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Abstract: In the context of the continuous development and maturity of intelligent manufacturing
and intelligent logistics, it has been observed that the majority of vehicle maintenance in EMU trains
still relies on traditional methods, which are characterized by excessive manual intervention and low
efficiency. To address these deficiencies, the present study proposes the integration of Automatic
Guided Vehicles (AGVs) to improve the traditional maintenance processes, thereby enhancing the
efficiency and quality of vehicle maintenance. Specifically, this research focuses on the scenario of the
maintenance workshop in EMU trains and investigates the task allocation problem for multiple AGVs.
Taking into consideration factors such as the maximum load capacity of AGVs, remaining battery
power, and task execution time, a mathematical model is formulated with the objective of minimizing
the total distance and time required to complete all tasks. A multi-population genetic algorithm is
designed to solve the model. The effectiveness of the proposed model and algorithm is validated
through simulation experiments, considering both small-scale and large-scale scenarios. The results
indicate that the multi-population genetic algorithm outperforms the particle swarm algorithm and
the genetic algorithm in terms of stability, optimization performance, and convergence. This research
provides scientific guidance and practical insights for enterprises adopting task allocation strategies
using multiple AGVs.

Keywords: automated guided vehicle; task allocation; multi-population genetic algorithm; particle
swarm optimization; genetic algorithm

MSC: 65D99; 90B06

1. Introduction

Intelligent manufacturing has emerged as a primary means of enhancing a nation’s
industrial competitiveness [1]. Within the framework of “Industry 4.0” and intelligent
manufacturing, intelligent logistics is considered a fundamental and crucial component
in achieving intelligent manufacturing objectives [2]. In this context, Automated Guided
Vehicles (AGVs) are extensively utilized as indispensable material handling equipment
to fulfill the objectives of intelligent logistics. Regarding intelligent manufacturing, China
has witnessed a continuous elevation in its railway equipment capabilities. Over the
span of ten years, from 2012 to 2021, the nationwide inventory of railway passenger cars
has increased from 57,700 to 78,000 units, while the number of high-speed train sets has
escalated from 825 to 4153 sets [3]. With the ongoing growth in high-speed train sets, a
corresponding surge in equipment maintenance has also been observed. The maintenance
of high-speed train sets constitutes a critical link in ensuring their seamless operation. The
train unit maintenance workshop possesses several significant characteristics that have
a crucial impact on its operations and efficiency. Firstly, the workshop is equipped with
advanced equipment and technology specifically designed to meet the maintenance needs
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of high-speed train sets. These technologies cover mechanical, electrical, and electronic
systems, enabling comprehensive and efficient repair tasks. Secondly, the workshop faces
diverse maintenance tasks that encompass various fields such as mechanical, electrical,
and electronic repairs. These tasks require specialized skills and expertise to ensure the
effective and reliable operation of the train sets. Thirdly, due to the critical importance
of maintenance for ensuring safe operations, the workshop operates under strict time
constraints. Timely completion of repair tasks is essential to ensuring the prompt return of
train sets to operation. Fourthly, the workshop needs to manage a large number of train
sets, which involves effective vehicle allocation, scheduling, and maintenance planning
to handle multiple train set repairs simultaneously. Fifthly, the workshop must meet the
power demands of train sets and maintenance equipment. A stable and reliable power
supply is essential to guaranteeing continuous operation. Sixthly, vehicle scheduling and
transportation present significant challenges for the workshop. Proper vehicle scheduling
and route planning are crucial for the timely delivery of train sets and transportation to the
workshop. Seventhly, safety and quality control are paramount concerns for the workshop.
Strict adherence to safety protocols and reinforcement of quality control measures are
essential for ensuring operational safety and reliability.

In summary, the train unit maintenance workshop is a complex and efficient system
that requires specialized skills and effective management to ensure the safe and reliable
maintenance of high-speed train sets. This study explores the multi-AGV task allocation
problem in the workshop, addressing challenges related to vehicle management, scheduling,
and task assignment, thus improving the operational efficiency and maintenance quality of
the workshop. As a result, this research optimizes the workshop’s operations and enhances
the overall performance of the maintenance system.

