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Abstract: The development of low-cost data acquisition equipment is relevant in the increasingly
automated industry of today. This study presents the optimization of low-cost data acquisition
equipment performance to achieve acquisition speeds of 200 kHz. This was possible by evaluating two
essential aspects: considering the influence of the power supplied by the power source and changing
the type of data used from “Double” to “uint”. This equipment was validated through the acquisition
of known waves and vibration signals from a bearing test bench. The frequency component was
satisfactorily identified in each case, for both the known waves and the damaged bearing components.
This demonstrated the viability of developing low-cost data acquisition equipment that can be
implemented to monitor bearing condition.

Keywords: data acquisition systems; condition monitoring; bearing diagnostics; vibration analysis;
Raspberry Pi
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1. Introduction

In a world where technology and the pursuit of efficiency are the fundamental drivers,
the maintenance of systems and equipment is a cornerstone of safety and reliability [1,2].
From manufacturing to energy and transportation asset management, condition monitoring
(CM) has emerged as one of the main strategies of condition-based maintenance. To do this,
CM systems gather information that allows recognizing anomalies in operating parameters
early enough to establish a cost-effective maintenance plan, thus reducing downtime and
fault-related costs [3–5].

According to Crespo et al. [6], the implementation of CM not only leads to a better
understanding of how industrial systems operate and behave but also provides a basis for
their optimized management. From this perspective, CM is established as a key practice to
anticipate failures, optimizing the performance and prolonging the lifetime of equipment
and systems [7–9]. Similarly, McMahon et al. [10] described CM as an essential source of
information on the condition of equipment and systems, allowing subsequent decisions
to be made efficiently and effectively. Furthermore, the introduction of Industry 4.0 tech-
nology concepts has generated even more interest in considering CM as a key strategy
for equipment diagnosis [11–13]. These technologies (such as cloud, artificial intelligence,
robotics, the Internet of Things, etc.) aim at automating and connecting all equipment,
where the acquisition and processing of a large amount of data is a key factor. This has
allowed expanding the capabilities and possibilities of CM implementation [14].

At the initial stages of implementing a CM system, it is necessary to determine the
criticality of the equipment under study and how it affects the production process. This
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allows estimating the warning time required, the parameters of interest to be monitored,
and the data acquisition intervals. This selection requires adapting the sensors and the
data acquisition system (DAQ) to the parameter of interest and the component being ana-
lyzed [12]. According to Bustos et al. [15], vibration signals are the most commonly used
parameter in CM systems for diagnosing the critical components of rotary machinery. Vibra-
tion analysis is even considered to constitute 58% of the entire market of CM strategies [16].
Consequently, bearings are considered to be components with a high probability of failure
in a machine, where the appearance of unexpected defects can cause great economic losses
and, in extreme cases, human losses [17,18].

Despite the undeniable benefits, CM faces significant challenges in its implementation.
One of the main drawbacks in the implementation of CM lies in the cost of the initial
instrumentation of the equipment. In areas such as bearing diagnostics using vibration
signals, it is necessary to have high-performance recording equipment [19]. Among the
main characteristics that this type of DAQ must possess are accuracy, number of channels,
and high sampling frequency. Although the latter depends on the geometric characteristics
of the bearings, Bernal et al. [20] recommended using a sampling frequency of 50 kHz for
bearing diagnostics. This has led to studies focused on developing high-performance DAQ
systems at low cost, which can guarantee accessibility in the implementation of this type of
condition-based maintenance strategy.

Several studies of data acquisition system prototypes have been developed, but most
of these fail to meet the requirements for acquiring bearing vibration signals. Seyedmilad
et al. [21] presented low-cost equipment (called CHEAP) designed for the accurate mea-
surement of structural vibrations. This equipment was considered to be a high-sampling
frequency unit, with a capacity of 85 Hz in each channel. Kumar et al. [22] presented a
low-cost data acquisition unit designed to acquire current, vibration, and sound signals at
a sampling frequency of 140 Hz. Vidal and Pindado [23] presented a 5-channel Arduino-
based data acquisition system with the capacity for a sampling frequency of 500 Hz. In
contrast, other studies have developed high-performance recording equipment but lack the
data for them to be reproduced. Bosso et al. [24] presented a prototype for a multifunctional
system applied to railway vehicles capable of recording vibration and temperature. Saha
et al. [25] presented a prototype for a high sampling frequency DAQ system (10 MHz)
designed to capture acoustic emission signals.

Finally, the Railway Technology Research Centre (CITEF) of the Polytechnic University
of Madrid presented a data acquisition module based on a CPU unit and a data acquisition
card [26]. This DAQ was characterized by its use of low-cost components and high per-
formance regarding the number of channels and recording capacity. Nevertheless, when
all four channels were used to record data, the unit only reached a maximum sampling
frequency of 35 kHz per channel, which limited its implementation for assessing certain
types of bearings.

The present article describes improvements to the DAQ developed in [26]. The main
goal is to carry out a deep analysis of the unit’s behavior in order to guarantee even
higher performance and more accurate data acquisition. These optimization tasks consider
both hardware and software. For the hardware, the influence of power supply on the
performance of the DAQ and the quality of the acquired data was analyzed. On the
other hand, in the data acquisition software, the code structure was optimized, changing
the type in which the data is written. Similarly, the estimation and selection of the best
clock divider in the SPI bus speed configuration was optimized, considering the desired
sampling frequency and the RPi system clock speed. The main contributions of this work
are summarized as follows.

