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Abstract: In this paper, the single-machine scheduling problems under the common and slack due
date assignments are studied, where the actual processing time of the job needs to consider some
factors, such as convex resource allocation, maintenance activity, and learning effects. The goal of this
study is to find the optimal sequence, maintenance activity location, resource allocation and common
due date (flow allowance). The objective function is (1) to minimize the sum of scheduling cost
(including the weighted sum of earliness, tardiness and common due date (flow allowance), where
the weights are position-dependent weights) and resource consumption cost, and (2) to minimize
the scheduling cost under the resource consumption cost which is bounded. We prove that these
problems can be solved in polynomial time.
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1. Introduction

In a realistic scheduling system, the job-processing time is often affected by many
practical settings, such as learning effects, resource allocation, and maintenance activities.
Learning effects appear such that, for example, workers continue to process the same jobs,
experience increases, and the actual processing time of the work is gradually shortened (see
Mosheiov [1]; Cheng et al. [2]; Wu et al. [3]; Azzouz et al. [4]; Sun et al. [5]; Zhao [6]; and
Wang et al. [7]). The manager assigns a certain amount of additional resources to the job to
reduce and control the processing time of the artifact. Common limited resources are the
financial budget, energy, fuel, or manpower (see Vixkson [8]; Shabtay and Kasoi [9]; Wang
and Cheng [10]; Shabtay and Steiner [11]; Zhang et al. [12]; Wang et al. [13]). In production,
due to machine failure or the processing time being too long, wear will inevitably occur
and reduce the working rate, so maintenance activities can be carried out to reduce the job
processing time (see Lee and Leon [14]; Wang and Wang [15]; Mosheiov and Sidney [16];
Bai et al. [17]; Yin et al. [18]; and Strusevich and Rustogi [19]).

In order to strengthen global business competition and improve customer satisfac-
tion, new production technologies such as “just-in-time” (JIT) production are adopted.
The emergence of the concept of JIT production and the sequencing problems have at-
tracted widespread attention; in a just-in-time system, jobs (work pieces) can neither be
completed early nor late, otherwise penalty costs will be incurred (see Parwalker et al. [20],
and Cheng et al. [21]). In addition, in actual production, we found that task-processing
rates can be affected by several factors simultaneously. Therefore, in previous studies,
Ji et al. [22] considered a single machine due date assignment scheduling problem with
job-dependent aging effects and a deteriorating maintenance activity, where due dates
are assigned using the SLK due date determination method. He et al. [23] studied the
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single-machine sequencing problem of resource allocation with general truncated learning
effects. A convex resource allocation model under the condition of finite resource consump-
tion cost is proposed, and various optimal algorithms are given for different cases of the
problem. Liu and Jiang [24] delved into due date assignment scheduling problems with
learning effects and resource allocation. Under common due date assignment and slack
due date assignment rules, a bi-criteria analysis is provided. Zhao et al. [25] examined a
single machine scheduling problem with slack due date assignment in which the actual
processing time of a job is determined by its position in a sequence, its resource allocation
function, and a rate-modifying activity simultaneously.

In previous studies, two different resource allocation functions were usually employed.
One was a linear function setting for the amount of resources and actual processing time
associated with each job (Janiak and Kovalyov [26]), and the other was a convex function
setting for the amount of resources assigned to each job (Monma et al. [27]). In general,
there are two ways to model learning effects: one is a location-dependent learning effect
(Biskup [28]), and the other is a time-dependent (sum-of-processing time) learning effect
(Azzouz et al. [4]). Wang et al. [29] considered location-dependent learning effects and

convex resource allocation to build the model pA
jr(uj) =

(
θjrα

uj

)η
, where η > 0 is a given

constant, α ≤ 0 is the learning factor, θj is the normal processing time of job Jj, and uj is the
resource allocated to the job Jj. Zhu et al. [30] addressed the job processing time considering
the rate modification activity, learning effect and convex resource allocation, described as
follows: when the rate modification activity is not carried out, the job-processing time is

pA
jr(uj) =

(
θjrα

uj

)η
; otherwise, it is pA

jr(uj) =
( ajθjrα

uj

)η
, where aj is the modifying rate. For a

comparison with other similar papers (see Table 1; the related symbols are given later), this
article extends the results of Wang and Wang [15], Bai et al. [17], Ji et al. [22], Zhao et al. [25],
Wang et al. [29], and Zhu et al. [30] by scrutinizing a more general scheduling model.

Table 1. Models studied.

References Scheduling Problem Time Complexity

Wang et al. [29]
1
∣∣∣∣PA

jr (uj) =
(

θjrα

uj

)η
∣∣∣∣δ1Cmax + δ2TC + δ3TADC + δ4 ∑ň

j=1 vjuj O(n log(n))

1
∣∣∣∣PA

jr (uj) =
(

θjrα

uj

)η
∣∣∣∣δ1Cmax + δ2TW + δ3TADW + δ4 ∑ň

j=1 vjuj O(n log(n))

Zhu et al. [30]
1|MALE, RE|δ1Cmax + δ2TC + δ3TADC + δ4 ∑ň

j=1 vjuj O(n2 log(n))
1|MALE, RE|δ1Cmax + δ2TW + δ3TADW + δ4 ∑ň

j=1 vjuj O(n2 log(n))

Wang and Wang [15] 1
∣∣MA, SLK, Pj = (θj, β jθj)

∣∣∑n
j=1
(
δEj + ωTj + γqopt

)
O(n4)

Bai et al. [17] 1
∣∣MADE, Pj = (θj + bsj, β jθj + bsj)

∣∣∑n
j=1
(
δEj + ωTj + γqopt

)
O(n4)

Ji et al. [22] 1
∣∣∣MADE, PA

jr = θj(r− l)aj
∣∣∣∑n

j=1
(
δEj + ωTj + γqopt

)
O(n4)

Zhao et al. [25]
1
∣∣∣MADE, CRE, ∑n

j=1 v[j]u[j] ≤ U
∣∣∣∑n

j=1
(
δEj + ωTj + γqopt

)
O(n4)

1
∣∣∣MADE, CRE, ∑n

j=1
(
δEj + ωTj + γqopt

)
≤ V

∣∣∣∑n
j=1 v[j]u[j] O(n4)

This article

1|MALE, CRE|∑n
j=1

(
δjE[j] + ωjT[j] + γdopt

)
+ ∑n

j=1 v[j]u[j] O(n4)

1|MALE, CRE|∑n
j=1

(
δjE[j] + ωjT[j] + γqopt

)
+ ∑n

j=1 v[j]u[j] O(n4)

1
∣∣∣MALE, CRE, ∑n

j=1 v[j]u[j] ≤ U
∣∣∣∑n

j=1

(
δjE[j] + ωjT[j] + γdopt

)
O(n4)

1
∣∣∣MALE, CRE, ∑n

j=1 v[j]u[j] ≤ U
∣∣∣∑n

j=1

(
δjE[j] + ωjT[j] + γqopt

)
O(n4)

MA means “maintenance activity”; MADE means “maintenance activity and aging effect”; RE means “resource
allocation”; b means common deterioration rate of all jobs; aj means aging factor of job Jj; sj means starting time
of job Jj; δ, ω, δ1, δ2, δ3 and δ4 are given constants.

This paper’s contributions and novelties are as follows:

• Single-machine maintenance scheduling with convex resource constraint and learning
effect is modeled and studied;
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• Four algorithms are provided for the following two objective functions: (1) minimize
the sum of scheduling cost (including the weighted sum of earliness, tardiness and
common due date (flow allowance), where the weight is the position-dependent
weight) and resource consumption cost; and (2) the resource consumption cost has an
upper bound, minimizing the dispatch cost.

• It is shown that these problems can be solved in polynomial time, and the effectiveness
of the algorithms is presented by numerical study.

The paper is organized as follows. Section 2 introduces the model. Section 3 describes
the optimal properties. Section 4 performs an optimal analysis of the objective function and
proves that it can be solved in polynomial time. In Section 5, an example is calculated, and
numerical experiments are carried out to verify the effectiveness of the algorithm. Section 6
concludes this paper.

2. Problem Description

In this article, the use of symbols is listed in Table 2, and the problem can be stated
as follows: there are n independent and non-preemptive jobs J = {J1, J2, . . . , Jn} to be
processed on a single machine. Each job Jj is available for processing at time zero. The ma-
chine can handle one job at a time. In addition, for any sequence ξ = (J[1], J[2], . . . , J[n]),
there is a maintenance activity whose duration time is t and no jobs are processed during
this execution.

Table 2. Notations.