2. Literature Review

The multi-AGV task allocation problem refers to the allocation of tasks to multiple
AGVs and scheduling the execution order of tasks, with the objective of maximizing the
efficiency and quality of task completion. Due to its complexity and intractability, the
multi-AGV task allocation problem is a typical NP-hard problem [4]. In the domain of task
allocation models, there are primarily single-objective and multi-objective planning models.
Single-objective planning models, such as Lu et al. [5], aim to minimize the total completion
time as the objective function to optimize the task allocation and sequencing of mobile
robots. Zhuang et al. [6] focus on minimizing the number of shelf transportation operations
as the objective, considering handling conflicts in the task allocation model for mobile
robots. Li et al. [7] consider minimizing the maximum travel time of AGVs and propose an
AGV task allocation algorithm based on shelf priority. Multi-objective planning models,
like Li Teng et al. [8], establish a two-level task allocation model, minimizing the total cost
at the upper level and minimizing the number of idle robots at the lower level. To mitigate
uncertainties and discrepancies between the model and actual operational conditions, a
robust optimization model was further developed. Zou et al. [9] design a greedy algorithm
to construct a multi-objective task allocation model, optimizing the total energy consump-
tion of AGVs, the number of AGVs used, and the task timeliness that affects customer
satisfaction. Li et al. [10] have developed a dual-objective, energy-saving single-load AGV
planning model for multiple transportation tasks, aiming to minimize transportation dis-
tance and energy consumption. Mousavi et al. [11], considering the battery level of AGVs,
optimize AGV task scheduling with the objectives of minimizing completion time and the
number of AGVs. Regarding algorithm design, most current studies employ metaheuristic
algorithms [12–16] for solving the task allocation problem. In recent years, with the ad-
vancement of machine learning and deep learning [17–21], these methods have gradually
found applications in addressing task allocation problems. Zou et al. [22] proposed the
Discrete Artificial Bee Colony algorithm (DABC) and other novel advanced techniques for
task allocation problem-solving. Tang et al. [23] designed a two-layer genetic algorithm,
with the inner layer optimizing the task scheduling sequence of AGVs and picking stations
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and the results being fed back to the outer layer model to optimize equipment configu-
ration and sorting station layout. Yue et al. [24] introduced an enhanced hybrid genetic
algorithm and particle swarm optimization algorithm (PSO-GA) to establish multi-AGV
task allocation models. Liu et al. [25] proposed an improved particle swarm optimization
algorithm to solve multi-objective task allocation models, exhibiting enhancements in
population convergence speed and algorithm performance. Tang et al. [26] presented a
novel approach based on classical soft Actor-Critic and hierarchical reinforcement learning
algorithms, namely the layered soft Actor-Critic algorithm, to address dynamic scheduling
problems in order picking. Yang Wei et al. [27] proposed a variable neighborhood simulated
annealing algorithm to solve the job scheduling problem of mobile robots in warehousing
systems. They designed three types of neighborhood perturbation operations, including
insertion, swap, and “2-opt”, to systematically transform the search space and improve
the algorithm’s search ability and scope. Yang Zhifei et al. [28] extracted the advantages
of different algorithms and proposed an adaptive multi-objective genetic-differential evo-
lution algorithm to address robot dispatching tasks. They introduced a new multi-stage
real-number coding rule and incorporated elite and adaptive strategies to enhance the
algorithm’s convergence speed. Song Wei et al. [29] applied an ant colony algorithm to
process task sequences and then used a genetic algorithm to allocate subsets of tasks for
task chaining. Xu Liyun et al. [30] improved the encoding method and genetic operators of
the cultural genetic algorithm and demonstrated through simulation experiments that the
improved algorithm achieved faster convergence. In terms of applying these algorithms to
other research domains, Chen et al. [31] introduced a multi-agent control structure model
to solve complex distributed resource planning problems by leveraging the advantages
of multi-agent systems. Kler et al. [32] utilized data analysis to optimize inventory and
supply chain networks in meat and poultry farms, aiming to achieve the goals of a green
supply chain. Ntawuzumunsi et al. [21] proposed an energy-efficient algorithm based
on data aggregation technology for communication between intelligent beekeeping de-
vices. Joshi et al. [20] investigated how machine learning techniques can be used to predict
phishing attacks in blockchain networks.

Existing research has demonstrated the wide applicability and potential of various
intelligent algorithms in different domains, contributing to improved efficiency, resource
utilization, and problem-solving capabilities. Regarding the AGV task allocation research,
the focus has mainly been on the allocation of only one task per AGV within a certain
period. Researchers have constructed single-objective and multi-objective models and
made improvements to the original algorithms to enhance their convergence and solution
performance. However, some of the improved algorithms have resulted in increased
complexity in the theoretical derivation steps and higher computational requirements. In
the case of AGVs operating in a single-task mode, system optimization is constrained,
and as task volume escalates, task backlog issues can emerge. Increasing the number of
AGVs for task execution may exert pressure on traffic, thereby impeding overall system
efficiency improvements. Furthermore, existing research has primarily concentrated on
algorithmic enhancements while neglecting optimization pertaining to research scenarios
and model characteristics. Hence, this paper aims to address these gaps by focusing on
the research scenario of a high-speed train maintenance workshop. The objective is to
minimize the total distance and time required to complete all tasks while considering
constraints such as the AGV’s maximum load capacity, remaining battery level, and time.
Multiple population-based genetic algorithms are designed to solve the task allocation
model. Theoretical contributions are made to the field of multi-AGV task allocation, and
practical implications are expected to enhance the overall efficiency of the logistics system
in the high-speed train maintenance workshop.

