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Abstract: In this paper, we study the concept of fuzzy metrics from the perspective of fuzzy relations.
Specifically, we analyze the commonly used definitions of fuzzy metrics. We begin by noting that
crisp metrics can be uniquely characterized by linear order relations. Further, we explore the criteria
that crisp relations must satisfy in order to determine a crisp metric. Subsequently, we extend these
conditions to obtain a fuzzy metric and investigate the additional axioms involved. Additionally,
we introduce the definition of an extensional fuzzy metric or E-d-metric, which is a fuzzification of
the expression d(x, y) = t. Thus, we examine fuzzy metrics from both the linear order and from the
equivalence relation perspectives, where one argument is a value d(x, y) and the other is a number
within the range [0,+∞).
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1. Introduction

Since L.A. Zadeh introduced fuzzy sets in 1965 [1], researchers have been actively ex-
ploring ways to integrate traditional mathematical concepts and theories into the fuzzy sets
context. Among the pioneering successes in this endeavor were the development of fuzzy
topologies by C.L. Chang [2], the introduction of fuzzy algebraic structures by A. Rosen-
feld [3], fuzzy category theory by A. Šostak [4], etc. Fuzzy sets have also been widely used
for practical applications that involve uncertainty, vagueness, and imprecision. They have
already proven their efficiency in natural language processing, decision-making, pattern
recognition, and optimization problems. As the potential applications of fuzzy metrics in
real-world problem solving became evident, the idea of establishing a fuzzy counterpart
to a metric space gained traction. Several researchers took on this challenge, and notable
contributions to the field of fuzzy metrics were made by I. Kramosil and J. Michalek [5],
A. George and P. Veeramani [6], Z. Deng [7], and O. Kaleva and S. Seikkala [8]. It is
worth mentioning that each of these researchers used different initial prerequisites in their
approach, which adds diversity to the developments in the field. These advancements
in fuzzy metrics open up new avenues for studying and addressing complex real-world
issues through the flexible and adaptable nature of fuzzy sets and metrics. As research
in this area continues to progress, we can anticipate even more valuable applications and
insights into a wide range of problems. Currently, there is growing interest in exploring
the topological properties of fuzzy metrics, as this line of study holds promise not only for
theoretical constructions but also for fixed-point theorems and various practical applica-
tions. Regarding the investigation of the topological properties of classical fuzzy metrics,
extensive references can be found in [9–21]. Although fuzzy metrics have demonstrated
successful applications in image processing problems [22–24], their full potential remains
untapped. These metrics hold significant promise, particularly in addressing segmentation,
spectralization, and compression problems. Furthermore, fuzzy metrics have showcased
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their capability in tackling optimization problems [25]. As research in this area continues to
progress, it is likely that we will witness even more innovative applications and fruitful
outcomes from the study of fuzzy metrics and their properties. Continuing the exploration
of fuzzy metrics from the perspective of fuzzy relations opens up exciting avenues for
enhancing our theoretical understanding of their properties. By delving into the fuzzy
relations aspect, we can establish insightful connections between various structures and
gain deeper insights into the fundamental nature of fuzzy metrics. Fuzzy relations provide
a powerful framework to analyze the relationships and interactions within fuzzy metrics,
shedding light on the underlying mathematical intricacies. This approach not only offers
a fresh lens to examine existing fuzzy metrics but also allows us to uncover hidden pat-
terns and unveil novel properties. Moreover, investigating fuzzy metrics from the fuzzy
relations point of view paves the way for constructing new examples. By leveraging the
inherent flexibility of fuzzy relations, we can create innovative fuzzy metric spaces that
possess specific properties tailored to tackle real-world problems. The synergy between
fuzzy metrics and fuzzy relations also holds promise for cross-disciplinary applications. It
enables us to leverage a wealth of knowledge from different fields and merge their insights
to address complex challenges more comprehensively. In conclusion, venturing into the
study of fuzzy metrics through the lens of fuzzy relations not only enriches our theoretical
understanding of these structures but also opens up a vast landscape of possibilities for
practical applications.

In the current literature, the concept of a fuzzy metric is predominantly based on the
axioms introduced in [6,9], which are essentially a reformulation of the original axioms
defined in [5]. In [5], the idea of defining a fuzzy metric stems from the assumption that
the evaluated value d(x, y) of a crisp metric d to be fuzzified or approximated is smaller
than a predetermined real number t. In other words, the statement d(x, y) < t is fuzzified.
This paper aims to justify this fact. It is crucial to take into account this fact when working
with applications.

Thus, the main idea of the paper is to show how the notion of a fuzzy metric arises
from the crisp order relation R, by demonstrating that every metric d can be determined
by an order relation R. Subsequently, we investigate the criteria that crisp relations must
satisfy in order to establish a crisp metric. Furthermore, we fuzzify the axioms of R to obtain
a fuzzy metric and examine the conditions that a fuzzy relation R must satisfy in order to
be considered a fuzzy metric. Finally, we introduce a different approach to the fuzzy metric
concept, where we extend a crisp metric d on a set X by means of a fuzzy equivalence
relation E on the set IR+. We call it an E-d metric or an extensional fuzzy metric.

