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Abstract: This research delves into the field of fractional differential equations with both non-
instantaneous impulses and delay within the framework of Banach spaces. Our objective is to establish
adequate conditions that ensure the existence, uniqueness, and Ulam–Hyers–Rassias stability results
for our problems. The studied problems encompass abstract impulsive fractional differential problems
with finite delay, infinite delay, state-dependent finite delay, and state-dependent infinite delay. To
provide clarity and depth, we augment our theoretical results with illustrative examples, illustrating
the practical implications of our work.
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1. Introduction

Fractional calculus is a highly effective tool in applied mathematics, offering a means
to investigate a wide range of problems in various scientific and engineering fields. In recent
years, there has been significant progress in both ordinary and partial fractional differential
equations. For more details on the applications of fractional calculus, the reader is directed
to the books of Abbas et al. [1–3], Herrmann [4], Hilfer [5], Kilbas et al. [6], Samko et al. [7],
and Zhou [8] and papers [9–15]. In [16,17], Benchohra et al. demonstrated the existence,
uniqueness, and stability results for various classes of problems with different conditions
and some form of extension of the well-known Hilfer fractional derivative, which unifies
the Riemann–Liouville and Caputo fractional derivatives.

Ulam initially introduced the topic of stability in functional equations during a talk
at Wisconsin University in 1940. The problem he presented was as follows: Under what
conditions does the existence of an additive mapping near an approximately additive
mapping hold? (for more details, refer to [18]). Hyers provided the first solution to Ulam’s
question in 1941, specifically for the case of Banach spaces [19]. Subsequently, this type
of stability became known as Ulam–Hyers stability. In 1978, Rassias introduced a notable
extension of the Ulam–Hyers stability by taking into account variables [20]. The concept
of stability in functional equations arises when the original equation is replaced by an
inequality, serving as a perturbation. Hence, the issue of stability in functional equations
revolves around the disparity between the solutions of the inequality and those of the given
functional equation. Considerable attention has been devoted to investigating Ulam–Hyers
and Ulam–Hyers–Rassias stability in various forms of functional equations, as discussed in
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the monographs by [21,22]. Ulam–Hyers stability in operatorial equations and inclusions
has been examined by Bota-Boriceanu and Petrusel [23], Petru et al. [24], and Rus [25,26].
Castro and Ramos [27] explored Hyers–Ulam–Rassias stability for a specific class of Volterra
integral equations. Wang et al. [28,29] proposed Ulam stability for fractional differential
equations involving the Caputo derivative. For further historical insights and recent
developments with respect to these stabilities, consult monographs [21,22,30] and papers
by [25,28–31].

The study of differential equations with impulses was initially explored by Milman
and Myshkis [32]. In several fields, such as physics, chemical technology, population
dynamics, and natural sciences, numerous phenomena and evolutionary processes can
undergo sudden changes or short-term disturbances [33] (and references therein). These
brief disturbances can be interpreted as impulses. Impulsive problems also arise in var-
ious practical applications, including communications, chemical technology, mechanics
(involving jump discontinuities in velocity), electrical engineering, medicine, and biology.
These perturbations can be perceived as impulses. For instance, in the periodic treatment of
certain diseases, impulses correspond to the administration of drug treatment. In environ-
mental sciences, impulses represent seasonal changes in water levels in artificial reservoirs.
Mathematical models involving impulsive differential equations and inclusions are used to
describe these situations. Several mathematical results, such as the existence of solutions
and their asymptotic behavior, have been obtained thus far [33–37] (and references therein).

In [38], the authors discussed the following second-order integrodifferential equations
with state-dependent delay described in the following form:

x′′(ϑ) = A(ϑ)x(ϑ) +K
(

ϑ, xρ(ϑ,xϑ)
, (Ψx)(ϑ)

)
+
∫ ϑ

0 Υ(ϑ, s)x(s)ds + Pu(ϑ), if ϑ ∈ J,

x′(0) = ζ0 ∈ E, x(ϑ) = Φ(ϑ), if ϑ ∈ IR−,

where J = [0, T], A(ϑ) : D(A(ϑ)) ⊂ E → E, Υ(ϑ, s) are closed linear operators on E,
with a dense domain (D(A(ϑ))), which is independent of ϑ, and D(A(s)) ⊂ D(Υ(ϑ, s)),
the operator (Ψ), is defined by

(Ψx)(ϑ) =
∫ T

0
Ξ(ϑ, s, x(s))ds,

The nonlinear terms Ξ : J × J × E→ E, K : J ×B× E→ E, Φ : IR− → E, ρ : J ×B→
(−∞, ∞) are expressed by functions. The control function (u) is expressed by the function
L2(J, U). The Banach space of admissible controls with U is expressed as a Banach space.
P is a bounded linear operator from U into E, and (E, ‖ · ‖) is a Banach space.

In [39–41], the authors studied some new classes of differential equations with non-
instantaneous impulses. For more recent results we refer, for instance, to [42] and
papers [43–46]. Motivated by the mentioned works, by using the Banach fixed-point
theorem, we investigate the existence, uniqueness, and Ulam–Hyers–Rassias stability of
the following abstract impulsive fractional differential equations with finite delay in the
following form:

cDα
δ

x(ϑ) = Ax(ϑ) + Ψ(ϑ, xϑ); if ϑ ∈ J,  = 0, . . . , ω,

x(ϑ) = Ψ̂(ϑ, x(ϑ)); if ϑ ∈ Ĵ,  = 1, . . . , ω,
x(ϑ) = φ(ϑ); if ϑ ∈ [−κ2, 0],

(1)

where J0 := [0, ϑ1], Ĵ := (ϑ, δ], J := (δ, ϑ+1];  = 1, . . . , ω, cDα
δ

is the fractional Caputo
derivative of order α ∈ (0, 1], 0 = δ0 < ϑ1 ≤ δ1 ≤ ϑ2 < · · · < δω−1 ≤ ϑω ≤ δω ≤
ϑω+1 = κ1, κ2, κ1 > 0, Ψ : J × C → E;  = 0, . . . , ω, Ψ̂ : Ĵ × E → E;  = 1, . . . , ω, φ :
[−κ2, 0] → E are given piecewise continuous functions, E is a Banach space, A is the
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infinitesimal generator of a compact analytic semigroup of uniformly bounded linear
operators {B(ϑ); ϑ > 0} in E, and C is the Banach space defined by

C = Cκ2 = {x : [−κ2, 0]→ E : continuous and there exist ε  ∈ (−κ2, 0);

 = 1, . . . , ω, such that x(ε− ) and x(ε+ ) exist with x(ε− ) = x(ε )
}

,

with the norm
‖x‖C = sup

ϑ∈[−κ2,0]
‖x(ϑ)‖E.

xϑ denotes the element of C defined by

xϑ(ε) = x(ϑ + ε); ε ∈ [−κ2, 0],

where xϑ(·) represents the history of the state from time ϑ− κ2 to the present time (ϑ).
Next, as a continuation of [36,46], we consider the following abstract impulsive frac-

tional differential equations with infinite delay in the following form:
cDα

δ
x(ϑ) = Ax(ϑ) + Ψ(ϑ, xϑ); if ϑ ∈ J,  = 0, . . . , ω,

x(ϑ) = Ψ̂(ϑ, x(ϑ)); if ϑ ∈ Ĵ,  = 1, . . . , ω,
x(ϑ) = φ(ϑ); if ϑ ∈ R− := (−∞, 0],

(2)

where A and Ψ̂;  = 1, . . . , ω are as in problem (1); Ψ : J × k→ E;  = 0, . . . , ω, φ : R− →
E are expressed as piecewise continuous functions; and k is a phase space specified in
Section 4. This particular problem has more requirements and involves the incorporation of
new concepts, specifically the inclusion of the phase space and its associated characteristics.
Through the utilization of the Banach fixed point theorem and by employing the properties
of the phase space, we thoroughly explore and establish results pertaining to existence,
uniqueness, and Ulam–Hyers–Rassias stability.

