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Abstract: Maritime transportation safety is pivotal in international trade, with port state control (PSC)
inspections being crucial to vessel safety. However, port authorities need to identify substandard
vessels effectively because of resource constraints and high costs. Therefore, we propose robust
predictive models and optimization strategies for vessel selection, using the random forest (RF)
algorithm. We first use a traditional RF model serving as a benchmark, denoted as model M0.
Then, we construct model M1 by refining the RF algorithm with a batch-processing method, thereby
providing a better measure of the relative relationship between the predicted deficiency counts within
a batch of ships. Then, we propose model M2, incorporating a decision-focused learning (DFL)
framework into the tree construction process, enhancing the decision performance of the algorithm.
In addition, we propose a variant model of M2, denoted as M2-0, considering the worst-case scenario
when designing the decision loss function. By conducting experiments with data from the port of
Hong Kong, we demonstrate that models M1 and M2 offer superior decision-making performance
compared to model M0, and model M2 outperforms model M2-0 in both decision performance and
stability. We further verify the robustness of these models by testing them under various instance
scales. Overall, our study enhances the PSC inspection efficiency, ultimately bolstering maritime
transportation safety.

Keywords: port state control inspection; random forest; decision performance; vessel selection
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1. Introduction

Maritime transportation serves as a vital link in international trade and logistics [1,2],
and its safety is of paramount importance. With vast amounts of freight transported by
sea and the presence of numerous passengers and crew members onboard, the safety of
maritime transportation is undeniably non-negotiable [3]. Thus, maritime safety should be
at the forefront of our concerns. To enhance vessel safety, PSC inspections are performed
globally [4,5]. These inspections are conducted on visiting vessels from various regions, fol-
lowing international conventions [6]. If any aspect of a vessel fails to meet the conventions’
stipulations, its deficiencies are duly recorded. If the recorded deficiencies are extensive or
particularly critical to a vessel, the port may detain the vessel accordingly [7].

However, port authorities face a significant challenge while conducting PSC inspec-
tions: efficiently identifying substandard vessels for scrutiny. Given the expensive costs
of inspections and the limited staff resources, this task requires a well-planned approach.
Various vessel selection strategies have been developed worldwide. Currently, most port
authorities depend on vessels’ risk scores for vessel selection. These scores are generated
through a weighted sum of factors that are related to vessel conditions, such as ship age and
type. While this method is straightforward and easy to implement, it has significant limita-
tions. The scoring process is grounded in subjective expert knowledge, leading to potential
bias, which can affect the scheme’s effectiveness. Consequently, maritime researchers are
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exploring more sophisticated and efficient vessel selection models to enhance the efficacy
of PSC inspections. In the following, we first review related research on the vessel selection
problem and identify several research gaps.

Related Literature

Most of the related research on PSC focuses on improving the inspection efficiency
for vessels because the current ship risk profile (SRP) scheme cannot effectively determine
whether a vessel is qualified or not. Many researchers try to improve inspection efficiency
through the prediction of deficiency counts of vessels or their probabilities of detention.
For instance, Wang et al. [8] constructed a tree augmented naive Bayes classifier for the
prediction of deficiency counts of vessels, which assists the PSC authorities in determining
whether the vessel is qualified or not. Chung et al. [9] obtained the type and the sequence
of ship items that should be inspected through a series of experiments. With the rise in
ship deficiency prediction models in recent years, predicting vessel deficiency counts also
helps to address the allocation of scarce inspection resources. This problem is referred to
as the PSC officer (PSCO) scheduling problem as studied by Yan et al. [10,11]. Specifically,
Yan et al. [10] compared the deficiency prediction values under different deficiency types
of the RF model using different loss functions, and then constructed an optimization
model used to achieve an effective match between the inspectors’ expertise and the vessels’
conditions. Subsequently, Yan et al. [11] combined shipping-related domain knowledge
with the extreme gradient boosting model and optimized the PSCO scheduling model.

Most of the reviewed studies tackle the vessel selection problem in two stages. The first
stage involves using predictive models to forecast incoming vessels’ deficiency counts or
detention probabilities. The second stage then selects vessels to inspect based on these
predictions by solving optimization models [11–13]. However, these studies, while striving
to improve the prediction models’ accuracy, often neglect a critical aspect of the vessel
selection problem: the emphasis should be on decision performance rather than the quality
of the prediction. It is vital to note that a superior prediction model does not necessarily
lead to better decisions. This can lead to overlooking the application of the predictive model
to the optimization model, possibly resulting in sub-optimal outcomes [14]. Some research
has aimed to address this by combining prediction and optimization through a “smart
predict and then optimize” (SPO) framework [14–17]. However, most SPO-related studies
adopt a worst-case method in their loss functions when the predicted values offer multiple
solutions [14]. This worst-case orientation may miss the optimal solution in real-world
optimization problems. Additionally, although the study of Yan et al. [15] is the first to adopt
an SPO framework for vessel selection, their study is overly reliant on a single decision
tree, which can lead to overfitting due to the model’s sensitivity to noise [18]. Furthermore,
most models rely on a single selection scenario for data analysis when addressing vessel
selection problems [15], without considering the robustness of the prediction model under
various selection scales. Data testing and analysis should be conducted based on multiple
selection scenarios to ensure the prediction model’s robustness and stability [19].