3. Problem Description and Hypotheses

In the logistics system of a high-speed train maintenance workshop, Automated
Guided Vehicles (AGVs) are responsible for the transportation of all raw materials within
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the workshop. Their primary task involves delivering raw materials from the storage points
to the designated maintenance workstation points. Considering the specific characteristics
of the high-speed train maintenance workshop, it is worth noting that different systems
can undergo maintenance simultaneously at the same workstation. In other words, when
repairing a specific section of a train car, there is a unique target maintenance workstation.
In a given time period, the high-speed train maintenance workshop generates a set of n
delivery tasks, denoted as N = {1, 2, . . .. . .n}. These tasks can be grouped as Gk = {i, j . . .. . .|i,
j ∈ N}. The workshop has a total of m AGVs available for task execution, forming the set
K = {1, 2, . . .. . .m}. As the AGVs purchased for the workshop are of the same model, each
AGV shares the same maximum load capacity and travel distance when fully charged. To
closely resemble real-world scenarios, this study considers the delivery tasks performed
by AGVs at non-saturated battery levels. With respect to the discharge characteristics of
lithium batteries, the remaining travel distance decreases rapidly as battery usage increases.
To align with the maintenance rhythm, each task i should be assigned in such a manner
that the AGV’s arrival time is no earlier than the task generation time ai, and the task
completion time falls within the task deadline bi. Given these conditions, how can the task
grouping and allocation problem be formulated to maximize the overall system efficiency?
Specifically, the optimization objectives are to minimize the total travel distance under the
task grouping and to minimize the AGV task completion time. Constraints such as the
AGV’s maximum load capacity, remaining battery level, and time availability are taken
into consideration. By establishing a mathematical model, an optimal task grouping, and
allocation scheme can be derived.

In order to account for the discrepancies between the model’s solution and the actual
operational scenario, the following assumptions should be met:

(1) The maintenance task represents the comprehensive system of the first section of a
train car.

(2) The inventory of raw materials at the storage points adequately meets the require-
ments of the delivery tasks.

(3) AGV travel paths can be reliably and consistently planned without encountering
conflicts.

(4) The consideration of raw material volumes and the loading/unloading times of AGVs
is omitted.

(5) Under normal circumstances, all AGVs maintain a uniform speed during travel.
(6) When executing a task group, each required storage point for a task can be traversed

by an AGV only once.
(7) AGVs start their operations by uniformly parking at a designated location, known as

the starting point, with Task 1 assigned as the initial task.
(8) Upon completion of all tasks within a task group, AGVs park at the target maintenance

workstation, referred to as the endpoint, with Task n designated as the final task.

4. Model Establishment

Based on the problem description above, the model parameters and definitions of
decision variables are as follows:

Model Parameters:
W: represents the maximum load capacity of each AGV;
wi: represents the weight of raw materials required for task i;
ek: represents the remaining battery level of AGV k;
f : represents the safety battery level expressed as a percentage;
L: represents the function that relates the percentage of battery consumption to the

remaining travel distance for each AGV;
ai: represents the generation time of task i;
bi: represents the deadline time of task i;
v: represents the travel speed of each AGV;
di,j,k: represents the shortest distance from task i to task j for AGV k;
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DGk ,k: represents the shortest total distance for AGV k to complete task group Gk;
ti,j,k: represents the minimum time from task i to task j for AGV k;
t′i,k: represents the time required for AGV k to complete task i;
TGk ,k: represents the minimum total time for AGV k to complete task group Gk.
Decision Variables:

xi,j,k =

{
1, AGV k travels f rom task i to task j
0, others

(1)

yi,k =

{
1, task i is delivered by AGV k
0, others

(2)

Objective function:
Z = min

{
DGk ,k +

(
maxTGk ,k

)}
(3)

Constraint function:

DGk ,k =
n

∑
i=1

n

∑
j=1

m

∑
k=1

xi,j,kdi,j,k (4)

TGk ,k =
n

∑
i=1

n

∑
j=1

m

∑
k=1

xi,j,kti,j,k (5)

ti,j,k =
di,j,k

v
, ∀i, j ∈ N, k ∈ K (6)

m

∑
k=1

yi,k = 1, ∀i ∈ N (7)

n

∑
i=1

xi,j,k = yj,k, ∀j ∈ N, k ∈ K (8)

n

∑
j=1

xi,j,k = yi,k, ∀i ∈ N, k ∈ K (9)

m

∑
k=1

wiyi,k ≤W, ∀i ∈ N (10)

xi,j,k(t′i,k + ti,j,k − aj) ≤ 0, ∀i, j ∈ N(i, j 6= 1, n), k ∈ K (11)

m

∑
k=1

xi,j,k(t′i,k + ti,j,k + t′j,k)− bi ≤ 0, ∀i, j ∈ N(i, j 6= 1, n) (12)