The third problem is the abstract impulsive fractional differential equations with
state-dependent delay of the following form:

cDα
δ

x(ϑ) = Ax(ϑ) + Ψ(ϑ, xρ(ϑ,xϑ)
); if ϑ ∈ J,  = 0, . . . , ω,

x(ϑ) = Ψ̂(ϑ, x(ϑ)); if ϑ ∈ Ĵ,  = 1, . . . , ω,
x(ϑ) = φ(ϑ); if ϑ ∈ [−κ2, 0],

(3)

where A, Ψ, φ and Ψ̂;  = 1, . . . , ω are as in problem (1), and ρ : J × C → R;  = 0, . . . , ω,
is expressed as a piecewise continuous function.

Finally, we consider the abstract impulsive fractional differential equations with state-
dependent delay in the following form:

cDα
δ

x(ϑ) = Ax(ϑ) + Ψ(ϑ, xρ(ϑ,xϑ)
); if ϑ ∈ J,  = 0, . . . , ω,

x(ϑ) = Ψ̂(ϑ, x(ϑ)); if ϑ ∈ Ĵ,  = 1, . . . , ω,
x(ϑ) = φ(ϑ); if ϑ ∈ R−,

(4)

where A, Ψ, φ and Ψ̂;  = 1, . . . , ω are as in problem (2), and ρ : J × k→ R;  = 0, . . . , ω,
is expressed as a piecewise continuous function.

The paper is organized as follows. In Section 2, we commence by introducing essential
notations and offering a review of preliminary concepts concerning fractional calculus,
Ulam stability, and various auxiliary findings. Section 3 is dedicated to establishing the
existence and uniqueness of mild solutions, utilizing the Banach fixed-point theorem.
Additionally, we explore Ulam stability for the problem (1). Section 4 offers an in-depth
analysis of the phase space, presenting crucial properties and associated observations.
Within Section 5, our focus shifts to the existence, uniqueness, and stability results for
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problem (2). In Section 6, we present the uniqueness and Ulam stability results for problems
(3) and (4). Finally, the concluding section is devoted to presenting a collection of examples
that illustrate the concepts discussed throughout the paper.

2. Preliminaries

Let J = [0, κ1]; κ1 > 0, denote L1(J) the space of Bochner-integrable functions (x : J →
E) with the norm

‖x‖L1 =
∫ κ1

0
‖x(ϑ)‖Edϑ,

where ‖ · ‖E denotes a norm on E.
As usual, AC(J) denotes the space of absolutely continuous functions from J to E, and

C := C(J) is the Banach space of all continuous functions from J to E, with the norm ‖.‖∞
defined by

‖x‖∞ = sup
ϑ∈J
‖x(ϑ)‖E.

Consider that Banach space

PC =
{

x : [−κ2, κ1]→ E : x|[−κ2,0] = φ, x| Ĵ
= Ψ̂;  = 1, . . . , ω, x|J ;  = 1, . . . , ω

is continuous and there exist x(δ− ), x(δ+ ), x(ϑ− ) and x(ϑ+
 )

with x(δ+ ) = Ψ̂(δ, x(δ)) and x(ϑ− ) = Ψ̂(ϑ, x(ϑ))
}

,

with the norm
‖x‖PC = sup

ϑ∈[−κ2,κ1]

‖x(ϑ)‖E.

Let α > 0, for x ∈ L1(J). The expression

(Iα
0 x)(ϑ) =

1
Γ(α)

∫ ϑ

0
(ϑ− ε)α−1x(ε)dε,

is called the left-sided mixed Riemann–Liouville integral of order α, where Γ(·) is the
(Euler’s) Gamma function defined by Γ(ς) =

∫ ∞
0 ϑς−1e−ϑdϑ; ς > 0.

In particular,

(I0
0 x)(ϑ) = x(ϑ), (I1

0 x)(ϑ) =
∫ ϑ

0
x(ε)dε; ϑ ∈ J.

For instance, Iα
0 x exists for all α ∈ (0, ∞), when x ∈ L1(J). Note also that when

x ∈ C(J); then, (Iα
0 x) ∈ C(J).

Definition 1 ([2,7]). Let α ∈ (0, 1] and x ∈ L1(J). The Caputo fractional-order derivative of order
α of x is expressed by

cDα
0 x(ϑ) = (I1−α

0
d

dϑ
x)(ϑ) =

1
Γ(1− α)

∫ ϑ

0
(ϑ− ε)−α d

dε
x(ε)dε.

Example 1. Let v ∈ (−1, 0) ∪ (0, ∞) and α ∈ (0, 1]; then,

cDα
0

ϑv

Γ(1 + v)
=

ϑv−α

Γ(1 + v− α)
; for almost all ϑ ∈ J.

Let a1 ∈ [0, κ1], Ĵ1 = (a1, κ1], α > 0. For x ∈ L1( Ĵ1), the expression

(Iα
κ1

+x)(ϑ) =
1

Γ(α)

∫ ϑ

a+1
(ϑ− ε)α−1x(ε)dε,
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is called the left-sided mixed Riemann–Liouville integral of order α of x. See [2,7] for more
details.

Definition 2 ([2,7]). For x ∈ L1( Ĵ1), where d
dϑ x is Bochner-integrable on Ĵ1, the Caputo fractional-

order derivative of order α of x is defined by the following expression:

(cDα
κ1

+x)(ϑ) = (I1−α
κ1

+

d
dϑ

x)(ϑ).

Definition 3 ([47]). A function (x : [−κ2, κ1]→ E) is said to be a mild solution of (1) if x satisfies

x(ϑ) = Fα(ϑ)φ(0) +
∫ ϑ

0 (ϑ− ε)α−1Bα(ϑ− ε)Ψ(ε, xε)dε; if ϑ ∈ [0, ϑ1],

x(ϑ) = Fα(ϑ− δ)Ψ̂(δ, x(δ))

+
∫ ϑ

δ
(ϑ− ε)α−1Bα(ϑ− ε)Ψ(ε, xε)dε; if ϑ ∈ J,  = 1, . . . , ω,

x(ϑ) = Ψ̂(ϑ, x(ϑ)); if ϑ ∈ Ĵ,  = 1, . . . , ω,

x(ϑ) = φ(ϑ); if ϑ ∈ [−κ2, 0],

where

Fα(ϑ) =
∫ ∞

0
µα(η)B(ϑαη)dη, Bα(ϑ) = α

∫ ∞

0
ηµα(η)B(ϑαη)dη, µα(η) =

1
α

η−1− 1
α τα(η

− 1
α ) ≥ 0,

and

τα(η) =
1
π

∞

∑
ı=0

(−1)ı−1η−ıα−1 Γ(ıα + 1)
ı!

sin(ıαπ); η ∈ (0, ∞).