To address the identified research gaps, we utilize the RF algorithm to mitigate overfit-
ting and enhance the model’s robustness and applicability. We initially develop a bench-
mark, model M0, which uses the traditional RF model focusing on minimizing the predic-
tion loss. Subsequently, we refine the RF algorithm using the batch-processing method,
thereby enabling more accurate measurement of the relative relationships between the
predicted deficiency values within a vessel selection problem. This optimized RF algorithm,
denoted as model M1, provides an improved selection method. Further optimization is
achieved through the implementation of the decision-focused learning (DFL) framework,
denoted as model M2. This framework is incorporated into the decision tree construction
process, optimizing the decision loss. In detail, this framework is achieved by maximizing
the mean of the total actual deficiency counts of all possible optimal solutions based on
the predicted values of a vessel selection problem, thereby enhancing the model’s decision
performance. In parallel, we develop a variant of model M2 following Yan et al. [15],
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denoted as M2-0, which considers the worst-case solution when designing the loss function.
Using data from the port of Hong Kong for experimental validation, we find that compared
to model M0, models M1 and M2 demonstrate superior decision-making performance.
Moreover, M2 outperforms M2-0, exhibiting greater stability and decision-making efficacy.
To further test model robustness, we conduct experiments under various instance scales.
Our proposed method consistently outperforms the benchmarks in different instance scales,
illustrating its stability and robustness.

The remainder of the paper is structured as follows. Section 2 constructs the mathe-
matical model for the vessel selection problem. Section 3 describes the optimization models
proposed in this paper. Section 4 examines and validates the performance of our proposed
algorithms using real-world data. Section 5 concludes this paper.

2. Problem Formulation

This study aims to optimize the selection of high-risk vessels for PSC inspections.
The goal is to maximize inspection benefits by prioritizing vessels with higher risk factors,
quantified by the count of deficiencies per vessel. A higher deficiency count indicates a
higher risk factor, making the vessel more likely to be inspected, thus reducing unnecessary
inspections on low-risk vessels.

To generalize this problem, we assume that we select n ships with the highest defi-
ciency counts from a pool of N ships, each ship indexed by i ∈ {1, . . . , N}. We denote the
deficiency count of ship i as ci. We use the binary decision variables wi to indicate whether
ship i is selected for inspection (wi = 1) or not (wi = 0). The model is shown as follows:

max
w

N

∑
i=1

wici (1a)

N

∑
i=1

wi ≤ n (1b)

wi ∈ {0, 1} ∀i ∈ {1, . . . , N}. (1c)

The optimization function (1a) maximizes the total number of identified deficiencies of
target vessels. (1b) ensures that the number of selected vessels does not exceed the required
number n. By solving this optimization problem, we can determine the subset of n ships
with the highest deficiency counts that should be selected for inspection.

3. Methods

This section introduces three methods to predict the deficiency counts of incoming
vessels. To select high-risk vessels as described in Section 2, we first construct the model M0
for the prediction of the number of vessel deficiencies based on the original RF algorithm
in Section 3.1. In Section 3.2, to better compare the relative number of deficiencies of ships
in an optimization problem, we construct model M1 using the batch-processing method.
At last, in Section 3.3, we consider the decision-making performance in M1, constructing
model M2.

3.1. M0: Traditional RF Method

The RF method is an ensemble learning algorithm used to solve classification and
regression problems [20]. Comprising multiple decision trees, the RF model uses decision
rules to segment and categorize samples, creating a tree-based predictive model [21,22].
When applying the RF method to classification problems, the category with the most votes
from the decision trees is selected as the final prediction. For regression problems, the al-
gorithm averages the predictions from each decision tree to provide a final outcome [23].
The RF method’s final prediction results, derived by integrating the output values of
multiple decision trees, are often more stable and accurate.

In an RF, we use four common hyperparameters to control the algorithm’s dimen-
sion [24]: the number of decision trees Ne, the maximum depth of the decision tree Md,
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the maximum number of features to be used in one decision tree M f , and the minimum
number of training samples per leaf Ms. In this section, we consider utilizing the tradi-
tional RF method to predict the deficiency counts of incoming vessels. We then use these
predicted deficiency counts to inform the selection of target vessels.

We use the accumulated historical PSC inspection data D = {(xd, yd)}
|D|
d=1, obtained

from the Asia-Pacific Computerized Information System (https://apcis.tmou.org/public/,
accessed on 5 May 2023), to train the RF, where |D| denotes the total number of data
samples, xd is the feature vector of the d-th ship (which contains attributes like ship type,
ship age, etc.), and yd is the deficiency count of the d-th ship. This algorithm outputs the
predicted deficiency count of each ship based on its features.

The construction of a decision tree within the RF algorithm depends significantly on
the node segmentation principle, with its importance manifesting in three areas: feature
selection, division point selection, and evaluation index selection. Firstly, feature selec-
tion involves determining appropriate features for division. This decision significantly
influences the model’s accuracy and efficiency, underscoring the need for a thoughtful
approach. Secondly, the division point selection pertains to identifying the optimal split
values within the selected features. It requires choosing the most suitable feature value for
each specific feature, thereby shaping the structure of the decision tree. Thirdly, evalua-
tion index selection is critical to measure the quality of the dataset division. Selecting an
appropriate evaluation index ensures that the divisions made at each node improve the
model’s performance.