• Increasing the maximum sampling frequency of the equipment, reaching 201 kHz
when using one recording channel and reaching 50 kHz when using all of its chan-
nels (4). This represents an average increase of 60% in its capacity when compared to
its previous version;

• Improved sampling rate stability, reaching a constant sampling rate up to 20 kHz;
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• Increased data storage efficiency, guaranteeing an equivalence between the acquisition
time and the time needed to write the data.

The rest of the document is organized as follows. Section 2 provides a review of the
DAQ structure, features, and limitations. Section 3 details the optimization tasks developed
in the DAQ. Section 4 focuses on the experimental setup to acquire bearing state vibration
signals using the optimized DAQ. Section 5 presents the validation results and the new
performance of the optimized DAQ. Finally, conclusions and future research directions are
provided in Section 6.

2. Background: Data Acquisition System (DAQ)
2.1. Equipment Structure

The DAQ system was developed taking into account the essential requirements for
analyzing the bearing condition using vibration analysis. One of the main goals is that of
acquiring data from different signals at once, which requires the equipment to have several
recording channels. This DAQ must be at least as accurate as commercial equipment.
Another important feature to be considered is the sampling frequency required by the
equipment to acquire bearing vibration signals, which is recommended to be 50 kHz in
each channel. Finally, it should be a complete DAQ module formed by a CPU unit and a
converter card that allows easy transport for tests in the field and that is sufficiently compact
with remote connectivity so that it can be placed in small locations with difficult access.

2.1.1. Hardware

The hardware of this equipment consists of a CPU unit and a data converter card. As
a CPU unit, the DAQ developed uses a single-board Raspberry Pi 3 B+ (RPi) computer.
This is a key component in the structure of the recording equipment, because of its high
performance at an affordable cost. The RPi is the core of the system, responsible for
managing, processing, and storing the vibration data acquired in its internal memory.
Furthermore, depending on the storage requirements, the RPi allows using an external
memory or cloud storage solutions for managing large volumes of data. This feature makes
it an ideal option for condition-monitoring applications linked to SCADA systems. The
RPi has an independent operating system that is compatible with several programming
languages. It also has a processor, RAM memory, I/O interfaces, and options for remote
connectivity that enable executing the required software remotely.

Data are recorded by a data acquisition and conversion card. This card is designed
to capture and sample the vibration signals with great accuracy and at a high sampling
frequency. The card has four input channels linked to a multiplexor (MAX4518CPD), which
manages the connection of each connected channel and stores the data until the converter
has completed its task. This allows acquiring data simultaneously from different sensors.
The analog/digital converter (ADC) used in the acquisition card is ADS8326, with 16-bit
resolution and is capable of reaching a sampling frequency of up to 250 kHz (FSample).

Communication between the RPi and the data acquisition card is achieved via the
General Purpose Input/Output (GPIO) pins, using an SPI communication protocol (Serial
Peripheral Interface). Figure 1 shows the structure of the DAQ with the components that
make up the data acquisition and conversion card.

2.1.2. Software V.1.0

The recording equipment uses specifically developed software to control the operation
of the different components of the data acquisition and conversion card and manage the
storage of such data. It is worth noting that the software is installed in the RPi memory,
which makes it possible to control data acquisition via a remote connection. This software
controls and manages the identification of the recording channels (either manually or
automatically), configures the working frequency for the ADC clock (FClock), establishes the
desired sampling frequency, manages the connection of each connected channel, receives
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the digital vibration signals from the acquisition card, and stores the acquired data in the
RPi memory.

Mathematics 2023, 11, 3498 4 of 22 
 

 

 

Figure 1. Components of the data acquisition system. 

2.1.2. Software V.1.0 

The recording equipment uses specifically developed software to control the opera-

tion of the different components of the data acquisition and conversion card and manage 

the storage of such data. It is worth noting that the software is installed in the RPi memory, 

which makes it possible to control data acquisition via a remote connection. This software 

controls and manages the identification of the recording channels (either manually or au-

tomatically), configures the working frequency for the ADC clock (FClock), establishes the 

desired sampling frequency, manages the connection of each connected channel, receives 

the digital vibration signals from the acquisition card, and stores the acquired data in the 

RPi memory. 

According to the ADS8326 data sheet specifications, the FClock is defined using Equa-

tion (1). In this work, the maximum sampling frequency of the ADC (250 kHz) is consid-

ered, so the FClock is estimated at 6 MHz. 

𝐹𝐶𝑙𝑜𝑐𝑘 = 24 ∙ 𝐹𝑆𝑎𝑚𝑝𝑙𝑒 (1) 

A Double data type was chosen to manage the acquired data owing to the ease with 

which it can represent decimal values with high precision. Once the acquired data corre-

spond to the desired sampling frequency, the data are dumped into a write string that will 

be temporarily stored in memory until the data are written into a text file. Finally, when 

the requested recording time has elapsed or the data acquisition order is stopped, the data 

will be stored in the text file, which will be closed. 

2.2. Equipment Features 

One of the main features of the DAQ developed is its high sampling frequency, of 

110, 65, 45, and 35 kHz, respectively, when using 1, 2, 3, and 4 simultaneous channels. This 

allows the unit to be used to capture vibration data for rotating machinery, especially for 

critical components that require high sampling frequencies, such as bearings and gears. 

This enables performing condition-monitoring tasks on the machinery for the early detec-

tion of faults. 

