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Abstract: Robotic systems have experienced exponential growth in their utilization for manufacturing
applications over recent decades. Control systems responsible for executing desired robot motion
planning face increasingly stringent performance requirements. These demands encompass high
precision, efficiency, stability, robustness, ease of use, and simplicity of the user interface. Furthermore,
diverse modern manufacturing applications primarily employ robotic systems within disturbed
operating scenarios. This paper presents a novel neural motion-tracking control scheme for mobile
manipulation robotic systems. Dynamic position output error feedback and B–Spline artificial neural
networks are integrated in the design process of the introduced adaptive robust control strategy to
perform efficient and robust tracking of motion-planning trajectories in robotic systems. Integration
of artificial neural networks demonstrates performance improvements in the control scheme while
effectively addressing common issues encountered in manufacturing environments. Parametric
uncertainty, unmodeled dynamics, and unknown disturbance torque terms represent some adverse
influences to be compensated for by the robust control scheme. Several case studies prove the
robustness of the adaptive neural control scheme in highly coupled nonlinear six-degree-of-freedom
mobile manipulation robotic systems. Case studies provide valuable insights and validate the efficacy
of the proposed adaptive multivariable control scheme in manufacturing applications.

Keywords: robotics; mobile manipulation robotic systems; artificial neural networks; laser-based
manufacturing; robust control; active disturbance control

MSC: 93C10

1. Introduction

The robotics industry has experienced unprecedented growth in recent decades, trans-
forming manufacturing operations completely [1–3]. Mobile manipulation robotic systems
have emerged as efficient and versatile tools for automating various tasks in industrial envi-
ronments [4–6]. This progress, however, has presented challenges in controlling the motion
of robotic systems in manufacturing applications that require high levels of precision and
reliability [7]. The need for enhanced accuracy in robotics comes from the requirement
for precise manipulation of objects in manufacturing scenarios [8]. Accurately planned
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motion-tracking control represents a crucial part in ensuring the efficiency and quality
of manufacturing operations [9–11]. As performance requirements become increasingly
demanding—with stability, operating velocity, and high precision in tracking of motion
profiles required in manufacturing operations—significant challenges arise in the design of
advanced motion control systems [12]. Controlling robotic systems spans a broad spectrum,
including complex assembly [13] and laser-based manufacturing [14]. Control systems
must accurately orchestrate robot motions to ensure skillful performance. Precision is
essential for tasks that demand intricate maneuvers and precise positioning [15–17]. In sce-
narios where speed and efficiency are imperative, high-velocity capabilities become equally
crucial [18]. The robot’s ability to swiftly execute tasks and maneuver can significantly
impact the productivity and cycle times of the overall manufacturing processes [19].

Improving a robotic system’s velocity and trajectory planning contributes to streamlined
operations and production efficiency [20]. Nevertheless, achieving precise control and high
velocity is one of many performance metrics for robotic systems, which depend on the specific
application criteria of every sector. In addition, stability during operation is vital to maintaining
the robot’s balance and prevent oscillations or disturbances that could compromise performance
and safety, especially during tasks where the robot interacts with its environment or handles
delicate objects [21–23]. Ensuring stability in front of parameter uncertainty, unmodeled dynam-
ics, and unknown disturbance torques allows the system to operate efficiently, minimizing the
risk of accidents or disruptions in the manufacturing process [24]. Designing control systems to
meet manufacturing applications’ demanding precision, velocity, and stability requirements is
complex. The challenge lies in integrating these three essential aspects and addressing the issues
encountered in manufacturing environments, including parametric uncertainty, unmodeled
dynamics, and disturbance torques [25–27]. Disturbances might introduce errors in motion-
reference trajectory tracking. Deviations from desired trajectories and paths due to uncertainties
in system parameters can negatively affect the overall performance of the robotic system as well.

Mobile manipulation robotic systems combine the manipulation dexterity provided
by fixed-base manipulator robots with the mobility of mobile robots [28]. As a result,
these coupled systems can perform complex tasks in changing environments, making them
ideal for use in various applications, from manipulating objects in space [29] to factory
automation [6] and home care [30]. Based on this, and considering the requirements of
a robotic control system listed previously, it is necessary to highlight that mobile manip-
ulation robotic systems must have precise and reliable motion control to achieve tasks
effectively [13]. Therefore, motion-tracking control schemes are essential to ensure that
mobile manipulator robots perform their assignments efficiently and safely [31]. Further-
more, the ability to control and adjust their position and velocity in real-time is essential
to complete precise and complex duties involving manipulating objects and following
predefined trajectories. In addition, motion-control schemes are also essential to ensure
the stability and safety of mobile manipulation robotic systems, especially in dynamic and
cluttered environments [32].