The paper is structured as follows. In Section 2, we provide a recap of the key results
and concepts that are used in the paper. Specifically, we introduce and discuss triangular
norms and fuzzy relations. Section 3 is devoted to the examination of classical metrics and
their representation by means of linear order relations. The primary objective of the paper
is addressed in Section 4. Here, we analyze the existing definition of fuzzy metrics and
propose a method for its construction, employing fuzzy order relations. Extensional fuzzy
metrics are explored in Section 5. Finally, in Section 6, we conclude the paper.

2. Preliminaries
2.1. Triangular Norms

We start with the definition of a t-norm, which plays a crucial role in the definition of
transitivity for fuzzy relations:

Definition 1 ([26]). A triangular norm (t-norm for short) is a binary operation T on the unit
interval [0, 1], i.e., a function T : [0, 1]2 → [0, 1], such that for all a, b, c ∈ [0, 1], the following four
axioms are satisfied:

• T(a, b) = T(b, a) (commutativity);
• T(a, T(b, c)) = T(T(a, b), c) (associativity);
• T(a, b) ≤ T(a, c) whenever b ≤ c (monotonicity);



Mathematics 2023, 11, 3528 3 of 13

• T(a, 1) = a (a boundary condition).

Some of the commonly used t-norms are mentioned below:

• TM(a, b) = min(a, b), the minimum t-norm;
• TP(a, b) = a · b, the product t-norm;
• TL(a, b) = max(a + b− 1, 0), the Łukasiewicz t-norm;

• TH(a, b) =
{ a·b

a+b−a·b if a2 + b2 6= 0
0 otherwise

, the Hamacher t-norm.

A t-norm T is called Archimedean if and only if, for all pairs (a, b) ∈ (0, 1)2, there is
n ∈ N such that Tn(a) < b, where Tn(a) is defined by induction: T1(a) = T(a, a), T2(a) =
T(a, T1(a)), . . . , Tn(a) = T(a, Tn−1(a)).

Product, Łukasiewicz, and Hamacher t-norms are Archimedean, while minimum
t-norm is not.

2.2. Fuzzy Relations

We continue with an overview of basic definitions and results of fuzzy relations.
Definitions of a fuzzy order relation and a fuzzy equivalence relation were first introduced
by L.A. Zadeh in 1971 [27] under the names of a fuzzy ordering and a fuzzy similarity
relation. In our paper, we use results of a fuzzy order defined with respect to a fuzzy
equivalence relation studied in [28,29].

Definition 2 ([27]). A fuzzy binary relation R on a set S is a mapping R : S× S→ [0, 1].

Definition 3 (see, e.g., [28]). A fuzzy binary relation E on a set S is called a fuzzy equivalence
relation with respect to a t-norm T (or a T-equivalence) if and only if the following three axioms are
fulfilled for all a, b, c ∈ S:

1. E(a, a) = 1 reflexivity;
2. E(a, b) = E(b, a) symmetry;
3. T(E(a, b), E(b, c)) ≤ E(a, c) T-transitivity.

Definition 4 ([29]). A fuzzy binary relation L on a set S is called a fuzzy order relation with
respect to a t-norm T and a T-equivalence E (or T-E-order) if and only if the following three axioms
are fulfilled for all a, b, c ∈ S:

1. L(a, b) ≥ E(a, b) E-reflexivity;
2. T(L(a, b), L(b, c)) ≤ L(a, c) T-transitivity;
3. T(L(a, b), L(b, a)) ≤ E(a, b) T-E-antisymmetry.

A fuzzy order relation L is called strongly linear if and only if for all a, b ∈ S:

max(L(a, b), L(b, a)) = 1.

The following theorem states that strongly linear fuzzy order relations are uniquely
characterized as fuzzifications of crisp linear orders. Preliminary, let us recall the definition
of compactability:

Definition 5 ([29]). Let � be a crisp order on a set S, and let E be a fuzzy equivalence relation on
S. E is called compatible with � if and only if the following implication holds for all a, b, c ∈ S:
a � b � c⇒ E(a, c) ≤ E(b, c) and E(a, c) ≤ E(a, b).

Theorem 1 ([29]). Let L be a binary fuzzy relation on S, and let E be a T-equivalence on S. Then,
the following two statements are equivalent:

1. L is a strongly linear T-E-order on S;
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2. There is a linear order� with which the relation E is compatible, such that L can be represented
as follows:

L(a, b) =

{
1, if a � b
E(a, b), otherwise.

3. Crisp Metrics

The concepts of a metric and a metric space, first introduced by M. Fréchet in 1906 [30],
now belong to the most fundamental concepts of modern mathematics. For convenience of
presentation, we recall them in the next definition:

Definition 6. Metric space is an ordered pair (X, d), where X is a set and d is a metric on X, i.e.,
a function d : X× X → [0, ∞), satisfying the following axioms for all points x, y, z ∈ X:

1. d(x, y) = 0 if and only if x = y;
2. d(x, y) = d(y, x);
3. d(x, y) + d(y, z) ≥ d(x, z).

