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Abstract: Community structure is crucial for understanding network characteristics, and the local
expansion method has performed well in detecting community structures. However, there are two
problems with this method. Firstly, it can only add nodes or edges on the basis of existing clusters,
and secondly, it can produce a large number of small communities. In this paper, we extend the local
expansion method based on ordinary graph to hypergraph, and propose an effective hypernetwork
community detection algorithm based on local expansion (LE) and global fusion (GF), which is
referred to as HLEGF. The LE process obtains multiple small sub-hypergraphs by deleting and adding
hyperedges, while the GF process optimizes the sub-hypergraphs generated by the local expansion
process. To solve the first problem, the HLEGF algorithm introduces the concepts of community
neighborhood and community boundary to delete some nodes and hyperedges in hypergraphs.
To solve the second problem, the HLEGF algorithm establishes correlations between adjacent sub-
hypergraphs through global fusion. We evaluated the performance of the HLEGF algorithm in the
real hypernetwork and six synthetic random hypernetworks with different probabilities. Because
the HLEGF algorithm introduces the concepts of community boundary and neighborhood, and the
concept of a series of similarities, the algorithm has superiority. In the real hypernetwork, the HLEGF
algorithm is consistent with the classical Spectral algorithm, while in the random hypernetwork,
when the probability is not less than 0.95, the NMI value of the HLEGF algorithm is always greater
than 0.92, and the RI value is always greater than 0.97. When the probability is 0.95, the HLEGF
algorithm achieves a 2.3% improvement in the NMI value, compared to the Spectral algorithm.
Finally, we applied the HLEGF algorithm to the drug–target hypernetwork to partition drugs with
similar functions into communities.

Keywords: hypernetwork; community structure; local expansion; global fusion

MSC: 05C82; 05C65

1. Introduction

In real life, many complex relationships can often be represented as complex networks,
such as citation networks, social networks, and mobile information control networks [1]. In
these different networks, nodes represent individuals and edges represent their interactions.
Three important characteristics of complex networks, namely the small-world property [2],
scale-free property [3], and community structure [4], have garnered significant attention
from scholars.

Ordinary graphs are limited to pairwise relationship information, and this binary mea-
sure is often insufficient in many applications. Consequently, hypernetworks have become
a popular research topic in network science. The concept of a hypernetwork is divided
into two categories, namely supernetworks based on networks, and hypernetworks whose
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topology is a hypergraph. Estrada et al. [5] referred to networks based on hypergraphs as
hypernetworks, and first extended some concepts to hypernetworks. Since the concept of
supernetwork has been proposed, the model construction of hypernetworks has attracted
much attention from scholars; many papers [6–10] show that hypernetworks that reveal
multivariate relationships are ubiquitous in life. In addition, The community detection
problem in hypergraphs has also been extensively studied. Community detection in hyper-
graphs aims to identify a partition, such that C = {C1, C2, . . . , Ck}(C1 ∪C2 ∪ . . . ∪Ck ⊆ V),
and the internal nodes of each community are more closely connected than the external
nodes. Based on the ordinary complex networks’ community detection algorithms, Cheng
et al. [11] transformed the community detection problem of the hypernetwork into a graph
segmentation problem; Kamiński et al. [12] extended the definition in ordinary networks;
Chodrow et al. [13] combined the degree-corrected random block model in the hypergraph;
Larremore et al. [14] extended the concept of modularity to hypergraphs. The non-negative
matrix factorization method can reveal the community structure existing in ordinary com-
plex networks, but without considering multiple relationships. Wu et al. [15] combined
the hypergraph regular term, and made it applicable to the community detection problem
of the hypernetwork. The dynamic equations can also well reflect the structure of the net-
work and then mine the community. Some scholars [16–19] have considered higher-order
interaction relationships to solve the problem of the dynamics of the hypernetworks; when
the equations reach the steady state, we can find the corresponding community structure.

Among them, the local expansion method has proven to be effective in detecting
the community structure in real-world networks and its working principle can be found
in [20]. Since the motif clustering perspective is relatively new, the available combinatorial
approaches are still few. Chhabra et al. [21] used local motif clustering to obtain local clus-
tering results based on the distribution of motifs. Since the algorithm avoids randomness
by repeating the partitioning process, it is time-consuming. Guo et al. [22] and Ma et al. [23]
obtained the final community division results by optimizing the quality functions, but
the accuracy of the method largely depends on the selection of the quality functions. To
overcome the above problems, Ding et al. [24] expanded communities by analyzing the
characteristics of communities from the perspective of nodes, but failed to distinguish
between highly admixed communities. Recent studies [25–27] show that reinforcement
learning and fuzzy-logic-based approaches can detect communities present in networks.
However, compared to the local extension-based methods, the latter are relatively simple
and easy to implement, as they only require basic graph theory, and the results are clear
and interpretable. In contrast, reinforcement learning and fuzzy-logic-based approaches
may require more complex algorithms, models, and even datasets, and therefore produce
more opaque or complex results. However, there are two problems with local expansion
methods when detecting communities: first, they can only add nodes or edges based on
existing clusters, and second, they generate a great number of small communities. For this
reason, we present a new algorithm.