In light of numerous research developments addressing the efficient motion-control
problem of mobile manipulation robotic systems, various perspectives have come to the fore.
Ref. [33] offers a resolution for the motion control of a mobile manipulation system based
on a two-stage algorithm to describe system motion in two phases. It utilizes a nonlinear
control scheme grounded in Lyapunov theory. Ref. [34] introduces an approach centered
on decentralized control for tracking the motion of a mobile manipulator in Cartesian
space. The approach organizes the dynamic model into two interlinked subsystems and
formulates separate kinematic controllers for the mobile and manipulator subsystems.
Ref. [35] introduces a control scheme for a nonholonomic mobile manipulation framework
with disturbances and unknown inertia parameters. The scheme uses an adaptive sliding
mode control with parameter evaluation to ensure that the system follows the references
without vibrations and with a quick convergence time to equilibrium. Ref. [36] presents
a nonlinear robust control strategy incorporating an uncertainty estimator to manage
the position tracking of a mobile manipulator in its task space. The scheme includes a
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feedforward control component to enhance control actions using the desired acceleration
vector; a disturbance predictor to offset unfamiliar environmental factors such as parametric
uncertainty, external disturbances, and unmodeled dynamics; and a decentralized PID
controller within a feedback loop to enhance system stability. Ref. [37] unveils a control
technique for mobile manipulators leveraging a fuzzy neural network and a Kalman filter
for trajectory tracking. The study underscores the application of a fuzzy neural network to
produce a feedforward torque while utilizing the Kalman filter to boost the computational
effectiveness and precision of the learning algorithm. Ref. [38] outlines the application
of an adaptable tracking control scheme for a nonholonomic mobile manipulator robot
leveraging a hybrid PID approach. The control strategy comprises a conventional PID
method with online self-teaching for adjusting the controller gains, an adaptive fuzzy neural
network estimator, an adaptive robust controller-type compensator, and an adaptable
control technique that takes into account the nonholonomic constraint force stability of the
robotic system. Ref. [39] introduces a framework that enables a mobile manipulator to learn
from human demonstrations, adapting to varied production and processing tasks in an
unstructured environment. The approach comprises high-level path learning and low-level
trajectory tracking control. Ref. [40] presents a trajectory tracking control structure for
nonholonomic mobile manipulators with full-output limitations, where a velocity observer
is described.

Furthermore, artificial intelligence has emerged as a transformative force in the manu-
facturing sector [41–43], primarily through its integration with controlled advanced robotic
systems [44–46]. Particular emphasis is placed on applying intelligent control methods
to robotic systems [47–49]. Central to this approach are artificial neural networks [50],
which serve as a conduit between machine learning and deep learning [51]. Incorporating
artificial neural networks into motion control of robotic systems can improve the efficiency,
robustness, and adaptability of these systems, particularly in dynamic environments char-
acterized by high complexity [52]. Artificial neural networks can be an excellent choice
for enhancing the effectiveness of motion-control schemes for robotic systems [53]. Fur-
ther, they offer numerous advantages, such as their ability to approximate mathematical
models [54], robustness against disturbances [55], machine learning capabilities [56], abil-
ity to handle uncertainty [57], and reduced computational costs for identification and
control applications [58]. B-Spline artificial neural networks been applied in this context
and embody significant advancements in motion control of robotic systems such as aerial
quadrotor robots [59–61] and anthropomorphic manipulator robots [62]. B-Spline artificial
neural networks have also been exploited to derive control techniques for different types of
electric motors like induction motors [63], DC shunt motors [64], and switched reluctance
motors [65]. B-Spline artificial neural networks have been incorporated in controllers of
electric power systems as well [66]. Robust trajectory tracking control of electromagnetic
suspension represents another novel application of B-Spline artificial neural networks [67].
Nonetheless, there is no evidence of previous direct implementation of B-Spline artifi-
cial neural networks to control mobile manipulation robotic systems with high-precision
motion-planning–trajectory-tracking requirements under substantially disturbed scenarios.