As the next theorem shows, metric spaces (X, d) are fully characterized by pairs
(X, Rd), where Rd : X× X× [0, ∞)→ {0, 1} and Rd(x, y, t) = 1 if and only if d(x, y) < t.

Theorem 2. A metric d on a set X is uniquely determined by the following function: Rd : X×X×
[0, ∞)→ {0, 1}, where for all x, y ∈ X and t ∈ [0, ∞), Rd(x, y, t) = 1 if and only if d(x, y) < t.

Proof. Let us prove that two metrics d1 and d2 differ if and only if Rd1 6= Rd2 , where
Rd1(x, y, t) = 1 if and only if d1(x, y) < t, and Rd2(x, y, t) = 1 if and only if d2(x, y) < t.
Thus, d1 6= d2 if and only if there exist x, y ∈ X, such that d1(x, y) 6= d2(x, y). The last one
is fulfilled if and only if there exist x, y ∈ X, such that d1(x, y) < d2(x, y) or d2(x, y) <
d1(x, y). If d1(x, y) < d2(x, y) than Rd1(x, y, d2(x, y)) = 1 and Rd2(x, y, d2(x, y)) = 0. If
d2(x, y) < d1(x, y), then Rd2(x, y, d1(x, y)) = 1 and Rd1(x, y, d1(x, y)) = 0; thus, Rd1 6= Rd2 .

Further, if Rd1 6= Rd2 , then there exist x, y ∈ X and t ∈ [0, ∞) such that Rd1(x, y, t) =
1 and Rd2(x, y, t) = 0 or Rd1(x, y, t) = 0 and Rd2(x, y, t) = 1. If Rd1(x, y, t) = 1 and
Rd2(x, y, t) = 0, then d1(x, y) < t and d2(x, y) ≥ t; thus, d1 6= d2.

Now we investigate how to define Rd : X × X × [0, ∞) → {0, 1} in order to reflect
axioms from Definition 6:

1. If Rd(x, y, t) = 1 if and only if d(x, y) < t, then, if t = 0, d(x, y) < 0 cannot be fulfilled
for any x, y ∈ X and R(x, y, 0) = 0. However, we still want to invent an axiom for Rd
that is equivalent to the axiom d(x, y) = 0 if and only if x = y. The axiom is:

Rd(x, y, t) = 1 ∀t > 0 ⇐⇒ x = y. (1)

Let us prove that this axiom is equivalent to the axiom d(x, y) = 0 ⇐⇒ x = y:
If d(x, y) = 0, then obviously Rd(x, y, t) = 1 for all t > 0, and from (1), it follows that
x = y. If x = y, then from (1), Rd(x, y, t) = 1 for all t > 0, which means d(x, y) < t for
all t > 0, and then d(x, y) = 0.
Let us prove the opposite. If Rd(x, y, t) = 1 for all t > 0, then d(x, y) < t for all t > 0,
which implies d(x, y) = 0 and, finally, x = y. The opposite direction is also fulfilled.

2.
Rd(x, y, t) = Rd(y, x, t) (2)

It is obvious that condition (2) is equivalent to axiom (2) from Definition 6:

Rd(x, y, t) = 1 ⇐⇒ d(x, y) < t ⇐⇒ d(y, x) < t ⇐⇒ Rd(y, x, t) = 1.

3.
Rd(x, y, t) ∧ Rd(y, z, s) ≤ Rd(x, z, t + s). (3)
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Inequality (3) comes from the assertion:

d(x, y) < t & d(y, z) < s =⇒ d(x, z) ≤ d(x, y) + d(y, z) < t + s.

Now, we prove that (3) is equivalent to axiom (3) from Definition 6. If Rd(x, y, t) = 0
or Rd(y, z, s) = 0, then obviously (3) is fulfilled. If Rd(x, y, t) = 1 and Rd(y, z, s) = 1,
then d(x, y) < t and d(y, z) < s, which means d(x, z) ≤ d(x, y) + d(y, z) < t + s
and, finally, Rd(x, z, t + s) = 1. Now we prove that d(x, y) + d(y, z) ≥ d(x, z) if (3)
is fulfilled. Assuming that d(x, y) + d(y, z) < d(x, z), then there exist t, s ∈ [0, ∞)
such that d(x, y) + d(y, z) < t + s < d(x, z) and d(x, y) < t & d(y, z) < s. Thus,
Rd(x, y, t) = 1 and Rd(y, z, s) = 1, but Rd(x, z, t + s) = 0.