Another clear advantage of the proposed recording equipment is its low cost com-

pared to other commercial data acquisition systems. Considering the DAQ as a complete 

data acquisition module, its cost is EUR 213, whereas the cost of a commercial DAQ with 

these characteristics, such as WebDAQ 504, is more than seven times higher. This makes 

it accessible for a wide range of applications and allows it to be implemented in industrial 

environments that require affordable and effective condition monitoring. 

On the other hand, the components that make up the equipment guarantee the accu-

rate capture of vibration signals in the frequency range required for monitoring the con-

dition of rotating machinery. This has been verified through the capture of data from 

known waves and vibration signals for different bearing conditions. In each of these cases 

there was great data acquisition performance, in both identifying the known wave 

Figure 1. Components of the data acquisition system.

According to the ADS8326 data sheet specifications, the FClock is defined using
Equation (1). In this work, the maximum sampling frequency of the ADC (250 kHz)
is considered, so the FClock is estimated at 6 MHz.

FClock = 24·FSample (1)

A Double data type was chosen to manage the acquired data owing to the ease
with which it can represent decimal values with high precision. Once the acquired data
correspond to the desired sampling frequency, the data are dumped into a write string
that will be temporarily stored in memory until the data are written into a text file. Finally,
when the requested recording time has elapsed or the data acquisition order is stopped, the
data will be stored in the text file, which will be closed.

2.2. Equipment Features

One of the main features of the DAQ developed is its high sampling frequency, of 110,
65, 45, and 35 kHz, respectively, when using 1, 2, 3, and 4 simultaneous channels. This
allows the unit to be used to capture vibration data for rotating machinery, especially for
critical components that require high sampling frequencies, such as bearings and gears. This
enables performing condition-monitoring tasks on the machinery for the early detection
of faults.

Another clear advantage of the proposed recording equipment is its low cost compared
to other commercial data acquisition systems. Considering the DAQ as a complete data
acquisition module, its cost is EUR 213, whereas the cost of a commercial DAQ with these
characteristics, such as WebDAQ 504, is more than seven times higher. This makes it
accessible for a wide range of applications and allows it to be implemented in industrial
environments that require affordable and effective condition monitoring.

On the other hand, the components that make up the equipment guarantee the accurate
capture of vibration signals in the frequency range required for monitoring the condition of
rotating machinery. This has been verified through the capture of data from known waves
and vibration signals for different bearing conditions. In each of these cases there was
great data acquisition performance, in both identifying the known wave frequency and
evaluating the frequency and classic fault modes of the bearing components [26,27].

Furthermore, the use of the RPi as a processing and data storage unit offers flexibility
and enables customizing the DAQ unit to specific condition-monitoring needs. This feature,
along with its remote connectivity, allows developing a DAQ system that is sufficiently
compact to be placed in difficult-to-access locations and easily transported for tests in the
field (see Figure 2).
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2.3. Limitations of the Equipment

Although the equipment presents significant advances in data acquisition at high
sampling frequencies, it is important to mention the inherent limitations of this equipment.
This study analyzes these limitations, focusing on key aspects such as sampling capacity,
measurement accuracy, and the time it takes to store the data.

The recording equipment’s sampling capacity is an important limitation. Although it
achieves a high sampling frequency, when using all four channels it does not achieve the
recommended sampling frequency for acquiring bearing vibration signals (50 kHz). This
limitation could compromise the capacity of the equipment to detect vibrations in the high-
frequency bands associated with bearing condition, which is crucial to effective monitoring.

The accuracy of the vibration measurements is another limitation to be taken into
account. Despite the low cost, the recording equipment may present limitations regarding
accuracy during data acquisition. This leads to a variable sampling frequency that generates
problems when analyzing the data in the frequency domain. This requires a resampling
step to guarantee that each discrete sample is acquired at equally spaced time intervals.

Finally, the time required to store the data is another critical aspect for the operation of
this equipment. Although the data acquisition time corresponds to that stored in the text
file, there is a delay in the writing of these data after the end of the data acquisition process.
This means that there is a certain delay for a given acquisition time until the equipment
finishes writing all the data in the text file. This drawback is related to the way in which
the data are dumped for writing. In this process, the data are queued in a buffer (volatile
memory) while waiting to be written into the text file. Figure 3 shows a record over 64 s,
where blows were induced so that they are perceived by the sensors at approximately 30,
45, and 60 s. This demonstrates that the data are being acquired correctly. However, the
problem lies in the time required to write such data.
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3. Optimizing the Data Acquisition System

When developing a DAQ, the times of data capture and writing are critical factors that
directly affect the efficiency and accuracy of any measurements. It is therefore necessary
to assess different aspects that affect the DAQ system performance regarding the quality
of the acquired data and the time required to acquire and store said data. These tasks are
related to the power supply and the efficiency of the programming code. The following
sections present each of these tasks, focusing on the most important ones.

3.1. Influence of Power Supply Voltage on the Recording Equipment

Power supply is a critical factor in the operation of data acquisition equipment. It is
therefore essential to understand the influence of power supply voltage on the operation
of each of the components of such equipment. Both the CPU unit, based on an RPi, and
the ADC converter of the data acquisition card require a stable and adequate voltage for
reliable and accurate operation. Any variation in this voltage can have a significant impact
on the performance of these components, affecting the stability of the acquired signal and
the capacity to manage and collect the data, thus causing the loss of critical information.