This paper introduces a novel adaptive neural robust dynamic control scheme to effi-
ciently perform desired motion-planning–trajectory-tracking tasks for an important class of
multi-input–multi-output nonlinear mobile manipulation robotic systems under significant
disturbing influences in manufacturing applications. In contrast to other important control
design methodologies, B-Spline artificial neural networks are capitalized to substantially
improve the efficiency and robustness of robotic system control for a wide spectrum of
uncertain disturbances. The main motivation for the inclusion of B-Spline artificial neural
networks in the control scheme is to enhance its adaptive capability to compensate for
parametric uncertainties, variable exogenous disturbances, and unmodeled dynamics using
information about the position reference trajectory tracking error only. Dependence on de-
tailed and accurate complex nonlinear mathematical modeling of the mobile manipulation
robotic system is reduced in this fashion. Control parameters are tuned online according
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to operational conditions of the nonlinear robotic system. High-gain control actions that
could lead to performance degradation and system instability are intelligently avoided.
Moreover, different from other robust control techniques, asymptotic velocity observers as
well as accurate real-time estimation of several types of uncertainties and disturbances on
uncertain nonlinear dynamic systems are not required in the presented different control
design perspective. Several case studies are developed to highlight the achieved robustness
of the motion-tracking control scheme in highly coupled nonlinear six-degree-of-freedom
mobile manipulation robotic systems. The case studies provide valuable insights and
validate the efficacy of the control scheme in manufacturing applications.

A brief overview of the manuscript is as follows. A simplified mathematical rep-
resentation of six-degree-of-freedom nonlinear mobile manipulation robotic systems for
analysis and design of adaptive robust control is described in Section 2. A robust output
feedback multivariable control approach for nonlinear mobile manipulation robotic sys-
tems is presented in Section 3. B-Spline artificial neural networks are then incorporated
in the adaptive control scheme as described in Section 4. Tracking control efficacy of a
considerably disturbed nonlinear mobile manipulation robotic system is highlighted in
Section 5. Several numerical simulation experiments are developed to spotlight the neural
control robustness capability. Finally, the conclusions in Section 6 provide critical findings
and noteworthy observations.

2. Mathematical Modeling of the Mobile Manipulation Robotic System

The combination of a fixed-base manipulator robot and a mobile robot notably am-
plifies its skill. When functioning together, these robots can combine locomotion and
manipulation, surpassing the mobility and operation limitations encountered when op-
erating independently. A mathematical model that describes the kinematic and dynamic
behavior of the robotic system is described in this section.

2.1. System Description

In the present work, the mobile manipulation robotic system comprises an anthro-
pomorphic manipulator robot with three degrees of freedom linked to a four-wheel
differential-drive mobile robot with three degrees of freedom, as depicted in Figure 1.
This combination results in a coupled nonlinear robotic system with six degrees of freedom.

Figure 1. Mobile manipulation robotic system considered in the present study.
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Figure 2 provides a schematic representation of the variables used to construct the
mathematical model of the mobile manipulation robotic system. This representation is
a projection onto the XZ-plane, which illustrates the relative positions and interactions
of the components within the system, showcasing the modeling variables used. Figure 3
offers a top-down view of the coupled robotic system. This perspective allows one to
comprehend the overall layout and structure of the robot. Also, it provides insights into the
positioning and alignment of the system components in relation to one another, offering an
understanding of the robot’s operation and motion.

Figure 2. Projection on XZ-plane displaying a lateral view of the manipulator robot.

Figure 3. Projection on XY-plane depicting a superior view of the mobile manipulator robot.



Mathematics 2023, 11, 3489 6 of 49

Figure 4 depicts a projection of the mobile robot’s XZ-plane presenting its modeling
variables. Afterwards, Table 1 provides a thorough explanation of the variables that are
represented within the four figures. Each variable is carefully described, providing the
necessary context to fully interpret the figures and the mathematical model.

Figure 4. Projection on XZ-plane showing a lateral view of the mobile robot.

Table 1. Variables, parameters, and constants of the mobile manipulation robotic system model.