In the context of our regression task, we employ the mean squared error (MSE) as a
standard quality measure. Smaller MSE values indicate better prediction quality as shown
in (2):

MSEDc
f s =

1
|Dc| ∑

{d|(xd ,yd)∈Dc}
(yd − g f ,s(xd))

2, (2)

which is used to obtain the MSEDc
f s based on the chosen feature f and the split value s. Here,

Dc means the current training dataset used in this splitting stage, yd is the real deficiency
count of the d-th ship, and g f ,s(xd) means the predicted deficiency count of the d-th ship
based on the decision tree under the feature f and the feature value s, calculated as follows:

g f ,s(xd) =
1
|Lxd

f ,s|
∑

{d′ |(xd′ ,yd′ )∈L
xd
f ,s}

yd′ , (3)

where Lxd
f ,s represents the corresponding leaf node in which xd falls, |Lxd

f ,s| represents the

number of examples in Lxd
f ,s, and yd′ represents the deficiency count of the d′-th ship in Lxd

f ,s.
Finally, g f ,s(xd) is calculated through averaging the outputs of samples in the corresponding
leaf node Lxd

f ,s based on the decision tree under the feature f and the feature value s.
In the RF algorithm, we construct Ne decision trees for the dataset D. Each decision

tree Ti, i ∈ {1, 2, . . . , Ne}, is trained using the dataset Di, which is bootstrapped from D.
Dataset Di contains M f features, represented by set M f i. During a particular splitting stage
in the decision tree Ti, the node segmentation rule is applied to divide the current training
dataset Di

c. We calculate the MSE values for all features in M f i and for every feature value
of feature f ∈ M f i (where each feature value is denoted by s ∈ H f and H f is the set of

feature values of feature f ). We then select the best feature f Di
c

i and the best feature value

sDi
c

i based on the smallest MSE value. This selection process is illustrated as follows:

( f Di
c

i , sDi
c

i ) = arg min
f∈M f i , s∈H f

1
|Di

c|
∑

{d|(xd ,yd)∈Di
c}
(yd − g f ,s(xd))

2. (4)

In summary, we use the RF method in selecting the target vessels. The whole algorithm
is shown in Algorithm 1. Based on the dataset D, the algorithm generates the numerical

 https://apcis.tmou.org/public/
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prediction function fD,θ∗(x) for estimating the deficiency count of a vessel, where θ∗ denotes
the optimal set of hyperparameters. The algorithm constructs Ne trees, using the mean
of the deficiency counts derived from these trees as the prediction value. It is noted that
we repeat step 6 until the depth of Ti (denoted by Depth(Ti)) meets Md or the number of
samples of leaf nodes (denoted by Len(Di

c)) is less than Ms.

Algorithm 1 RF Algorithm-M0

1: Input: Ship dataset D and hyperparameter tuple θ = (Ne, Md, Ms, M f )
2: Output: Prediction function fD,θ(x)
3: for i= 1, 2, . . . , Ne do
4: Get a random subset Di from D containing M f features, represented by M f i

5: Construct tree Ti and set Di as the current dataset Di
c

6: while Len(Di
c) > Ms and Depth(Ti) < Md do

7: for feature f in M f i do
8: for s in H f do

9: Split the dataset Di
c based on f and s and calculate MSEDi

c
f s through (2)

10: end for
11: end for
12: Select the best feature f Di

c
i and best feature value sDi

c
i through (4)

13: Split the dataset based on f Di
c

i , sDi
c

i , get the dataset for the left child node Di
l and

the dataset for the right child nodeDi
r

14: Set Di
l as Di

c, continue to line 6 to construct the left subtree of Ti
15: Set Di

r as Di
c, continue to line 6 to construct the right subtree of Ti

16: end while
17: end for
18: return An ensemble of Ne trees

3.2. M1: Optimized RF Algorithm with Batch Processing Method

The vessel selection problem involves selecting n target vessels out of N vessels.
In Section 3.1, we predict the deficiency count for each ship and use these prediction values
to guide the selection of target vessels. However, the selection of target vessels is based
on the relative ranking of the predicted deficiency counts, not on the absolute deficiency
values of each vessel.

To partially consider this characteristic, we adopt the batch-processing approach for our
input data, which divides the dataset into smaller subsets equal in size to the current ship selec-
tion problem during the training of the RF. For example, consider dividing the current training
dataset Di

c in tree Ti, i ∈ {1, 2, . . . , Ne}, and Di
c = {(x1, y1), (x2, y2), . . . , (x|Di

c |, y|Di
c |)}. We

apply batch processing to Di
c, generating multiple subsets QDi

c
= {Q1

Di
c
, Q2

Di
c
, . . . , Q

k
Di

c
Di

c
},

where kDi
c
=

⌊
|Di

c |
N

⌋
and Qd

Di
c
= {(x(d−1)N+1, y(d−1)N+1), (x(d−1)N+2, y(d−1)N+2), . . . ,

(xdN , ydN)}, d ∈ {1, 2, . . . , kDi
c
}.

Upon integrating QDi
c

into the RF training process, our main focus shifts to modifying
the node-splitting rules. Rather than directly computing the MSE value of Di

c, we sum the
MSE values for subsets in QDi

c
. When considering the current dataset Di

c under the feature

f and the feature value s, we denote the sum of MSEs of all subsets as tmseDi
c

f s . Thus, (4) is
transformed into (5), shown as follows:



Mathematics 2023, 11, 3503 6 of 13

( f Di
c

i , sDi
c

i ) = arg min
f∈M f i , s∈H f

k
Di

c

∑
d=1

∑
{j|(xj ,yj)∈Qd

Di
c
}
(yj − g f ,s(xj))

2

= arg min
f∈M f i , s∈H f

k
Di

c

∑
d=1

∑
{j|(xj ,yj)∈Qd

Di
c
}
(yj −

1

|Lxj
f ,s|

∑
{j′ |(xj′ ,yj′ )∈L

xj
f ,s}

yj′)
2,

(5)

which enables us to obtain the best feature f Di
c

i and the best feature value sDi
c

i when adopting
the batch-processing method. Specifically, in (5), the MSE is computed through the set