According to the specifications, the RPi requires a power supply that produces 5 V
and a current of 2.5 A for maximum performance. The data acquisition card and the ADC
require a constant supply of 5 V to achieve their maximum sampling frequency and to
maintain a stable resolution. Therefore, the power supply must guarantee the conditions
required by the RPi unit despite fluctuations in the current consumption generated by
connecting other components such as the converter card or the requirements of actions
such as the writing of the data.

3.1.1. Stability of the Acquired Signal

In performance tests of the DAQ, signals from vibration sensors were acquired using
5 V and 2.1 A portable batteries. The following are some drawbacks observed because of a
poor power supply.

In the operation of the DAQ using generic portable batteries, there may be moments
of time with instability in the acquired vibration signal. Therefore, data of the vibration
signal and the voltage supplied by the power supply were captured. Figure 4 presents
these acquired signals, where in the representation of the vibration signal (Figure 4b) the
sensitivity and offset of the sensor were not considered. The results indicated that when
the power supply voltage varies (Figure 4a), this is likely to directly affect the stability of
the acquired signal (Figure 4b). This is generated when the power supply is insufficient, so
it is not able to compensate for the oscillating voltage drop of up to 0.16 V generated by the
operation of the RPi, the ADC converter, and other components sensitive to voltage changes
(such as sensors). Furthermore, it is possible to observe that the instability of the acquired
vibration signal is proportional to the variation in the supply voltage. This behavior is not
related to the characteristics of the power supply alone, but also to the quality and length
of the cable used to supply said power to the equipment. Similar behavior was observed
when using generic wall adapters as the power source.

Portable power supply units are also affected by the time of use and charge capacity.
The prolonged use of power supply units with poor capacity (5 V and 2.1 A) generates
great wear, which then leads to poor power supply. This can be seen in Figure 5, which
shows the behavior of the acquired vibration signal (considering the sensitivity and offset
of the sensor), according to the time of use of a portable power supply. Figure 5 shows
that, despite the battery having limited characteristics for the requirements of the recording
equipment, this power source was capable of providing a sufficiently constant power
supply during the first few hours. However, after a long time of use, the power source
showed distortions in the power supply, generating distortions in the signal acquired and
generating a voltage drop of 0.1 V.
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3.1.2. Selecting the Power Source

To guarantee optimal operation of the DAQ, this study assessed the quality of the
voltage supplied by different power supplies. The objective was to identify power sources
that provide stable and adequate power and meet the specifications required by the DAQ
system. Table 1 shows this analysis. According to the specifications, each battery provides
5 V at currents of 2.1 and 3 amperes. Each of the batteries was used to acquire records over
60 s with a sampling frequency configured at 48,000 Hz. The analysis was performed by
analyzing the average sampling frequency (Fs) achieved, the accuracy of the data acquired
by means of the standard deviation (Std) of the sampling frequency, and the average storage
time achieved.

Table 1. Performance evaluation of different power supplies.

Power Supplies
Specifications Performance Achieved

Voltage [V] Current [A] Capacity
[mAh]

Sampling Frequency
[kHz]

Standard Deviation
[kHz] Time [s]

Baseus65w 5 3 20,000 47,031 2106 55.75
Charmast 5 3 23,800 46,985 2090 53.16

Havit 5 2.1 5000 46,869 2256 52.94
Power Bank 5 3 27,000 46,933 2225 51.13

RS 5 2.1 5200 46,814 2307 50.21
Veger 5 3 30,000 46,930 2255 50.12
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According to the results presented in Table 1, the RS and Havit power supplies
showed the lowest performance, both in the average sampling frequency achieved and
the greater standard deviation of the sampling frequency. However, they differed in the
storage time achieved. This behavior was associated with their specifications, since these
are the power supplies with the lowest capacity. On the other hand, the Baseus65w and
Charmast power supplies were the two with which the DAQ system achieved its best
performance. Although the Charmast power supply showed slightly greater accuracy for
data capture (given its lower standard deviation), the Baseus65w power supply achieved
an average sampling frequency closer to that requested and a significantly greater time
for data capture. Therefore, according to the analysis performed, the Baseus65w power
supply was considered as the power source unit. The summary of DAQ performance with
the different power supplies is shown in Figure 6.
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3.1.3. Power Supply Mode

The RPi has several options for power supply, the Micro USB port being the one rec-
ommended by the manufacturer owing to its overcurrent protection circuit. Nevertheless,
it can also be powered by feedback through the USB ports or the power supply pin on the
GPIO port. In these last two cases it is important to ensure that the power supply used
includes overcurrent protection measures. These power supply options for the RPi can be
observed in Figure 7 (red circles). Likewise, the converter card can be powered by the 5 V
pin of the RPi GPIO port or externally at any point of the power supply line.
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Considering the requirements of the recording equipment components and the effects
these have on performance, this study analyzed different power supply modes in order to
provide as stable a power supply as possible. Three power supply modes were evaluated
in the DAQ system. The first two power supply modes involve supply in series from
the Micro USB port of the RPi or from the data acquisition card. Finally, the third power
supply is performed individually or in parallel through the RPi Micro USB port and the
data acquisition card. This analysis used the Baseus65w power supply. The signal acquired
was generated by a wave generator with a frequency of 5 kHz over 60 s.