Variable Definition

O Location of the mobile robot’s center of mass
a Distance from the center of mass to the front axis of the mobile robot
b Distance from the center of mass to the rear axis of the mobile robot
2c Distance between the wheels of the mobile robot
r Radius of each wheel of the mobile robot
l Height of the mobile robot
lp Distance from the center of mass to the base of the manipulator robot
l1 First link length of the manipulator robot
lc2 Second link length to the center of mass
l2 Second link length of the manipulator robot
lc3 Third link length to the center of mass
l3 Third link length of the manipulator robot

mp Mobile robot chassis mass
mw Mass of each wheel of the mobile robot
m1 First link mass of the manipulator robot
m2 Second link mass of the manipulator robot
m3 Third link mass of the manipulator robot
IzP Moment of inertia around the Z-axis of the mobile robot
Iyw Moment of inertia around the Y-axis of each wheel of the system
Izw Moment of inertia around the Z-axis of each wheel of the system
Iz1 Moment of inertia around the Z-axis of the first link
Iy2 Moment of inertia around the Y-axis of the second link
Iz2 Moment of inertia around the Z-axis of the second link
Iy3 Moment of inertia around the Y-axis of the third link
Iz3 Moment of inertia around the Z-axis of the third link
u Linear velocity of the mobile robot
ω Angular velocity of the mobile robot
φ Angle of rotation in the Z-axis of the mobile robot
q1 Angle of rotation in the Z-axis of the first link
q2 Angle of rotation in the Y-axis of the second link
q3 Angle of rotation in the Y-axis of the third link
hp XYZ position of the coupling point on the mobile robot
hq3 XYZ position of the mobile manipulator robot’s end-effector
g Gravitational acceleration constant
R Inertial coordinate system
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2.2. Kinematic Modeling

The kinematic modeling of a mobile manipulation system involves the motion analysis
of both the mobile robot and the attached manipulator robot. This class of robotic systems
is remarkable in its ability to exhibit locomotion and manipulation skills. In this context, the
establishment of two control points is defined while developing the differential kinematic
modeling of the coupled robotic system, similar to the methodology presented in [68–70].

The control point hp describes the mobile robot’s linear and angular velocities at the
geometric point where the base of the manipulator robot is located. The control point hq3

describes the manipulator robot’s joint velocities as well as the mobile robot’s linear and
angular velocities, all of it expressed at the end-effector of the coupled robotic system.

Within the considered manipulator robot’s operation framework, the differential
kinematic model plays an integral role by defining the relationship between the joint
velocities and the corresponding linear velocities of the end-effector. The formulation and
representation of these relationships are achieved by employing the robot’s Jacobian, a
pivotal mathematical concept in robotic manipulation. The central aim is to express the
end-effector’s linear velocity in terms of the velocities of the manipulator robot’s joint
variables. These joint variables embody the fundamental elements of the manipulator
robot’s structure, each representing a unique joint’s motion parameters. The calculated
linear velocity of the end effector is thus a function of these joint variables and can be
expressed as ẋmr

ẏmr

żmr

 =

jm11
jm12

jm13
jm21

jm22
jm23

0 jm32
jm33


q̇1

q̇2
q̇3

 (1)

with

jm11
= − sin(q1)[l2 cos(q2) + l3 cos(q2 + q3)]

jm12
= − cos(q1)[l2 sin(q2) + l3 sin(q2 + q3)]

jm13
= − cos(q1)[l3 sin(q2 + q3)]

jm21
= cos(q1)[l2 cos(q2) + l3 cos(q2 + q3)]

jm22
= − sin(q1)[l2 sin(q2) + l3 sin(q2 + q3)]

jm23
= − sin(q1)[l3 sin(q2 + q3)]

jm32
= l2 cos(q2) + l3 cos(q2 + q3)

jm33
= l3 cos(q2 + q3).

It is crucial to underscore that the Jacobian illustrated in Equation (1) is fundamentally
a function of the manipulator robot’s joint configuration. The specific joint configurations
wherein the Jacobian exhibits rank deficiency are denoted as kinematic singularities. Such
singularities limit the mobility of the manipulator’s structure, imposing a restriction on
the potential directions of the end-effector’s motion irrespective of joint motions. These
singularities often represent obstacles in trajectory planning that should be meticulously
avoided. Furthermore, the Jacobian also establishes a relationship between the forces and
torques at the end effector and the corresponding forces and torques at the joints. This
relation becomes essential in manipulating the robot’s interaction with its surrounding
environment, emphasizing the pivotal role of the Jacobian in the operational dynamics of
manipulator robots.

With respect to the operation framework of differential-drive mobile robots, this
type of system has two control variables, which are the linear and angular velocities.
Through variation of these variables, this type of mobile robot can perform both linear and
angular displacement in the Cartesian space. To determine the position and orientation



Mathematics 2023, 11, 3489 8 of 49

of a differential-drive mobile robot, a rotation matrix about the Z-axis is used, taking into
account the distance lp from the robot’s center of mass to the considered coupling point.