Notation Meaning

n the number of jobs
Jj the j-th job
J[j] the job scheduled in the j-th position
θ[j] (resp. θj) the normal processing time of job J[j] (resp. Jj)
pA
[j] (pA

j ) the actual processing time of job J[j] (resp. Jj)
β j the modifying rate of job Jj
pA

jr the actual processing time of job Jj in position r
α the learning factor
t the maintenance duration
l the location of the maintenance activity
u[j] (resp. uj) the resource allocated to job J[j] (resp. Jj)
C[j] (resp. Cj) the completion time of job J[j] (resp. Jj)
S[j] (resp. Sj) the start time of job J[j] (resp. Jj)
E[j] (resp. Ej) (=max

{
0, dj − Cj

}
) the earliness of job J[j] (resp. Jj)

T[j] (resp. Tj) (=max
{

0, Cj − dj
}
) the tardiness of job J[j] (resp. Jj)

vj (resp. v[j]) the cost when allocating unit resource to job J[j] (resp. Jj)
δj, ωj the position-dependent (but job-independent) weight (cost) of the j-th job
γ ( η, U) the given constant

In this paper, the model considered is as follows

PA
jr =


(

θj(r)
α

uj
)

η

, r ≤ l

(
β jθj(r)

α

uj
)

η

, r > l
(1)

where j = 1, 2, . . . , n, η > 0 is a constant, α ≤ 0 is the non-negative learning index, β j is the
modifying rate (it satisfies 0 < β j ≤ 1) and l denotes the position of the job preceding the
maintenance activity (i.e., position l + 1 is the first position after the maintenance activity).
In addition, in this article, we discuss two due date assignment models, including the
common (CON) due date and slack (SLK) due date assignment. For the CON, dj = dopt,
where dopt is a decision variable. For the SLK, dj = pA

j + qopt, where the common flow
allowance qopt is a decision variable. Given that the maintenance activity time is a fixed
value, our goal is to determine the optimal sequence of jobs ξ∗, optimal amount of resource
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allocation u∗, optimal due date (dopt or qopt) and maintenance location l∗. The first problem
of this paper is to minimize

Z(u, ξ, d, l) =
n

∑
j=1

(δjE[j] + ωjT[j] + γdopt) +
n

∑
j=1

vjuj, (2)

using three-field representation, the first problem (P1) can be expressed as

1|MALE, CRE|
n

∑
j=1

(δjE[j] + ωjT[j] + γdopt) +
n

∑
j=1

vjuj, (3)

where MALE means “a maintenance activity and learning effect”, and CRE means “convex
resource allocation”.

The second problem is to minimize

Z(u, ξ, q, l) =
n

∑
j=1

(δjE[j] + ωjT[j] + γqopt) +
n

∑
j=1

vjuj, (4)

using three-field representation, and the second problem (P2) can be expressed as

1|MALE, CRE|
n

∑
j=1

(δjE[j] + ωjT[j] + γqopt) +
n

∑
j=1

vjuj. (5)

The third problem is to minimize
n
∑

j=1
(δjE[j] + ωjT[j] + γdopt) under a common due

date, and the cost of the resource consumption cannot exceed a ceiling, i.e.,
n
∑

j=1
vjuj ≤ U,

and this problem (denoted by P3) is

1|MALE, CRE,
n

∑
j=1

vjuj ≤ U|
n

∑
j=1

(δjE[j] + ωjT[j] + γdopt), (6)

where U > 0 is an upper bound on
n
∑

j=1
vjuj. The last problem is to consider the slack due

date assignment, i.e., the fourth problem (denoted by P4) is

1|MALE, CRE,
n

∑
j=1

vjuj ≤ U|
n

∑
j=1

(δjE[j] + ωjT[j] + γqopt). (7)

3. Main Properties

In this section, we show some main properties of the problems. Based on the above
notations and allowing to perform a maintenance activity in position l, the maintenance
time is a fixed constant t, and the completion time of each job j (j = 1, 2, . . . , n) can be
presented in the following:

C[j] = C[j−1] +

(
θ[j](j)α

u[j]

)
, j = 1, 2, ..., l,

C[j] = C[j−1] + t +
(

β[j]θ[j](j)α

u[j]

)
, j = l + 1,

C[j] = C[j−1] +

(
β[j]θ[j](j)α

u[j]

)
, j = l + 2, ..., n.



Mathematics 2023, 11, 3536 5 of 21

Under the optimal schedule, the first job starts processing at time 0 and there is no idle
time between jobs.

Lemma 1. For any given sequence ξ =
[

J[1], J[2], . . . , J[n]
]
, the optimal value of dopt is determined

by the completion time of the k-th job, i.e., dopt = C[k]. The optimal value of the common flow
allowance qopt is decided by the start time of the k-th job, i.e., qopt = S[k].

Proof. Now, we prove dopt = C[k]. Consider a schedule ξ =
[

J[1], J[2], . . . , J[n]
]
, dopt with

C[k] < dopt < C[k+1] and let Z be the corresponding objective value. Define x = dopt − C[k]

and y = C[k+1] − dopt. Let Z
′

and Z
′′

be the objective values for dopt = C[k] and dopt =
C[k+1]. Then

Z
′
= Z− x

k+1

∑
j=1

(
δj + wj + γ

)
+ x

n

∑
j=k+2

(
δj + wj + γ

)

= Z + x[
n

∑
j=k+2

(
δj + wj + γ

)
−

k+1

∑
j=1

(
δj + wj + γ

)
]

Z
′′
= Z + y

k+1

∑
j=1

(
δj + wj + γ

)
− y

n

∑
j=k+2

(
δj + wj + γ

)

= Z− y[
n

∑
j=k+2

(
δj + wj + γ

)
−

k+1

∑
j=1

(
δj + wj + γ

)
]

Thus, Z
′ ≤ Z if

n
∑

j=k+2

(
δj + wj + γ

)
≤

k+1
∑

j=1

(
δj + wj + γ

)
and Z

′′ ≤ Z otherwise. This

implies that an optimal solution exists in which dopt is equal to the completion time of
some job.

The proof for qopt = S[k] is similar to that for dopt = C[k].

Lemma 2. In the optimal sequence, dopt = C[k], qopt = S[k], where k satisfies(
k−1
∑

j=1
δj −

n
∑

j=k
ωj + nγ

)
≤ 0 and

(
k
∑

j=1
δj −

n
∑

j=k+1
ωj + nγ

)
≥ 0.

Proof. From Lemma 1, in the CON, dopt = C[k], through the small disturbance technique,
we move dopt = C[k].
(1) If dopt = C[k], the total cost is

Z =
k−1

∑
j=1

δj(C[k] − C[j]) +
n

∑
j=k+1

ωj(C[j] − C[k]) + nγC[k] +
n

∑
j=1

vjuj.

(2) If dopt = Cξ(k) − x, the total cost is

Z1 =
k−1

∑
j=1

δj(C[k] − x− C[j]) +
n

∑
j=k

ωj(C[j] + x− C[k]) + nγ(C[k] − x) +
n

∑
j=1

vjuj.

(3) If dopt = Cξ(k) + y, the total cost is

Z2 =
k

∑
j=1

δj(C[k] + y− C[j]) +
n

∑
j=k+1

ωj(C[j] − y− C[k]) + nγ(C[k] + y) +
n

∑
j=1

vjuj.
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We have

Z− Z1 =
k−1

∑
j=1

δjx−
n

∑
j=k

ωjx + nγx ≤ 0,

Z− Z2 = −
k

∑
j=1

δjy +
n

∑
j=k+1

ωjy− nγy ≤ 0.

So k satisfies both

(
k−1
∑

j=1
δj −

n
∑

j=k
ωj + nγ) ≤ 0 and (

k
∑

j=1
δj −

n
∑

j=k+1
ωj + nγ) ≥ 0.

Remark 1. For a given schedule, if k satisfies both the above inequalities, the optimal common due
date can be determined by Lemma 2. But k may not meet both of the above inequalities, so we need
to set dopt = qopt = 0, and this term can be minimized by the HLP rule (see Hardy et al. [31]).

4. Optimal Analysis

In this section, we perform an optimal analysis of single-machine maintenance activity
scheduling problems with convex resource constraints and learning effects. In each case
of the above problems in Section 2, the decision consists of four parts: optimal sequence
of jobs ξ∗, optimal amount of resource allocation u∗, optimal due date (dopt or qopt) and
maintenance location l∗.

4.1. Results of P1

In this section, we provide an optimal solution to the P1 problem. For the 1|MALE, CRE|
n
∑

j=1
(δjE[j] + ωjT[j] + γdopt) +

n
∑

j=1
vjuj, its objective function can be expressed as follows.

If k ≤ l, where dopt = C[k] =
k
∑

j=1
PA
[j], we have

Z(u, ξ, dopt, l) = nγ
k

∑
j=1

PA
[j] +

k−1

∑
j=1

δj(C[k] − C[j]) +
n

∑
j=k+1

ωj(C[j] − C[k]) +
n

∑
j=1

v[j]u[j]

=
k

∑
j=1

PA
[j](nγ +

j−1

∑
m=1

δm) +
l

∑
j=k+1

PA
[j](

l

∑
m=j

ωm +
n

∑
m=l+1

ωm)

+
n

∑
j=l+1

PA
[j](

n

∑
m=j

ωm) +
n

∑
j=1

v[j]u[j] +
n

∑
j=l+1

ωjt

=
l

∑
j=1

λj

(
θ[j](j)α

u[j]

)η

+
n

∑
j=l+1

λj

(
β[j]θ[j](j)α

u[j]

)η

+
n

∑
j=1

v[j]u[j] +
n

∑
j=l+1

ωjt,

(8)

where

λj =



nγ +
j−1
∑

m=1
δm, j = 1, 2, . . . , k,

l
∑

m=j
ωm +

n
∑

m=l+1
ωm, j = k + 1, k + 2, . . . , l,

n
∑

m=j
ωm, j = l + 1, l + 2, . . . , n.