L(x) = ax2 + bx + c (13)

n

∑
i=1

n

∑
j=1

m

∑
k=1

xi,j,kdi,j,k ≤ L(1− ek)− L(1− f ) (14)

n−1

∑
j=2

x1,j,k = 1, ∀k ∈ K (15)

n−1

∑
i=2

xi,n,k = 1, ∀k ∈ K (16)

xi,j,k ∈ (0, 1), ∀i, j ∈ N, k ∈ K
yi,k ∈ (0, 1), ∀i ∈ N, k ∈ K

(17)
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In the aforementioned model, xi,j,k and yi,j,k are binary decision variables taking values
of 0 or 1. Equation (3) represents the objective function, which aims to minimize the total
distance and time required to complete all tasks. Equations (4) and (5) are utilized to
calculate the total distance and total time, respectively, for completing all tasks within each
task group. Equation (6) computes the completion time between two tasks based on speed
and distance. Constraint (7) ensures that each task is assigned to an AGV. Constraints
(8) and (9) guarantee that tasks within the same task group are exclusively assigned to a
single AGV. Constraint (10) ensures that the weight of each task group does not exceed
the maximum load capacity of the AGV. Constraint (11) guarantees that an AGV, which
sequentially performs tasks i and j, arrives at the storage point of task j no earlier than the
task generation time of task j after completing task i. Constraint (12) ensures that the total
completion time of the task group does not exceed the deadline time of each individual task.
Equation (13) expresses the relationship between the AGV’s battery consumption curve
and the remaining travel distance [33]. Constraint (14) ensures that each AGV operates
within its battery constraint range, with a safety battery level reserved for returning to the
charging area. Equation (15) states that each AGV must pass through task 1 and can do
so only once. Equation (16) states that each AGV must pass through task n and can do so
only once.

5. Algorithm Design

The multi-population genetic algorithm [34–37] is an optimization algorithm based
on the genetic algorithm that enhances search capability and global optimization perfor-
mance by introducing multiple independent populations. Each population functions as
an independent subsystem of the genetic algorithm, possessing its own set of individuals
and evolutionary process. Below is a detailed introduction to the main characteristics of
the Multi-Population Genetic Algorithm (MGA) and the algorithm design process in this
paper, as shown in Figure 1.
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5.1. Main Characteristics of the Algorithm

(1) Multiple Independent Populations: The multi-population genetic algorithm consists
of several independent populations, each with its own unique set of individuals and
evolutionary process. Each population can be configured with distinct parameters
and operational strategies.

(2) Population Interaction: Information and individuals are shared among multiple pop-
ulations through exchange strategies, facilitating global search capability. Exchange
strategies may include periodic individual migration, sharing of optimal solutions,
and exchange operations.

(3) Parallel Computation: The ability for multiple populations to undergo parallel evo-
lution endows the multi-population genetic algorithm with high computational effi-
ciency and search capability.

5.2. Algorithm Design Process

(1) Encoding: The encoding process involves generating a sequence of mutually distinct
natural numbers from 1 to n, where n represents the number of delivery tasks. This
sequence constructs a permutation representing a combination of delivery tasks, with
each number denoting a specific task. Each permutation corresponds to a potential
task allocation scheme. Adhering to the given constraints, the elements of the solution
are systematically assigned to the delivery routes of the respective AGVs. To elaborate,
consider the example solution 123456. The first element of the solution represents the
first target point for the delivery route of the first AGV. It is then checked whether this
allocation adheres to the imposed constraints, including the AGV’s maximum load
capacity, remaining battery level, and time requirements. If the constraints are met,
the second element of the solution is assigned as the second task point for the first
AGV. In cases where the constraints are not satisfied, indicating that the task cannot
be assigned to the first AGV, it is then assigned as the first task point for the second
AGV, and this process continues iteratively.

(2) Initializing Populations: In this study, four populations are created, each comprising
20 individuals (solutions). To generate these individuals, 20 randomly generated
non-repeating sequences between 1 and n, where n represents the number of delivery
tasks, are utilized. Each individual within a population represents a distinct task
allocation solution. To promote diversity and facilitate thorough exploration of the
search space, unique crossover and mutation probabilities are randomly assigned to
each population. The crossover probability ranges from 0.7 to 0.9, while the mutation
probability ranges from 0.001 to 0.05. Both probabilities are generated using random
number distributions.