In this paper, we propose a new algorithm for detecting community structures in
hypernetworks by extending the local expansion method to hypergraphs. The algorithm
consists of two processes: the local expansion process and the global fusion process. The
former includes seed selection, deletion, and expansion sub-processes, while the latter
involves merging sub-hypergraphs generated from the previous process. We choose the
node with the highest influence as the seed based on the centrality indicator, and nodes
contained in the neighborhood of the seed node are considered as the initial community of
this node. We remove some hyperedges and nodes from the initial community based on
the similarity between hyperedges and sub-hypergraphs, as well as the similarity between
nodes and communities. We then expand more similar hyperedges outside the community
into the current community to obtain a sub-hypergraph. A great number of small sub-
hypergraphs are obtained in the local expansion process. Next, we compare the distances
between different seed nodes of each sub-hypergraph. If the distance is less than a specified
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threshold, we merge these two sub-hypergraphs into one and obtain the final community
partitioning result.

The main contributions of this paper are as follows:

(1) This paper extends the local expansion method to hypergraphs and proposes a hyper-
network community detection algorithm based on local expansion and global fusion,
which provides a solution for identifying communities with hypergraph structures;

(2) Based on the local expansion, we consider deleting nodes and hyperedges;
(3) The algorithm establishes connections between sub-hypergraphs through global

fusion to improve the relativity of detected communities.

This paper is organized as follows. Some definitions associated with the algorithm
are provided in Section 2, the HLEGF algorithm and its two processes are introduced
in Section 3, Section 4 verifies the feasibility and superiority of the algorithm through
analytical experiments, and Section 5 concludes this paper and discusses future research.

2. Basic Definitions

Definition 1 (Hypergraph [28]). A hypergraph H is a pair H = (V, E), where V is a finite set of
nodes (also called vertices) V = {v1, v2, . . . , vn}, and E = {e1, e2, . . . , em} is a family of nonempty
subsets of elements of V. These subsets are called hyperedges or hyperlinks, and they represent an
interaction taking place between elements of V (see Figure 1).
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Figure 1. An example of hypergraph H. The hypergraph is formed by 13 nodes, one hyperedge of
size 2, one hyperedge of size 3, two hyperedges of size 4, and one hyperedge of size 7. d(v2) = 10,
dH(v2) = 3. d(v1, v2) = 1, d(v1, v9) = 2.

If a node vi ∈ hyperedge ej, we say that vi is incident to ej, and the corresponding entry in the
incidence matrix A is Aji = 1, otherwise, the entry is 0. Two hyperedges ei and ej are said to be
incident if ei ∩ ej 6= ∅, i.e., if they have at least one node in common. We use matrix B to represent
this relationship, if ei ∩ ej 6= ∅, Bij = 1, otherwise, the entry is 0. The degree d(vi) of the node vi
in a hypergraph is defined as the number of nodes directly adjacent to it. The hyperdegree dH(vi) of
a node is defined as the number of hyperedges containing that node. The distance d

(
vi, vj

)
between

two nodes vi and vj in a hypergraph is defined as the minimum length of the path connecting the
two nodes. If there is no path between two nodes, the distance d

(
vi, vj

)
= ∞.

Definition 2 (Sub-hypergraph). Given two hypergraphs H = (V, E) and H′ = (V′, E′), if
V′ ⊆ V, and ∀e′ ∈ E′ there is only one e ∈ E, such that e′ ⊂ e, then H′ is called a sub-hypergraph
of H.

Definition 3 (Node Centrality). In this paper, we define the centrality of a node vi in hypergraph
as follows:

NC(vi) = α
dH(vi)

|E| + (1− α)
d(vi)

|V| (1)
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Formula (1) consists of two terms. The first term is the ratio of the hyperdegree of the node to
the total number of hyperedges, which reflects the importance of hyperedges. The second term is the
ratio of the degree of the node to the total number of nodes, which reflects the importance of nodes, α
is a tunable parameter. Therefore, node centrality is measured by both node degree and hyperdegree,
it is also used to determine the order of selecting seed nodes in this paper.