(9)

If k > l, where dopt = C[k] =
l

∑
j=1

PA
[j] + t +

k
∑

j=l+1
PA
[j], we have
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Z(u, ξ, dopt, l) = nγ(
l

∑
j=1

PA
[j] + t +

k

∑
j=l+1

PA
[j]) +

k

∑
j=1

δj(C[k] − C[j]) +
n

∑
j=k+1

ωj(C[j] − C[k])

+
n

∑
j=1

v[j]u[j]

=
l

∑
j=1

PA
[j](nγ +

j−1

∑
m=1

δm) +
k

∑
j=l+1

PA
[j](nγ +

l

∑
m=1

δm +
j−1

∑
m=l+1

δm)

+
n

∑
j=k+1

PA
[j]

n

∑
m=j

ωm + (nγ +
l

∑
j=1

δj)t +
n

∑
j=1

v[j]u[j]

=
l

∑
j=1

ψj

(
θ[j](j)α

u[j]

)η

+
n

∑
j=l+1

ψj

(
β[j]θ[j](j)α

u[j]

)η

+
n

∑
j=1

v[j]u[j]

+ (nγ +
l

∑
j=1

δj)t,

(10)

where

ψj =



nγ +
j−1
∑

m=1
δm, j = 1, 2, . . . , l,

nγ +
l

∑
m=1

δm +
j−1
∑

m=l+1
δm, j = l + 1, l + 2, . . . , k,

n
∑

m=j
ωm, j = k + 1, k + 2, . . . , n.

(11)

Lemma 3. For a given sequence ξ, the optimal resources u∗[j] allocation of P1 is as follows.
If k ≤ l,

u∗[j] =


(

ηλj
v[j]

) 1
η+1
(

θ[j](j)α
) η

η+1 , j = 1, 2, . . . , l,(
ηλj
v[j]

) 1
η+1

(β[j]θ[j](j)α)
η

η+1 , j = l + 1, l + 2, . . . , n.
(12)

If k > l,

u∗[j] =


(

ηψj
v[j]

) 1
η+1

(θ[j](j)α)
η

η+1 , j = 1, 2, . . . , l,(
ηψj
v[j]

) 1
η+1

(β[j]θ[j](j)α)
η

η+1 , j = l + 1, l + 1, . . . , n.
(13)

Proof. From (8) and (10), the objective function is a convex function of u[j]. For the case

of k ≤ l, deriving (8) with respect to u[j], we have ∂Z
∂u[j]

=
∂

[
λj

(
θ[j] (j)α

u[j]

)η

+v[j]u[j]

]
∂u[j]

= v[j] −

ηλj(θ[j](j)α)η
(

1
u[j]

)η+1
, j = 1, 2, . . . , l.

Let ∂Z
∂u[j]

= 0, we have u∗[j] =
(

ηλj
v[j]

) 1
η+1

(θ[j](j)α)
η

η+1 .

Similarly, if k > l, the result (13) can be obtained.

Bringing optimal u∗ (i.e., Equations (12) and (13)) into the objective function (i.e.,
Equations (8) and (10)) yields

_

Z([l]) = (η
−η
η+1 + η

1
η+1 )

_

Z1([l]) + f1(t) (14)
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where

f1(t) =


n
∑

j=l+1
ωjt, k ≤ l,

(nγ +
l

∑
j=1

δj)t, k > l.
(15)

_

Z1([l]) =
l

∑
j=1

(
v
[j]θ[j](j)α

) η
η+1 _

µ j

1
η+1 +

n

∑
j=l+1

(
v
[j] β[j]θ[j](j)α

) η
η+1 _

µ j

1
η+1 (16)

_
µ j =

{
λj, k ≤ l,
ψj, k > l.

(17)

It is obvious that f1(t) is a constant (if the location l of the maintenance activity location

is deterministic), and
_

Z([l]) is only related to the the location l so that we find the minimal

value of
_

Z([l]) is actually the minimal value of
_

Z1([l]). Let

χjr =


(

vj θj

) η
η+1
(
_
µr(r)

αη
) 1

η+1 , 1 ≤ r ≤ l(
vj β jθj

) η
η+1
(
_
µr(r)

αη
) 1

η+1 , l + 1 ≤ r ≤ n
(18)

_

Z1([l]) can be minimized by solving the next assignment problem:

Min
_

Z1([l]) =
n

∑
j=1

n

∑
r=1

χjr Mjr

s.t
n

∑
j=1

Mjr = 1 r = 1, 2, . . . , n

n

∑
r=1

Mjr = 1 j = 1, 2, . . . , n (19)

Mjr = 0 or 1 1 ≤ j, r ≤ n

where Mjr is a 0 or 1 variable, if the job Jj is at location r, Mjr = 1, otherwise Mjr = 0.
Based on the above analysis, it is obtained that the problem P1 can be solved by the

next Algorithm 1.

Algorithm 1: Solution for problem P1.

Initialization: Let
_

Z = ∞, ξ∗ = 0, d∗opt = 0, u∗ = 0 and l∗ = 0.
Step 1. For l = 1→ n
Step 2. If k ≤ l, then

obtain the minimum value
_

Z1([l]) and the schedule ξ by using (14)–(19);

If
_

Z1([l]) <
_

Z, then

let
_

Z =
_

Z1([l]), l∗ = l, u∗ = u, d∗opt = dopt and ξ∗ = ξ;
If k > l, then

obtain the minimum value
_

Z1([l]) and the schedule ξ by using (14)–(19);

If
_

Z1([l]) <
_

Z, then

let
_

Z =
_

Z1([l]), l∗ = l, u∗ = u, d∗opt = dopt and ξ∗ = ξ.

Step 3. Choose the minimum value
_

Z
∗
= min{

_

Z1[l], l = 1, 2, . . . , n}, and obtain the
corresponding schedule ξ∗, d∗opt, u∗ and l∗.
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Theorem 1. The problem P1 can be solved by Algorithm 1 in O(n4) time.

Proof. The correctness of Algorithm 1 follows the above analysis. Steps 1 need O(n) time;
for each maintenance position l, the complexity of the assignment problem is O(n3). Hence,
Algorithm 1 can be solved in O(n4) time.

4.2. Results of P2

For the 1|MALE, CRE|
n
∑

j=1
(δjE[j] + ωjT[j] + γqopt) +

n
∑

j=1
vjuj, its objective function (4)

can be expressed as follows.

If k− 1 ≤ l, where qopt = S[k] =
k−1
∑

j=1
PA
[j],

Z(u, ξ, qopt, l) = nγ
k−1

∑
j=1

PA
[j] +

k−1

∑
j=1

δj(C[k−1] − C[j]) +
n

∑
j=k

ωj(C[j] − C[k−1]) +
n

∑
j=1

v[j]u[j]

=
k−1

∑
j=1

PA
[j](nγ +

j−1

∑
m=1

δm) +
l

∑
j=k

PA
[j](

n

∑
m=l+1

ωm +
l

∑
m=j

ωm)

+
n

∑
j=l+1

PA
[j]

n

∑
m=j

ωm +
n

∑
j=1

v[j]u[j] +
n

∑
j=l+1

ωjt

=
l

∑
j=1

λ
′

j

(
θ[j](j)α

u[j]

)η

+
n

∑
j=l+1

λ
′

j

(
β[j]θ[j](j)α

u[j]

)η

+
n

∑
j=1

v[j]u[j] +
n

∑
j=l+1

ωjt,

(20)

where

λ
′
j =



nγ +
j−1
∑

m=1
δm, j = 1, 2, . . . , k− 1,

l
∑

m=j
ωm +

n
∑

m=l+1
ωm, j = k, k + 1, . . . , l,

n
∑

m=j
ωm, j = l + 1, l + 2, . . . , n.

(21)

If k− 1 > l, where qopt = S[k] =
l

∑
j=1

PA
[j] + t +

k−1
∑

j=l+1
PA
[j]

Z(u, ξ, qopt, l) = nγ(
l

∑
j=1

PA
[j] + t +

k−1

∑
j=l+1

PA
[j]) +

k−1

∑
j=1

δj(C[k−1] − C[j]) +
n

∑
j=k

ωj(C[j] − C[k−1])

+
n

∑
j=1

v[j]u[j]

=
l

∑
j=1

PA
[j](nγ +

j−1

∑
m=1

δm) +
k−1

∑
j=l+1

PA
[j](nγ +

l

∑
m=1

δm +
j−1

∑
m=l+1

δm)

+
n

∑
j=k

PA
[j]

n

∑
m=j

ωm + (nγ +
l

∑
m=1

δm)t +
n

∑
j=1

v[j]u[j]

=
l

∑
j=1

ψ
′
j

(
θ[j](j)α

u[ j]

)η

+
n

∑
j=l+1

ψ
′
j

(
β[j]θ[j](j)α

u[j]

)η

+
n

∑
j=1

v[j]u[j] + (nγ +
l

∑
m=1

δm)t,

(22)

where
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ψ
′
j =



nγ +
j−1
∑

m=1
δm, j = 1, 2, . . . , l,

nγ +
l

∑
m=1

δm +
j−1
∑

m=l+1
δm, j = l + 1, l + 2, . . . , k− 1,

n
∑

m=j
ωm, j = k, k + 1, . . . , n.