Equation (2) expresses the rotation matrix in the control point asẋ
ẏ
φ̇

 =

cos(φ) −lp sin(φ)
sin(φ) lp cos(φ)

0 1

[u
ω

]
. (2)

In Equation (2), u and φ̇ = ω, respectively, are the linear and angular control velocities
of the differential-drive mobile robot, ẋ and ẏ are the linear velocities of the mobile robot in
the Cartesian space, and φ is the orientation of the mobile robot around the Z-axis.

Equation (2) represents the transformation matrix from local to inertial coordinates.
The numerical integration of this equation yields the position and orientation of the
differential-drive mobile robot in the Cartesian space. Equation (3) defines the connection
betwixt the control velocities of the mobile robot and the angular velocities of the wheels

[
u
ω

]
=


r
2

r
2

− r
2c

r
2c

[ωL
ωR

]
. (3)

In Equation (3), ωL and ωR represent the mobile robot’s angular velocities of the
wheels. This equation forms the kinematic model of the differential-drive mobile robot
in the local coordinate frame. This expression makes it possible to calculate the mobile
robot’s control velocities based on the wheels’ angular velocities. Therefore, Equation (4)
expresses the differential kinematic model of the mobile manipulation system at the hp
coupling point

ẋ
ẏ
φ̇

 =
r
2


cos(φ) + lp

c sin(φ) cos(φ)− lp
c sin(φ)

sin(φ)− lp
c cos(φ) sin(φ) + lp

c cos(φ)

−1
c

1
c


[

ωL
ωR

]
. (4)

Considering the earlier analysis, Equation (5) defines the differential kinematic model
that describes the motion of the coupled robotic system from the mobile robot’s center of
mass to the end-effector. This model incorporates the mobile robot’s linear and angular
velocities as well as the manipulator robot’s joint velocities to characterize the overall
motion of the system ẋh3

ẏh3
żh3

 =

ẋhp + ẋq1 + ẋq2 + ẋq3

ẏhp + ẏq1 + ẏq2 + ẏq3

żq2 + żq3 .

. (5)

with
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ẋhp = cos(φ)u− lp sin(φ)φ̇

ẏhp = sin(φ)u + lp cos(φ)φ̇

ẋq1 = − sin(φ + q1)(φ̇ + q̇1)

ẏq1 = cos(φ + q1)(φ̇ + q̇1)

ẋq2 = −l2 sin(φ + q1) cos(q2)(φ̇ + q̇1)− l2 cos(φ + q1) sin(q2)q̇2

ẏq2 = l2 cos(φ + q1) cos(q2)(φ̇ + q̇1)− l2 sin(φ + q1) sin(q2)q̇2

żq2 = l2 cos(q2)q̇2

ẋq3 = −l3 sin(φ + q1) cos(q2 + q3)(φ̇ + q̇1)− l3 cos(φ + q1) sin(q2 + q3)(q̇2 + q̇3)

ẏq3 = l3 cos(φ + q1) cos(q2 + q3)(φ̇ + q̇1)− l3 sin(φ + q1) sin(q2 + q3)(q̇2 + q̇3)

żq3 = l3 cos(q2 + q3)(q̇2 + q̇3).

By compactly ordering and grouping like terms from Equation (5), we obtain the
kinematic model of the coupled robotic system at the hq3 control point. It is expressed in
matrix form as follows

ẋhq3
ẏhq3
żhq3

 =

cos(φ) h312
h313

h314
h315

sin(φ) h322
h323

h324
h325

0 0 0 h334
h335




u
φ̇
q̇1
q̇2
q̇3

 (6)

where the elements that compose the model of Equation (6) are

h312
= −lp sin(φ)− sin(φ + q1)[l2 cos(q2) + l3 cos(q2 + q3)]

h313
= − sin(φ + q1)[l2 cos(q2) + l3 cos(q2 + q3)]

h314
= − cos(φ + q1)[l2 sin(q2) + l3 sin(q2 + q3)]

h315
= − cos(φ + q1)[l3 sin(q2 + q3)]

h322
= lp cos(φ) + cos(φ + q1)[l2 cos(q2) + l3 cos(q2 + q3)]

h323
= cos(φ + q1)[l2 cos(q2) + l3 cos(q2 + q3)]

h324
= − sin(φ + q1)[l2 sin(q2) + l3 sin(q2 + q3)]

h325
= − sin(φ + q1)[l3 sin(q2 + q3)]

h334
= l2 cos(q2) + l3 cos(q2 + q3)

h335
= l3 cos(q2 + q3).