In Figure 1, when α = 0.5, the node with the greatest centrality is v2. Therefore, the seed node
is v2.

Definition 4 (Node Neighborhood). The neighborhood of a node vi is defined as the set of all
hyperedges containing that node.

Γ(vi) =
{

ej
∣∣ ej ∈ E, Aji = 1

}
, vi ∈ V (2)

In this paper, nodes contained in the neighborhood Γ(vi) of the seed node vi are considered as
the initial community of this node, denoted by Cvi . Therefore, in Figure 1, the initial community of
node v2 is Cv2 = {v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11}.

Definition 5 (Community Boundary and Neighborhood). Given a community C, the boundary
B(C) is defined as follows:

B(C) =
{

ej
∣∣ej ⊆ C, Bij = 1, ∃ei * C

}
(3)

A community’s boundary consists of hyperedges inside the community, which have at least one
of the incident hyperedges located outside the community.

The community’s neighborhood Γ(C) of community C is defined as follows:

Γ(C) =
{

ej
∣∣ej * C, Bij = 1, ∃ei ⊆ C

}
(4)

A community’s neighborhood consists of hyperedges outside the community, which have at
least one of the incident hyperedges located within the community.

In the hypergraph shown in Figure 1, the boundary of the community Cv2 is B(Cv2) = {e1, e3},
and its neighborhood is Γ(Cv2) = {e4, e5}.

Definition 6 (Similarity between a hyperedge and Sub-hypergraph). For a given community
C and a sub-hypergraph H′ = (V′, E′), the similarity hss(ei, H′) is defined as follows:

hss
(
ei, H′

)
=


max

(∣∣ei ∩ ej
′∣∣ ∗ Bij

)
, ∀ej

′ ∈ E′ i f ei ∈ B(C)andV′ 6= C∣∣{v | v ∈ ei ∩ ej
′, ∀ej

′ ∈ E′, ej
′ 6= ei

}∣∣ i f ei ∈ B(C)andV′ = C
max

(∣∣ei ∩ ej
′∣∣ ∗ Bij

)
, ∀ej

′ ∈ E′, ej
′ 6= ei i f ei ∈ Γ(C)andV′ 6= C∣∣{v | v ∈ ei ∩ ej

′, ∀ej
′ ∈ E′

}∣∣ i f ei ∈ Γ(C)andV′ = C

(5)

Definition 7 (Similarity between Node and Community). The similarity between a node vi
and a community C is defined as the ratio of the number of hyperedges satisfying certain conditions
in the node neighborhood to the number of hyperedges in the node neighborhood. Among them, the
hyperedges of the molecular part should satisfy the condition that at least half of the nodes contained
in these hyperedges are located in the community C. The result reflects how much the node is
connected with the community C.

ncs(vi, C) =

∣∣{ej
∣∣ ej ∈ Γ(vi),

∣∣ej ∩ C|≥|ej
∣∣∗0.5

}∣∣
|Γ(vi)|

(6)

In the above equation, if ncs(vi, C) < 0.5, the node vi is removed from the community C.
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3. Proposed Method

This paper proposes a new algorithm, called HLEGF, for detecting community struc-
tures in hypernetworks. The algorithm consists of two processes: the LE process and the
GF process. The LE process includes seed selection, deletion, and expansion sub-processes.
The seed selection sub-process selects the node with the highest centrality as the seed node
from the hypernetwork and uses nodes contained in the neighborhood of the seed node
as the initial community. In the deletion sub-process, hyperedges within the community
boundary with low similarity to the sub-hypergraph consisting of the current community
are first removed, and then nodes with lower similarity ncs(v, C) between the nodes and
the community are removed. The expansion sub-process determines whether to expand the
community based on the similarity hss(e, H′) between a hyperedge within the community
neighborhood and sub-hypergraph, and adds the hyperedge with higher similarity to the
community. This process can obtain multiple smaller sub-hypergraphs. The GF process
globally merges the sub-hypergraphs generated by the previous process according to the
distance between the seed nodes of the different sub-hypergraphs. When the distance is
smaller than the specified threshold, the smaller sub-hypergraph is merged into the larger
sub-hypergraph, and the final community detection result is obtained.