(23)

Lemma 4. The optimal resource u∗[j] allocation of the problem P2 is as follows.
If k− 1 ≤ l

u∗[j] =



(
ηλ
′
j

v[j]

) 1
η+1

(θ[j](j)α)
η

η+1 , j = 1, 2, . . . , l,(
ηλ
′
j

v[j]

) 1
η+1

(β[j]θ[j](j)α)
η

η+1 , j = l + 1, l + 2, . . . , n.

(24)

If k− 1 > l

u∗[j] =



(
ηψ
′
j

v[j]

) 1
η+1

(θ[j](j)α)
η

η+1 , j = 1, 2, . . . , l,(
ηψ
′
j

v[j]

) 1
η+1

(β[j]θ[j](j)α)
η

η+1 , j = l + 1, l + 1, . . . , n.

(25)

Proof. The proof process is similar to that of Lemma 3. Taking a partial derivative of
Equation (20) with respect to u[j] and making it equal to 0, result Equation (25) can be
obtained.

Substituting Equations (24) and (25) into Equations (20) and (22), we have

Z
′
([l]) = (η

−η
η+1 + η

1
η+1 )Z

′
2([l]) + f2(t) (26)

where

f2(t) =


n
∑

j=l+1
ωjt, k− 1 ≤ l,

(nγ +
l

∑
j=1

δj)t, k− 1 > l.
(27)

Z
′
2([l]) =

l

∑
j=1

(
v[j]θ[j](j)α

) η
η+1

µ
′
j

1
η+1 +

n

∑
j=l+1

(
v[j]β[j]θ[j](j)α

) η
η+1

µ
′
j

1
η+1

µ
′
j =

{
λ
′
j, k− 1 ≤ l,

ψ
′
j, k− 1 > l,

(28)

and it is obvious that f2(t) is a constant (if the location l of the maintenance activity location
is deterministic), and Z

′
([l]) is only related to the location l, so that we find the minimal

value of Z
′
([l]) is actually the minimal value of Z2

′
([l]). Let

χ
′
jr =


(

vj θj

) η
η+1
(

µ
′
r(r)αη

) 1
η+1 , 1 ≤ r ≤ l(

vj β jθj

) η
η+1
(

µ
′
r(r)αη

) 1
η+1 , l + 1 ≤ r ≤ n

(29)

and Z2
′
([l]) can be minimized by solving the next assignment problem:
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Min Z2
′
([l]) =

n

∑
j=1

n

∑
r=1

χ
′
jr Mjr

′

s.t
n

∑
j=1

M
′
jr = 1 r = 1, 2, . . . , n

n

∑
r=1

M
′
jr = 1 j = 1, 2, . . . , n (30)

M
′
jr = 0 or 1 1 ≤ j, r ≤ n

where M
′
jr is a 0 or 1 variable, if the job Jj is at location r, M

′
jr = 1, otherwise M

′
jr = 0.

Based on the above analysis, the problem P2 can be solved by the next Algorithm 2:

Algorithm 2: Solution for problem P2.

Initialization: Let Z
′
= ∞, ξ∗ = 0, q∗opt = 0, u∗ = 0 and l∗ = 0.

Step 1. For l = 1→ n
Step 2. If k− 1 ≤ l, then

obtain the minimum value Z
′
2([l]) and the schedule ξ by using (26)–(30);

If Z
′
2([l]) < Z

′
, then

let Z
′
= Z

′
2([l]), l∗ = l, u∗ = u, q∗opt = qopt and ξ∗ = ξ;

If k− 1 > l, then
obtain the minimum value Z

′
2([l]) and the schedule ξ by using (26)–(30);

If Z
′
2([l]) < Z

′
, then

let Z
′
= Z

′
2([l]), l∗ = l, u∗ = u, q∗opt = qopt and ξ∗ = ξ.

Step 3. Choose the minimum value Z
′∗ = min{Z′2[l], l = 1, 2, . . . , n}, and obtain the

corresponding schedule ξ∗, q∗opt, u∗ and l∗.

Theorem 2. The problem P2 can be solved by Algorithm 2 in O(n4) time.

4.3. Results of P3

In this subsection, we consider the problem P3, i.e.,

1|MALE, CRE,
n

∑
j=1

vjuj ≤ U|
n

∑
j=1

(δjE[j] + ωjT[j] + γdopt).

If k ≤ l, similarly, we have

n

∑
j=1

(δjE[j] + ωjT[j] + γdopt) =
l

∑
j=1

κj

(
θ[j](j)α

u[j]

)η

+
n

∑
j=l+1

κj

(
β[j]θ[j](j)α

u[j]

)η

+
n

∑
j=l+1

ωjt. (31)

If k > l, similarly, we have

n

∑
j=1

(δjE[j] + ωjT[j] + γdopt) =
l

∑
j=1

σj

(
θ[j](j)α

u[j]

)η

+
n

∑
j=l+1

σj

(
β[j]θ[j](j)α

u[j]

)η

+ (nγ +
l

∑
j=1

δj)t, (32)
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where

κj =



nγ +
j−1
∑

m=1
δm, j = 1, 2, . . . , k,

n
∑

m=l+1
ωm +

l
∑

m=j
ωm, j = k + 1, k + 2, . . . , l,

n
∑

m=j
ωm, j = l + 1, l + 2, . . . , n,

(33)

σj =



nγ +
j−1
∑

m=1
δm, j = 1, 2, . . . , l,

nγ +
l

∑
m=1

δm +
j−1
∑

m=l+1
δm, j = l + 1, l + 2, . . . , k,

n
∑

m=j
ωm, j = k + 1, k + 2, . . . , n.

(34)

Lemma 5. For a given sequence ξ, the corresponding optimal resources u∗[j] allocation for P3 is as
follows.

If k ≤ l

u∗[j] =
U
(

1
v[j]

) 1
η+1

κj
1

η+1
[
θ[j](j)α + β[j]θ[j](j)α

] η
η+1

l
∑

j=1
κj

1
η+1
(

v[j]θ[j](j)α
) η

η+1
+

n
∑

j=l+1
κj

1
η+1
(

v[j]β[j]θ[j](j)α
) η

η+1
, j = 1, 2, . . . , n. (35)

If k > l

u∗[j] =
U
(

1
v[j]

) 1
η+1

σj
1

η+1
[
θ[j](j)α + β[j]θ[j](j)α

] η
η+1

l
∑

j=1
σj

1
η+1
(

v[j]θ[j](j)α
) η

η+1
+

n
∑

j=l+1
σj

1
η+1
(

v[j]β[j]θ[j](j)α
) η

η+1
, j = 1, 2, . . . , n. (36)

Proof. Obviously, when
n
∑

j=1
vjuj = U,

n
∑

j=1
(δjE[j] + ωjT[j] + γdopt) is the smallest. Thus, this

problem becomes a conditional extreme problem of minimizing
n
∑

j=1
(δjE[j] + ωjT[j] + γdopt)

subject to
n
∑

j=1
vjuj = U. For this problem, we use the Lagrange multiplier method to solve

it, and the Lagrange function is

L(u, π, l, φ) =
l

∑
j=1

κj

(
θ[j](j)α

u[j]

)η

+
n

∑
j=l+1

κj

(
β[j]θ[j](j)α

u[j]

)η

+
n

∑
j=l+1

ωjt + φ

(
n

∑
j=1

v[j]u[j] −U

)
(37)

where φ(0 ≤ φ) is the Lagrange multiplier.
Deriving (37) with respect to f u[j] and φ, we have

∂L
∂u

= φv[j] − ηκj

(
θ[j](j)α

)η

(
u[j]

)η+1 − ηκj

(
β[j]θ[j](j)α

)η

(
u[j]

)η+1 = 0, j = 1, 2, ..., n. (38)

∂L
∂φ

=
n

∑
j=1

v[j]u[j] −U = 0, j = 1, 2, . . . , n. (39)

From (38), we have
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u∗[j] =

(
ηκj

φv[j]

) 1
η+1

×
(

θ[j](j)α + β[j]θ[j](j)α
) η

η+1 , j = 1, 2, . . . , n. (40)

From (39) and (40), we have

φ
1

η+1 =

n
∑

j=1
(ηκj)

1
η+1
[
(θ[j](j)α + β[j]θ[j](j)α)v[j]

] η
η+1

U
, j = 1, 2, . . . , n. (41)

From (40) and (41), we have

u∗[j] =
U
(

1
v[j]

) 1
η+1

κj
1

η+1
[
θ[j](j)α + β[j]θ[j](j)α

] η
η+1

l
∑

j=1
κj

1
η+1
(

v[j]θ[j](j)α
) η

η+1
+

n
∑

j=l+1
κj

1
η+1
(

v[j]β[j]θ[j](j)α
) η

η+1
, j = 1, 2, . . . , n.