Qd
Di

c
, d ∈ {1, 2, . . . , kDi

c
} and kDi

c
=

⌊
|Di

c |
N

⌋
. We sum all the MSE values derived from the

subsets in QDi
c

to obtain tmseDi
c

f s . In Equation (5), g f ,s(xj) represents the average values

of samples in the corresponding leaf node L
xj
f ,s that xj falls into as demonstrated in the

second term of (5). (5) iterates across all current features and feature values to identify the

minimum value, which corresponds to the optimal feature f Di
c

i and the optimal feature

value sDi
c

i .
Batch processing the dataset allows us to more accurately emulate the structure of

the vessel selection problem, effectively capturing the characteristics and patterns of the
selection issue at hand and enhancing the performance of the RF model. Additionally,
the RF method can yield a more precise model evaluation. Typically, the number of vessels
in the training and testing sets do not align in scale. By dividing these sets into multiple
subsets equal in size to the current vessel selection problem, we can more accurately
evaluate the model’s performance in the vessel selection task at hand.

We optimized the RF algorithm using batch processing to handle datasets, making it
more suitable for vessel selection tasks. This procedure is outlined in Algorithm 2.

3.3. M2: Optimized RF Algorithm under the DFL Framework

Algorithm 1 prioritizes generating highly accurate predictive models for predicting
vessel deficiency counts. However, the vessel selection problem’s focus extends beyond
the accurate prediction of a vessel’s deficiency count. As exemplified by Yan et al. [15],
an accurate prediction value does not necessarily lead to an optimal vessel selection decision.
The primary objective of the vessel deficiency number prediction model, as outlined in
Algorithm 1, is to minimize the prediction error. While Algorithm 2 leverages batch
processing to mimic the data structure of the current problem scenario and enhance model
performance, it utilizes a similar metric to MSE by aggregating MSEs for subsets in QDi

c
.

To better address the vessel selection problem, we introduce an alternative approach:
the DFL framework. Instead of using prediction loss to train the model, we use decision
loss. This metric measures the discrepancy between benefits derived from decisions based
on predictive outcomes and those gained from decisions based on actual and known
values. Crucially, to achieve this objective, we need to adapt the model’s loss function.
This modification shifts our focus towards decision-making accuracy rather than strictly
emphasizing prediction accuracy, necessitating the use of decision loss as the evaluation
index in the node segmentation process.

The target vessel selection problem entails selecting n vessels from a pool of N vessels.
For each decision-making group q ∈ QDi

c
—divided based on the batch-processing method

when the current training dataset is Di
c and in tree Ti, i ∈ {1, 2, . . . , Ne}—we choose the

top n target vessels from dataset q based on the predicted values in the set q. We denote
the set of these chosen indices as P(n, q, f , s) under the feature f and the feature value s.
It is worth noting that there may be ties of predictive values, resulting in multiple sets
of possible P(n, q, f , s) with an equal number of total ship deficiency counts, particularly
during the early stages of the decision tree construction. For instance, in the N = 3, n = 1
scenario, three samples from the subset q might appear in the same leaf during the initial
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tree generation phase, each with identical deficiency prediction values. If selecting the ship
with the highest predicted deficiency value at this stage, there would be three possible
selection results for P(n, q, f , s). In such cases, existing works in the literature, such as those
of Yan et al. [15] and Elmachtoub et al. [25], adopt a worst-case decision-making approach
to define P(n, q, f , s), as demonstrated in Definition 1.

Algorithm 2 RF optimized with batch-processing method-M1

1: Input: Ship DataSet D and hyperparameter tuple θ = (Ne, Md, Ms, M f )

2: Output: Prediction Function f b
D,θ(x) optimized by batch-processing method

3: for i= 1, 2, . . . Ne do
4: Get a random subset Di from D containing M f features, represented by M f i

5: Construct tree Ti and set Di as the current dataset Di
c

6: while Len(Di
c) > Ms and Depth(Ti) < Md do

7: for feature f in M f i do
8: for s in H f do

9: Divide Di
c into multiple subsets, QDi

c
= {Q1

Di
c
, Q2

Di
c
, . . . , Q

k
Di

c
Di

c
}, kDi

c
= b |D

i
c |

N c
10: Qd

Di
c
= {(x(d−1)N+1, y(d−1)N+1), (x(d−1)N+2, y(d−1)N+2), . . . , (xdN , ydN)},

11: d ∈ {1, 2, . . . , kDi
c
}

12: for q in QDi
c

do
13: Split the dataset q based on f and s and calculate mseq

f s through (2)
14: end for
15: tmseDi

c
f s = ∑{q|q∈Qi

c} mseq
f s

16: end for
17: end for
18: Select the best feature f Di

c
i and best feature value sDi

c
i calculated through (5)

19: Split Di
c based on f Di

c
i , sDi

c
i , getting left child node Di

l and right child nodeDi
r

20: Set Di
l as Dci , continue to line 6 to construct the left subtree of Ti

21: Set Di
r as Dci , continue to line 6 to construct the right subtree of Ti

22: end while
23: end for
24: return An ensemble of Ne trees

Definition 1. The set P(n, q, f , s) is defined as follows: (1) P(n, q, f , s) ⊂ q, (2) |P(n, q, f , s)| = n,
and (3) for all (xd, yd) ∈ P(n, q, f , s) and (xd′ , yd′) /∈ P(n, q, f , s), (xd′ , yd′) ∈ q, one of the fol-
lowing two conditions hold: (1) g f ,s(xd) > g f ,s(xd′), and (2) g f ,s(xd) = g f ,s(xd′), yd ≤ yd′ .