Thus, axioms (1)–(3) from Definition 6 are equivalent to the following axioms for
function Rd : X× X× [0, ∞)→ {0, 1}, such that Rd(x, y, t) = 1 if and only if d(x, y) < t for
all x, y ∈ X and t, s ∈ [0, ∞):

1. Rd(x, y, t) = 1 ∀t > 0 ⇐⇒ x = y;
2. Rd(x, y, t) = Rd(y, x, t);
3. Rd(x, y, t) ∧ Rd(y, z, s) ≤ Rd(x, z, t + s).

The question is whether a metric d on a set X is uniquely determined by a function
R : X × X × (0, ∞) → {0, 1}, satisfying for all x, y ∈ X and t ∈ [0, ∞) the three above-
mentioned conditions.

It is clear that function R, which satisfies the three above-mentioned conditions, is
non-decreasing with respect to the third argument:

R(x, y, t) ∧ R(y, y, s) = R(x, y, t) ∧ 1 = R(x, y, t) ≤ R(x, y, t + s)

for all t, s > 0. That means that, for the fixed x, y, the value R(x, y, t) = 0 when t is less than
or equal to /less than some λ and R(x, y, t) = 1 otherwise. Then, we can define a metric
d : X×X → [0, ∞) as d(x, y) = inf{t : R(x, y, t) = 1}. The only thing to take into account is
that two functions could define the same metric (if R differs for fixed x, y only in one point);
thus, we ask function R to be left-semicontinuous to be in accordance with the condition
R(x, y, t) = 1 =⇒ d(x, y) < t. Note that the metric d : X× X → [0, ∞) can also be defined
as d(x, y) = sup{t : R(x, y, t) = 0}, which is equal to d(x, y) = max{t : R(x, y, t) = 0},
since R is left-semicontinuous.

Thus, we have the following theorem:

Theorem 3. A metric d on a set X is uniquely determined by a function R : X× X× (0, ∞)→
{0, 1}, which is left-semicontinuous with respect to the third argument and for which the following
conditions are fulfilled for all x, y ∈ X and t, s ∈ (0, ∞):

1. R(x, y, t) = 1 ∀t > 0 ⇐⇒ x = y;
2. R(x, y, t) = R(y, x, t);
3. R(x, y, t) ∧ R(y, z, s) ≤ R(x, z, t + s).

Proof. Let R : X× X× (0, ∞)→ {0, 1} be a function satisfying conditions (1)–(3). Taking
into account condition (3), the function R is non-decreasing by the third argument, and
taking into account the left-semicontinuity of R, R can be illustrated by Figure 1:
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Figure 1. A figure demonstrating the function values R(x, y, t), where x, y are fixed and t is changing
from 0 to infinity.

Then we can build a function d : X × X → [0, ∞) as d(x, y) = inf{t : R(x, y, t) = 1}.
It is obvious that, if R1 6= R2, then d1 6= d2, where d1(x, y) = inf{t : R1(x, y, t) = 1}
and d2(x, y) = inf{t : R2(x, y, t) = 1}. Now, we prove that d defined as d(x, y) = inf{t :
R(x, y, t) = 1} satisfies the axioms from Definition 6:

1. If x = y, then R(x, y, t) = 1 for all t > 0 and d(x, y) = inf{t : R(x, y, t) = 1} = 0. On
the other hand, if d(x, y) = 0, then inf{t : R(x, y, t) = 1} = 0. Thus, R(x, y, t) = 1 for
all t > 0, which means x = y.

2. d(x, y) = inf{t : R(x, y, t) = 1} = inf{t : R(y, x, t) = 1} = d(y, x), since R(x, y, t) =
R(y, x, t).

3. Now we prove that d(x, y) + d(y, z) ≥ d(x, z). Indeed, if d(x, y) + d(y, z) < d(x, z),
then there exist t, s ∈ (0, ∞), such that d(x, y) + d(y, z) < t + s < d(x, z) and d(x, y) <
t & d(y, z) < s, where d(x, y) = inf{t1 : R(x, y, t1) = 1} < t and d(y, z) = inf{t2 :
R(y, z, t2) = 1} < s. Thus, R(x, y, t) = 1 and R(y, z, s) = 1, but R(x, y, t)∧ R(y, z, s) ≤
R(x, z, t + s), and thus R(x, z, t + s) = 1. However, this leads to a contradiction with
R(x, z, t + s) = 0, which is fulfilled since t + s < d(x, z) = inf{t3 : R(x, z, t3) = 1}.
Now let d : X× X → [0, ∞) be a metric; we define R : X× X× (0, ∞)→ {0, 1}, where

for all x, y ∈ X and t ∈ (0, ∞), R(x, y, t) = 1 if and only if d(x, y) < t. It has already been
shown that, if d1 6= d2, then R1 6= R2. Further, let us prove that, for the defined function R,
conditions (1)–(3) are fulfilled:

1. If R(x, y, t) = 1 for all t > 0, then d(x, y) < t for all t > 0, which implies d(x, y) = 0
and, finally, x = y. If x = y, then d(x, y) = 0 and d(x, y) < t for all t > 0, which is
R(x, y, t) = 1 for all t > 0.