Bringing optimal u∗ (i.e., Equations (35) and (36)) into the objective function (i.e.,
Equations (31) and (32)) yields

Ż([l]) = U−η Żη+1
3 ([l]) + f1(t) (42)

where f1(t) is given by Equation (15) (is a constant), and

Ż3([l]) =
l

∑
j=1

µ̇j
1

η+1
(

v[j]θ[j](j)α
) η

η+1
+

n

∑
j=l+1

µ̇j
1

η+1
(

v[j]β[j]θ[j](j)α
) η

η+1
(43)

µ̇j =

{
κj, k ≤ l,
σj, k > l,

(44)

it is obvious that the minimal value of Ż([l]) is actually the minimal value of Ż3([l]). Let

Ḃjr =


(

vj θj

) η
η+1

(µ̇r(r)αη)
1

η+1 , 1 ≤ r ≤ l(
vj β jθj

) η
η+1

(µ̇r(r)αη)
1

η+1 , l + 1 ≤ r ≤ n
(45)

Ż3([l]) can be minimized by solving the next assignment problem:

Min Ż3([l]) =
n

∑
j=1

n

∑
r=1

Ḃjr Ṅjr

s.t
n

∑
j=1

Ṅjr = 1 r = 1, 2, . . . , n

n

∑
r=1

Ṅjr = 1 j = 1, 2, . . . , n (46)

Ṅjr = 0 or 1 1 ≤ j, r ≤ n

where Ṅjr is a 0 or 1 variable, and if the job Jj is at location r, Ṅjr = 1; otherwise, Ṅjr = 0.
Based on the above analysis, the problem P3 can be solved by the next Algorithm 3:
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Algorithm 3: Solution for problem P3.

Initialization: Let Ż = ∞, ξ∗ = 0, d∗opt = 0, u∗ = 0 and l∗ = 0.
Step 1. For l = 1→ n
Step 2. If k ≤ l, then

obtain the minimum value Ż3([l]) and the schedule ξ by using (43)–(46);
If Ż3([l]) < Ż, then
let Ż = Ż3([l]), l∗ = l, u∗ = u, d∗opt = dopt and ξ∗ = ξ;

If k > l, then
obtain the minimum value Ż3([l]) and the schedule ξ by using (43)–(46);

If Ż3([l]) < Ż, then
let Ż = Ż3([l]), l∗ = l, u∗ = u, d∗opt = dopt and ξ∗ = ξ.

Step 3. Choose the minimum value Ż∗ = min{Ż3[l], l = 1, 2, . . . , n}, and obtain the
corresponding schedule ξ∗, d∗opt, u∗ and l∗.

Theorem 3. The problem P3 can be solved by Algorithm 3 in O(n4) time.

4.4. Results of P4

Similar to Section 4.3, the 1|MALE, CRE,
n
∑

j=1
vjuj ≤ U|

n
∑

j=1
(δjE[j] + ωjT[j]+γqopt) prob-

lem can be expressed as follows.
If k− 1 ≤ l

n

∑
j=1

(δjE[j] + ωjT[j] + γqopt) =
l

∑
j=1

κ
′
j

(
θ[j](j)α

u[j]

)η

+
n

∑
j=l+1

κ
′
j

(
β jθ[j](j)α

u[j]

)η

+
n

∑
j=l+1

ωjt. (47)

If k− 1 > l

n

∑
j=1

(δjE[j] + ωjT[j] + γqopt) =
l

∑
j=1

σ
′
j

(
θ[j](j)α

u[j]

)η

+
n

∑
j=l+1

σ
′
j

(
β jθ[j](j)α

u[j]

)η

+
l

∑
j=1

δjt. (48)

where

κ
′
j =



nγ +
j−1
∑

m=1
δm, j = 1, 2, . . . , k− 1,

l
∑

m=j
ωm +

n
∑

m=l+1
ωm, j = k, k + 1, . . . , l,

n
∑

m=j
ωm, j = l + 1, l + 2, . . . , n.

(49)

σ
′
j =



nγ +
j−1
∑

m=1
δm, j = 1, 2, . . . , l,

nγ +
l

∑
m=1

δm +
j−1
∑

m=l+1
δm, j = l + 1, l + 2, . . . , k− 1,

n
∑

m=j
ωm, j = k, k + 1, . . . , n.

(50)

Lemma 6. The optimal resource allocation of the problem P4 is as follows.
If k− 1 ≤ l

u∗[j] =
U
(

1
v[j]

) 1
η+1

κj
′ 1

η+1
[
θ[j](j)α + β[j]θ[j](j)α

] η
η+1

l
∑

j=1
κj
′ 1

η+1
(

v[j]θ[j](j)α
) η

η+1
+

n
∑

j=l+1
κj
′ 1

η+1
(

v[j]β[j]θ[j](j)α
) η

η+1
, j = 1, 2, . . . , n. (51)
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If k− 1 > l

u∗[j] =
U
(

1
v[j]

) 1
η+1

σj
′ 1

η+1
[
θ[j](j)α + β[j]θ[j](j)α

] η
η+1

l
∑

j=1
σj
′ 1

η+1
(

v[j]θ[j](j)α
) η

η+1
+

n
∑

j=l+1
σj
′ 1

η+1
(

v[j]β[j]θ[j](j)α
) η

η+1
, j = 1, 2, . . . , n. (52)

Proof. Similar to the proof of Lemma 5.

Bringing optimal u∗ (i.e., Equations (51) and (52)) into the objective function (i.e.,
Equations (47) and (48)) yields

Z̈([l]) = U−η Z̈η+1
4 ([l]) + f2(t) (53)

where f2(t) is given by Equation (27) (is a constant), and

Z̈4([l]) =
l

∑
j=1

µ̈j
1

η+1
(

v[j]θ[j](j)α
) η

η+1
+

n

∑
j=l+1

µ̈j
1

η+1
(

v[j]β[j]θ[j](j)α
) η

η+1

µ̈j =

{
κ
′
j, k− 1 ≤ l,

σ
′
j , k− 1 > l.

(54)

Let

B̈jr =


(

vj θj

) η
η+1

(µ̈r(r)αη)
1

η+1 , 1 ≤ r ≤ l(
vj β jθj

) η
η+1

(µ̈r(r)αη)
1

η+1 , l + 1 ≤ r ≤ n,
(55)

and Z̈4([l]) can be minimized by solving the next assignment problem:

Min Z̈4([l]) =
n

∑
j=1

n

∑
r=1

B̈jr N̈jr

s.t
n

∑
j=1

N̈jr = 1 r = 1, 2, . . . , n

n

∑
r=1

N̈jr = 1 j = 1, 2, . . . , n (56)

N̈jr = 0 or 1 1 ≤ j, r ≤ n

where N̈jr is a 0 or 1 variable, and if the job Jj is at location r, N̈jr = 1; otherwise, N̈jr = 0.
The problem P4 can be solved by the following Algorithm 4:
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Algorithm 4: Solution for problem P4.

Initialization: Let Z̈ = ∞, ξ∗ = 0, q∗opt = 0, u∗ = 0 and l∗ = 0.
Step 1. For l = 1→ n
Step 2. If k− 1 ≤ l, then

obtain the minimum value Z̈4([l]) and the schedule ξ by using (52)–(56);
If Z̈4([l]) < Z̈, then
let Z̈ = Z̈4([l]), l∗ = l, u∗ = u, q∗opt = qopt and ξ∗ = ξ;

If k− 1 > l, then
obtain the minimum value Z̈4([l]) and the schedule ξ by using (52)–(56);

If Z̈4([l]) < Z̈, then
let Z̈ = Z̈4([l]), l∗ = l, u∗ = u, q∗opt = qopt and ξ∗ = ξ.

Step 3. Choose the minimum value Z̈∗ = min{Z̈4[l], l = 1, 2, . . . , n}, and obtain the
corresponding schedule ξ∗, q∗opt, u∗ and l∗.

Theorem 4. The problem P4 can be solved by Algorithm 4 in O(n4) time.

5. An Example and Numerical Study
5.1. An Example

Since algorithms of P1 and P2 (resp. P3 and P4) are similar, we only consider the
calculation steps of P1 (resp. P3).

Let n = 6, t = 3, α = −0.2, η = 1, γ = 4, U = 100, and the remaining data are given
in Table 3.

Table 3. The remaining data.