Definition 1 provides three conditions to guide the selection of target vessels. Condi-
tion (1) implies that target ships are chosen from the top n vessels, ranked according to the
predicted deficiency counts in set q, to form the set P(n, q, f , s). Condition (2) stipulates
that the size of target vessels should be n, while Condition (3) states that in the event of a
tie—when two vessels have identical predicted deficiency counts, g f ,s(xd) = g f ,s(xd′)—the
vessel with the lower actual deficiency count should be included in set P(n, q, f , s).

Even with the guidance of Definition 1, there may be instances where the predicted
and actual deficiency numbers for two vessels are identical. In such scenarios, a vessel
will be randomly selected from these equally ranked options. In line with this, when
constructing a decision-focused tree Ti, i ∈ {1, 2, . . . , Ne}, Yan et al. [15] employ the sum of
actual deficiency values for vessels in set P(n, q, f , s) as the evaluative criterion in the node-
splitting process. In practical scenarios, ties may frequently occur—indicating that more
than one node-split scenario leads to the maximum total actual deficiencies. In the event of
a tie, the traditional MSE metric, as depicted in (5), remains in use for node splitting.

Nonetheless, the design of P(n, q, f , s) may not be consistent with reality. For example,
when N = 3, n = 1, the worst-case scenario assumes that the decision maker may choose
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the worst-case combination of ships with an equal number of predicted deficiency counts.
However, in reality, the expected sum of identified ship deficiencies should equal n times
the average of the actual number of ship deficiencies. Thus, we consider using the average
of all alternative combinations, whose sums of predicted deficiency counts are the highest,
as the evaluation criterion.

Specifically, we define set P′(n, q, f , s), denoting the set of combinations of n samples
in set q whose sums of predicted deficiency numbers are the highest. The average value of
all the combinations in P′(n, q, f , s) is computed as follows:

∑{p|p∈P′(n,q, f ,s)} ∑{d|(xd ,yd)∈p} yd

|P′(n, q, f , s)| . (6)

Hence, when the current training dataset is Di
c in one decision-focused tree Ti,

i ∈ {1, 2, . . . , Ne}, we redefine the node segmentation rules, utilizing the calculation for av-
eraging all the combinations in P′(n, q, f , s). Firstly, we process the dataset Di

c using the simi-
lar method in Algorithm 2, dividing the Di

c into multiple subset

QDi
c

= {Q1
Di

c
, Q2

Di
c
, . . . , Q

k
Di

c
Di

c
}, kDi

c
=

⌊
|Di

c |
N

⌋
, where Qd

Di
c

= {(x(d−1)N+1, y(d−1)N+1),

(x(d−1)N+2, y(d−1)N+2), . . . , (xdN , ydN)}, d ∈ {1, 2, . . . , kDi
c
} and (x, y) ∈ Di

c. For each set
q in QDi

c
, the average of all the combinations’ objective function values in P′(n, q, f , s)

is calculated by (6) and we define the outcome of it as dlq
f s. Correspondingly, when we

evaluate the overall real deficiencies of target vessels in QDi
c
, we sum the results for all

subsets of QDi
c
, and denote it as dlDi

c
f s under the current feature f and the feature value s.

Then, the node is segmented based on the feature f Di
c

i and its corresponding feature value

sDi
c

i with the highest total number of actual deficiencies in set QDi
c

and calculated by

( f Di
c

i , sDi
c

i ) = arg max
f∈M f i , s∈H f

∑
q∈Q

Di
c

∑{p|p∈P′(n,q, f ,s)} ∑{d|(xd ,yd)∈p} yd

|P′(n, q, f , s)| . (7)

In summary, we modify the loss function shown in (7) and adopt the batch-processing
method to handle the training dataset. The whole process is shown in Algorithm 3.

Indeed, the evolution from M0 to M2 demonstrates a progression in the complexity and
potential performance of the decision-focused models in the RF algorithm. In M0, the basic
decision tree construction within the RF algorithm is employed without any alterations.
In M1, a batch-processing method is incorporated to handle the dataset, dividing the input
into smaller and manageable chunks. This strategy helps to improve the performance
of the model by increasing the computational efficiency and potentially enhancing the
accuracy of predictions. M2 goes a step further, introducing a significant modification to the
evaluation criteria in the node-splitting process during the construction of decision-focused
trees. This adjustment takes into account the combination of target vessels that lead to the
highest sum of predicted deficiencies, providing a more nuanced and realistic approach
to decision-making scenarios. Consequently, this adjustment aims to deliver better model
performance and more accurate predictions.

The progressive enhancements from M0 to M2 demonstrate a trajectory towards in-
creasingly sophisticated and realistic modeling of decision-making situations in the context
of targeting vessel selection based on predicted deficiency counts. The enhancements aim to
align the models more closely with real-world complexities and improve their performance
in decision-making tasks.
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Algorithm 3 RF optimized with DFL framework-M2

1: Input: The same as Algorithm 2
2: Output: A final prediction function f DFL

D,θ (x) optimized by DFL framework
3: for i = 1, 2, . . . , Ne do
4: Get a random subset Di from D containing M f features, represented by M f i