(3) Selection, Crossover, and Mutation: Firstly, fitness evaluation is conducted for each
individual within the population, with the fitness function value being the reciprocal
of the objective function value. By computing the total distance and time of the corre-
sponding task allocation solution for each individual, their respective fitness values
are derived. Lower fitness values indicate more superior task allocation solutions,
increasing the likelihood of individuals being selected as parents to produce the next
generation. Subsequently, these individuals are randomly paired for information
exchange through the crossover operation. This process introduces diversity among
individuals within the population, facilitating exploration of a broader solution space.
Lastly, following the crossover operation, the genes of the offspring individuals are
subjected to mutation with a certain probability. The mutation operation introduces
new gene combinations within individuals, further enhancing population diversity
and avoiding being trapped in local optima.

(4) Reverse Evolution: In order to enhance the local search capability of the genetic
algorithm, a reverse evolution operation is introduced after the selection, crossover,
and mutation operations. The reverse evolution operation randomly selects a gene
segment from the parent and performs a reverse order operation on that segment.
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Subsequently, the fitness value of the parent after the reverse operation is calculated
to determine whether to accept the parent with the reverse operation. The reverse
operation is only effective if the fitness of the parent improves after the reverse
operation, in which case it is included in the next generation of individuals. Otherwise,
the reverse operation is considered ineffective.

(5) Migration Operator: To facilitate information exchange among populations, a strategy
of periodically introducing the best individual from one population into another pop-
ulation is employed. Specifically, the best individual from one population is selected
to replace the worst individual in another population. Through this information
exchange mechanism, the flow and sharing of information among populations are
encouraged. Introducing the best individual allows beneficial genetic information to
be transmitted to other populations, thereby enhancing their overall fitness. Simulta-
neously, replacing the worst individual helps prevent populations from prematurely
converging to local optima and increases the diversity of the populations.

(6) Elite Population: To enhance information exchange and sharing among populations,
a strategy of selecting the best individuals from other populations and placing them
into a special elite population for preservation is adopted. The elite population can
be viewed as a collection of the best solutions from each population. By regularly
selecting the best individuals from other populations and adding them to the elite
population, excellent solutions from various populations can be accumulated and
shared with other populations for evolution.

(7) Termination Criteria: To further enhance the stability and convergence of the algo-
rithm, the best individual in the elite population is required to maintain its status as
the best solution for a consecutive number of generations equal to or greater than 10.
In other words, when the best individual in the elite population remains unchanged
for 10 or more consecutive generations, it can be considered that the algorithm has
reached a relatively stable state, and the iteration process can be terminated.

6. Simulation Experiments and Analysis

To verify the correctness of the mathematical model and the effectiveness of the Multi-
population Genetic Algorithm (MGA), comparative experiments were conducted in this
study. The experiments were designed and implemented using Matlab. The results obtained
from Particle Swarm Optimization (PSO) and the Genetic Algorithm (GA) were compared
and analyzed against the results of the Multi-Population Genetic Algorithm. Through
this comparative analysis, the solving capabilities and performance of each algorithm can
be evaluated, confirming the correctness of the mathematical model, and validating the
effectiveness of the Multi-Population Genetic Algorithm in problem-solving.

In this study, an 80 × 80 maintenance workshop for high-speed trains was established,
with the starting point of tasks set at (1, 1) and the destination point at (80, 80). Randomly
generated obstacle distributions were introduced to represent walls, shelves, and other
objects within the maintenance workshop. These obstacles contribute to creating a more
realistic map of the maintenance workshop, thereby enhancing the authenticity and reli-
ability of the experiments. By incorporating randomly generated obstacle distributions,
various constraints and challenges present in real-world scenarios can be considered during
the simulation experiments. Consequently, this approach allows for a more comprehen-
sive evaluation and optimization of the operational efficiency within the maintenance
workshop.

6.1. Small-Scale Simulation Experiment

Assuming the maintenance workshop is equipped with five Automatic Guided Ve-
hicles (AGVs) capable of executing distribution tasks. Each AGV has a full battery range
of 200 km. To ensure the safe operation of AGVs, a safety battery level of 10% of the total
battery capacity is set, allowing AGVs to maintain sufficient charge to return to the charging
area during their journeys. The remaining battery percentages for each AGV are shown in
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Table 1. Additionally, each AGV has a maximum load capacity of 100 kg and a travel speed
of 20 km/h. For further investigation of the performance of distribution tasks, 20 sets of
distribution tasks were randomly selected through code. The locations of these tasks are
between the starting point and the destination point, with random coordinates assigned to
each task. The dataset includes the coordinates of the task points, task generation times,
task completion deadlines, and the weight of the materials, as presented in Table 2.

Table 1. Remaining Battery Levels of AGVs.

AGV No. Remaining Battery Percentage

1 67
2 88
3 96
4 78
5 76

Table 2. Task Information.