Jj J1 J2 J3 J4 J5 J6

θj 9 11 4 13 22 6
β j 0.4 0.1 0.6 0.5 0.2 0.8
δj 7 2 8 5 4 10
ωj 5 4 2 12 6 9
vj 22 16 15 20 7 9

Solution: According to Lemma 2, we can obtain k = 2.
Case 1. First, we consider the problem P1.
When l = 3, from Equations (17) and (18), we can obtain

χjr =



(
vjθj

) 1
2

[
(nγ +

r−1
∑

m=1
δm)(r)−0.2

] 1
2

r = 1, 2

(
vjθj

) 1
2

[
n
∑

m=r
ωm(r)−0.2

] 1
2

r = 3 (57)

(
vjβ jθj

) 1
2

[
n
∑

m=r
ωm(r)−0.2

] 1
2

r = 4, 5, 6

and it is easy to see that

χ11 = (v1θ1)
1
2
[
(nγ)(1)−0.2] 1

2 = (22× 9)
1
2 × (24)

1
2 = 68.93475;

χ12 = (v1θ1)
1
2
[
(nγ + δ1)(2)−0.2] 1

2 = (22× 9)
1
2 × [(24 + 7)× 2−0.2]

1
2 = 73.09883;

χ13 = (v1θ1)
1
2
[
(ω3 + ω4 + ω5 + ω6)(3)−0.2] 1

2 = (22× 9)
1
2 × [(2 + 12 + 6 + 9)

×3−0.2]
1
2 = 67.89213;

χ14 = (v1β1θ1)
1
2
[
(ω4 + ω5 + ω6)(4)−0.2] 1

2 = (22× 0.4× 9)
1
2 × [(12+ 6+ 9)× 4−0.2]

1
2

= 40.25672;

χ15 = (v1β1θ1)
1
2
[
(ω5 + ω6)(5)−0.2] 1

2 = (22× 0.4× 9)
1
2 × [(6+ 9)× 5−0.2]

1
2 = 29.34345;
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χ16 = (v1β1θ1)
1
2
[
ω6(6)−0.2] 1

2 = (22× 0.4× 9)
1
2 × [9× 6−0.2]

1
2 = 22.31869.

Similarly, the rest of the values of χjr are given in Table 4.

Table 4. The values of χjr.

j\r 1 2 3 4 5 6

1 68.93475 73.09883 67.89213 40.25672 29.34345 22.31869
2 64.9923 68.91824 64.00931 18.9772 13.83263 10.52113
3 37.94733 40.23958 37.37339 27.14108 19.78335 15.04725
4 78.99367 83.76537 77.79892 51.57599 37.59415 28.59419
5 60.79474 64.46711 59.87523 25.10448 18.29885 13.9184
6 36 38.17462 35.45551 29.73156 21.67157 16.48345

The bold values are the optimal solution.

We can obtain the optimal schedule ξ = [J3, J4, J1, J6, J5, J2] by solving the assign-

ment problem (19), and
_

Z1([3]) = 67.89213 + 18.9772 + 37.94733 + 28.59419 + 18.29885 +
38.17462 = 209.88434, u = (2.5298, 4.18827, 3.086, 3.3035, 2.61412, 0.65757), dopt = p3 +
p4 = 1.58115 + 2.7004 = 4.28155, f1(t) = t(ω4 + ω5 + ω6) = 3× (12 + 6 + 9) = 81, so
_

Z([3]) = (η
−η

η+1 + η
1

η+1 )
_

Z1([3]) + f1(t) = 2× 209.88434 + 81 = 500.76868.
l = 1: Similarly, we can easily find the values of χjr from Equations (17) and (18),

and solve the assignment problem (19) to obtain the optimal schedule ξ = [J5, J2, J3, J6, J4, J1],

and
_

Z1([1]) = 169.78529, u = (8.68496, 1.36212, 1.93, 3.3035, 1.8797, 1.0145), dopt = p5 +
t + p2 = 2.53311 + 3 + 0.70258 = 6.23569, f1(t) = t(nγ + δ1) = 3× (24 + 7) = 93, so
_

Z([1]) = (η
−η

η+1 + η
1

η+1 )
_

Z1([1]) + f1(t) = 2× 169.78529 + 93 = 432.57051.
l = 2: With the above calculation, we can obtain the optimal schedule ξ = [J5, J4, J1, J6, J3, J2],

and
_

Z1([1]) = 179.81382, u = (8.68496, 4.18827, 1.95176, 3.3035, 1.31889, 0.65757), dopt =
p5 + p4 = 2.53311 + 2.7004 = 5.23351, f1(t) = t(ω3 + ω4 + ω5 + ω6) = 3× (2 + 12 + 6 +

9) = 87, so
_

Z([2]) = (η
−η

η+1 + η
1

η+1 )
_

Z1([2]) + f1(t) = 2× 179.81382 + 87 = 446.62764.

l = 4: As above, we can obtain the optimal schedule ξ = [J4, J5, J1, J6, J3, J2], and
_

Z1([4])
= 242.07549, u = (3.94968, 9.20959, 3.086, 3.69343, 1.31889, 0.65757), dopt = p4 + p5 =

3.29141 + 2.07827 = 5.36968, f1(t) = t(ω5 + ω6) = 3× (6 + 9) = 45, so
_

Z([4]) = (η
−η

η+1 +

η
1

η+1 )
_

Z1([4]) + f1(t) = 2× 242.07549 + 45 = 529.15098.

l = 5: We can obtain the optimal schedule ξ = [J4, J6, J1, J5, J3, J2], and
_

Z1([5]) =
263.33595, u = (3.94968, 3.9395, 3.086, 8.0193, 1.70268, 0.65757), dopt = p4 + p6 = 3.29141 +

1.32504 = 4.61645, f1(t) = t(ω6) = 3× (9) = 27, so
_

Z([5]) = (η
−η
η+1 + η

1
η+1 )

_

Z1([5]) +
f1(t) = 2× 263.33595 + 27 = 553.6719.

l = 6: We can obtain the optimal schedule ξ = [J4, J5, J1, J6, J3, J2], and
_

Z1([6]) =
283.82959, u = (3.94968, 9.20959, 3.086, 2.69217, 1.70268, 2.07942), dopt = p4 + p5 = 3.29141+

2.07827 = 5.36968, f1(t) = 0, so
_

Z([6]) = (η
−η

η+1 + η
1

η+1 )
_

Z1([46]) + f1(t) = 2× 283.82959 =
567.65918.

After the above calculation, the results of Case 1 are shown in Table 5.

Table 5. The results of Case 1.

l dopt u
_

Z([l]) ξ

1 6.23569 (8.68496, 1.36212, 1.93, 3.3035, 1.8797, 1.0145) 432.57051 [J5, J2, J3, J6, J4, J1]
2 5.23351 (8.68496, 4.18827, 1.95176, 3.3035, 1.31889, 0.65757) 446.62764 [J5, J4, J1, J6, J3, J2]
3 4.28155 (2.5298, 4.18827, 3.086, 3.3035, 2.61412, 0.65757) 500.76868 [J3, J4, J1, J6, J5, J2]
4 5.36968 (3.94968, 9.20959, 3.086, 3.69343, 1.31889, 0.65757) 529.15098 [J4, J5, J1, J6, J3, J2]
5 4.61645 (3.94968, 3.9395, 3.086, 8.0193, 1.70268, 0.65757) 553.6719 [J4, J6, J1, J5, J3, J2]
6 5.36968 (3.94968, 9.20959, 3.086, 2.69217, 1.70268, 2.07942) 567.65918 [J4, J5, J1, J6, J3, J2]
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We can see that the optimal solution for P1 is l = 1, ξ∗ = [J5, J2, J3, J6, J4, J1],
d∗opt = 6.23569 and u∗ = (8.68496, 1.36212, 1.93, 3.3035, 1.8797, 1.0145).

Case 2. Next, we compute the problem P3.
When l = 1, from Equations (44) and (45), we can obtain

Ḃjr =



(
vjθj

) 1
2

[
(nγ +

r−1
∑

m=1
δm)(r)−0.2

] 1
2

r = 1

(
vjβ jθj

) 1
2

[
(nγ +

r−1
∑

m=1
δm)(r)−0.2

] 1
2

r = 2 (58)

(
vjβ jθj

) 1
2

[
n
∑

m=r
ωm(r)−0.2

] 1
2

r = 3, 4, 5, 6

and it is easy to see that

Ḃ11 = (v1θ1)
1
2
[
(nγ)(1)−0.2] 1

2 = (22× 9)
1
2 × (24) = 337.70993;

Ḃ12 = (v1β1θ1)
1
2
[
(nγ + δ1)(2)−0.2] 1

2 = (22× 0.4× 9)
1
2 × [(24 + 7)× 2−0.2]

1
2

= 257.407552;

Ḃ13 = (v1β1θ1)
1
2
[
(ω3 + ω4 + ω5 + ω6)(3)−0.2] 1

2 = (22× 0.4× 9)
1
2 × [(2 + 12 + 6 + 9)

×3−0.2]
1
2 = 231.23228;

Ḃ14 = (v1β1θ1)
1
2
[
(ω4 + ω5 + ω6)(4)−0.2] 1

2 = (22× 0.4× 9)
1
2 × [(12+ 6+ 9)× 4−0.2]

1
2

= 209.180094;

Ḃ15 = (v1β1θ1)
1
2
[
(ω5 + ω6)(5)−0.2] 1

2 = (22× 0.4× 9)
1
2 × [(6 + 9)× 5−0.2]

1
2

= 113.64671;

Ḃ16 = (v1β1θ1)
1
2
[
ω6(6)−0.2] 1

2 = (22× 0.4× 9)
1
2 × [9× 6−0.2]

1
2 = 66.95607.