Figure 8 shows the performance of the DAQ system according to the power supply
mode. The results indicated that the RPi power requirements are guaranteed when using a
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DAQ power supply in series through the Micro USB port, which allows achieving longer
data writing times. However, it reduces the current reaching the converter card (5 V pin of
the GPIO port), which affects its sampling frequency performance. This is also observed if
the power is supplied from the data acquisition card. On the other hand, the independent
power supply (Ind) to the RPi and the data acquisition card guarantee the performance
demanded from each component, thus reaching a greater sampling frequency, greater data
writing time, and a reduction in the standard deviation for data acquisition frequency.
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3.2. Influence of the Type of Data on Memory and Storage Speed

In a DAQ system, the type of data handled in the programming language takes on
an important role in defining the storage methods and how to represent and interpret the
information [28]. This tells the computer the class, attributes, and precision of the data
being handled while executing the program. The choice of data type thus has a significant
impact on the RPi performance regarding memory efficiency and storage speed.

As mentioned in Section 2.1.2, the data capture software used a Double data type.
This type of data is characterized by representing decimal values with high precision via a
64-bit floating point. Running software thus requires greater storage capacity, since 8 bytes
of data must be reserved in memory for each variable defined with this data type. This
implies that more read and write operations are required to manage and store these data,
which affects the general performance of the DAQ system. It is important to mention that
each acquired sample is dumped into an independent write thread in the data capture
management software. This leads to maintaining large amounts of data in queues waiting
to be stored, reserving a large part of the memory for this task.

Since the converter used in the data acquisition card has a 16-bit resolution, using
Double type data provides no benefits in terms of precision, since a large part of the
memory is being reserved for data management, the precision of which is not related
to the performance of the ADC converter being used. This has a direct influence on the
performance of the RPi, producing delays in the data read and write times.

In contrast, uint data are smaller and occupy less space in memory. This type of data
allows representing unsigned integers in a range from 0 to 65,535, which coincides with the
representation capacity of the 16-bit ADC converter used in the acquisition card. Using this
type of data thus ensures a direct correspondence between the input values captured by
the ADC and those stored in the memory of the acquisition system.

This change in data type comprises the optimization task with the most influence on
DAQ performance. This is possible since it frees up memory, facilitating data management.
One of the main advantages lies in the equivalence between the times of acquisition and
writing of the data. Thus, to acquire a 60 s recording, 60 s in real time are currently required.
This can be observed in Figure 9, which represents the difference in data acquired and
stored over 60 s, using each of the data types evaluated. This shows that by using the
Double data type (Figure 9a), it is possible to store samples for the first 55 s, whereas
by using the uint data type (Figure 9b), it is possible to record all the data for the entire
time requested.
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3.3. SPI Clock Frequency Divider

One of the main attractions of the RPi is its ability to communicate with other devices
through the SPI bus used in this study. This communication is established using the
BCM2835 library, where it is possible to configure the SPI clock frequency. This SPI clock
frequency determines the data transfer rate and the synchronization between the devices
on the SPI bus (RPi and data acquisition board). On the other hand, the RPi has a system
clock speed that directly affects the maximum frequency that can be achieved on the SPI
bus. This makes it necessary to consider the system clock speed when setting the SPI
clock frequency, and in turn, the SPI clock frequency will depend on the desired sampling
frequency (FSample), see Equation (1).

The BCM2835 library provides functions for RPi communication with other devices,
including SPI bus configuration. To set the SPI clock frequency using the BCM2835 library,
it is necessary to calculate the appropriate divider based on the system clock rate and the
desired sampling frequency. This divider is used to divide the system clock rate to obtain
the SPI clock frequency (see Equation (2)). However, the SPI clock frequency on the RPi
processor can only be configured based on a string of internal prescalers that are powers
of 2 (according to the BCM2835 library documentation), such as 2, 4, 8, 16, 32, 64, 128,
etc. Thus, when configuring a clock divisor that is not a power of 2, the SPI driver will
automatically round to the nearest low clock divisor that is a valid power of 2.

Divider =
FSystem

2·FClock
− 1 (2)

As described in Section 2.1.2, the SPI clock frequency (FClock) of the ADC was defined
at 6 MHz, so the FClock is not always associated with the desired FSample. In this case, the
FSample is defined by a data read loop, acquiring only the data corresponding to the time
equivalent of the desired sampling frequency. Such a structure made it possible to achieve
sampling frequencies of 110, 65, 45, and 35 kHz using 1, 2, 3, and 4 channels, respectively.
However, this configuration significantly affects the performance of the DAQ, in both the
desired data capture frequency and the stability of the sample acquisition rate per unit time.

According to Yang et al. [29], setting the clock frequency too high may exceed the
hardware capabilities and result in unstable communication or data transmission errors.
On the other hand, too low a clock frequency may limit system performance and affect the
data transfer rate. The latter ratifies the low sampling rate achieved in the DAQ proposed
in [26] and the instability of the acquired data at a low sampling rate.

This has made it necessary to use a structure that defines the SPI clock frequency,
being consistent with the desired sampling frequency and considering the RPi system clock
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speed. Equations (1) and (2) are considered to estimate the clock divider to be used in the
SPI bus speed configuration. The BCM2835 library specifies that the RPi used in this study
has an FSystem clock of 400 MGz.