µα is a probability density function on (0, ∞), that is
∫ ∞

0 µα(η)dη = 1.

Remark 1. We can deduce that for κ ∈ [0, 1], we have∫ ∞

0
ηκµα(η)dη =

∫ ∞

0
η−ακτα(η)dη =

Γ(1 +κ)
Γ(1 + ακ) .

Lemma 1 ([47]). For any ϑ ≥ 0, the operators Fα(ϑ) and Bα(ϑ) have the following properties:

(a) For ϑ ≥ 0, Fα and Bα are linear and bounded operators, ie., for any x ∈ E,

‖Fα(ϑ)x‖E ≤ ∆‖x‖E, ‖Bα(ϑ)x‖E ≤
∆

Γ(α)
‖x‖E;

(b) {Fα(ϑ); ϑ ≥ 0} and {Bα(ϑ); ϑ ≥ 0} are strongly continuous;
(c) For every ϑ ≥ 0, Fα(ϑ) and Bα(ϑ) are also compact operators.

Now, we consider the Ulam stability for (1). Let υ > 0, Y ≥ 0 and Z : J → [0, ∞) be a
continuous function. Let

‖x(ϑ)− Fα(ϑ)φ(0)−
∫ ϑ

0 (ϑ− ε)α−1Bα(ϑ− ε)Ψ(ε, xε)dε‖E ≤ υ; if ϑ ∈ [0, ϑ1],

‖x(ϑ)− Fα(ϑ− δ)Ψ̂(δ, x(δ))

−
∫ ϑ

δ
(ϑ− ε)α−1Bα(ϑ− ε)Ψ(ε, xε)dε‖E ≤ υ; if ϑ ∈ J,  = 1, . . . , ω,

‖x(ϑ)− Ψ̂(ϑ, x(ϑ))‖E ≤ υ; if ϑ ∈ Ĵ,  = 1, . . . , ω.

(5)
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‖x(ϑ)− Fα(ϑ)φ(0)−
∫ ϑ

0 (ϑ− ε)α−1Bα(ϑ− ε)Ψ(ε, xε)dε‖E ≤ Z(ϑ); if ϑ ∈ [0, ϑ1],

‖x(ϑ)− Fα(ϑ− δ)Ψ̂(δ, x(δ))

−
∫ ϑ

δ
(ϑ− ε)α−1Bα(ϑ− ε)Ψ(ε, xε)dε‖E ≤ Z(ϑ); if ϑ ∈ J,  = 1, . . . , ω,

‖x(ϑ)− Ψ̂(ϑ, x(ϑ))‖E ≤ Y ; if ϑ ∈ Ĵ,  = 1, . . . , ω.

(6)



‖x(ϑ)− Fα(ϑ)φ(0)−
∫ ϑ

0 (ϑ− ε)α−1Bα(ϑ− ε)Ψ(ε, xε)dε‖E ≤ υZ(ϑ); if ϑ ∈ [0, ϑ1],

‖x(ϑ)− Fα(ϑ− δ)Ψ̂(δ, x(δ))

−
∫ ϑ

δ
(ϑ− ε)α−1Bα(ϑ− ε)Ψ(ε, xε)dε‖E ≤ υZ(ϑ); if ϑ ∈ J,  = 1, . . . , ω,

‖x(ϑ)− Ψ̂(ϑ, x(ϑ))‖E ≤ υY ; if ϑ ∈ Ĵ,  = 1, . . . , ω.

(7)

Definition 4 ([9,25]). Problem (1) is Ulam–Hyers stable if there exists a real number (cΨ,Ψ̂
> 0)

such that for each υ > 0 and for each solution( x ∈ PC) of the inequalities (5), there exists a mild
solution (κ ∈ PC) of problem (1) with

‖x(ϑ)−κ(ϑ)‖E ≤ υcΨ,Ψ̂
; ϑ ∈ J.

Definition 5 ([9,25]). Problem (1) is generalized Ulam–Hyers stable if there exists ηΨ,Ψ̂

: C([0, ∞), [0, ∞)) with ηΨ,Ψ̂
(0) = 0 such that for each υ > 0 and for each solution (x ∈ PC) of

the inequalities (5), there exists a mild solution (κ ∈ PC) of problem (1) with

‖x(ϑ)−κ(ϑ)‖E ≤ ηΨ,Ψ̂
(υ); ϑ ∈ J.

Definition 6 ([9,25]). Problem (1) is Ulam–Hyers–Rassias stable with respect to (Z ,Y) if there
exists a real number (cΨ,Ψ̂ ,Z > 0) such that for each υ > 0 and for each solution (x ∈ PC) of the
inequalities (7), there exists a mild solution (κ ∈ PC) of problem (1) with

‖x(ϑ)−κ(ϑ)‖E ≤ υcΨ,Ψ̂ ,Z (Y +Z(ϑ)); ϑ ∈ J.

Definition 7 ([9,25]). Problem (1) is generally Ulam–Hyers–Rassias stable with respect to (Z ,Y)
if there exists a real number (cΨ,Ψ̂ ,Z > 0) such that for each solution (x ∈ PC) of the inequalities
(6), there exists a mild solution κ ∈ PC of problem (1) with ‖x(ϑ) − κ(ϑ)‖E ≤ cΨ,Ψ̂ ,Z (Y +

Z(ϑ)); ϑ ∈ J.

Remark 2. It is clear that (i) Definition 4 ⇒ Definition 5, (ii) Definition 6 ⇒ Definition 7,
(iii) Definition 6 for Z(·) = Y = 1 ⇒ Definition 4.

Remark 3. A function (x ∈ PC) is a solution of the inequalities (6) if and only if there exist a
function (G ∈ PC) and a sequence (G;  = 1, . . . , ω in E) (which depend on x) such that:

(i) ‖G(ϑ)‖E ≤ Z(ϑ) and ‖G‖E ≤ Y ;  = 1, . . . , ω,



Mathematics 2023, 11, 3490 7 of 19

(ii) The function x ∈ PC satisfies

x(ϑ) = G(ϑ) + Fα(ϑ)φ(0) +
∫ ϑ

0 (ϑ− ε)α−1Bα(ϑ− ε)Ψ(ε, xε)dε; if ϑ ∈ [0, ϑ1],

x(ϑ) = G(ϑ) + Fα(ϑ− δ)Ψ̂(δ, x(δ))

+
∫ ϑ

δ
(ϑ− ε)α−1Bα(ϑ− ε)Ψ(ε, xε)dε; if ϑ ∈ J,  = 1, . . . , ω,

x(ϑ) = G + Ψ̂(ϑ, x(ϑ)); if ϑ ∈ Ĵ,  = 1, . . . , ω.