Task No. Task Points X Task Points Y Material Weight (kg) Task Generation Time (s) Task Deadline Time (s)

1 1 1 / / /
2 40 48 11 160 170
3 35 16 6 49 59
4 45 55 12 14 114
5 20 55 19 50 160
6 14 29 27 35 45
7 23 30 12 98 108
8 21 51 4 80 90
9 11 44 12 95 105
10 55 60 17 97 107
11 30 60 17 13 133
12 20 60 12 67 77
13 50 35 20 65 74
14 30 25 24 159 169
15 15 10 19 32 42
16 30 5 7 61 71
17 10 20 19 75 85
18 5 30 3 157 167
19 20 40 12 87 97
20 15 55 17 76 86
21 40 60 9 26 136
22 80 80 / / /

The algorithm was implemented in Matlab2021b with the following parameter settings:
Population size np = 20 Maximum iteration count Imax = 50. For the Particle Swarm
Algorithm (PSO): Inertia weight w = 0.01, Learning factors c1 = c2 = 1. For the Genetic
Algorithm (GA), the crossover probability p1 = 0.85 Mutation probability p2 = 0.1. For the
proposed Multi-population Genetic Algorithm (MGA), the number of populations is set to
mp = 4. The simulation results of the three algorithms for the multi-AGV task allocation
problem in the maintenance workshop are presented in Figure 2.

In Figure 2, the horizontal axis represents the number of iterations, and the vertical axis
represents the fitness value, which corresponds to the objective function in our model, i.e.,
the total sum of AGV’s running distance and delivery time under the given task allocation.
From Figure 2, it can be observed that as the number of iterations increases, the fitness
value continuously decreases until it reaches a stable state. Eventually, the optimal task
allocation result that minimizes the objective function is obtained. To eliminate the impact
of randomness on the experimental results, the algorithm parameters and experimental
scenarios were kept unchanged, and the experiment was repeated 50 times. The average
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optimal results and the number of iterations obtained from the statistical analysis are shown
in Table 3.
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Table 3. The average optimal results obtained from the algorithms.

Algorithm Average Optimal Results Average Number of Iterations

PSO 542 34
GA 574 48

MGA 528 31

According to Table 3, the Particle Swarm Optimization (PSO) algorithm found the
average optimal result of 542 in the 34th iteration, the Genetic Algorithm (GA) found
the average optimal result of 574 in the 48th iteration, and the Multi-population Genetic
Algorithm (MGA) found the average optimal result of 528 in the 31st iteration. Moreover,
the MGA achieved a better optimal result than the other two algorithms, indicating that the
proposed mathematical model is correct and effective and that the MGA exhibits superior
performance in terms of solving ability and efficiency.

From the above 50 experiments, the optimal results obtained from the three algorithms
are used for the multi-AGV task allocation search to obtain the task execution sequences,
as shown in Table 4. In Table 4, Task ID 1 represents the starting point, and Task ID
22 represents the endpoint. When the AGV task execution sequence is 1, it indicates that
the corresponding AGV vehicle was not assigned. From the contents of Table 4, it can be
observed that by using the multi-population genetic algorithm for the multi-AGV task
allocation model, three automatic guided vehicles (AGV1, AGV4, and AGV5) can complete
the 20 sets of delivery tasks, achieving dynamic optimality in matching the delivery of raw
materials with AGV vehicles.

Based on the multi-AGV task allocation results obtained from the three algorithms,
corresponding route maps were generated, denoted as Figure 3a–c, respectively. In the
figures, black dots represent randomly generated obstacles. From Figure 3c, it can be
observed that the route generated by the multi-population genetic algorithm successfully
avoids all obstacles and delivers all target points from the starting point to the endpoint.
This visually demonstrates the effectiveness of the multi-population genetic algorithm in
optimizing the task allocation order and path selection for the delivery tasks.
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Table 4. The optimized task combinations for the three algorithms.

Algorithm AGV No. The Task Execution Sequence

PSO 1 1

2 1-17-7-5-8-9-19-10-22

3 1

4 1-6-11-21-4-13-2-22

5 1-15-16-3-14-18-20-12-22

GA 1 1-17-6-9-20-5-8-22

2 1

3 1-15-16-12-11-21-10-4-22

4 1

5 1-3-13-2-14-18-19-7-22

MGA 1 1-17-7-14-18-2-10-22

2 1

3 1

4 1-16-3-13-19-9-11-21-4-22

5 1-15-6-5-12-20-8-22

6.2. Large-Scale Simulation Experiment

To further investigate the algorithm’s generalization, we increase the number of AGVs
to 4 and add 20 additional randomly generated delivery tasks based on the small-scale
case. The parameters for the additional AGVs and the information for the new tasks
are presented in Table 5 and Table 6, respectively. The other AGV parameters remain
unchanged.
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Figure 3. (a) The route generated by the Particle Swarm Optimization (PSO) algorithm for the small-
scale case; (b) The route generated by the Genetic Algorithm (GA) for the small-scale case; (c) The
route generated by the Multi-Population Genetic Algorithm (MGA) for the small-scale case. (The
black dots in the figure represent randomly generated obstacles.).