Equation (6) can also be expressed in a general form as

ḣ = J(q) · v. (7)

In Equation (7), v is the control velocity vector of the coupled system, J(q) is the
3× 5 matrix from Equation (6)—also known as the Jacobian of the system—and ḣ is the
velocity vector of the end-effector in the Cartesian space. The Jacobian is crucial for motion-
control purposes in the Cartesian space, as it enables the calculation of the system’s inverse
differential kinematics. Due to the dimensions of the Jacobian matrix, the system exhibits
kinematic redundancy.

Consequently, it is necessary to compute the pseudoinverse of the Jacobian as follows

J−1 = JT
(

J · JT
)−1

. (8)
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Given Equation (8), the inverse differential kinematics of the coupled system can be
expressed as

v = J−1 · ḣ. (9)

With Equation (9), it is possible to calculate the control velocities of the coupled system
given a vector of velocities expressed in the Cartesian space.

2.3. Dynamic Modeling

Mobile manipulation robotic systems fuse the motion capabilities granted by the
mobile robot with the dexterity provided by the attached manipulator robot [28]. This com-
bination of skills imposes supplementary intricacy into the dynamic modeling procedure
in contrast to modeling every robot separately. Nonetheless, to attain the elevated perfor-
mance promised by a mobile manipulation robotic system, comprehensive understanding
of the coordination and counterbalancing of the actions enacted by the mobile robot and
the manipulator robot in a combined approach are required [69].

In this sense, the dynamic modeling of a mobile manipulation robotic system involves
developing equations that describe the system’s motion under the influence of forces and
torques. Therefore, the dynamic model of the mobile manipulator robot specifies these
motions considering the action of the coupled system’s internal and external forces [69].

Using the Euler–Lagrange methodology yields the dynamic model of the coupled
robotic system [68–70]. This approach is ideal for nonholonomic robots, as it enables the
expression of restricted dynamics through Lagrange multipliers [71]. Furthermore, this
allows for the removal of motion restrictions. As a result, the model accurately describes
the dynamic evolution of the state vector q in terms of the system’s velocity vector v.

Thus, the Euler–Lagrange equations can model the nonlinear behavior of a nonholo-
nomic mobile manipulation robotic system

d
dt

(
∂L
∂q̇i

)
− ∂L

∂qi
−MT(q)λ = E ·Qi i = 1, . . . , n. (10)

In Equation (10), q represents the generalized coordinates of the coupled system;
M(q) corresponds to the constraint matrix, which captures the physical limitations that
impose restrictions on the system’s motion; λ contains the restraining forces exerted on
the system; E serves as a full-range input transformation matrix. The components of the
generalized force are denoted by Qi, where i ranges from 1 to the number of degrees of
freedom denoted by n. The equation L represents the Lagrangian equation that governs
the system, with

L = K− P. (11)

In Equation (11), K represents the kinetic energy, and P denotes the potential energy,
where

q =
[
x y φ q1 q2 q3

]T. (12)

In Equation (12), q explicitly indicates the generalized coordinates of the coupled
system.

The kinetic energy of the coupled robotic system is given by

K = KwL + KwR + KmP + Kq1 + Kq2 + Kq3 (13)



Mathematics 2023, 11, 3489 11 of 49

where the elements that compose the kinetic energy model of Equation (13) are

KwL =
1
2

mwL vwL
2 +

1
2

IywL
φ̇2 +

1
2

IzwL
ω2

L

KwR =
1
2

mwR vwR
2 +

1
2

IywR
φ̇2 +

1
2

IzwR
ω2

R

KmP =
1
2

mpvhp
2 +

1
2

Izp φ̇2
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+

1
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(
φ̇2 + q̇2

1

)
+

1
2

Iy3

(
q̇2

2 + q̇2
3

)
.

Below are indicated the linear velocity vectors of the components of the kinetic energy
model corresponding to the wheels and the chassis of the mobile robot:

vwL =
[
ẋwL ẏwL

]T vwL =
[
cos(φ)u− c cos(φ)φ̇ sin(φ)u− c sin(φ)φ̇

]T
vwR =

[
ẋwR ẏwR

]T vwR =
[
cos(φ)u + c cos(φ)φ̇ sin(φ)u + c sin(φ)φ̇

]T
vhp =

[
ẋhp ẏhp

]T
.