Lemma 2 ([48]). Suppose β > 0, a(ϑ) is a non-negative function locally integrable on 0 ≤ ϑ < T
(some T ≤ +∞) and Ψ̂(ϑ) is a non-negative, non-decreasing continuous function defined as

0 ≤ ϑ < T, Ψ̂(ϑ) ≤ ∆ (constant), and suppose that x(ϑ) is non-negative and locally
integrable on 0 ≤ ϑ < T with

x(ϑ) ≤ a(ϑ) + Ψ̂(ϑ)
∫ ϑ

0
(ϑ− δ)β−1x(δ)dδ

on this interval. Then,

x(ϑ) ≤ a(ϑ) +
∫ ϑ

0

[
∞

∑
ı=1

(Ψ̂(ϑ)Γ(β))ı

Γ(ıβ)
(ϑ− δ)ıβ−1a(δ)

]
dδ, 0 ≤ ϑ < T.

3. Uniqueness and Ulam Stability Results with Finite Delay

Theorem 1. Given that the following assumptions are satisfied:

(H1) Semigroup B(ϑ) is compact for ϑ > 0;
(H2) For each ϑ ∈ J;  = 0, . . . , ω, the function Ψ(ϑ, ·) : E → E is continuous, and for each

κ ∈ C, the function Ψ(·,κ) : J → E is measurable;
(H3) There exists a constant (lΨ > 0) such that

‖Ψ(ϑ, x)−Ψ(ϑ, x)‖E ≤ lΨ‖x− x‖C , for each ϑ ∈ J;  = 0, . . . , ω, and each x, x ∈ C;

(H4) There exist constants (0 < lΨ̂
< 1;  = 1, . . . , ω,) such that

‖Ψ̂(ϑ, x)− Ψ̂(ϑ, x)‖E ≤ lΨ̂
‖x− x‖E,

for each ϑ ∈ Ĵ, and each x, x ∈ E,  = 1, . . . , ω.

If

` := ∆lΨ̂ +
∆lΨκ1

α

Γ(α)
< 1, (8)

where lΨ̂ = max
=1,...,ω

lΨ̂
, then problem (1) has a unique mild solution on [−κ2, κ1].

Furthermore, if the following hypothesis holds:

(H5) There exists vZ > 0 such that for each ϑ ∈ J, we have

∫ ϑ

δ

[
∞

∑
ı=1

(∆lΨ)ı

(1− ∆lΨ̂)
ıΓ(ıα)

(ϑ− ε)ıα−1Z(ε)
]

dε ≤ vZZ(ϑ);  = 0, . . . , ω,

then problem (1) is generalized Ulam–Hyers–Rassias stable.
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Proof. Consider the operator (ℵ : PC → PC) defined by

(ℵx)(ϑ) = Fα(ϑ)φ(0) +
∫ ϑ

0 (ϑ− ε)α−1Bα(ϑ− ε)Ψ(ε, x(ε))dε; if ϑ ∈ [0, ϑ1],

(ℵx)(ϑ) = Fα(ϑ− δ)Ψ̂(δ, x(δ))

+
∫ ϑ

δ
(ϑ− ε)α−1Bα(ϑ− ε)Ψ(ε, x(ε))dε; if ϑ ∈ J,  = 1, . . . , ω,

(ℵx)(ϑ) = Ψ̂(ϑ, x(ϑ)); if ϑ ∈ Ĵ,  = 1, . . . , ω,

(ℵx)(ϑ) = φ(ϑ); if ϑ ∈ [−κ2, 0],

Clearly, the fixed points of the operator (ℵ) are a solution to problem (1).

Let x,κ ∈ PC; then, for each ϑ ∈ J, we have

‖(ℵx)(ϑ)− (ℵκ)(ϑ)‖E ≤ ‖
∫ ϑ

0 (ϑ− ε)α−1Bα(ϑ− ε)

×[Ψ(ε, xε)−Ψ(ε,κε)]dε‖E; if ϑ ∈ [0, ϑ1],

‖(ℵx)(ϑ)− (ℵκ)(ϑ)‖E ≤ ‖Fα(ϑ− δ)(Ψ̂(δ, x(δ))− Ψ̂(δ,κ(δ))‖E

+‖
∫ ϑ

δ
(ϑ− ε)r1−1Bα(ϑ− δ)[Ψ(ε, xε)−Ψ(ε,κε)]dε‖E; if ϑ ∈ J,  = 1, . . . , ω,

‖(ℵx)(ϑ)− (ℵκ)(ϑ)‖E = ‖Ψ̂(ϑ, x(ϑ))− Ψ̂(ϑ,κ(ϑ))‖E; if ϑ ∈ Ĵ,  = 1, . . . , ω.

Thus, we obtain

‖(ℵx)(ϑ)− (ℵκ)(ϑ)‖E ≤
∫ ϑ

0 (ϑ− ε)α−1lΨ‖Bα(ϑ− ε)(xε −κε)‖Cdε;

≤ ∆lΨκ1
α

Γ(α) ‖x−κ‖PC; if ϑ ∈ [0, ϑ1],

‖(ℵx)ϑ− (ℵκ)ϑ‖E ≤ lΨ̂‖Fα(ϑ− δ)(x(ϑ)−κ(ϑ))‖E

+
∫ ϑ

δ
(ϑ− ε)α−1lΨ‖Bα(ϑ− ε)(xε −κε)‖Cdε

≤
(

∆lΨ̂ + ∆lΨκ1
α

Γ(α)

)
‖x−κ‖PC; if ϑ ∈ J,  = 1, . . . , ω,

‖(ℵx)(ϑ)− (ℵκ)(ϑ)‖E ≤ lΨ̂‖x−κ‖PC; if ϑ ∈ Ĵ,  = 1, . . . , ω.

Hence,
‖ℵ(x)− ℵ(κ)‖PC ≤ `‖x−κ‖PC.

Based on (8), it can be deduced that ℵ has contraction properties. Consequently,
according to Banach’s fixed-point theorem, it follows that ℵ possesses a unique fixed point
(κ), which is a mild solution to (1). Then, we have

κ(ϑ) = Fα(ϑ)φ(0) +
∫ ϑ

0 (ϑ− ε)α−1Bα(ϑ− ε)Ψ(ε,κε)dε; if ϑ ∈ [0, ϑ1],

κ(ϑ) = Fα(ϑ− δ)Ψ̂(δ,κ(δ))

+
∫ ϑ

δ
(ϑ− ε)α−1Bα(ϑ− ε)Ψ(ε,κε)dε; if ϑ ∈ J,  = 1, . . . , ω,

κ(ϑ) = Ψ̂(ϑ,κ(ϑ)); if ϑ ∈ Ĵ,  = 1, . . . , ω,

κ(ϑ) = φ(ϑ); if ϑ ∈ [−κ2, 0].
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Let x ∈ PC be a solution of inequality (6). According to Remark 3, (ii) and (H5), for
each ϑ ∈ J, we obtain

‖x(ϑ)− Fα(ϑ)φ(0)−
∫ ϑ

0 (ϑ− ε)α−1Bα(ϑ− ε)Ψ(ε, xε)dε‖E

≤ Z(ϑ); if ϑ ∈ [0, ϑ1],

‖x(ϑ)− Fα(ϑ− δ)Ψ̂(δ, x(δ))−
∫ ϑ

δ
(ϑ− ε)α−1Bα(ϑ− ε)Ψ(ε, xε)dε;

≤ Z(ϑ); if ϑ ∈ J,  = 1, . . . , ω,

‖x(ϑ)− Ψ̂(ϑ, x(ϑ))‖E ≤ Y ; if ϑ ∈ Ĵ,  = 1, . . . , ω.