2. R(x, y, t) = 1 ⇐⇒ d(x, y) < t ⇐⇒ d(y, x) < t ⇐⇒ R(y, x, t) = 1. Taking into
account that R can take only values 0 and 1, we conclude:

R(x, y, t) = R(y, x, t).

3. If R(x, y, t) = 0 or R(y, z, s) = 0, then obviously (3) is fulfilled. If R(x, y, t) = 1 and
Rd(y, z, s) = 1, then d(x, y) < t and d(y, z) < s, which means d(x, z) ≤ d(x, y) +
d(y, z) < t + s and, finally, R(x, z, t + s) = 1.

Remark 1. In the previous theorem, it was sufficient to define the domain of R as X× X× (0, ∞)
(not including 0 in the interval (0, ∞)). Intuitively, it could be explained by the fact that d(x, y)
cannot be less than 0. On the other hand, this does not prevent us from defining d(x, x). If we still
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want to work with domain X× X× [0, ∞) for R, we should define R(x, x, 0) for all x ∈ X, since
otherwise it could be both 0 and 1.

If, in the previous proof, we want to define d(x, y) as sup{t : R(x, y, t) = 0}, we should add
the following condition for R:

R(x, x, 0) = 0.

Remark 2. The function R : X× X× [0, ∞)→ {0, 1} can also be determined as a crisp relation
R : Y × [0, ∞) → {0, 1}, where Y = X × X. Based on this fact, we will call a function
R : X× X× [0, ∞)→ {0, 1} as a parametric relation.

From the above theorems, we obtain the following principal result:

Corollary 1. Given a metric d : X × X → [0, ∞), by setting Rd(x, y, t) = 1 ⇐⇒ d(t) < t,
we obtain a parametric relation satisfying properties (1)–(3). Conversely, having a parametric
relation R : X × X × (0, ∞) → {0, 1} satisfying properties (1)–(3) by setting d(x, y) = inf{t :
R(x, y, t) = 1}, we obtain a metric. Additionally, dRd = d for every metric d and, if the parametric
relation R satisfies properties (1)–(3) and is left-continuous, then RdR = R.

According to the definition of nonexpansive, continuous, and uniformly continuous
functions in terms of metric spaces (X, d), it is possible to define these functions in terms of
spaces (X, R), where R satisfies properties (1)–(3) of Theorem 3 and is left-semicontinuous.
In the next propositions, we suppose that (X1, Rd1) and (X2, Rd2) are spaces isomorphic
to (X1, d1) and (X2, d2) in the sense of Corollary 1, (d1(x, y) = inf{t : Rd1(x, y, t) = 1} and
d2(x, y) = inf{t : Rd1(x, y, t) = 1}):

Proposition 1. A function f : (X1, Rd1) → (X2, Rd2) is nonexpansive if and only if, for every
pair of points x and y in X1, it holds that:

R2( f (x), f (y), t) ≤ R1(x, y, t).

Proposition 2. A function f : (X1, Rd1) → (X2, Rd2) is continuous if and only if, for every
x ∈ X1 and every ε > 0, there exists δ > 0 such that, for every point y in X1, it holds that:

R1(x, y, δ) ≤ R2( f (x), f (y), ε).

Proposition 3. A function f : (X1, Rd1)→ (X2, Rd2) is uniformly continuous if and only if, for
every ε > 0, there exists δ > 0 such that, for every pair of points x and y in X1, it holds that:

R1(x, y, δ) ≤ R2( f (x), f (y), ε).

The proof of the previous three propositions relies on the direct application of nonex-
pansive, continuous, and uniformly continuous functions in terms of metric spaces (X, d)
and Theorem 3. It is possible to study categorical aspects of metric spaces in terms of
metrics defined by relations, but we left the study of this topic for the future.

We continue in this paper to explain the definition of commonly used fuzzy metrics
by extending the definition of a metric space in terms of relation R taking values in unit
interval [0, 1].

4. Fuzzy Metrics

Now we can use the last theorem from the previous section to define a fuzzy metric
expanding the set {0, 1} to the interval [0, 1] and using arbitrary t-norm T instead of the
minimum t-norm that was used in the previous section:

Definition 7. A fuzzy metric on a set X is a function M : X× X× [0, ∞)→ [0, 1] satisfying the
following axioms for all x, y, z ∈ X and t, s ∈ [0, ∞):
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0. M(x, x, 0) = 0;
1. M(x, y, t) = 1 for all t > 0 if and only if x = y;
2. M(x, y, t) = M(y, x, t);
3. T(M(x, y, t), M(y, z, s)) ≤ M(x, z, t + s);
4. M(x, y,−) : [0, ∞)→ [0, 1] is left-semicontinuous.