5: Construct tree Ti and set Di as the current dataset Di
c

6: while Len(Di
c) > Ms and Depth(Ti) < Md do

7: for feature f in M f i do
8: for s in H f do

9: Divide Di
c into multiple subsets, QDi

c
= {Q1

Di
c
, Q2

Di
c
, . . . , Qkc

Di
c
}, kDi

c
= b |D

i
c |

N c
10: Qd

Di
c
= {(x(d−1)N+1, y(d−1)N+1), (x(d−1)N+2, y(d−1)N+2), . . . , (xdN , ydN)},

11: d = {1, 2, . . . , kDi
c
}

12: for q in QDi
c

do
13: Split q based on the f and s and calculate dlq

f s and mseq
f s through (6) and (2),

respectively
14: end for
15: dlDi

c
f s = ∑{q|q∈Q

Di
c
} dlq

f s, tmseDi
c

f s = ∑{q|q∈Q
Di

c
} mseq

f s

16: end for
17: end for
18: Select the max value of dlDi

c
f s calculated through (7)

19: if dlDi
c

f s has more than one maximum value then

20: Select the min value of tmseDi
c

f s through (5)
21: end if
22: Select the best feature f Di

c
i and best feature value sDi

c
i based on line 17–20

23: Split Di
c based on f Di

c
i , sDi

c
i , get the dataset for the left child node Di

l and the dataset
for the right child node Di

r
24: Set Di

l as Di
c, continue to line 6 to construct the left subtree of Ti

25: Set Di
r as Di

c, continue to line 6 to construct the right subtree of Ti
26: end while
27: end for
28: return An ensemble of Ne decision-focused trees

4. Evaluation

In this section, we carry out a case study to evaluate the efficacy and robustness of our
proposed models M0, M1, and M2. Specifically, Section 4.1 provides a comprehensive de-
scription of the experimental setup. Subsequently, we evaluate and compare the prediction
performance and decision-making quality of the three proposed models within the context
of the vessel selection problem in Section 4.2.

4.1. Experiment Settings

In our experiments, the dataset D is derived from PSC records in the port of Hong Kong
from January 2015 to December 2019, a total of 3026 entries. The PSC inspection records
of the Port of Hong Kong are sourced from the Asia-Pacific Computerized Information
System (https://apcis.tmou.org/public/, accessed on 1 May 2023), while ship-related
factors are sourced from the World Shipping Register database (https://world-ships.com/,
accessed on 1 May 2023). We consider multiple features that are closely related to ship
conditions. These include ship age, gross tonnage, length, depth, beam, ship type, the total
detention times of the ship, the total number of the flag changes, the total number of
casualties in the last 5 years, the total number of deficiencies in the last inspection, and flag

 https://apcis.tmou.org/public/
https://world-ships.com/
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performance, recognized organization performance, and company performance in the
Tokyo MoU. The data-processing procedures of these features follow those of Yan et al. [15].

As described in Section 3, we first construct four models. Among them, M0 is the
traditional RF model, focusing on minimizing prediction loss of the whole training dataset,
seen as the benchmark. M1 is the optimized RF algorithm using the batch-processing
method for the input data, whose purpose is to simulate the current selection scenario
and enhance the model performance. M2 is the optimized RF algorithm based on the DFL
framework, whose purpose is to minimize decision loss. Meanwhile, we also construct
M2-0 based on Definition 1 in Section 3.3, as the benchmark to M2.

We divide D into the training set Dtrain and the test set Dtest at a 4:1 ratio. To effec-
tively evaluate model performance, we process the test dataset in batches, simulating the
current ship selection problem framework. Dtest is divided into multiple subsets, QDtest =

{Q1
Dtest

, Q2
Dtest

, . . . , Q
kDtest
Dtest
}, kDtest =

⌊
|Dtest |

N

⌋
, where Qd

Dtest
= {(x(d−1)N+1, y(d−1)N+1),

(x(d−1)N+2, y(d−1)N+2), . . . , (xdN , ydN)}, d ∈ {1, 2, . . . , kDtest} and (x, y) ∈ Dtest. We use
the MSE of the real deficiency values versus the predicted deficiency values in the test set
to assess the prediction quality, calculated through (8). In (8), y′d means the predicted value
of the d-th ship in q, obtained from the model we proposed. Meanwhile, we use the sum of
the real deficiency counts of the target vessels to evaluate the decision performance, shown
in (9). In (9), the set O(n, q) is the top n vessels obtained from the predicted values y′d sorted
from largest to smallest:

mseDtest = ∑
q∈QDtest

∑
{d|(xd ,yd)∈q}

(yd − y′d)
2 (8)

dpDtest = ∑
q∈QDtest

∑
{d|(xd ,yd)∈O(n,q)}

yd. (9)

To simplify the experiments, we first assume that we select one ship from three ships,
namely N = 3, n = 1. We select this particular scale to facilitate testing, and we also
experiment with different scales to demonstrate the robustness of our models, which means
that our models can be used across a wider range of scales. Furthermore, to improve com-
putational efficiency and reduce computational expenses, we adopt fixed hyperparameters
when performing model training, where Ne = 100, Md = 5, Ms = 1, M f = 3, These
specific hyperparameter values are chosen through grid search, taking into account the
prior experience and practical considerations. By fixing the hyperparameters of the RF
algorithm, we can focus more on the optimization aspects of the model, thus improving
its performance.

4.2. Evaluation of Models

In the previous sections, we introduce various models for addressing the high-risk ship
selection problem, where we aim to choose n ships with higher risk factors for inspection
from a total of N ships. We consider the number of ship deficiencies as the indicator of its
risk factor, as a higher number of deficiencies indicates a higher risk and a greater likelihood
of requiring inspection. Initially, we use the N = 3, n = 1 scenario for testing purposes.
Subsequently, to validate the robustness of the model, we randomly modify the values
of N and n and construct scenarios, such as N = 4, n = 2 and N = 3, n = 2 scenarios
for testing.