Similarly, the rest of the values of Ḃjr are given in Table 6,

Table 6. The values of Ḃjr.

j\r 1 2 3 4 5 6

1 68.93475 46.23176 42.93875 40.25672 29.34345 22.31869
2 64.99230 21.79386 20.24152 18.9772 13.83264 10.52113
3 37.94733 31.16945 28.94930 27.14108 19.78335 15.04726
4 78.99367 59.23106 55.01214 51.57599 37.59415 28.59419
5 60.79474 28.83057 26.77702 25.10448 18.29886 13.91815
6 36 34.14442 31.7124 29.73156 21.67158 16.48345

The bold values are the optimal solution.

We can obtain the optimal schedule ξ = [J5, J2, J3, J6, J4, J1] by solving the assignment
problem (46), and Ż3([1]) = 169.78528, u = (5.60353, 2.65995, 1.22568, 2.92227, 1.91124, 1.11076),
dopt = p5 + p2 = 4.33963, f1(t) = t(nγ+ δ1) = 3× (24+ 7) = 93, so Ż([1]) = U−ηŻη+1

3 ([1])+
f1(t) = 100−1× 169.785282 + 93 = 381.27041.

l = 2: Similarly, we can easily find the values of Ḃjr from Equations (44) and (45),
and solve the assignment problem (46) to obtain the optimal schedule ξ = [J5, J4, J1, J6, J3, J2],
and Ż3([2]) = 179.81382, u = (5.29097, 2.85518, 2.202719, 2.75966, 1.19380, 1.20519),
dopt = p5 + p4 = 8.7116, f1(t) = t(ω3 + ω4 + ω5 + ω6) = 3 × (2 + 12 + 6 + 9) = 87,

so Ż([2]) = U−η Żη+1
3 ([2]) + f1(t) = 100−1 × 179.813822 + 87 = 404.331.

l = 3: We can obtain the optimal schedule ξ = [J3, J4, J1, J6, J5, J2], and Ż3([3]) =
209.88434, u = (3.02238, 2.44322, 1.73675, 2.36428, 3.04078, 1.03252), dopt = p3 + p4 =

6.64431, f1(t) = t(ω4 + ω5 + ω6) = 3× (12 + 6 + 9) = 81, so Ż([3]) = U−η Żη+1
3 ([3]) +

f1(t) = 100−1 × 209.884342 + 81 = 521.54136.
l = 4: As given above, we can obtain the optimal schedule ξ = [J4, J5, J1, J6, J3, J2],

and Ż3([4])
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= 242.07549, u = (1.99828, 4.16622, 1.5058, 2.04988, 0.88676, 0.89522), dopt = p4 + p5 =

11.78616, f1(t) = t(ω5 + ω6) = 3× (6 + 9) = 45, so Ż([4]) = U−η Żη+1
3 ([4]) + f1(t) =

100−1 × 242.075492 + 45 = 631.00543.
l = 5: We can obtain the optimal schedule ξ = [J4, J6, J1, J5, J3, J2], and Ż3([5]) =

263.33595, u = (1.83695, 2.16033, 1.38423, 3.34065, 0.81517, 0.82294), dopt = p4 + p6 =

9.85430, f1(t) = t(ω6) = 3 × (9) = 27, so Ż([5]) = U−η Żη+1
3 ([5]) + f1(t) = 100−1 ×

263.335952 + 27 = 720.45823.
l = 6: We can obtain the optimal schedule ξ = [J4, J5, J1, J6, J3, J2], and Ż3([6]) =

283.82959, u = (1.70432, 3.55333, 1.2843, 1.74832, 0.75632, 0.76352), dopt = p4 + p5 =13.81905,

f1(t) = 0, so Ż([6]) = U−η Żη+1
3 ([6]) + f1(t) = 100−1 × 283.829592 = 805.59236.

After the above calculation, the results of Case 2 are shown in Table 7.

Table 7. The results of Case 2.

l dopt u Ż([l]) ξ

1 4.33963 (5.60353, 2.65995, 1.22568, 2.92227, 1.91124, 1.11076) 381.27041 [J5, J2, J3, J6, J4, J1]
2 8.71116 (5.29097, 2.85518, 2.202719, 2.75966, 1.19380, 1.20519) 404.331 [J5, J4, J1, J6, J3, J2]
3 6.64431 (3.02238, 2.44322, 1.73675, 2.36428, 3.04078, 1.03252) 521.54136 [J3, J4, J1, J6, J5, J2]
4 11.78616 (1.99828, 4.16622, 1.5058, 2.04988, 0.88676, 0.89522) 631.00543 [J4, J5, J1, J6, J3, J2]
5 9.85430 (1.83695, 2.16033, 1.38423, 3.34065, 0.81517, 0.82294) 720.45823 [J4, J6, J1, J5, J3, J2]
6 13.81905 (1.70432, 3.55333, 1.2843, 1.74832, 0.75632, 0.76352) 805.59236 [J4, J5, J1, J6, J3, J2]

We can see that the optimal solution for P3 is l = 1, ξ∗ = [J5, J2, J3, J6, J4, J1],
d∗opt = 4.33963 and u∗ = (5.60353, 2.65995, 1.22568, 2.92227, 1.91124, 1.11076).

5.2. Numerical Study

To test the validity of Algorithms 1–4, we randomly generated the instances. We
implemented all the algorithms in Java language on JetBrains 2023, and coded on a PC
with Intel(R) Core(TM) i5-10500 CPU @ 3.10 GHz, 8.00 GB of RAM on a Windows 10 OS.
The features of the examples are listed below:

(1) n = 35, 45, 55, 65, 75, 85, 95, 105, 115, 125, 135, t = 10 and α = −0.3;
(2) η = 2, γ = 12 and U = 500;
(3) θj (j = 1, 2, . . . , n) is drawn from a discrete uniform distribution in [1, 100] (i.e.,

θj ∼ [1, 100]);
(4) β j (j = 1, 2, . . . , n) ∼ [0.5, 1];
(5) δj, ωj (j = 1, 2, . . . , n) ∼ [1, 40];
(6) vj (j = 1, 2, . . . , n) ∼ [1, 50].

For each n, 20 instances are generated randomly. The computational tests for
Algorithms 1–4 are given as follows. The average (mean) and maximum (max) CPU times
(milliseconds (ms)) are shown in Table 8. From Table 8, we can see that Algorithms 1–4 are
effective, and their CPU times increase moderately as n increases from 35 to 135, and the
maximum CPU time is 139,834.75 ms for n = 135.

Table 8. CPU times (ms) of algorithms.

Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 4

n mean max mean max mean max mean max

35 367.09 390.12 408.67 442.16 302.86 352.29 322.18 349.82
45 896.46 925.06 1250.46 1346.82 759.28 829.51 762.24 837.24
55 1864.52 1876.59 2386.35 2587.35 1562.37 1582.65 2118.32 2297.14
65 3624.21 3703.29 4103.54 4346.54 2993.52 3121.57 3314.17 3504.02
75 6735.58 6898.34 7827.50 8786.35 5615.58 5754.39 6849.91 6928.42
85 13,683.45 13,968.32 15,072.53 16,855.50 11,394.35 11,528.39 13,864.47 14,941.57
95 23,877.03 24,120.57 26,147.35 27,845.36 21,572.70 23,489.86 24,478.50 26,116.25
105 34,453.85 34,635.58 40,527.32 42,965.50 28,712.15 28,892.27 34,785.23 37,123.85
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Table 8. Cont.

Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 4

n mean max mean max mean max mean max

115 53,679.54 54,008.94 61,296.86 63,085.45 44,731.62 45,021.23 52,246.21 54,004.32
125 77,623.53 77,985.72 89,614.36 95,238.62 64,685.83 65,023.21 76,372.23 81,823.32
135 114,304.61 114,892.56 136,835.45 139,834.75 95,153.30 95,802.52 117,325.23 120,115.84

6. Conclusions

In previous studies, the influence of learning effects and resource allocation factors in
single-machine scheduling was considered. In this paper, we extend this setting by allowing
the execution of a maintenance activity. It is revealed that these four problems can be solved
in O(n4) time (see Table 1). In future work, we will incorporate more realistic settings, such
as multiple maintenance activities, or multiple machine (e.g., flow shop) conditions.

Author Contributions: Investigation, L.-Y.W.; Writing—original draft, Z.-J.W.; Writing—review and
editing, Z.-J.W., L.-Y.W., L.Z., J.-B.W. and E.W. All authors have read and agreed to the published
version of the manuscript.

Funding: This Work was supported by the Science Research Foundation of Educational Department
of Liaoning Province (LJKMZ20220527). Ershen Wang was also supported by the SongShan Labora-
tory Foundation (YYJC062022017), the Open Fund of Key Laboratory of Flight Techniques and Flight
Safety CAAC (FZ2021KF15, FZ2021ZZ06), the Applied Basic Research Programs of Liaoning Province
(2022020502-JH2/1013), and the Special Funds program of Shenyang Science and technology (22-322-3-34).