Figure 10 presents the influence of using a correct clock divider on the stability of
the acquired data at different sampling frequencies (1, 10, 20, 50, 100, and 200 kHz). The
results indicated that by calculating the right clock divider and selecting an appropriate SPI
clock frequency, the desired sampling frequency can be achieved, and system performance
optimized. This was mainly observed for data acquired at sampling frequencies of 1, 10,
and 20 kHz, where the standard deviation of the sampling frequency was zero.
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For data acquired at a sampling rate higher than 20 kHz, it was observed that a
constant sampling rate was not achieved. However, a better performance of the DAQ was
observed. The standard deviation of the data acquired at sampling frequencies of 50, 100,
and 200 kHz significantly decreased compared to the results presented in [26].

4. Experimental Data

When validating the new performance of the optimized data acquisition system (DAQ-
o), this analysis followed the guidelines laid down in [26]. The DAQ-o was therefore used
to acquire vibration signals from the bearing test bench built by CITEF. This section details
some of the changes made on the test bench. Further details of the structure of the bearing
test bench are presented in [26].

4.1. Bearing Test Bench

The bearing test bench (BTB) built at CITEF followed some recommendations provided
by bearing manufacturers [30,31]. According to standard EN 12082 [32], the minimum
elements that make up the BTB are the rotation mechanism, the power control unit, the
load mechanism, the load control unit, and the test mechanism (see Figure 11). A notable
feature of the BTB is its capacity to evaluate bearing behavior at different speeds and loads,
which are considered factors with an impact on the vibration index [33].
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4.1.1. Load Mechanism and Control Unit

In this BTB, the load was applied to the axis by means of a tightening tower placed
between the bearing supports. Initially, the tightening tower consisted of two threaded
rods placed at each side of the axis and a thrust plate, as seen in Figure 12a. To quantify
the load, this BTB used an FX1901 compression cell and an INA125P amplifier, so it was
necessary to analyze the relationship between voltage, load, and the tightening torque on
the screw. However, the friction generated between the screw and the thrust plate caused
problems when quantifying the load. The threaded rods were therefore replaced by two
S-type PSD-S1 load cells attached to the test bench structure and placed at each side of the
axis, as shown in Figure 12b.
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BPFI 8.8148 × Fr 73.46 Hz 

BSF 5.4030 × Fr 45.03 Hz 

FTF 0.4123 × Fr 3.44 Hz 

Figure 12. Load mechanism (tightening tower), (a) threaded rod, and (b) load cell.

The use of these load cells in the tightening tower allowed implementing a load control
unit in real time. This unit used amplifiers for the signal of each load cell. This signal was
then sent to an Arduino® microprocessor in which the calibration of each load cell was
configured. In addition, this unit had a MicroSD adapter and an LCD screen in order to
store and display the load applied, as shown in Figure 13.

4.1.2. Test Bearing

Table 2 shows the constants used to calculate the fundamental frequencies of each
component of the test bearing (FAG 22205-E1-K-C3), such as Ball Pass Frequency Outer
(BPFO), Ball Pass Frequency Inner (BPFI), Ball Spin Frequency (BSF), and fundamental
train frequency (FTF). These constants were taken from Schaeffler’s official webpage and
are related to the geometric characteristics of the bearing. The fundamental frequency of
each component was thus estimated by relating its respective constant with the rotation
frequency of the axis (Fr).
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Table 2. Test Bearing Fundamental Frequencies (22205E1KC3).

22205-E1-K-C3 Constant
Regime Unit

500 rpm

BPFO 6.1852 × Fr 51.54 Hz
BPFI 8.8148 × Fr 73.46 Hz
BSF 5.4030 × Fr 45.03 Hz
FTF 0.4123 × Fr 3.44 Hz

4.2. Test Bench Instrumentation
4.2.1. Sensors

According to standard ISO 13373-1 [34], the transducer to be used depends on the
component to be analyzed, with accelerometers being recommended to quantify vibration
rates in bearings, as they may reveal masked faults in high-frequency bands. This data
acquisition system thus used a low-cost 805M1 accelerometer mounted via a threaded
connection. This accelerometer was mounted using a magnetic coupling to guarantee the
perpendicularity of the accelerometer with respect to the contact surface. The accelerometer
had a dynamic range of ±20 g, a sensitivity of 100 mV/g, and a flat frequency response of
10 kHz. It also incorporated a stable piezoceramic crystal with an excitation voltage of 3 to
5.5 V and an operating temperature between −40 ◦C and +100 ◦C.

4.2.2. Sensor Location and Orientation

In order to obtain the greatest sensitivity to changes in vibration behavior, this study
considered the areas in which application of the load generated the maximum dynamic
stresses on the bearings [33–36]. Therefore, the accelerometers for the bearings with sup-
ports (Ac_1 and Ac_3) were placed at 6 o’clock (at the bottom) and the accelerometer for
the load tower bearings (Ac_2) was placed at 12 o’clock (at the top), see Figure 14.
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An adhesive mounting was used to ensure maximum rigidity between the accelerom-
eter and its respective positions, to ensure the transducer signal did not undergo major
distortions owing to the resonance frequency of the mounting method (ISO 5348:1998, 2000).

4.3. Experimental Design

The data acquisition system was used to capture vibration data from a bearing test
bench. Three test bearings were used, each associated with faults in rolling elements (REs),
outer race (OR), and inner race (IR). Each bearing was assessed at five levels of failure that
included the normal state (F0, F1, F2, F3, F4) at an operating regime of 500 rpm and a load
of 400 kg, defined as controllable factors. The sampling frequency used for data acquisition
was 48 kHz over three channels during a data acquisition time of 58 s. Subsequently, the
obtained records were resampled to 40 kHz to ensure a constant sampling rate throughout
the record. Table 3 describes the factors and levels considered in this test.