We now proceed to compare and analyze the experimental results of models M0, M1,
M2-0, and M2, with the aim of elucidating the differences in model performance. We offer
a detailed evaluation of how these models perform, concerning the evaluation metrics of
MSE (mseDtest ) and decision performance (dpDtest ). The overall results are shown in Table 1.
Through this comparative analysis, our goal is to deepen understanding and provide a
solid foundation for choosing the optimal model for high-risk ship selection scenarios.
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Table 1. The prediction quality and decision performance of models.

N, n Decision Performance MSE

M0 M1 M2-0 M2 M0 M1 M2-0 M2
N = 3, n = 1 1108.0 1125.0 1120.0 1125.0 4256.26 4461.55 4416.34 4459.98
N = 3, n = 2 897.50 904.00 897.00 905.50 2915.98 3046.46 3115.49 3112.72
N = 4, n = 2 772.50 775.50 776.50 777.00 2487.02 2622.47 2656.03 2639.85

Table 1 presents the experimental results. From the data analysis, we find that while
our proposed optimization models M1 and M2 exhibit a slight increase in prediction
error (mseDtest ), their decision performance (dpDtest ), which is critical for ship selection, is
improved compared to the benchmark model M0.

Particularly, model M2 has a rise in prediction error of about 196, reducing the predic-
tion quality by roughly 6.7% compared to M0, for the instance scale N = 3, n = 2. However,
model M2, based on the DFL framework, and model M1, utilizing the batch-processing
method, improve decision performance by approximately 1.6% (an increase of 17) com-
pared to M0 for the instance scale N = 3, n = 1. Despite the same decision performance for
M1 and M2, model M2 reduces prediction error by 2, improving the prediction quality by
approximately 0.04% compared to M1, indicating a better overall performance.

Compared to the benchmark Model M2-0, which uses the worst-case method, model
M2 is more stable and improves the decision performance by roughly 0.8% in the N =
3, n = 2 scenario. Therefore, we interestingly observe that better prediction quality does
not necessarily lead to better decision performance, evidenced in the N = 3, n = 2 scenario.
This counterintuitive result provides a nuanced perspective on prediction and decision-
making performance. Furthermore, models M1 and M2 outperform the benchmark M0 in
multiple instance scales, demonstrating adaptability to diverse data. These results attest to
the robustness and stability of our proposed models.

In conclusion, our proposed models demonstrate superior decision-making perfor-
mance for high-risk vessel selection problems as shown in Table 1. Summarizing the above
experimental results, we conclude that in our experiments, model M2, although not the
most effective in terms of MSE, outperforms the other two models in terms of decision
performance, having the largest value of dpDtest . Overall, our experimental results provide
support for the validity and robustness of models M2 and M1, providing useful experience
for solving the high-risk ship selection problem.

5. Conclusions

PSC inspections play a pivotal role in ensuring the safety of maritime transportation.
Port authorities face the challenging task of selecting from numerous incoming vessels
those that need to be inspected, in a bid to maximize inspection efficiency and overall
benefits. In this study, we use a vessel’s deficiency count as a measure of its risk level
and also as a representation of the inspection’s benefit. We first utilize a classical RF
algorithm as a benchmark for predicting deficiency counts in vessels in model M0. To better
mirror the current selection framework and enhance decision making, we employ batch
processing in model M1. Finally, in model M2, we use the decision performance to guide
the node-splitting process in the RF model, effectively integrating the prediction and
decision processes.

In order to validate our models, we employ the Port of Hong Kong as a case study and
construct prediction models M0, M1, and M2. These models are evaluated based on MSE
and decision performance. Our analysis of the experimental data shows that, while there is
no improvement in prediction quality, our proposed models M1 and M2 surpass model
M0 in decision performance. These findings demonstrate the effectiveness and robustness
of our models in high-risk vessel selection problems and can serve as valuable references
for other studies that address similar issues. Our research underlines the significance of
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a data-driven and scientifically rigorous approach to vessel selection for PSC inspections,
with the potential to enhance maritime safety and operational efficiency.

Author Contributions: Conceptualization, X.T. and S.W.; methodology, S.W.; software, Y.G.; valida-
tion, Y.G.; formal analysis, Y.G.; investigation, Y.G.; resources, S.W.; data curation, S.W.; writing—
original draft preparation, X.T. and Y.G.; writing—review and editing, X.T. and S.W.; supervision,
S.W. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Available if requested.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ng, M. Container vessel fleet deployment for liner shipping with stochastic dependencies in shipping demand. Transp. Res. Part

B Methodol. 2015, 74, 79–87. [CrossRef]
2. Zhuo, S.; Zheng, J. Finding potential hub locations for liner shipping. Transp. Res. Part B Methodol. 2016, 93, 750–761. [CrossRef]
3. Christiansen, M.; Fagerholt, K.; Nygreen, B.; Ronen, D. Maritime transportation. Handb. Oper. Res. Manag. Sci. 2007, 14, 189–284.

[CrossRef]
4. Cariou, P.; Mejia, M.Q., Jr.; Wolff, F.C. On the effectiveness of port state control inspections. Transp. Res. Part E Logist. Transp. Rev.

2008, 44, 491–503. [CrossRef]
5. Cariou, P.; Mejia, M.Q.; Wolff, F.C. Evidence on target factors used for port state control inspections. Mar. Policy 2009, 33, 847–859.

[CrossRef]
6. Heij, C.; Bijwaard, G.E.; Knapp, S. Ship inspection strategies: Effects on maritime safety and environmental protection. Transp.