3.1. Local Expansion Process

The LE process is displayed in Algorithm 1. Lines 1–6 describe the initialization
process, where C is the sub-hypergraph set, S is the seed node set, D is the set of deleted
hyperedges, and U is the set of unassigned nodes. The centrality value of each node
is calculated according to Definition 3. Lines 7–34 describe the LE process, where the
algorithm executes the seed selection, deletion, and expansion sub-processes sequentially.
The seed selection sub-process (lines 9–12) selects the node vs with the maximum centrality
from the set of unassigned nodes as the seed and determines the community Cvs based
on Definition 4. The deletion sub-process (lines 13–23) first obtains hyperedges within
the community boundary based on Definition 5, then calculates the similarity between
the hyperedge and the sub-hypergraph consisted in community hss

(
e, H1

′), as well as
the similarity between the hyperedge and the rest of the sub-hypergraphs outside the
community hss

(
e, H2

′). If hss
(
e, H1

′) < hss
(
e, H2

′), this hyperedge is deleted, and nodes
associated with this hyperedge but not included in other hyperedges inside the community
are also deleted. Then, the set D is updated. The similarity ncs(v, Cvs) between the
community’s node and the community is then calculated. If ncs(v, Cvs) < 0.5, the node
is deleted. The expansion sub-process (lines 24–33) first obtains the hyperedges within
the community neighborhood based on Definition 5, calculates the similarity between the
hyperedge and the sub-hypergraph consisted in the current community hss

(
e, H1

′), as
well as the similarity between the hyperedge and the rest of the sub-hypergraphs outside
the community hss

(
e, H2

′). If hss
(
e, H1

′) > hss
(
e, H2

′), this hyperedge and its associated
nodes are added to the current community. At this time, we obtain a sub-hypergraph. Then,
the sub-hypergraph set C and unassigned node sequence U are updated. Repeat the above
process until U = ∅.

To facilitate the use of the next process, we generate a new hypergraph H2,
H2 = (V, E′), where E′ is obtained after deleting the hyperedges of the set D from the
original hyperedge set E, and there will be many isolated nodes in H2.

The time complexity of Algorithm 1 is O(2m + n), where m is the number of hyper-
edges in the hypernetwork, and n is the number of nodes. Figure 2 illustrates
the process.
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Algorithm 1: LE algorithm

Start LE
Input: Hypergraph H = (V, E), Node set V, Hyperedge Set E.
Output: The sub-hypergraph set C.
1: Initialization:
2: Initialize the sub-hypergraph, C = ∅
3: Initialize the seed node set, S = ∅
4: Initialize the deleted edges, D = ∅
5: Initialize an unassigned-node sequence U, U = V
6: Calculate the centrality of each node NCv(v ∈ V) based on Definition 3
7: Local expansion process:
8: While U 6= ∅ do
9: Seed selection sub-process:
10: Get the seed node vs(vs ∈ U) with the maximum centrality
11: Get neighborhood Γ(vs) of node vs based on Definition 4

12: Current community Cvs =
{

vj

∣∣∣vj ∈ ei, ∀ei ∈ Γ(vs)
}

13: Deletion sub-process:
14: Get community boundary B(Cvs ) based on Definition 5
15: H1

′ =
(
V1
′, E1

′) ← the sub-hypergraph consisted of the Cvs , namely V1
′ = Cvs

16: H2
′ =

(
V2
′, E2

′) ← the sub-hypergraphs outside the Cvs , namely V1
′ 6= Cvs

17: While Edel =
{

ei
∣∣hss

(
ei, H1

′) < hss
(
ei, H2

′), ∀ei ∈ B(Cvs )
}
6= ∅ do

18: Update Cvs = Cvs ∩
{

vi

∣∣∣vi ∈ ej, for every ej ∈ Γ(vs), there is ej /∈ Edel
}

19: Update D = D ∪ Edel

20: End while
21: While Vdel = {vi|ncs(vi, Cvs ) < 0.5, ∀vi ∈ Cvs} 6= ∅ do
22: Update Cvs = Cvs −Vdel

23: End while
24: Expansion sub-process:
25: Get community neighborhood Γ(Cvs ) based on Definition 5
26: Update H1

′ and H2
′

27: While Eadd =
{

eihss
(
ei, H1

′) > hss
(
ei, H2

′ ), ∀ei ∈ Γ(Cvs )
}
6= ∅ do

28: ENadd =
{

vi

∣∣∣vi ∈ ej, ∀ej ∈ Eadd
}

29: Update Cvs = Cvs ∪ ENadd

30: End while
31: Update C = C ∪ {Cvs}, U = U − Cvs , S = S ∪ vs
32: End while
33: hypergraph H2 = (V, E′), for every ej