The correspondent linear velocity vectors of the components of the kinetic energy
model corresponding to the links of the manipulator robot are also indicated:

vq1 =
[
ẋq1 ẏq1

]T
vq2 =

[
ẋq2 ẏq2 żq2

]T
vq3 =

[
ẋq3 ẏq3 żq3

]T.

The potential energy of the coupled robotic system is given by

P = PwL + PwR + PmP + Pq1 + Pq2 + Pq3 (14)

where the elements that compose the potential energy model of Equation (14) are

PwL = 0 Pq1 = m1gl1
PwR = 0 Pq2 = m2g[l1 + l2 sin(q2)]

PmP = 0 Pq3 = m3g[l1 + l2 sin(q2) + l3 sin(q2 + q3)].

Equations (10) and (11) describe the nonlinear and highly coupled dynamic model of
the mobile manipulation robotic system through the vectorial differential equation

D(q)q̈ + C(q, q̇)q̇ + G(q)−MT(q)λ = Eτ − τd. (15)

In Equation (15), D(q)∈ Rn×n represents the inertia matrix, which captures the sys-
tem’s resistance to changes in motion; C(q, q̇)∈ Rn×n accounts for the Coriolis and cen-
tripetal forces matrix, which arises due to the system’s motion and its velocity; G(q)∈ Rn

is the torque vector caused by gravity; τ∈ Rn corresponds to the control input vector,
which encompasses the applied torques or forces to the system; and τd∈ Rn represents the
external load torque, which accounts for any additional torques acting on the system due
to external factors.
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Now, it is required to eliminate the restrictive term MT(q)λ to have a simplified
expression that is much more appropriate for the tuning of motion-control strategies [69].
The model employs the matrix S(q) for this purpose

S(q) =



cos(φ) −lp sin(φ) 0 0 0
sin(φ) lp cos(φ) 0 0 0

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

. (16)

This matrix is going to be premultiplied by the elements of the robot’s dynamic model
expressed in Equation (15), as shown below

D̄ = STDS

C̄ = STDṠ + STCS

Ḡ = STG

Ē = STE.

(17)

Performing these operations yields an equation that describes the dynamics of the
mobile manipulation robotic system without the motion restrictions related to the mobile
robot. Elements of Equation (17) constitute the unrestricted dynamic model of the mobile
manipulator robot, compactly expressed in Equation (18) as

D̄(q)v̇ + C̄(q, q̇)v + Ḡ(q) = Ēτ − τd. (18)

The dynamic representation of the mobile manipulator robot, depicted in Equation (18),
is an intricate, multivariate differential equation. It exhibits continuous behavior and
intensely interwoven dynamics and displays nonlinearity in its state vector [72]. Each
element within this equation holds a specific meaning [73]. The term D̄(q)v̇ signifies the
inertial effect, representing changes in the system’s state of motion. The element C̄(q, q̇)v
stands for centripetal and Coriolis forces. Centripetal forces are radial forces with a sign
opposite to centrifugal forces. The Coriolis force indicates deviations in the system’s
translational motion caused by its rotational components. Finally, the term Ḡ(q) represents
the gravitational torque vector, outlining the effects of gravitational forces on the system.

3. A Motion-Control Approach for the Mobile Manipulation Robotic System

A robust motion trajectory tracking control approach for mobile manipulation robotic
systems for manufacturing applications is presented in this section. The mathematical
model specified in Equation (18) has found extensive application in delineating the regu-
lated dynamics of various sophisticated nonholonomic mobile manipulation robotic sys-
tems [74–76]. From Equation (18), the dynamics of the planned motion trajectory tracking
error ep in the controlled robotic system is then governed by

ëp = w + ξ (19)

with

w =D̄−1(q)Ēτ

ξ =− p̈? − D̄−1(q)[C̄(q, q̇)v + Ḡ(q) + τd]. (20)
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In Equation (19), the tracking error vector between the desired and actual trajectories
is defined as

ep =


epl

epa

eq1

eq2

eq3

 =


pml − p?ml
pma − p?ma
pq1 − p?q1

pq2 − p?q2

pq3 − p?q3

. (21)

The linear and angular position reference trajectories planned for the mobile robot
operation are respectively represented as p?ml

and p?ma . Joint position reference trajectories
desired for the manipulator robot operation are described as p?qi

