity, and chaotic
state in the two-dimensional plane.
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Figure 8. Basins of attraction and attractors. (a) The basin of attraction with α1= 0.2; (b) the basin
of attraction with α1= 0.3; (c) the basin of attraction with α1= 0.4; and (d) the basin of attraction
with α1= 0.4, showing two focus points with two colours. (e) The trajectory of stable points to
unstable points.

4.2. Global Bifurcation and Attractors

The basins of attraction correspond to the set of initial conditions whose long-time
response (LTR) approaches the attractor. Based on this concept, we change the initial
conditions to study the effect of different initial values on the system’s attractor. The
coexistence of several attractors exists widely in nonlinear systems, which increases the
complexity and difficulty of analysis. In this paper, the discrete dynamical systems have
several attractors too.

With the varying of parameter α1, the basins of attraction will also change. As shown
in Figure 8, there are a series of basins of attraction in the (q1, q2) plane. In Figure 8a,b, the
initial values in the yellow region will converge to a red fixed point, but we find that the
stable region in Figure 8b is smaller. As shown in Figure 8c, as parameter α1 increases, only
one red fixed point changes to two blue fixed points, and the basin of attraction becomes
smaller. Figure 8d shows the different converge domains using two colours, and Figure 8e
presents the trajectory from the stable point (black) to the two fixed points (red).

With the further increase in parameters, the system will develop more complex char-
acteristics and phenomena. As shown in Figure 9, there are two invariant curve cycles, that
is, the two blue cycles in the orange area. Figure 9a,c contains the entire basins of attraction
and Figure 9b,d shows the enlarged figures.
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Figure 9. Basins of attraction and attractors. (a) The basin of attraction with α1= 0.44; (b) the basin of
attraction with α1= 0.44 and an enlarged axis; (c) the basin of attraction with α1= 0.45; and (d) the
basin of attraction with α1= 0.45 and an enlarged axis.

The decision-makers may be confused when the emergence of invariant curve cycles
leads to constant changes in the optimal solution. However, fortunately, invariant curve
cycles are still within the predictable range.

When the parameters are near the critical value of bifurcation, the phenomenon of
coexisting attractors will occur. Since multiple solutions exist simultaneously, it may disturb
the decision result, which is very unfavourable for the decision-maker. Figure 10a presents
the basins of attraction of cycles of period 8, and they are marked by different colours in
Figure 10b. Then, we continue to increase the value of α1; Figure 10c–e presents the coexist-
ing attractors. At this time, 8-period and 10-period solutions will appear simultaneously.

In Figure 10e, there are three coexisting attractors. As shown in Figure 10f, we can
clearly distinguish the number of cycles. It shows the cycles of period 8, cycles of period 10,
and cycles of period 18 attractors. The initial values in the pink region will converge to
cycles of period 8, the initial values in the orchid region will converge to cycles of period 10,
and the initial values in the chartreuse region will converge to cycles of period 18. It also
shows the complexity of the dynamic System (9) and indicates that the choice of the initial
value will significantly influence the decision result.

With the further increase in the parameters, the coexistence of the eight-period attractor
and chaotic attractor will appear in the dynamic System (9), which will seriously disturb
the decision-making behaviour of the manufacturer. For example, when α1= 0.47, there is
a stable cycle of period 8 and a chaos attractor. Figure 11a,b shows this phenomenon. The
teal area in Figure 11 represents a chaotic attractor.
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Figure 10. (a) The basin of attraction with α1= 0.46; (b) the basin of attraction with α1= 0.46 and
labelled by different colours; (c) the basin of attraction with α1= 0.464; (d) the basin of attraction with
α1= 0.46492; (e) the basin of attraction with α1= 0.45; and (f) the basin of attraction with α1= 0.465
and an enlarged axis.

Combining the system’s attractors can allow for a better observation and discussion of
the change of the dynamic system state with the parameter change. Figure 12 shows the
attractors in the (q1, g1, q2)-space. As shown in Figure 12, there are six types of attractors
present, they are the 1-period, 2-period, two invariant curve cycle, 166-period, 8-period,
and chaos attractor.

In this subsection, through the study of the basins of attraction and attractors, we
find that the complex system will gradually enter a chaotic state as the parameters change
and that the initial state is important for decision-makers. When other parameters change,
similar phenomena will also occur, which undoubtedly dramatically increases the difficulty
of the decision-making process. If it cannot be predicted in advance, it will have a significant
impact on the future development of the enterprise.
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Figure 11. Basins of attraction and attractors. (a) The basin of attraction with α1= 0.47 and (b) the
basin of attraction with α1= 0.4745 and figure enlargement.
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4.3. Sensitivity Analysis

As initial value sensitivity is one of the important features of a chaotic system, the state
changes of complex dynamic systems can also be observed and analysed through the time
series. For example, Figure 13 shows the time series graph under different values of α1.
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Figure 13a–c shows the time series diagram after assigning different initial values to
q1 after 100 iterations. It can be found that although the initial value is different, they can
stabilise to the same fixed points after several iterations. Figure 13a shows that the system
maintains a stable single-period solution after several iterations, while Figure 13b presents
a two-period and Figure 13c presents an eight-period.