′
(

ej
′ ∈ E′

)
, there is ej

′ /∈ D
34: return C
End LE

Figure 2a shows the original hypergraph, and the node v2 with the maximum central-
ity is selected as the seed node, and the neighborhood Γ(v2) of the node is {e1, e2, e3}. In
Figure 2b, nodes contained in the neighborhood Γ(v2) are used as the initial community Cv2 .
The boundary of the community is {e1, e3}. Based on the similarity between hyperedge and
sub-hypergraph, it can be seen that the hyperedge e1 is more similar to the sub-hypergraph
outside the community. Therefore, the hyperedges e2, e3 and their associated nodes are
retained in the community Cv2 , and the remaining nodes {v1, v2, v8, v9, v10, v11} in the com-
munity are shown in Figure 2c. Based on the similarity between the node and community, it
can be seen that these nodes are more similar to the current community, so they are retained.
In the expansion sub-process, the neighborhood of the current community is {e1, e4}. Since
the similarity between the hyperedge e4 and the sub-hypergraph comprising the current
community is greater than that between the hyperedge and the sub-hypergraph outside
the community, the hyperedge e4 and its contained nodes are added to the community, and
then the final sub-hypergraph is obtained. The above sub-process is shown in Figure 2d.
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Figure 2. An example of the LE process. (a) Select node v2 as the seed node and obtain its neighbor-
hood, the node is marked in red; (b) Obtain the initial community and its boundary; (c) Calculate
the similarity between hyperedges within the community boundary and sub-hypergraph, as well
as the similarity between nodes within the community and the current community itself, delete
the hyperedges and nodes with low similarity, and then obtain the community’s neighborhood;
(d) Calculate the similarity between hyperedges within community’s neighborhood and sub-
hypergraph, and add the hyperedge with high similarity and its associated nodes to the
current community.

3.2. Global Fusion Process

GF process is displayed in Algorithm 2. The GF process first sorts the multiple sub-
hypergraphs obtained from the LE process in ascending order according to the number
of nodes contained, and obtains the seed node for the corresponding sub-hypergraph.
Then, it sequentially selects a sub-hypergraph Ccur, the corresponding seed node is sncur.
Based on the distance between different seed nodes on hypergraph H2, we can find the
sub-hypergraph Cporb corresponding to the shortest distance. If the shortest distance is
less than the threshold τ, Ccur is merged into Cporb and the sub-hypergraph Ccur and its
corresponding seed node sncur are deleted. This process continues until there are no more
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sub-hypergraphs that can be merged, resulting in the final community detection result.
We let τ = 2% in this paper which is consistent with the conclusion of Rodriguez and
Laio [29]. The specific process is as follows: calculate the distance between all seed nodes
in each sub-hypergraph, select the top 2% of distances, and if the distance between two
sub-hypergraphs’ seed nodes is greater than 2%, these two sub-hypergraphs will not
be merged.

Algorithm 2: GF algorithm

Start GF
Input: Hypergraph H2 and the sub-hypergraphs C obtained by the LE process, the threshold τ.
Output: The final communities C f in
1: Sort C in increasing order based on the size of different sub-hypergraphs
2: Get the corresponding seed node as SN
3: for Ccur in C :
4: Get seed node sncur that corresponds to the current sub-hypergraph Ccur

5: Get Cporb based on min
(

distance
(

sncur, snprob

))
from the hypergraph H2

6: If distance
(

sncur, snprob

)
< τ

7: Merge Ccur into Cporb
8: C = C− Ccur
9: SN = SN − sncur
10: End if
11: End for
12: C f in = C
13: return C f in
End GF

Assuming that Algorithm 1 generates the number of sub-hypergraphs as c, the time
complexity of Algorithm 2 is O

(
c2). The specific process is shown in Figure 3.
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Figure 3. An example of the GF process. (a) Two sub-hypergraphs can be obtained by the LE process
are Cv2 and Cv4 , corresponding seed nodes v2 and v4. These seed nodes are marked in red. Since
the hyperedge e1 was deleted in the hypergraph H2, the distance between v2 and v4 is infinite;
(b) Since the distance is infinite, the final communities are Cv2 and Cv4 . Cv2 = {v1, v2, v8, v9, v10, v11, v12},
Cv4 = {v3, v4, v5, v6, v7, v13}.

After the local expansion process, the hypergraph is divided into two sub-hypergraphs,
namely, Cv2 and Cv4 , corresponding to the seed nodes v2 and v4. Since the hyperedge
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e1 (denoted by a dashed dotted line) was deleted in the hypergraph H2, there is no path
between v2 and v4, and the distance is infinite, as shown in Figure 3a. Therefore, the two sub-
hypergraphs cannot be merged, and the final community obtained is C = {Cv2 , Cv4}, where
Cv2 = {v1, v2, v8, v9, v10, v11, v12}, Cv4 = {v3, v4, v5, v6, v7, v13}, as shown in Figure 3b.