Table 5. Additional AGV Battery Residual Capacity.

AGV No. Remaining Battery Percentage

6 71
7 95
8 88
9 87

The algorithm in this study was implemented using Matlab2021b. To ensure con-
sistency between the small-scale and large-scale experiments, the algorithm parameters
were kept unchanged as specified in Section 5.1. The algorithm was run, and the iterative
convergence plot of the best solution was obtained, as shown in Figure 4. Additionally, the
optimal solutions and optimized task assignments were compiled and presented in Table 7.
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Table 6. Additional Task Information.

Task No. Task Points X Task Points Y Material Weight (kg) Task Generation Time (s) Task Deadline Time (s)

1 1 1 / / /
22 45 20 21 7 107
23 45 10 5 62 72
24 55 5 9 68 78
25 65 35 5 3 163
26 65 20 16 172 182
27 45 30 16 132 142
28 35 40 14 37 47
29 41 37 9 39 49
30 64 42 10 63 73
31 10 30 3 71 81
32 5 15 5 111 121
33 24 55 7 36 56
34 35 25 23 55 65
35 13 35 12 45 55
36 40 35 5 8 128
37 40 25 7 4 14
38 25 25 9 56 66
39 30 15 9 48 58
40 30 20 7 88 98
41 5 20 12 43 53
42 80 80 / / /
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In the case of large-scale instances, the Particle Swarm Optimization (PSO) algorithm
converges to the optimal solution around the 21st iteration, while the Genetic Algorithm
(GA) finds the optimal solution around the 18th iteration. On the other hand, the proposed
Multi-Group Genetic Algorithm (MGA) obtains the optimal solution around the 41st
iteration. In terms of computational efficiency, PSO takes approximately 1.974 s, GA takes
about 1.802 s, and MGA requires 6.886 s. Despite MGA’s longer computational time due to
its complex structure, it achieves significantly superior optimal results within a reasonable
computational time. This demonstrates the enhanced computational performance of MGA,
enabling it to generate superior task allocation solutions within a relatively short time.
MGA is suitable for multi-AGV task allocation problems because it efficiently generates
feasible task allocation solutions. Although its computational time is slightly longer than
other algorithms, it can attain significantly better results within the same computational
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time. This validates the effectiveness and practicality of the proposed Multi-Group Genetic
Algorithm in solving multi-AGV task allocation problems.

Table 7. Optimal Results and Optimized Task Assignments for Three Algorithms in Large-Scale
Experiment.

Algorithm Optimal Result AGV No. The Task Execution Sequence

PSO 1073

1 1-16-40-32-18-14-2-10-42
2 1-17-6-31-9-12-11-33-42
3 1-41-35-5-28-36-22-25-30-42
4 1-15-3-23-24-27-26-42
5 1-38-39-7-19-8-20-42
6 1
7 1
8 1
9 1-37-34-29-4-21-13-42

GA 1099

1 1
2 1-6-31-17-32-18-14-27-42
3 1
4 1-34-24-26-10-42
5 1-38-40-7-16-39-23-3-13-42
6 1
7 1-22-36-29-28-12-20-33-2-42
8 1-15-41-35-9-19-8-5-21-42
9 1-37-4-11-30-25-42

MGA 1062

1 1-25-30-10-8-20-11-21-4-42
2 1-6-17-32-18-9-2-26-42
3 1-16-3-34-22-13-24-23-39-42
4 1
5 1
6 1
7 1-15-41-38-7-40-14-27-42
8 1-37-36-29-28-5-12-33-19-35-31-42
9 1

Based on the results from Table 7, it can be concluded that the multi-population
genetic algorithm effectively solves the multi-AGV task allocation problem. Compared to
the other two algorithms, the multi-population genetic algorithm reduces the number of
deployed AGV vehicles, increases the utilization rate of each AGV, and lowers the total
cost of the logistics system. This, in turn, enhances the overall efficiency of the dynamic
train maintenance workshop’s logistics system.

Figure 5a–c illustrate the route maps for the three algorithms. In the large-scale sce-
nario, from the route map of the multi-population genetic algorithm, it can be observed that
the system successfully avoids all obstacles and completes the delivery of all task groups.
This further demonstrates the effectiveness of the multi-population genetic algorithm in
improving the system’s operational efficiency.