Res. Part D Transp. Environ. 2011, 16, 42–48. [CrossRef]
7. Li, K.X.; Zheng, H. Enforcement of law by the Port State Control (PSC). Mar. Policy Manag. 2008, 35, 61–71. [CrossRef]
8. Wang, S.; Yan, R.; Qu, X. Development of a non-parametric classifier: Effective identification, algorithm, and applications in port

state control for maritime transportation. Transp. Res. Part B Methodol. 2019, 128, 129–157. [CrossRef]
9. Chung, W.H.; Kao, S.L.; Chang, C.M.; Yuan, C.C. Association rule learning to improve deficiency inspection in port state control.

Mar. Policy Manag. 2020, 47, 332–351. [CrossRef]
10. Yan, R.; Wang, S.; Fagerholt, K. A semi-“smart predict then optimize”(semi-SPO) method for efficient ship inspection. Transp. Res.

Part B Methodol. 2020, 142, 100–125. [CrossRef]
11. Yan, R.; Wang, S.; Cao, J.; Sun, D. Shipping domain knowledge informed prediction and optimization in port state control. Transp.

Res. Part B Methodol. 2021, 149, 52–78. [CrossRef]
12. Yang, Z.; Yang, Z.; Yin, J. Realising advanced risk-based port state control inspection using data-driven Bayesian networks.

Transport. Res. Part A Policy Pract. 2018, 142, 38–56. [CrossRef]
13. Yang, Z.; Yang, Z.; Yin, J.; Qu, Z. A risk-based game model for rational inspections in port state control. Transport. Res. Part A

Policy Pract. 2018, 118, 477–495. [CrossRef]
14. Elmachtoub, A.N.; Grigas, P. Smart “predict, then optimize”. Manag. Sci. 2022, 68, 9–26. [CrossRef]
15. Yan, R.; Wang, S.; Zhen, L. An extended smart “predict, and optimize”(SPO) framework based on similar sets for ship inspection

planning. Transp. Res. Part E Logist. Transp. Rev. 2023, 68, 9–26. [CrossRef]
16. Tian, X.; Yan, R.; Wang, S.; Laporte, G. Prescriptive analytics for a maritime routing problem. Ocean Coast. Manag. 2023,

242, 106695. [CrossRef]
17. Tian, X.; Yan, R.; Liu, Y.; Wang, S. A smart predict-then-optimize method for targeted and cost-effective maritime transportation.

Transp. Res. Part B Methodol. 2023, 172, 32–52. [CrossRef]
18. Ali, J.; Khan, R.; Ahmad, N.; Maqsood, I. Random forests and decision trees. Int. J. Comput. Sci. Issues (IJCSI) 2012, 9, 272.
19. Wagenmakers, E.J.; Sarafoglou, A.; Aczel, B. One statistical analysis must not rule them all. Nature 2022, 605, 423–425. [CrossRef]
20. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32.:1010933404324. [CrossRef]
21. Myles, A.J.; Feudale, R.N.; Liu, Y.; Woody, N.A.; Brown, S.D. An introduction to decision tree modeling. J. Chemom. A J. Chemom.

Soc. 2004, 18, 275–285. [CrossRef]
22. Kotsiantis, S.B. Decision trees: A recent overview. Artif. Intell. Rev. 2013, 39, 261–283. [CrossRef]
23. Biau, G. Analysis of a random forests model. J. Mach. Learn. Res. 2012, 13, 1063–1095. [CrossRef]

http://doi.org/10.1016/j.trb.2015.01.004
http://dx.doi.org/10.1016/j.trb.2016.03.005
http://dx.doi.org/10.1016/S0927-0507(06)14004-9
http://dx.doi.org/10.1016/j.tre.2006.11.005
http://dx.doi.org/10.1016/j.marpol.2009.03.004
http://dx.doi.org/10.1016/j.trd.2010.07.006
http://dx.doi.org/10.1080/03088830701848912
http://dx.doi.org/10.1016/j.trb.2019.07.017
http://dx.doi.org/10.1080/03088839.2019.1688877
http://dx.doi.org/10.1016/j.trb.2020.09.014
http://dx.doi.org/10.1016/j.trb.2021.05.003
http://dx.doi.org/10.1016/j.tra.2018.01.033
http://dx.doi.org/10.1016/j.tre.2018.08.001
http://dx.doi.org/10.1287/mnsc.2020.3922
http://dx.doi.org/10.1016/j.tre.2023.103109
http://dx.doi.org/10.1016/j.ocecoaman.2023.106695
http://dx.doi.org/10.1016/j.trb.2023.03.009
http://dx.doi.org/10.1038/d41586-022-01332-8
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1002/cem.873
http://dx.doi.org/10.1007/s10462-011-9272-4
http://dx.doi.org/abs/10.5555/2503308.2343682


Mathematics 2023, 11, 3503 13 of 13

24. Probst, P.; Wright, M.N.; Boulesteix, A.L. Hyperparameters and tuning strategies for random forest. Wiley Interdiscip. Rev. Data
Min. Knowl. Discov. 2019, 9, e1301. [CrossRef]

25. Elmachtoub, A.N.; Liang, J.C.N.; McNellis, R. Decision trees for decision-making under the predict-then-optimize framework. Int.
Conf. Mach. Learn. 2020, 9, 2858–2867. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1002/widm.1301
http://dx.doi.org/10.48550/arXiv.2003.00360

	Introduction
	Problem Formulation
	Methods
	M0: Traditional RF Method
	M1: Optimized RF Algorithm with Batch Processing Method
	M2: Optimized RF Algorithm under the DFL Framework

	Evaluation
	Experiment Settings
	Evaluation of Models

	Conclusions
	References