4. Experimental Results and Analysis
4.1. Dataset

We use the dataset of southern women hypernetwork and random hypernetwork to
verify the feasibility of the algorithm. In addition, the dataset of drug-targets hypernetwork
was used to partition drugs with similar functions into a community, which enabled us to
mine drug modules. The details of these datasets were displayed in Table 1.

Table 1. The details of three datasets.

Datasets Date Sources

Southern Women Hypernetwork https://rdrr.io/cran/latentnet/man/davis.html,
accessed on 1 December 2022

Random Hypernetwork https://doi.org/10.1016/j.amc.2015.12.039, accessed on
1 March 2023

Drug-Targets Hypernetwork https://go.drugbank.com, accessed on 1 February 2022

4.2. Evaluate Metrics

The Rand Index (RI) and Normalized mutual information (NMI), as two classical
metrics, can consider both similarity within and between communities, thus allowing a
more comprehensive evaluation of the quality of community divisions. Moreover, because
both the real-world hypernetwork and random hypernetworks used in this paper have
known community structure, NMI and RI are more appropriate than indicators such as
modularity. We therefore used these two indicators to represent the effectiveness of the
algorithm in this paper.

The RI is defined as follows:

RI =
(TP + TN)

(TP + FP + FN + TN)
(7)

The RI consists of four terms: TP, TN, FP, and FN. Where TP represents the number of
nodes that belong to the same community in both the experimental results and the true
data. TN represents the number of nodes that belong to different communities in both
the experimental results and true data. FP represents the number of nodes that belong
to different communities in the true data but are assigned to the same community in
the experimental results. FN represents the number of nodes that belong to the same
community in the true data but are assigned to different communities in the experimental
results. The RI ranges from 0 to 1, a value closer to 1 indicates better agreement with
the actual partition, while a value of 0 indicates the complete opposite, and a value of 1
indicates complete agreement.

The NMI is defined as follows:

NMI(X, Y) =
2I(X, Y)

H(X) + H(Y)
(8)

where, I(X, Y) = H(X)− H(X | Y), H(X) = −∑x P(x)logP(x) is the Shannon entropy of
X, and H(X | Y) = −∑x,y P(x, y)logP(x | y) is the conditional entropy of X given Y. The
NMI equals 1 if and only if the partitions are identical, whereas it has an expected value of
0 if they are independent.

https://rdrr.io/cran/latentnet/man/davis.html
https://doi.org/10.1016/j.amc.2015.12.039
https://go.drugbank.com
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4.3. Southern Women Hypernetwork

We considered a real-world hypernetwork with community structure, namely the
Southern Women hypernetwork, which is a social network. Table 1 provides details about
this dataset. We compared the HLEGF algorithm with four different algorithms to verify
the feasibility of the algorithm.

Figure 4 illustrates the Southern Women hypernetwork, which includes 18 women
and 14 social events. The original data were collected by Davis [30]. For our analysis,
we treat the 18 women as nodes and the 14 social events as hyperedges to construct the
hypernetwork. The hypernetwork can be represented as a bipartite graph, as shown in
Figure 4, where the women are listed on the left and the social events are listed on the right.
An edge is established between a woman and a social event in the bipartite graph if she
participated in that event.
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Figure 4. Bipartite graph form of the Southern Women hypernetwork, where the 18 female nodes are
listed on the left and the 14 event nodes are listed on the right.

To facilitate description, we numbered the 18 women from 1 to 18. As the nodes
within the same hyperedge are fully connected, we can convert the hypernetwork into an
ordinary network. We then compared our HLEGF algorithm with the IRMM algorithm [31]
and Spectral algorithm [32] in the hypernetwork, and the LPA algorithm [33] and GN
algorithm [34] in the ordinary network.

We used the Rand Index to represent the effectiveness of the algorithms. The number
of nodes in the Southern Women hypernetwork is very small, so we set the parameter
α = 0.5. Table 2 presents the community detection results of these algorithms in the
Southern Women hypernetwork, as well as the actual result.

Table 2. Results of the different algorithms in the Southern Women hypernetwork.

Algorithm Final Communities Rand Index

LPA {1–18} 0.471
GN {1–18} 0.471

IRMM {1–7, 9}, {8, 10–18} 0.889
Spectral {1–9}, {10–18} 1
HLEGF {1–9}, {10–18} 1

Ground truth {1–9}, {10–18} 1
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For ease of comparison, we bolded the HLEGF algorithm and its performance pro-
posed in this paper. The result shows that the community detection algorithms for hy-
pernetworks are generally better than those for ordinary networks, and the community
detection results obtained by the HLEGF algorithm are completely consistent with the
ground truth. Therefore, using this algorithm can correctly partition the 18 women.