In conclusion, the multi-population genetic algorithm exhibits excellent optimization,
convergence, and stability performance in both large-scale and small-scale scenarios. As
the problem size increases, the algorithm produces solutions of higher quality compared to
the other two algorithms. Although there is a certain difference in running time, it is within
an acceptable range with the improvement of computer performance. Therefore, it can
be concluded that the proposed multi-population genetic algorithm is effective in solving
the multi-AGV task allocation problem. Specifically, Unique Probability Mechanism: The
unique probability mechanism is a crucial component in the multi-population genetic
algorithm, aiming to maintain population diversity and avoid premature convergence
to local optima. This mechanism assigns a unique probability value to each individual
in the population based on its fitness evaluation, where the fitness function value is the
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objective function value. Individuals with lower fitness values (corresponding to better
task allocation solutions) are assigned higher probabilities being selected as parents for
reproduction in the next generation. By doing so, the algorithm ensures a balance between
exploration and exploitation, allowing the population to thoroughly explore the solution
space and prevent getting stuck in suboptimal solutions. Local Search Strategy: The local
search strategy is another key element introduced in the multi-population genetic algorithm
to enhance its local search capabilities. After performing crossover, the offspring individuals
undergo a local search process to fine-tune their solutions within a local neighborhood.
This process involves exploring the surrounding solutions and adjusting the genes in a
probabilistic manner. The local search strategy promotes intensification around promising
regions of the solution space, enabling the algorithm to converge more quickly to good-
quality solutions. It effectively improves the exploitation ability of the algorithm and further
refines the task allocation solutions. Information Exchange Methods: Information exchange
is a significant aspect of the multi-population genetic algorithm, which encourages inter-
population cooperation and knowledge sharing. Individuals from different populations are
randomly paired for information exchange through crossover, facilitating the integration
of diverse genetic information and promoting the global search ability of the algorithm.
Additionally, information is also exchanged among individuals within the same population
through mutation, which introduces new gene combinations and maintains population
diversity. This comprehensive information exchange mechanism ensures that valuable
genetic information is propagated effectively throughout the entire population, contributing
to a more thorough exploration of the solution space.
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In summary, the unique probability mechanism, local search strategy, and information
exchange methods synergistically enhance the performance of the multi-population genetic
algorithm. The unique probability mechanism maintains population diversity, the local
search strategy refines solutions around local optima, and the information exchange meth-
ods foster global search and knowledge sharing. The experimental results demonstrate
that the multi-population genetic algorithm outperforms other algorithms, such as Particle
Swarm Optimization (PSO) and Genetic Algorithm (GA), in terms of stability, optimization
performance, and convergence speed, making it a powerful and effective approach to tackle
the multi-AGV task allocation problem.

7. Conclusions

The aim of this research is to address the multi-AGV task allocation problem in real
maintenance workshops and optimize task assignment using the Multi-population Genetic
Algorithm (MGA). Our study primarily focuses on maximizing production efficiency
and resource utilization in the workshop, aiming to enhance operational efficiency and
reduce costs. Throughout the research process, we developed a comprehensive AGV
allocation model that considers constraints such as the AGV’s maximum load capacity,
remaining battery power, and time availability to ensure reasonable task distribution and
path planning.

The main contribution of this research lies in the introduction of the MGA algorithm,
which takes into account factors like task priority, distance between tasks, and proximity to
maintenance workstations, resulting in more rational and efficient task allocation. Com-
parative experiments with traditional Particle Swarm Optimization (PSO) and the Genetic
Algorithm (GA) demonstrated that MGA exhibited faster convergence and superior optimal
solutions for large-scale instances, highlighting its competitive advantage in multi-AGV
task allocation. However, our research also has certain limitations. The algorithm may
require longer computation times when dealing with more complex and dynamic operating
environments, necessitating further optimization of algorithm parameters and structures
to improve efficiency. Additionally, some assumptions made in the algorithm may not
entirely align with real workshop conditions, calling for the consideration of additional
real-world factors to enhance the model’s practical applicability. Future improvements
could involve incorporating factors such as loading and unloading times and raw ma-
terial volumes to more accurately reflect real workshop scenarios. Further optimization
of local search and information exchange methods within the algorithm could enhance
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convergence and optimization performance. Additionally, exploring the combination of
the MGA algorithm with other intelligent techniques could address more complex and
diverse industrial scenarios.

Overall, this research offers an efficient and optimized solution for AGV task allocation
in practical maintenance workshops and provides valuable references for related research
and applications. Continual refinement and optimization will allow these findings to have a
greater impact in a broader range of industrial settings, driving advancements in intelligent
manufacturing and logistics. We believe that the outcomes of this research will provide
robust support in tackling challenges faced in actual maintenance operations and offer new
insights and directions for future improvements and adaptations in this field.
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