Table 3. Factors and levels considered in the design of the experiment.

Study Factor Levels
UnitsF1 F2 F3 F4 F5

RE
Area 0 4.16 6.83 7.28 8.06 mm2

Depth 0 0.007 0.013 0.021 0.029 mm

IR
Area 0 15.84 17.64 21.24 22.68 mm2

Depth 0 0.007 0.016 0.024 0.031 mm

OR
Area 0 10.78 17.61 29.47 30.73 mm2

Depth 0 0.008 0.016 0.024 0.032 mm

Control Factor Level Units

Regime 500 rpm
Load 400 kg

4.4. Processing of Vibration Signal Data

When pre-processing the representative samples, the main objective is to extract the
greatest amount of information about the condition of the components under study. Gupta
and Pradhan [37] suggested that the data processing technique used in the analysis must
be chosen in accordance with the component under study.

Therefore, considering the oscillatory behavior of bearings, this study used the en-
velope analysis technique, which seeks to detect excited resonant areas or amplitude
modulation due to periodic impact forces. This is a characteristic pattern of bearings,
in which the frequency of repetition is an indicator of the location of the defect and its
amplitude is a measurement that characterizes the condition of the component [38]. This
process involves a sequence of operations performed on the vibration signal that starts by
eliminating the low frequency components associated with other conditions of the rotating
equipment, such as imbalance and misalignment [39]. Subsequently, the signal envelope is
obtained by means of the Hilbert Transform. Finally, the envelope spectrum is built.

Interference components are removed by filtering the signal. Therefore, the frequency
band to be analyzed should be determined, in order to obtain the greatest amount of
information on bearing condition [40,41]. This study considered the estimated filtering
band of 6.1–9.2 kHz proposed in [26].

5. Results and Discussion
5.1. Validation of the Recording Equipment
5.1.1. New DAQ Performance

Table 4 shows the DAQ performance before and after the optimization tasks. The
results indicated that the developed tasks speeded up both the read and write times, thus
leading to more agile data management. This significantly affected the maximum sampling
frequency of the DAQ system, reaching a 60% increase on average in its data acquisition
capacity using different numbers of recording channels.
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Table 4. Details of the recording capacity of the equipment per channel.

Data Type Number of Channels Sampling Frequency
[kHz]

Standard Deviation
[kHz]

Double

1 110 16.28
2 65 7.08
3 45 4.40
4 35 3.05

Uint

1 201 6.66
2 102 2.46
3 69 1.94
4 51 1.40

On the other hand, the standard deviation of the sampling frequency also decreased
with the use of uint data and an appropriate clock divider. This occurred because the reduc-
tion in memory requirements allowed increasing the performance of the RPi and balanced
the accuracy of data capture, giving rise to a more stable maximum sampling frequency.

5.1.2. Timing Accuracy of the Data Acquired for Known Waves

Guaranteeing a regular time interval between the capture of each data point leads
to the DAQ system having a constant sampling frequency. This is considered a critical
factor that affects the quality and reliability of the results and has a significant influence
on the accuracy of detection of the frequency components in the spectral analysis. Thus,
when processing the data and changing the domain from time to frequency, it is important
to have a dataset that has the same number of data points per unit of time and that each
data point is acquired at regular intervals. Otherwise, the spectral analysis of a set of data
acquired at a non-constant sampling frequency may show sidebands and offsets in the
frequency components.

This made it necessary to assess the behavior of the optimized data acquisition system
(DAQ-o) regarding recording timing accuracy. For this purpose, a wave created with a
wave generator (at a frequency of 5 kHz) was acquired using different sampling frequencies
in the DAQ-o to acquire the signal. According to the results obtained by the optimization
tasks performed, the DAQ-o reached a constant sampling frequency up to 20 kHz, whereas
when configuring the DAQ-o at a higher sampling frequency (200 kHz, for example), the
acquisition time for the data was not regularly spaced. These two behaviors related to the
effect of accuracy in the capture times of the DAQ-o are presented in Figure 15.
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As observed in Figure 15b, variations in the capture time of the generated wave
data did not significantly affect the time domain for the different sampling frequencies
presented. However, the opposite was true when analyzing in the frequency domain.
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When using a 200 kHz sampling frequency the acquisition time for each data point was
not equidistant, which caused the spectral analysis to manifest sidebands alongside the
frequency component (see Figure 15c).

Overcoming this drawback required a signal resampling step. Accurate timing of
data capture can be guaranteed by using sampling frequencies greater than 20 kHz in
the DAQ-o. Figure 16 shows the capture of waves created at different frequencies and
using a sampling frequency of 200 kHz in the DAQ-o, which made it necessary to use a
signal resampling step. The results demonstrated that the resampling step guaranteed the
accurate timing of data capture, which in turn eliminated possible offsets and sidebands in
the frequency component.
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5.2. Acquisition of Vibration Signal Data in a Bearing Test Bench

In this phase of the recording equipment validation, the objective was to be able to
acquire vibration signals associated with the condition of the bearing and to process these
to replicate the failure modes described in the literature. This allowed us to demonstrate the
DAQ-o performance and the feasibility of implementing it in bearing condition monitoring
by the acquisition of vibration signals.