The above definition, with the more strict axiom (0):

0. M(x, y, 0) = 0 ∀x, y ∈ X,

is a definition of a fuzzy metric introduced by Kramosil and Michalek [5] for a measurable
real function T : [0, 1]× [0, 1]→ [0, 1] such that T(1, 1) = 1 and revised by Grabiec [9] for a
t-norm T. To be precise, Kramosil and Michalek used the additional axiom:

5. M(x, y,−) : (0, ∞)→ [0, 1] is nondecreasing, and limt→∞ M(x, y, t) = 1.

In the case of Definition 7, the nondecreasing condition is fulfilled in the case of any t-
norm T, and the condition limt→∞ M(x, y, t) = 1 is skipped by other authors since it comes
from the statistical metric spaces and does not play any role in the context of fuzzy sets.

Example 1. These examples fulfill fuzzy metrics axioms (0)–(2) and (4) and axiom (3) for the
corresponding t-norm and for any crisp metric d that is used for the construction:

1.

M1(x, y, t) =

{
e−

d(x,y)
t , if t 6= 0

0, otherwise.

Axiom (3) is fulfilled for product t-norm T.
2.

M2(x, y, t) =

{
t

t+d(x,y) , if t 6= 0

0, otherwise;

Axiom (3) is fulfilled for any t-norm T.

In the same way as mentioned in the previous section, it is possible to define the fuzzy
metric M : X× X× (0, ∞)→ [0, 1] (not including 0 in the interval (0, ∞)), requesting M to
fulfill axioms (1)–(4) and skipping axiom (0).

Defining fuzzy metrics in this way, we should clearly understand that the value
M(x, y, t) shows the degree to which d(x, y) < t for a metric d, which is explained by the
roots of this definition proposed in the previous section.

The conditions (0) and (1) are quite strong especially when they are used together.
Condition (0) shows that M(x, y, 0) = 0 since, for any metric and for all x, y ∈ X, condition
d(x, y) < 0 is not fulfilled, i.e., d(x, y) ≥ 0 for any x, y ∈ X. In the fuzzy sense, this leads
to the assumption that if d(x, y) ≥ t, then M(x, y, t) should be always 0. The condition
(1) leads to the assumption that, if d(x, y) < t, then M(x, y, t) = 1, but it is not clear why
it is fulfilled only in the case x = y. Both assumptions together lead us to the crisp case
explained in the previous section.

In [6], the authors slightly modified axioms (1)–(4) and defined a fuzzy metric as a
function M with domain X× X× (0, ∞):

Definition 8 ([6]). A fuzzy metric on a set X is a function M : X×X× (0, ∞)→ [0, 1] satisfying
the following axioms for all x, y, z ∈ X and t, s ∈ (0, ∞):

0. M(x, y, t) > 0;
1. M(x, y, t) = 1 if and only if x = y;
2. M(x, y, t) = M(y, x, t);
3. T(M(x, y, t), M(y, z, s)) ≤ M(x, z, t + s);
4. M(x, y,−) : [0, ∞)→ [0, 1] is continuous.
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In this definition, the authors do not allow function M to take the value 0 and allow it
to take the value 1 only when x = y:

M(x, x, t) = 1.

These requirements are quite strong.
Additionally, in using this definition, it is impossible to construct a crisp metric d from

the function M even if we use the definition of fuzzy linear order R, where R(d(x, y), t) =
M(x, y, t). This means that it is not clear which metric d the fuzzy metric M fuzzifies.

To overcome the problem of revealing the metric d that is fuzzified by M, we propose
two approaches. The first approach is to define the fuzzy metric as the function M :
X× X× [0, ∞)→ [0, 1]:

M(x, y, t) =

{
0, if t < tx,y.
R(x, y, t), otherwise,

(4)

where R(x, y, t) satisfies conditions (2) and (3) from Definition 7.
The second idea is to define a fuzzy metric as a function M : X× X× [0, ∞)→ [0, 1]

by

M(x, y, t) =

{
1, if t > tx,y.
R(x, y, t), otherwise,

(5)

where R(x, y, t) satisfies conditions (2) and (3) from Definition 7. In this case, we also
require M to be continuous. In both cases, we can construct a crisp metric d(x, y) = tx,y that
is fuzzified by M. The second idea is more natural, and a similar approach was investigated
in [31].

Example 2. These examples fulfill condition (5) and axioms (2) and (3) from Definition 7 for the
corresponding t-norm and for any crisp metric d:

1.

M3(x, y, t) =

{
1, if d(x, y) < t
max(1− |d(x, y)− t|, 0), otherwise.

Axiom (3) is fulfilled for the Łukasiewicz t-norm.
2.

M4(x, y, t) =

{
1, if d(x, y) < t
e−|d(x,y)−t|, otherwise.

Axiom (3) is fulfilled for the product t-norm.
3.

M5(x, y, t) =

{
1, if d(x, y) < t

1
1+|d(x,y)−t| , otherwise.

Axiom (3) is fulfilled for the Hamacher t-norm.