Thus,

‖x(ϑ)−κ(ϑ)‖E ≤ Z(ϑ) + ‖
∫ ϑ

0 (ϑ− ε)α−1Bα(ϑ− ε)

×[Ψ(ε, xε)−Ψ(ε,κε)]dε‖E; if ϑ ∈ [0, ϑ1],

‖x(ϑ)−κ(ϑ)‖E ≤ Z(ϑ) + ∆‖Ψ̂(δ, x(δ))− Ψ̂(δ,κ(δ)‖E

+
∫ ϑ

δ
(ϑ− ε)r1−1‖Bα(ϑ− ε)(Ψ(ε, xε)−Ψ(ε,κε))‖Edε;

if ϑ ∈ J,  = 1, . . . , ω,

‖x(ϑ)−κ(ϑ)‖E ≤ Y + ‖Ψ̂(ϑ, x(ϑ))− Ψ̂(ϑ,κ(ϑ))‖E; if ϑ ∈ Ĵ,  = 1, . . . , ω.

Hence,

‖x(ϑ)−κ(ϑ)‖E ≤ Z(ϑ) +
∫ ϑ

0 (ϑ− ε)α−1lΨ‖Bα(ϑ− ε)(xε −κε)‖Cdε

≤ Z(ϑ) + ∆lΨ
Γ(α)

∫ ϑ
0 (ϑ− ε)α−1‖xε −κε‖Cdε; if ϑ ∈ [0, ϑ1]× [0, b],

‖x(ϑ)−κ(ϑ)‖E ≤ Z(ϑ) + ∆lΨ̂‖x(ϑ)−κ(ϑ)‖E

+ ∆lΨ
Γ(α)

∫ ϑ
δ
(ϑ− ε)r1−1‖xε −κε‖Cdε; if ϑ ∈ J,  = 1, . . . , ω,

‖x(ϑ)−κ(ϑ)‖E ≤ Y + lΨ̂‖x(ϑ)−κ(ϑ)‖E; if ϑ ∈ Ĵ,  = 1, . . . , ω.

For each ϑ ∈ [0, ϑ1], we have

‖x(ϑ)−κ(ϑ)‖E ≤ Z(ϑ) +
∆lΨ
Γ(α)

∫ ϑ

0
(ϑ− ε)α−1‖xε −κε‖Cdε.

We consider the function ($) defined by

$(ϑ) = sup{‖x(ε)−κ(ε)‖ : −κ2 ≤ ε ≤ ϑ}; ϑ ∈ J.

Let ϑ∗ ∈ [−κ2, ϑ] be such that $(ϑ) = ‖x(ϑ∗) − κ(ϑ∗)‖E. If ϑ∗ ∈ [−κ2, 0], then
$(ϑ) = 0. Now, if ϑ∗ ∈ J, then according to the previous inequality, for ϑ ∈ J, we have

$(ϑ) ≤ Z(ϑ) + ∆lΨ
Γ(α)

∫ ϑ

0
(ϑ− ε)α−1$(ϑ)dε.
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From Lemma 2, we have

$(ϑ) ≤ Z(ϑ) +
∫ ϑ

0

[
∞

∑
ı=1

(∆lΨ)ı

Γ(ıα)
(ϑ− ε)ıα−1Z(ε)

]
dε,

≤ (1 + vZ )Z(ϑ)
:= c1,Ψ,Ψ̂ ,ZZ(ϑ).

Since for every ϑ ∈ [0, ϑ1], ‖xϑ‖C ≤ $(ϑ), we obtain

‖x(ϑ)−κ(ϑ)‖E ≤ c1,Ψ,Ψ̂ ,Z (Y +Z(ϑ)).

Now, for each ϑ ∈ J,  = 1, . . . , ω, we have

‖x(ϑ)−κ(ϑ)‖E ≤ Z(ϑ) + ∆lΨ̂‖x(ϑ)−κ(ϑ)‖E

+
∆lΨ
Γ(α)

∫ ϑ

δ

(ϑ− ε)α−1‖xε −κε‖Cdε.

Then, we obtain

‖x(ϑ)−κ(ϑ)‖E ≤
1

1− ∆lΨ̂
Z(ϑ)

+
∆lΨ

(1− ∆lΨ̂)Γ(α)

∫ ϑ

δ

(ϑ− ε)α−1‖xε −κε‖Cdε.

Again, from Lemma 2, we have

‖x(ϑ)−κ(ϑ)‖E ≤ 1
1− ∆lΨ̂

(
Z(ϑ) +

∫ ϑ

0

[
∞

∑
ı=1

(∆lΨ)ı

(1− ∆lΨ̂)
ıΓ(ıα)

(ϑ− ε)ıα−1Z(ε)
]

dε

)

≤ 1
1− ∆lΨ̂

(1 + vZ )Z(ϑ)

:= c2,Ψ,Ψ̂ ,ZZ(ϑ).

Hence, for each ϑ ∈ J,  = 1, . . . , ω, we obtain

‖x(ϑ)−κ(ϑ)‖E ≤ c2,Ψ,Ψ̂ ,Z (Y +Z(ϑ)).

Now, for each ϑ ∈ Ĵ,  = 1, . . . , ω, we have

‖x(ϑ)−κ(ϑ)‖E ≤ Y + lΨ̂‖x(ϑ)−κ(ϑ)‖E.

This yields

‖x(ϑ)−κ(ϑ)‖E ≤
Y

1− lΨ̂
:= c3,Ψ,Ψ̂ ,ZY .

Thus, for each ϑ ∈ Ĵ,  = 1, . . . , ω, we obtain

‖x(ϑ)−κ(ϑ)‖E ≤ c3,Ψ,Ψ̂ ,Z (Y +Z(ϑ)).

Set cΨ,Ψ̂ ,Z := max
i∈{1,2,3}

ci,Ψ,Ψ̂ ,Z .

Hence, for each ϑ ∈ J, we obtain

‖x(ϑ)−κ(ϑ)‖PC ≤ cΨ,Ψ̂ ,Z (Y +Z(ϑ)).

Consequently, problem (1) is generalized Ulam–Hyers–Rassias stable.
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4. The Phase Space

The notation for the phase space (k) plays a significant role in the exploration of both
qualitative and quantitative aspects within the field of functional differential equations.
A common selection involves a seminormed space that adheres to specific axioms, a concept
originally introduced by Hale and Kato [49]. To elaborate further, k denotes a vector space
comprising functions defined from R− to E accompanied by a seminorm designated as
‖ · ‖k. This seminorm must satisfy a set of predetermined axioms.

• (A1) If ξ : (−∞, b) → E is continuous on [0, b] and ξ0 ∈ k, then for ϑ ∈ [0, b), the
following conditions hold:

(i) ξϑ ∈ k;
(ii) ‖ξϑ‖k ≤ ∆̂(ϑ) sup{|ξ(δ)| : 0 ≤ δ ≤ ϑ}+ ∆(ϑ)‖ξ0‖k;
(iii) |ξ(ϑ)| ≤ H‖ξϑ‖k,

where H ≥ 0 is a constant, ∆̂ : [0, b)→ [0,+∞);
∆ : [0,+∞)→ [0,+∞) with ∆̂ continuous and ∆ locally bounded; and H, ∆̂, and
∆ are independent of ξ(.);

• (A2) For the function ξ in (A1), the function ϑ→ ξϑ is a k-valued continuous function
on [0, b];

• (A3) The space k is complete.