Since they are subjected to stress while rotating, bearings develop different kinds
of damage due to fatigue of their elements, even under normal conditions of load, oil
properties, and correct assembly [42]. According to Ghafari [43], the impulses generated by
small defects on the surface of bearing components create transient events manifested by
an increase in impulsivity and a change in the stationarity of the vibration signal, which
excite the natural frequencies of the bearing structure [43]. Therefore, by evaluating bearing
vibration signals it is possible to identify the presence of damaged components by their
operating frequency. The following sections evaluate the records of each case of induced
faults in the test bearings.
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5.2.1. Outer Race Fault Detection

The outer race is the component most likely to wear because of its static location in its
housing (in most cases), and the same race segment being subjected to a stationary load [44].
Therefore, it is usually the first fault frequency to be detected. As for the vibration behavior,
this will depend on the angular position of the defect. That is, the vibration index will be
influenced by the proximity of the defect to the load zone.

Considering the above, if the fault is in the load zone, harmonics developed by
excitation pulses will be generated when the rolling elements pass over the fault, which
may present sidebands spaced at the frequency of the cage, the shaft, or both [36]. This
vibration level will be consistent with the mechanical clearance of the bearing components.
Figure 17 shows the envelope spectrum of a record associated with an outer race fault,
illustrating the fault frequency (BPFO) and its harmonics, with the presence of sidebands
spaced at the shaft rotation frequency (in some cases). However, the presence of sidebands
spaced at the cage frequency was not observed.
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Figure 18 shows the behavior of envelope spectra as the fault generated in the outer
race increased. This allowed us to observe the changes in the amplitude of the outer race
fault frequency as the magnitude of the generated fault increased.
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5.2.2. Inner Race Fault Detection

Faults on the inner race are detected less frequently than on the outer race. The main
reason is related to the attenuation of the signal as it is transmitted from the inner race,
through the rolling elements, lubrication, outer race, and support, until it reaches the
sensor. Therefore, when this type of fault is detected it is considered to be more severe than
detected [44].

Figure 19 shows an envelope spectrum of a vibration signal associated with an inner
race fault for a rotational speed of 500 rpm. It can be seen from the spectrum that the signal
behavior is related to the failure mode described in the literature. According to Smith
and Randall [36], the failure of this component is manifested in the envelope spectrum by
changes in the amplitude of its working frequency generated by excitation pulses from
contact between the inner race defect and the rolling elements, showing the harmonics of
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its frequency (BPFI), with modulation sidebands spaced at the shaft rotation frequency in
each harmonic.
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Figure 20 shows the behavior of envelope spectra as the damage generated in the inner
race increased, showing that the amplitude of the fault frequency and harmonics increased
as the magnitude of the fault increased.
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5.2.3. Rolling Element Fault Detection

According to Smith and Randall [36], rolling element faults are the most difficult
to diagnose, as very few bearings with these faults exhibit the classic symptoms of the
envelope spectrum. These classical symptoms are denoted by the presence of two signs, the
first manifested as an increase in the amplitude of the characteristic fault frequency (ball
spin frequency or BSF) and harmonics, with sidebands modulated at the fundamental train
frequency (FTF). The second sign corresponds to low amplitude FTF harmonics. Figure 21
represents the envelope spectrum of a rolling element fault vibration signal. This figure
shows the presence of the second sign, clearly showing the first two harmonics of the FTF,
and hinting at the fourth harmonic.
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Another sign attributed to this type of fault is the contained impulse observed in the
fault frequency (BSF) sidebands and harmonics [36,45], which behavior is observed in
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Figure 21. Thus, as the magnitude of the fault of this component increases, the amplitude
of both the frequency and harmonics of FTF will increase, as well as the impulsive content
of the frequency and harmonics of BSF, as observed in Figure 22.
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Figure 22. Representation of recordings of rolling element degradation at 500 rpm.

6. Conclusions

This study presents the optimization tasks developed to improve the performance of
the DAQ unit, focusing on its recording capacity and the accuracy and stability of the data
acquired. The results showed an average increase of 60% in DAQ-o data recording capacity,
currently having maximum sampling frequencies of 201, 102, 69, and 51 kHz when using 1,
2, 3, and 4 channels, respectively. In addition, there was significant improvement in the
accuracy of the data capture time, reaching a constant sampling rate of up to 20 kHz. On
the other hand, the standard deviation of sampling frequencies was significantly reduced
for sampling frequencies higher than 20 kHz, showing higher accuracy in data capture.
The latter cases required additional resampling of the signal, which will be considered in
future work.

According to the results, the quality of the power supply and the data type chosen
in the programming software play an important role in the performance of a DAQ unit.
The power supply ensures that both the RPi and the ADC converter operate at maximum
performance, guaranteeing accuracy and stability of the acquired data. On the other hand,
it is important to consider the type of data used in the programming software. This should
be based on the nature of the acquired data and the accuracy requirements of the system.
Handling a data type with greater precision than required will affect DAQ performance in
terms of memory management and the time taken to store the data. Therefore, changing
the data type from Double to uint was critical to balance data precision, memory efficiency,
and DAQ performance. Consequently, it is important to highlight the influence of selecting
the correct clock divider according to the operating frequency of the system and the desired
sampling frequency in order to increase the stability of the data capture.

The new features of the equipment were validated by capturing data from known
waveforms and from signals associated with bearing component failures. In each of these
cases there was great data capture performance, both when identifying the known wave
frequency and when evaluating the frequency and classic failure modes of the bearing
components analyzed. This demonstrated the possibility of developing low-cost, high-
performance data acquisition equipment, as well as the viability of implementing them in
bearing condition-monitoring tasks.
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