Here, we propose axioms sufficient for the fuzzy metric to generate a crisp metric:

Theorem 4. Let function M : X × X × [0, ∞) → [0, 1] satisfy the following axioms for all
x, y, z ∈ X and t, s ∈ [0, ∞):

0. M(x, y, 0) = 0;
1. M(x, y, t) = 1 for all t > 0, if and only if x = y;
2. M(x, y, t) = M(y, x, t);
3. T(M(x, y, t), M(y, z, s)) ≤ M(x, z, t + s);
4. M(x, y,−) : [0, ∞)→ [0, 1] is continuous for x 6= y.
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Then, the function d : X× X → [0, ∞) defined as d(x, y) = inf{t : R(x, y, t) > λ}, where
λ is a fixed real number from interval (0, 1), is a metric if λ is an idempotent element for t-norm T.

Proof. We prove that d, defined as d(x, y) = inf{t : R(x, y, t) > λ}, satisfies the axioms
from Definition 6:

1. If x = y, then R(x, y, t) = 1 for all t > 0, and d(x, y) = inf{t : R(x, y, t) > λ} = 0.
On the other hand, if d(x, y) = 0, then inf{t : R(x, y, t) > λ} = 0. Thus, since M is
continuous by the third argument and M(x, y, 0) = 0, we conclude x = y. Actually,
to prove this theorem, it is enough to request that function M is continuous only at 0
and is left-semicontinuous for other points.

2. d(x, y) = inf{t : R(x, y, t) > λ} = inf{t : R(y, x, t) > λ} = d(y, x), since R(x, y, t) =
R(y, x, t).

3. Now we prove that d(x, y) + d(y, z) ≥ d(x, z). Indeed, if d(x, y) + d(y, z) < d(x, z),
then there exist t, s ∈ (0, ∞), such that d(x, y) + d(y, z) < t + s < d(x, z) and d(x, y) <
t & d(y, z) < s, where d(x, y) = inf{t1 : R(x, y, t1) > λ} < t and d(y, z) = inf{t2 :
R(y, z, t2) > λ} < s. Thus, R(x, y, t) > λ and R(y, z, s) > λ, but λ = T(λ, λ) <
T(R(x, y, t), R(y, z, s)) ≤ R(x, z, t + s), which means R(x, z, t + s) > λ. However,
this leads to a contradiction with R(x, z, t + s) < λ, which is fulfilled since t + s <
d(x, z) = inf{t3 : R(x, z, t3) > λ}.

Example 3. Function M2 from Example 1 fulfill axioms (0)–(4) of Theorem 4. Thus, it is possible
to apply the result of Theorem 4 and build a metric d(x, y) = inf{t : M2(x, y, t) > λ}, where λ is
a fixed real number from interval (0, 1).

Let us come back to our initial idea of defining a metric through an order, but this
time in a fuzzy sense. We first introduce a definition of a compatible fuzzy relation with an
order ≤.

Definition 9. Let ≤ be a linear order on a set S. Fuzzy relation R : S × S → [0, 1] is called
compatible with≤ if and only if R(a, b) ≤ R(a, c) whenever b ≤ c and R(b, c) ≤ R(a, c) whenever
a ≤ b.

This property can be interpreted as follows: if we have a three-element chain a < b < c,
then the degree that a < c is greater then the degree of a < b and of b < c.

The next theorem shows that it is enough for a fuzzy relation R : X × X → [0, 1],
defined as R(d(x, y), t) for a metric d, to be compatible with ≤ (where ≤ is a linear order
on S = [0, ∞)) to fulfill the axioms from Definition 7. Thus, we do not need to require
T-transitivity of the fuzzy relation R.

Theorem 5. Let d : X × X → [0, ∞) be a metric. A function M : X × X × [0, ∞) → [0, 1],
defined as M(x, y, t) = R(d(x, y), t), where R : [0, ∞)× [0, ∞)→ [0, 1], which is compatible with
≤ on [0, ∞), is left-semicontinuous with respect to the second argument, and satisfies conditions

R(a, t) = 1 ∀t > 0 ⇐⇒ a = 0

R(0, 0) = 0,

is a fuzzy metric.

Proof. Let us prove that function M : X×X× [0, ∞)→ [0, 1] satisfies the following axioms
for all x, y, z ∈ X and t, s ∈ [0, ∞):

0. M(x, x, 0) = 0, since R(0, 0) = 0;
1. M(x, y, t) = R(d(x, y), t) = 1 for all t > 0 if and only if d(x, y) = 0, but that it is

fulfilled if and only if x = y;
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2. M(x, y, t) = M(y, x, t) ∀x, y ∈ X, ∀t ∈ [0, ∞) since d(x, y) = d(y, x);
3.

T(M(x, y, t), M(y, z, s)) = T(R(d(x, y), t), R(d(y, z), s)) ≤

R(d(x, y) + d(y, z), t + s) ≤ R(d(x, z), t + s).

Thus, T(M(x, y, t), M(y, z, s)) ≤ M(x, z, t + s) ∀x, y, z ∈ X, ∀s, t ∈ [0, ∞).