Let ∆̂b = sup{∆̂(ϑ) : ϑ ∈ [0, b]} and ∆b = sup{∆(ϑ) : ϑ ∈ [0, b]}.

Remark 4.

1. [(iii)] is equivalent to |φ(0)| ≤ H‖φ‖k for every φ ∈ k;
2. Since ‖ · ‖k is a seminorm, two (elements φ, ψ ∈ k) can verify ‖φ − ψ‖k = 0 without

necessarily φ(η) = ψ(η) for all η ≤ 0;
3. From the equivalence in the first remark, we can see that for all φ, ψ ∈ k such that ‖φ−ψ‖k =

0; therefore, we necessarily have φ(0) = ψ(0).

Example 2 ([50]). Let:

BC be the space of bounded continuous functions defined from R− to E;
BUCbe the the space of bounded uniformly continuous functions defined from R− to E;
C∞ :=

{
φ ∈ BC : limη→−∞ φ(η) exist in E

}
;

C0 :=
{

φ ∈ BC : limη→−∞ φ(η) = 0
}

be endowed with the uniform norm

‖φ‖ = sup{|φ(η)| : η ≤ 0}.

Spaces BUC, C∞, and C0 satisfy conditions (A1)− (A3). However, BC satisfies (A1) and
(A3), but (A2) is not satisfied.

Example 3 ([50]). Consider spaces CΨ̂, UCΨ̂, C∞
Ψ̂

, and C0
Ψ̂

.

Let Ψ̂ be a positive continuous function on (−∞, 0].

CΨ̂ :=
{

φ ∈ C(R−, E) : φ(η)

Ψ̂(η)
is bounded on R−

}
;

C0
Ψ̂

:=
{

φ ∈ CΨ̂ : limη→−∞
φ(η)

Ψ̂(η)
= 0

}
is endowed with the uniform norm

‖φ‖ = sup

{
|φ(η)|
Ψ̂(η)

: η ≤ 0

}
.

Then, spaces CΨ̂ and C0
Ψ̂

satisfy conditions (A1)− (A3). We consider the following condition

on the function Ψ̂.

(g1) For all κ1 > 0, sup0≤ϑ≤κ1
sup

{
Ψ̂(ϑ+η)

Ψ̂(η)
: −∞ < η ≤ −ϑ

}
< ∞.

They satisfy conditions (A1) and (A2) if (Ψ̂1) holds.
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Example 4 ([50]). Consider space C$. For any real constant ($), we define the functional space
(C$) as

C$ :=
{

φ ∈ C(R−, E) : lim
η→−∞

e$ηφ(η) exists in E
}

which is endowed with the following norm:

‖φ‖ = sup{e$η |φ(η)| : η ≤ 0}.

Then, C$ satisfies axioms (A1)− (A3).

5. Uniqueness and Ulam Stability Results with Infinite Delay

In this section, we present conditions for the Ulam stability of problem (2). Consider
the following space:

Ω := {x : (−∞, κ1]→ E : xϑ ∈ k for ϑ ∈ R− and x|J ∈ PC}.

Theorem 2. Assume that (H1), (H4), and the following hypotheses hold:

(H6) For each ϑ ∈ J;  = 0, . . . , ω, the function Ψ(ϑ, ·) : E → E is continuous, and for each
κ ∈ k, the function Ψ(·,κ) : J → E is measurable;

(H7) There exists a constant (l′Ψ > 0) such that

‖Ψ(ϑ, x)−Ψ(ϑ, x)‖E ≤ l′Ψ‖x− x‖k, for each ϑ ∈ J;  = 0, . . . , ω, and each x, x ∈ k.

If

`′ := ∆lΨ̂ +
∆∆̂l′Ψκ1

α

Γ(α)
< 1, (9)

then problem (2) has a unique mild solution on (−∞, κ1]. Furthermore, if (H5) holds, then problem
(2) is generalized Ulam–Hyers–Rassias stable.

Proof. Consider the operator ℵ′ : Ω→ Ω as defined by

(ℵ′x)(ϑ) = Fα(ϑ)φ(0) +
∫ ϑ

0 (ϑ− ε)α−1Bα(ϑ− ε)Ψ(ε, x(ε))dε; if ϑ ∈ [0, ϑ1],

(ℵ′x)(ϑ) = Fα(ϑ− δ)Ψ̂(δ, x(δ))

+
∫ ϑ

δ
(ϑ− ε)α−1Bα(ϑ− ε)Ψ(ε, x(ε))dε; if ϑ ∈ J,  = 1, . . . , ω,

(ℵ′x)(ϑ) = Ψ̂(ϑ, x(ϑ)); if ϑ ∈ Ĵ,  = 1, . . . , ω,

(ℵ′x)(ϑ) = φ(ϑ); if ϑ ∈ R−,

Clearly, the fixed points of the operator (ℵ′) are mild solutions of problem (2). Consider
the function κ(·) : (−∞, κ1]→ E as defined by

κ(ϑ) = 0; if ϑ ∈ J,

κ(ϑ) = φ(ϑ); if ϑ ∈ R−.

Then, κ0 = φ. For each τ ∈ C(J) with τ(0) = 0, τ denotes the function defined by
τ(ϑ) = τ(ϑ) if ϑ ∈ J,

τ(ϑ) = 0, if ϑ ∈ J̃′.
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If x(·) satisfies

x(ϑ) = Fα(ϑ)φ(0) +
∫ ϑ

0 (ϑ− ε)α−1Bα(ϑ− ε)Ψ(ε, x(ε))dε; if ϑ ∈ [0, ϑ1],

x(ϑ) = Fα(ϑ− δ)Ψ̂(δ, x(δ))

+
∫ ϑ

δ
(ϑ− ε)α−1Bα(ϑ− ε)Ψ(ε, x(ε))dε; if ϑ ∈ J,  = 1, . . . , ω,

x(ϑ) = Ψ̂(ϑ, x(ϑ)); if ϑ ∈ Ĵ,  = 1, . . . , ω,

x(ϑ) = φ(ϑ); if ϑ ∈ R−,

we decompose x(ϑ) as x(ϑ) = τ(ϑ) +κ(ϑ); ϑ ∈ J, which implies xϑ = τϑ +κϑ; ϑ ∈ J and
the function τ satisfies τ0 = 0. Then, for ϑ ∈ J, we obtain

τ(ϑ) = Fα(ϑ)φ(0) +
∫ ϑ

0 (ϑ− ε)α−1Bα(ϑ− ε)Ψ(ε, τε +κε)dε; if ϑ ∈ [0, ϑ1],

τ(ϑ) = Fα(ϑ− δ)Ψ̂(δ, τδ
+κδ

)

+
∫ ϑ

δ
(ϑ− ε)α−1Bα(ϑ− ε)Ψ(ε, τε +κε)dε; if ϑ ∈ J,  = 1, . . . , ω,

τ(ϑ) = Ψ̂(ϑ, τϑ +κϑ); if ϑ ∈ Ĵ,  = 1, . . . , ω.