4.4. Random Hypernetwork

We constructed six synthetic random hypernetworks under different probabilities,
with corresponding probabilities of 1, 0.99, 0.98, 0.97, 0.96, 0.95, respectively. These random
hypernetworks have known community structure. Similarly, we compared the algorithm
in this paper with the four algorithms in six random hypernetworks; the results showed
that our algorithm has some advantages.

We first generated a random hypernetwork with a known community structure. The
hypernetwork consisted of n nodes and K communities, where each community includes
nk nodes. At each iteration, we randomly selected nv nodes (nv < nmax). If the selected
nodes belonged to the same community, they were connected by a hyperedge with a certain
probability pin, otherwise, they were connected with a probability pout, and pout = 1− pin.
We repeated the process until we generated a hypernetwork with m hyperedges.

In our experiments, we set n = 128, K = 4, nk = 32, nmax = 5, m = 1000, then
six hypernetworks under different probabilities pin = {0.95, 0.96, 0.97, 0.98, 0.99, 1.00}
were constructed. The hyperdegree distribution curves of the resulting hypernetworks are
shown in Figure 5.

As shown in Figure 5, under different probabilities, most nodes are included in 25 to
30 hyperedges.

We used the Rand Index and NMI indicators to evaluate the experimental effect. To
investigate the effect of the parameter α on NMI, we varied the value of α (between 0.1 and
0.9) and the value of probability (between 0.95 and 0.99). Figure 6 shows that, when the
probability pin ≥ 0.97, the community structure in the hypernetwork is obvious, and the
community detection results are consistent with the actual situation, regardless of the value
of α. However, when the probability pin < 0.97, a higher NMI value is achieved at a value
of α ≈ 0.7, indicating that the best community detection results are obtained at α ≈ 0.7.
Therefore, we set the parameter α = 0.7 for subsequent experiments.

Since all nodes within the same hyperedge are fully connected in the hypernetwork,
we can obtain ordinary networks under different probabilities. In Figure 7, we present the
performance of five algorithms on these hypernetworks.

The IRMM algorithm, Spectral algorithm, and our HLEGF algorithm directly partition
the hypernetwork into communities, while the LPA algorithm and GN algorithm partition
the ordinary network corresponding to the hypernetwork into communities. We used the
Rand Index and NMI as indicators to evaluate the experimental results.

Figure 7a,b provide an intuitive representation of the changes in NMI values of the
five algorithms under different probabilities, while Figure 7c,d depict the changes in Rand
Index values of the algorithms under different probabilities pin. The results show that,
when the probability pin = 1, only nodes within the same community are connected
by hyperedges in the current hypernetwork, and the community structure is obvious.
Therefore, all five algorithms can accurately partition all nodes. As the probability pin
decreases and pout increases, nodes between different communities are connected with
a certain probability pout, and the community structure gradually becomes less distinct.
When 0.98 ≤ pin < 1, three algorithms used for the hypernetworks perform well, while the
LPA and GN algorithms used for ordinary networks show significant disadvantages. When
pin = 0.97, the Index and NMI values of the IRMM algorithm decrease significantly, and the
partition results of the Spectral algorithm also produce some errors. However, our HLEGF
algorithm can still accurately identify the communities in the current hypernetwork. When
the probability pin is reduced from 0.97 to 0.95, our algorithm outperforms the Spectral
algorithm slightly, indicating that our algorithm has some advantages.
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4.5. Drug–Targets Hypernetwork

After verifying the feasibility of the algorithm, we applied the HLEGF algorithm to
a relatively large drug–target hypernetwork to detect communities and identify multiple
drug modules.

We obtained drug and target information from the DrugBank database, which included
825 FDA-approved drugs and 4871 targets. We constructed a drug–target hypernetwork
with 825 nodes and 4871 hyperedges, where hyperedges included drugs that act on the
same target. Because this hypernetwork has a large size, we present only a portion of it in
Figure 8a.

Figure 8a displays a partial diagram of the drug–target hypernetwork, which contains
46 nodes and 31 hyperedges. The nodes are numbered from 0 to 45, with each node
representing a drug. We provide the corresponding drug and target information for the
nodes and hyperedges shown in Figure 8a in Table 3.
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Table 3. Information on nodes and hyperedges in the local network.