Example 4. Functions M3, M4, and M5 from Example 2 can be constructed as Ri(d(x, y), t),
where Ri : [0, ∞)× [0, ∞)→ [0, 1] are represented as in Theorem 1:

Ri(a, b) =

{
1, if a ≤ b
Ei, otherwise,

where

1. E1(a, b) = max(1− |a− b|, 0);
2. E2(a, b) = e−|a−b|;
3. E3(a, b) = 1

1+|a−b| .

5. Extensional Fuzzy Metrics

In this section, we invite the reader to trace the development of the ideas of the
previous sections. Whereas in the previous section we fuzzified the statement d(x, y) < t,
where d is a metric and t ∈ [0, ∞), here we explain the idea of fuzzification of the statement
d(x, y) = t.

Consider a metric space (X, d) and a T-equivalence relation E. We define a fuzzy
metric as an extension of the given metric d with respect to a T-equivalence relation E on
the set [0, ∞) (codomain of the metric d). In the definition of an extensional fuzzy metric,
we use a strongly linear T-E-order on [0, ∞), defined as:

RE(a, b) =

{
1, if a ≤ b
E(a, b), otherwise

. (6)

Thus, whereas in the previous section we used a fuzzy order relation, here we rely on
a fuzzy equivalence relation. This approach has been developed in [32]; we outline here
the main ideas to illustrate the approach and the logical development of the ideas of the
previous section.

We propose to define a fuzzy metric as the degree to which the observed distance
d(x, y) between points x and y is equal to the real number t, or equal in a certain fuzzy
sense determined by fuzzy equivalence E. That is, we define a fuzzy metric (called the
E-d-metric) as a mapping MEd : X× X× [0, ∞)→ [0, 1] as follows:

Definition 10. Let d be a crisp metric on a set X, t ∈ [0, ∞) and E be a fuzzy T-equivalence. Let a
mapping MEd : X× X× [0, ∞)→ [0, 1] be defined as:

MEd(x, y, t) = E(d(x, y), t). (7)

The fuzzy set MEd is called an extensional fuzzy metric determined by metric d and fuzzy
equivalence E or E-d-metric if the following condition is satisfied:

T(E(d(x, y), t), E(d(y, z), s)) ≤ RE(d(x, z), t + s). (8)

Condition (8) shows that d(x, y) = t and that d(y, z) = s implies d(x, z) ≤ t + s in a
certain fuzzy sense. In other words, it is a fuzzy version of the triangular inequality.
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If we have a crisp fuzzy equivalence relation:

E(a, b) =

{
1, if a = b
0, otherwise

,

and corresponding T-E-order, then condition (8) holds for any t-norm T and metric d; it
actually follows from the triangular inequality of the metric d.

We finish this section by noting the fact that the inequality (8) is quite natural and is
fulfilled for Archimedean t-norms automatically.

Theorem 6. Let T be a continuous Archimedean t-norm, and let T-equivalence be defined by:

E(a, b) = g(−1)(|a− b|),

where g is an additive generator of t-norm T. Then, the condition

T(E(d(x, y), t), E(d(y, z), s)) ≤ RE(d(x, z), t + s)

is fulfilled for any metric d.

Example 5. Let d be a crisp metric, t ∈ [0, ∞). Then, we have the following examples of the
E-d-metric:

• MELd(x, y, t) = EL(d(x, y), t) = max(1− |d(x, y)− t|, 0) in the case of T, which is the
Łukasiewicz t-norm;

• MEPd(x, y, t) = EP(d(x, y), t) = e−|d(x,y)−t| in the case of T, which is the product t-norm;
• MEHd(x, y, t) = EH(d(x, y), t) = 1

1+|d(x,y)−t| in the case of T, which is the Hamacher
t-norm.

6. Conclusions

In this paper, we explained the definitions of fuzzy metrics used in the literature
and analyzed which notions they fuzzified. This explanation is important for finding
possible applications, since in applying fuzzy constructions, we should clearly understand
the essence of the construction. Thus, we draw the reader’s attention to the fact that the
classical fuzzy metric definition directly arises from the fuzzification of the expression
d(x, y) < t. To explain this, first we studied which properties fulfill the crisp relation
R : X× X× [0, ∞)→ {0, 1} to uniquely define a crisp metric d : X× X → [0, ∞). Then, we
fuzzified these conditions in order to obtain a fuzzy metric. Namely, we allowed relation R
to be fuzzy or to take values in the interval [0, 1], and we used the t-norm as a generalized
conjunction instead of a crisp conjunction. Then, we analyzed the obtained conditions.
Since relation R in the crisp case determines a metric d and is defined as R(x, y, t) = 1 if
and only if d(x, y) < t, we invite the reader to understand that, in Kramosil–Michalek,
Grabisch, and George–Veeramani fuzzy metric cases, the expression d(x, y) < t is fuzzified.
We also studied which conditions a fuzzy relation should fulfill in order to determine a
fuzzy metric. For completeness, we recalled and revised the definition of a fuzzy metric
that fuzzifies the expression d(x, y) = t, as introduced in [32].
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