Set
C0 = {τ ∈ PC : τ(0) = 0},

and let ‖ · ‖a be the seminorm in C0 defined by

‖τ‖a = ‖τ0‖k + sup
ϑ∈J
‖τ(ϑ)‖ = sup

ϑ∈J
‖τ(ϑ)‖; τ ∈ C0.

Hence, C0 is a Banach space with norm ‖ · ‖a. Let the operator P : C0 → C0 be defined by

(Pw)(ϑ) = Fα(ϑ)φ(0) +
∫ ϑ

0 (ϑ− ε)α−1Bα(ϑ− ε)Ψ(ε, τε +κε)dε; if ϑ ∈ [0, ϑ1],

(Pw)(ϑ) = Fα(ϑ− δ)Ψ̂(δ, τδ
+κδ

)

+
∫ ϑ

δ
(ϑ− ε)α−1Bα(ϑ− ε)Ψ(ε, τε +κε)dε; if ϑ ∈ J,  = 1, . . . , ω,

(Pw)(ϑ) = Ψ̂(ϑ, τϑ +κϑ); if ϑ ∈ Ĵ,  = 1, . . . , ω.

Obviously, the operator ℵ′ has a fixed point equivalent to P. We use the Banach
contraction principle to prove that P has a fixed point. Consider τ, τ∗ ∈ C0. Then, for each
ϑ ∈ J, we obtain

‖P(τ)− P(τ∗)‖a ≤ `′‖τ − τ∗‖a.

Based on condition (9), we conclude that P is a contraction. As a consequence of the
Banach fixed-point theorem, we deduce that P has a unique fixed point (τ∗). Then, we have

τ∗(ϑ) = Fα(ϑ)φ(0) +
∫ ϑ

0 (ϑ− ε)α−1Bα(ϑ− ε)Ψ(ε, τε +κε)dε; if ϑ ∈ [0, ϑ1],

τ∗(ϑ) = Fα(ϑ− δ)Ψ̂(δ, τ∗δ
+κδ

)

+
∫ ϑ

δ
(ϑ− ε)α−1Bα(ϑ− ε)Ψ(ε, τ∗ε +κε)dε; if ϑ ∈ J,  = 1, . . . , ω,

τ∗(ϑ) = Ψ̂(ϑ, τ∗ϑ +κϑ); if ϑ ∈ Ĵ,  = 1, . . . , ω.
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Let τ ∈ C0 be a solution of inequality (6). Thus, according to (H5) and Lemma 2 and
as in the proof of Theorem 1, we can show that for each ϑ ∈ J,

‖τ(ϑ, ξ)− τ∗(ϑ, ξ)‖E ≤ c′Ψ,Ψ̂ ,Z
(Y +Z(ϑ, ξ)),

for some c′
Ψ,Ψ̂ ,Z

> 0, which shows that problem (2) is generalized

Ulam–Hyers–Rassias stable.

6. Uniqueness and Ulam Stability Results with State-Dependent Delay

In this section, we present (without proof) uniqueness and Ulam stability results for
problems (3) and (4).

Set
R := {ρ(δ, x) : (δ, x) ∈ J ×D, ρ(δ, x) ≤ 0,  = 0, . . . , ω},

where D ∈ {C,k}. We always assume that ρ : J ×D → R;  = 0, . . . , ω is continuous and
that the function δ 7−→ xδ is continuous fromR into D.

Theorem 3. Assume that (H1), (H2), (H4), and the following hypothesis hold:

(H8) There exists a constant (l′′Ψ > 0) such that

‖Ψ(ϑ, xρ(ϑ,xϑ)
)−Ψ(ϑ, xρ(ϑ,xϑ)

)‖E ≤ l′′Ψ‖xρ(ϑ,xϑ)
− xρ(ϑ,xϑ)

‖C ;

for each ϑ ∈ J;  = 0, . . . , ω, and each x, x ∈ C.

If

`′′ := ∆lΨ̂ +
∆l′′Ψκ1

α

Γ(α)
< 1, (10)

then problem (3) has a unique mild solution on [−κ2, κ1]. Furthermore, if (H5) holds, then problem
(3) is generalized Ulam–Hyers–Rassias stable.

Proof. Following the same steps as for the proof of Theorem 1, we can deduce the unique-
ness and Ulam stability results.

Theorem 4. Assume that (H1), (H4), (H6), and the following hypothesis hold:

(H9) There exists a constant (l′′′Ψ > 0) such that

‖Ψ(ϑ, xρ(ϑ,xϑ)
)−Ψ(ϑ, xρ(ϑ,xϑ)

)‖E ≤ l′Ψ‖xρ(ϑ,xϑ)
− xρ(ϑ,xϑ)

‖k;

for each ϑ ∈ J;  = 0, . . . , ω, and each x, x ∈ k.

If

`′′′ := ∆lΨ̂ +
∆∆̂l′′′Ψ κ1

α

Γ(α)
< 1, (11)

then problem (4) has a unique mild solution on (−∞, κ1]. Furthermore, if (H5) holds, then problem
(4) is generalized Ulam–Hyers–Rassias stable.

Proof. Following the same steps as for the proof of Theorem 2, we can deduce the unique-
ness and Ulam stability results.

7. Examples

As applications of our results, we present two examples.
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Example 5. Consider the functional abstract fractional differential equations with non-instantaneous
impulses of the following form:

Dα
0,ϑλ(ϑ, ξ) = ∂2λ

∂ξ2 (ϑ, ξ) + ,ϑ)ג λ(ϑ− 1, ξ)); ϑ ∈ [0, 1] ∪ (2, 3], ξ ∈ [0, π],

λ(ϑ, ξ) = Ψ̂(ϑ, λ(ϑ, ξ)); ϑ ∈ (1, 2], ξ ∈ [0, π],
λ(ϑ, 0) = λ(ϑ, π) = 0; ϑ ∈ [0, 1] ∪ (2, 3],

λ(ϑ, ξ) = φ(ϑ, ξ); ϑ ∈ [−1, 0], ξ ∈ [0, π],

(12)

where Dα
0,ϑ := ∂α

∂ϑα is the Caputo fractional partial derivative of order α ∈ (0, 1] with respect to ϑ.
It is defined by the following expression:

cDϑ
0,ϑλ(ϑ, ξ) =

1
Γ(1− α)

∫ ϑ

0
(ϑ− ε)−α ∂

∂ε
λ(ε, ξ)dε,

C := C1, ג : ([0, 1] ∪ (2, 3])× C → R and Ψ̂ : (1, 2]×R→ R are expressed by

,ϑ)ג λ(ϑ− 1, ξ)) =
1

(1 + 110eϑ)(1 + |λ(ϑ− 1, ξ)|)
; ϑ ∈ [0, 1] ∪ (2, 3], ξ ∈ [0, π],

Ψ̂(ϑ, λ(ϑ, ξ)) =
1

1 + 110eϑ+ξ
ln(1 + ϑ2 + |λ(ϑ, ξ)|); ϑ ∈ (1, 2], ξ ∈ [0, π],

and φ : [−1, 0]× [0, π]→ R is a continuous function.
Let E = L2([0, π],R) and define A : D(A) ⊂ E→ E as Aτ = τ′′ with the following domain

D(A) = {τ ∈ E : τ, τ′ are absolutely continuous, τ′′ ∈ E, τ(0) = τ(π) = 0}.