Node
Number

Drug
Number Drug Name Hyperedge

Number
Target

Number Target Name

0 DB00002 Cetuximab 0 P02746 C1QB_HUMAN

1 DB14530 Chromous
sulfate 1 P29372 3MG_HUMAN

2 DB06404
Human

C1-esterase
inhibitor

2 P23415 GLRA1_HUMAN

3 DB00515 Cisplatin 3 P04731 MT1A_HUMAN
4 DB08888 Ocriplasmin 4 P01023 A2MG_HUMAN
... ... ... ... ...

45 DB01346 Quinidine
barbiturate 30 Q01668 CAC1D_HUMAN

After constructing the drug–target hypernetwork, we applied our algorithm to par-
tition the 825 drug nodes into communities. The results indicated that 825 drugs were
divided into 76 communities, with an average of approximately 10 drugs per community.
For instance, the 46 drugs mentioned in Table 3 were divided into three communities in the
partial diagram shown in Figure 8a, as demonstrated in Figure 8b.

The first type of nodes is represented in red and corresponds to drugs such as Chro-
mous sulfate, Human C1-esterase inhibitor, Iron, Ferrous gluconate, and Ocriplasmin,
which are mainly used to treat blood-related diseases. For example, Chromous sulfate and
Human C1-esterase inhibitor can improve lipid metabolism, Iron is used for coagulation,
Ferrous gluconate is used for iron-deficiency anemia, and Ocriplasmin is used as a human
plasma protein. The second category of nodes is represented in yellow and corresponds
to drugs such as Lorazepam, Etomidate, Carisoprodol, Zolpidem, and Oxazepam, which
are mainly used to treat neurological excitability. For instance, Lorazepam and Oxazepam
are used to treat anxiety and depression, Etomidate is used as a short-acting anesthetic or
sedative, Carisoprodol has sedative and anti-anxiety effects, and Zolpidem is used as a
hypnotic for short-term treatment of insomnia. The third category of nodes is represented
in blue and corresponds to drugs such as Medrysone, Levomenthol, Nifedipine, and Quini-
dine barbiturate, which all have inhibitory effects and their target receptors that can be
detected in the brain, retina, heart, and vascular system. For example, Medrysone is a
locally applied corticosteroid that can be used to inhibit edema, Levomenthol is a stimulant
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with sliding motion inhibitory effects, Nifedipine inhibits calcium ion influx and can treat
angina pectoris, and Quinidine barbiturate directly acts on the myocardial cell membrane
as a membrane-inhibiting anti-arrhythmic drug.

The experimental results demonstrated that the HLEGF algorithm was able to partition
drugs with similar functions into a community, which enabled us to mine drug modules.
This outcome showcased the practical application value of our algorithm and established a
foundation for future drug development and target identification.

5. Conclusions and Discussion

In this paper, we aim to design a community detection algorithm applicable to hyper-
networks. To overcome two limitations of the local extension method, we introduce the
definition of community boundary and neighborhood and propose the HLEGF algorithm,
which is based on local expansion and global fusion. We validated our algorithm on a
real hypernetwork and six synthetic random hypernetworks with different probability,
the results showed that our algorithm is close to the classical Spectral algorithm result,
and in some cases, our algorithm slightly outperforms the Spectral algorithm. Further
analysis shows that the Spectral algorithm represents a network as a Laplacian matrix, and
obtains the community structure in the network by performing eigenvalue decomposition
and eigenvector analysis on the Laplacian matrix. The value of the eigenvector can be
interpreted as the importance of the node in the community, and the similarity between
eigenvectors reflects the similarity between nodes. Our algorithm also judges the impor-
tance of nodes in the network and conducts community detection based on the definition of
similarity. Both algorithms detect communities based on the local structure of the network,
so the results are approximate. However, for nodes that are highly clustered but do not
belong entirely to a community, the HLEGF algorithm can assign them reasonably to a
community, while Spectral analysis may classify them as isolated nodes or noise. There-
fore, the HLEGF algorithm is slightly better than the Spectral method. After verifying
the effectiveness of the algorithm, we applied the HLEGF algorithm to the drug–target
hypernetwork and realized the mining of drug modules.

Despite the efficacy of our HLEGF algorithm in detecting community structures of
hypernetworks, it still has some flaws. Through inspection and analysis, it was found that
the algorithm is not ideal for overlapping community detection. The next step is to use
and enhance the HLEGF algorithm so that it can be applied to overlapping and large-scale
hypernetworks. In addition, we will consider the effect of medicine doses on community
detection based on the existing studies. We hope that our algorithm will have practical
significance in other fields as well.
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