Data Availability Statement: The data used to support the findings of this study are available from
the corresponding author upon request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Mosheiov, G. Scheduling problems with learning effect. Eur. J. Oper. Res. 2001, 132, 687–693. [CrossRef]
2. Cheng, M.; Tadikamalla, P.R.; Shang, J.; Zhang, B. Single machine scheduling problems with exponentially time-dependent

learning effects. J. Manuf. Syst. 2015, 34, 60–65. [CrossRef]
3. Wu, W.H.; Chen, J.C.; Lin, W.C.; Wu, J.; Wu, C.C. A heuristic-based genetic algorithm for the two-machine flow shop scheduling

with learning consideration. J. Manuf. Syst. 2015, 35, 223–233. [CrossRef]
4. Azzouz, A.; Ennigrou, M.; Said, L.B. Scheduling problems under learning effects: Classification and cartography. Int. J. Prod. Res.

2018, 56, 1642–1661. [CrossRef]
5. Sun, X.; Geng, X.N.; Liu, F. Flow shop scheduling with general position weighted learning effects to minimise total weighted

completion time. Eur. J. Oper. Res. 2021, 72, 2674–2689. [CrossRef]
6. Zhao, S. Scheduling jobs with general truncated learning effects including proportional setup times. Mathematics 2022, 41, 146.

[CrossRef]
7. Wang, J.-B.; Zhang, L.-H.; Lv, Z.-G.; Lv, D.-Y.; Geng, X.-N.; Sun, X. Heuristic and exact algorithms for single-machine scheduling

problems with general truncated learning effects. Mathematics 2022, 41, 417. [CrossRef]
8. Wang, J.-B.; Cui, B.; Ji, P.; Liu, W.-W. Research on scheduling with position-dependent weights and past-sequence-dependent

delivery times. J. Comb. Optim. 2021, 41, 290–303. [CrossRef]
9. Wang, S.-H.; Lv, D.-Y.; Wang, J.-B. Research on position-dependent weights scheduling with delivery times and truncated

sum-of-processing-times-based learning effect. J. Ind. Manag. Optim. 2023, 19, 2824–2837. [CrossRef]
10. Sun, X.-Y.; Geng, X.-N.; Liu, T. Due-window assignment scheduling in the proportionate flow shop setting. Ann. Oper. Res. 2020,

292, 113–131. [CrossRef]
11. Qian, J.; Han, H. Improved algorithms for proportionate flow shop scheduling with due-window assignment. Ann. Oper. Res.

2022, 309, 249–258. [CrossRef]
12. Yue, Q.; Zhou, S. Due-window assignment scheduling problem with stochastic processing times. Eur. J. Oper. Res. 2021, 290,

453–468. [CrossRef]
13. Wang, W. Single-machine due-date assignment scheduling with generalized earliness/tardiness penalties including proportional

setup times. J. Appl. Math. Comput. 2022, 68, 1013–1031. [CrossRef]
14. Lee, C.Y.; Leon, V.J. Machine scheduling with a rate-modifying activity. Eur. J. Oper. Res. 2001, 128, 119–128. [CrossRef]
15. Wang, X.-Y.; Wang, M.-Z. Single machine common flow allowance scheduling with a rate-modifying activity. Comput. Ind. Eng.

2010, 59, 898–902. [CrossRef]

http://doi.org/10.1016/S0377-2217(00)00175-2
http://dx.doi.org/10.1016/j.jmsy.2014.11.001
http://dx.doi.org/10.1016/j.jmsy.2015.02.002
http://dx.doi.org/10.1080/00207543.2017.1355576
http://dx.doi.org/10.1080/01605682.2020.1806746
http://dx.doi.org/10.1007/s40314-022-01851-0
http://dx.doi.org/10.1007/s40314-022-02133-5
http://dx.doi.org/10.1007/s10878-020-00676-z
http://dx.doi.org/10.3934/jimo.2022066
http://dx.doi.org/10.1007/s10479-020-03653-1
http://dx.doi.org/10.1007/s10479-021-04414-4
http://dx.doi.org/10.1016/j.ejor.2020.08.029
http://dx.doi.org/10.1007/s12190-021-01555-4
http://dx.doi.org/10.1016/S0377-2217(99)00066-1
http://dx.doi.org/10.1016/j.cie.2010.08.020


Mathematics 2023, 11, 3536 21 of 21

16. Mosheiov, G.; Sidney, J.-B. Scheduling a deteriorating maintenance activity on a single machine. Eur. J. Oper. Res. 2010, 61,
882–887. [CrossRef]

17. Bai, J.; Li, Z.-R.; Wang, J.-J.; Huang, X. Single machine common flow allowance scheduling with deteriorating jobs and a
rate-modifying activity. Appl. Math. Model. 2014, 38, 5431–5438. [CrossRef]

18. Yin, Y.; Cheng, T.C.E.; Xu, D.; Wu, C.-C. Common due date assignment and scheduling with a rate-modifying activity to minimize
the due date, earliness, tardiness, holding, and batch delivery cost. Comput. Ind. Eng. 2012, 63, 223–234. [CrossRef]

19. Strusevich, V.-A.; Rustogi, K. Scheduling with Time-Changing Effects and Rate-Modifying Activities; Springer: Berlin/Heidelberg,
Germany, 2017.

20. Parwallker, S.-S.; Smith, M.-L.; Seidmann, A. Common due-date assignment to minimize total penalty for the one machine
scheduling problem. Oper. Res. 1982, 30, 391–399.

21. Cheng, T.-C.-E.; Kang, L.; Ng, C.-T. Due-date assignment and single machine scheduling with deteriorating jobs. J. Oper. Res.
2004, 65, 198–203. [CrossRef]

22. Ji, P.; Li, G.; Huo, Y.-Z.; Wang, J.-B. Single-machine common flow allowance scheduling with job-dependent aging effects and a
deteriorating maintenance activity. Optim. Lett. 2014, 8, 1389–1400. [CrossRef]

23. He, H.-Y.; Liu, M.; Wang, J.-B. Resource constrained scheduling with general truncated job dependent learning effect. J. Comb.
Optim. 2017, 33, 626–644. [CrossRef]

24. Liu, W.W.; Jiang, C. Flow shop resource allocation scheduling with due date assignment, learning effect and position-dependent
weights. J. Oper. Res. 2020, 37, 2050014. [CrossRef]

25. Zhao, X.-L.; Xu, J.; Wang, J.-B.; Li, L. Bicriteria common flow allowance scheduling with aging effect, convex resource allocation,
and a rate-modifying activity on a single machine. Asia-Pac. J. Oper. Res. 2022, 21, 2150046. [CrossRef]

26. Janiak, A.; Kovalyov, M.-Y. Single machine scheduling subjective to deadlines and resource dependent processing times. Eur. J.
Oper. Res. 1996, 94, 284–291. [CrossRef]

27. Monma, C.-L.; Schrijver, A.; Todd, M.-J.; Wei, V.-K. Convex resource allocation problems on directed acyclic graphs: Duality,
complexity, special cases and extensions. Math. Oper. Res. 1990, 15, 736–748. [CrossRef]

28. Biskup, D. Single-machine scheduling with learning considerations. Eur. J. Oper. Res. 1999, 115, 173–178. [CrossRef]
29. Wang, D.; Wang, M.-Z.; Wang, J.-B. Single–machine scheduling with learning effect and resource-dependent processing times.

Comput. Ind. Eng. 2010, 59, 458–462. [CrossRef]
30. Zhu, Z.-G.; Chu, F.; Sun, L.-Y.; Liu, M. Single machine scheduling with resource allocation and learning effect considering the

rate-modifying activity. Appl. Math. Model. 2013, 37, 5371–5380. [CrossRef]
31. Hardy, G.-H.; Littlewood, J.-E.; Polya, G. Inequalities; Cambridge University Press: Cambridge, UK, 1976.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1057/jors.2009.5
http://dx.doi.org/10.1016/j.apm.2014.04.037
http://dx.doi.org/10.1016/j.cie.2012.02.015
http://dx.doi.org/10.1057/palgrave.jors.2601681
http://dx.doi.org/10.1007/s11590-012-0504-6
http://dx.doi.org/10.1007/s10878-015-9984-5
http://dx.doi.org/10.1142/S0217595920500141
http://dx.doi.org/10.1142/S0217595921500469
http://dx.doi.org/10.1016/0377-2217(96)00129-4
http://dx.doi.org/10.1287/moor.15.4.736
http://dx.doi.org/10.1016/S0377-2217(98)00246-X
http://dx.doi.org/10.1016/j.cie.2010.06.002
http://dx.doi.org/10.1016/j.apm.2012.09.072

	Introduction
	Problem Description
	Main Properties
	Optimal Analysis
	Results of P1
	Results of P2
	Results of P3
	Results of P4

	An Example and Numerical Study 
	An Example
	Numerical Study

	Conclusions
	References