It is well known that A is the infinitesimal generator of an analytic semigroup on E
(see [51]). Then,

Aτ = −
∞

∑
ı=1

ı2 < τ, eı > eı; τ ∈ D(A),

where

eı(ξ) =

√
2
π

sin(ıξ); ξ ∈ [0, π], ı = 1, 2, 3, . . . .

Semigroup B(ϑ); ϑ ≥ 0 is expressed by

B(ϑ)τ =
∞

∑
ı=1

e−ı2ϑ < τ, eı > eı; τ ∈ E.

Hence, the assumptions of (H1) and (H2) are satisfied.

For ξ ∈ [0, π], set x(ϑ)(ξ) = λ(ϑ, ξ); ϑ ∈ [0, 3], φ(ϑ)(ξ) = φ(ϑ, ξ); ϑ ∈ [−1, 0],

Ax(ϑ)(ξ) =
∂2λ

∂ξ2 (ϑ, ξ); ϑ ∈ [0, 1] ∪ (2, 3],

Ψ(ϑ, x(ϑ))(ξ) = ,ϑ)ג λ(ϑ, ξ)); ϑ ∈ [0, 1] ∪ (2, 3],

and
Ψ̂(ϑ, x(ϑ))(ξ) = Ψ̂(ϑ, λ(ϑ, ξ)); ϑ ∈ (1, 2].

Consequently, employing the given definitions of φ, A, Ψ, and Ψ̂, system (12) can be equiva-
lently expressed as functional abstract problem (1).

For each λ, λ,∈ C, ϑ ∈ [0, 1] ∪ (2, 3] and ξ ∈ [0, π], we have

|Ψ(ϑ, λϑ)(ξ)−Ψ(ϑ, λϑ)(ξ)| ≤
1

111
|λ(ϑ, ξ)− λ(ϑ, ξ)|,
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then, we obtain

‖Ψ(ϑ, λ)−Ψ(ϑ, λ)‖E ≤
1

111
‖λ− λ‖C .

Also, for each λ, λ,∈ E, ϑ ∈ (1, 2] and ξ ∈ [0, π], we can easily obtain

‖Ψ̂(ϑ, λ)− Ψ̂(ϑ, λ)‖E ≤
1

111
‖λ− λ‖E.

Thus, (H3) and (H4) are verified with lΨ = lΨ̂ = 1
111 . We show that condition (8) holds with

κ1 = 3 and ∆ = 1. Indeed, for each α ∈ (0, 1] we obtain

` = ∆lΨ̂ +
∆lΨκ1

α

Γ(α)

=
1

111
+

3α

111Γ(α)

<
7

111
< 1.

Therefore, we guarantee the existence of a distinct mild solution defined on the interval [−1, 3]
for the given problem (12). In conclusion, condition (H5) is fulfilled by Z(ϑ) = 1 and

vZ =
∞

∑
ı=1

1
(110)ıΓ(1 + ıα)

3ıα.

Consequently, Theorem 1 implies that problem (12) is generalized
Ulam–Hyers–Rassias stable.

Example 6. Now consider the functional abstract fractional differential equations with state-
dependent delay and non-instantaneous impulses of the following form

Dα
0,ϑλ(ϑ, ξ) = ∂2λ

∂ξ2 (ϑ, ξ)

,ϑ)ג+ λ(ϑ− σ(λ(ϑ, ξ)), ξ)); ϑ ∈ [0, 1] ∪ (2, 3], ξ ∈ [0, π],
λ(ϑ, ξ) = Ψ̂(ϑ, λ(ϑ, ξ)); ϑ ∈ (1, 2], ξ ∈ [0, π],
λ(ϑ, 0) = λ(ϑ, π) = 0; ϑ ∈ [0, 1] ∪ (2, 3],

λ(ϑ, ξ) = φ(ϑ, ξ); ϑ ∈ (−∞, 0], ξ ∈ [0, π],

(13)

where Dα
0,ϑ := ∂α

∂ϑα is the Caputo fractional partial derivative of order α ∈ (0, 1] with respect to ϑ,
σ ∈ C(R, [0, ∞)), ג : ([0, 1] ∪ (2, 3])× k→ R and Ψ̂ : (1, 2]×R→ R are expressed by

,ϑ)ג λ(ϑ− σ(λ(ϑ, ξ)), ξ)) =
1

111(1 + |λ(ϑ− σ(λ(ϑ, ξ)), ξ)|) ; ϑ ∈ [0, 1] ∪ (2, 3], ξ ∈ [0, π],

Ψ̂(ϑ, λ(ϑ, ξ)) =
arctan(ϑ2 + |λ(ϑ, ξ)|)

1 + 110eϑ+ξ
; ϑ ∈ (1, 2], ξ ∈ [0, π],

and φ : (−∞, 0]× [0, π] → R is a continuous function. We choose k = k$ as the phase space
defined by

k$ :=
{

φ ∈ C((−∞, 0], E) : lim
η→−∞

e$ηφ(η) exists in E
}

which is endowed with the norm

‖φ‖ = sup{e$η |φ(η)| : η ≤ 0}.
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Let E = L2([0, π],R) and A be the operator defined in Example 1. For ξ ∈ [0, π], set
x(ϑ)(ξ) = λ(ϑ, ξ); ϑ ∈ [0, 3], φ(ϑ)(ξ) = φ(ϑ, ξ); ϑ ∈ (−∞, 0],

Ax(ϑ)(ξ) =
∂2λ

∂ξ2 (ϑ, ξ); ϑ ∈ [0, 1] ∪ (2, 3],

Ψ(ϑ, x(ϑ− σ(λ(ϑ, ξ))))(ξ) = ,ϑ)ג λ(ϑ− σ(λ(ϑ, ξ)), ξ)); ϑ ∈ [0, 1] ∪ (2, 3],

and
Ψ̂(ϑ, x(ϑ))(ξ) = Ψ̂(ϑ, λ(ϑ, ξ)); ϑ ∈ (1, 2].

Thus, under the above definitions of φ, A, Ψ, and Ψ̂, system (13) can be represented by func-
tional abstract problem (4). We can see that all hypotheses of Theorem 4 are fulfilled. Consequently,
problem (13) has a unique mild solution defined on (−∞, 3]. Moreover, problem (13) is generalized
Ulam–Hyers–Rassias stable.

8. Conclusions

In this study, we undertook the task of establishing the existence, uniqueness, and Ulam–
Hyers–Rassias stability of solutions for fractional differential equations with
non-instantaneous impulses and delay. Operating within the framework of Banach spaces,
our exploration extended to diverse problem cases, encompassing abstract impulsive frac-
tional differential equations with finite, infinite, and state-dependent delay. Our approach
to proving the results relied on the application of the principle of contraction of Banach
combined with some properties of the phase space. The outcomes of our study present
a novel contribution to the existing literature, enriching the ever-evolving and dynamic
field of study in significant ways. Furthermore, we recognize the potential for further
exploration along various avenues, such as coupled systems, problems incorporating antic-
ipations, implicit problems, or those involving hybrid differential equations. We hope that
this article will serve as a starting point for such an undertaking.
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