Although the two sequences in Figure 13c do not look the same, the same periodic
solution can be obtained after adjusting the sequence’s order. As shown in Figure 14, the
blue point set only needs to be translated five to the right to coincide with the red point set.
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Figure 14. Time series of q1 with α1 = 0.46 in a 3-D view.

As shown in Figure 15, although the initial value difference is slight when the dynamic
system enters the chaotic state, the result will significantly differ after several iterations.
Similarly, there are similar situations for other adjustment parameters. In a chaotic state,
the decision-making results are difficult to predict, which will bring great difficulties to
decision-makers. However, chaos is unavoidable in many cases. Therefore, it is necessary
to find an effective control method to intervene so that the game system can recover to a
stable state.
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4.4. Chaos Control

Through the given constraints and actual conditions, decision-makers can generally
determine the range of each parameter. However, as analysed above, chaotic phenomena
may occur inadvertently. Therefore, at this time, decision-makers need to master effective
chaos control methods to keep the dynamic system in a stable state.

In this subsection, we introduce the OGY control method to deal with chaos. We
know that when α1= 0.47 the system will go into chaos. Therefore, to verify the method’s
effectiveness, we control the chaos system after 100 iterations. As shown in Figure 16, the
red points stand for the chaos times series and the green points stand for the times series
after control. The black dashed line is the control time point.

From Figure 16, we know that the dynamic system returns to a stable state when we
adopt the chaos control method. This is undoubtedly desirable to decision-makers who can
control the system within a controllable range through effective control methods, thereby
minimising uncertainty.
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5. Conclusions

In this paper, we examined the issue of electric vehicle manufacturers investing in
battery life and modelled and analysed this issue in combination with duopoly electric
vehicle manufacturers in the market. It can be found that when the investment coefficient is
low, the return on R&D investment is relatively high. On the other hand, as the investment
coefficient increases, its profit will gradually decrease, and it will be close to the case of
no investment. At this time, enterprises may choose not to invest but purchase related
technologies after the technologies are mature.

We also studied the complex phenomenon and mechanism produced by the enter-
prise’s long-term game decision-making by combining complex dynamic game theory.
In the long-period dynamic game process, the decision-making result of the enterprise
is closely related to the decision-making coefficient. With the change of the adjustment
parameters, bifurcation and chaos may appear in the system, and there may be period-
doubling bifurcation and N-S bifurcation at the same time, which increases the difficulty
of decision-making. From the perspective of global bifurcation, it can be found that the
system’s initial state will also change the system’s stability and even create the coexisting
attractor phenomenon.

Through the analysis of the game, we found many interesting conclusions. First,
electric vehicle manufacturers’ investment in batteries is related to investment costs. If the
investment cost is high, manufacturers will have a lower investment incentive. In contrast,
if the investment cost is low, it will promote the manufacturer’s investment enthusiasm. The
government should help electric vehicle manufacturers reduce investment costs, encourage
financial institutions to provide low interest rate loans to electric vehicle manufacturers,
and support the integration of industry, academia, and research. Manufacturers should
also strive to develop and improve battery life. Secondly, through the analysis of the
long-period dynamic game, it can be found that the manufacturer’s decision is closely
related to the system parameters. Subtle changes in parameters may lead to disorder of the
game system and or even cause it to enter a chaotic state through periodic bifurcation and
N-S bifurcation. The choice of the initial state also has an important impact on the game
results. Different basins of attraction will lead to the emergence of varying solution sets
and even the phenomenon of coexisting attractors. It undoubtedly increases the difficulty
of decision-making for decision-makers, so decision-makers may prefer to maintain the
system in a stable state. We found that the chaotic control method can be used to restore
the chaotic system to a steady state.

In summary, this paper can provide theoretical support and decision-making sugges-
tions for decision-makers through the study of the electric vehicle manufacturer investing
in battery life. Therefore, it has research and management significance. In future research
work, we will further combine the investment decision-making issues of electric vehicle
manufacturers under the influence of policies and compare and study purchasing or leas-
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ing technology content. In addition, the energy conversion efficiency of electric vehicle
batteries and the time-sharing pricing mechanism of charging stations can also be discussed
in the future.
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