, with i = 1, 2, 3.
In the present paper, ξ is considered as an entirely unknown dynamic disturbance

vector affecting controlled motion trajectory tracking error dynamics. Reasonable nonlinear
dynamic modeling inaccuracies, parametric uncertainty, and external influences might
be conveniently lumped into ξ. For design purposes of a robust control strategy, the
disturbance vector ξ = [ξl ξa ξ1 ξ2 ξ3]

T is locally approximated into a small, self-adjusting
time window by the Taylor series polynomial expansion

ξ ≈ d0 + d1t. (22)

Parameter vectors d0 and d1 in the local polynomial disturbance model (22) are also
unknown and are given by

d0 =
[
d0l d0a d01 d02 d03

]T
d1 =

[
d1l d1a d11 d12 d13

]T.

Moreover, w is used like an auxiliary or alternatively named virtual control input
vector to actively suppress uncertain polynomial disturbances. The present work exploits
the integral reconstruction approach of velocity state variables introduced in [77] as well.
This approach eliminates the need for velocity signal measurements and reduces the reliance
on disturbed nonlinear dynamic system models. Differentiation of generalized coordinates
with respect to time is avoided in this fashion, preventing the potential generation of
unwanted noise during the processing of measurement signals. From Equation (19), an
integral reconstructor for the velocity vector of the reference trajectory tracking error is
then derived as ̂̇ep =

∫ t

t0

w dt. (23)

Notice that uncertain disturbances ξ and unknown initial conditions of the robotic
system are not intentionally considered in the integral reconstructor of velocity vector ̂̇ep.
The relationship between actual and reconstructed tracking error velocity vectors is then
given as follow

ėp = ̂̇ep + a0t + a1t2 (24)

where the unknown parameter vectors

a0 =
[
a0l a0a a01 a02 a03

]T
a1 =

[
a1l a1a a11 a12 a13

]T
depend on the initial conditions of the nonlinear mobile manipulation robotic system and
polynomial disturbance model (22). Thus, unlike other approaches to active disturbance
rejection control, the present contribution does not necessitate time derivatives of position
output signals as well as the accurate real-time estimation of disturbances and parameters.
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As a consequence, an auxiliary/virtual control input vector w is proposed as follows

w = −B4̂̇ep − B3ep − B2

∫
ep − B1

∫ (2)
ep − B0

∫ (3)
ep (25)

with

Bi =


βil 0 0 0 0
0 βia 0 0 0
0 0 βi1 0 0
0 0 0 βi2 0
0 0 0 0 βi3

 (26)

where
∫ (n)

is used to denote the nth iterated integral with respect to time, and i = 0, 1, . . . , 4.

Furthermore, dynamic compensation based on integral tracking errors is included in
auxiliary control to actively suppress polynomial disturbances ξ and discrepancies between
actual and reconstructed velocity vectors, as outlined in Equation (24).

Taking into account the torque controllers specified in Equation (27) as

τ = Ē−1D̄(q)w. (27)

The dynamics of the closed-loop tracking error result in

e(5)p + B4e(4)p + B3e(3)p + B2ëp + B1ėp + B0ep = 0. (28)

Hence, stability assurance requires choosing gain matrices corresponding to the subse-
quent Hurwitz stable characteristic polynomials

PH(s) = s5I3×3 + BH4 s4 + BH3 s3 + BH2 s2 + BH1 s + BH0 . (29)

With this understanding, to adjust a smaller quantity of control parameters, the
ensuing Hurwitz stable polynomial is taken into account for every reference position

Pdi (s) =
(

s2 + 2ζiωis + ω2
i

)2
(s + Pi). (30)

In Equation (30), ωi, ζi, Pi > 0 are the tuning parameters. In this way, the stability
assurance underpins the achievement of the desired control performance. It allows precise
trajectory tracking, disturbance rejection, and error minimization, all of which are vital
functions in mobile manipulation robotic systems.

Consequently, for confirming closed-loop stability and effective tracking of the planned
trajectories, control gains may be chosen in the ensuing manner

β4i = 4ζiωi + Pi

β3i = 2ω2
i + 4ζ2

i ω2
i + 4Piζiωi

β2i = 4ω3
i ζi + 2Piω

2
i + 4Piζ

2
i ω2

i

β1i = 4Piω
3
i ζi + ω4

i

β0i = Piω
4
i

(31)

As a result, this method necessitates only three tuning parameters.

4. Mobile Manipulation Robotic System Motion Control Using Artificial
Neural Networks

The control strategy outlined in the robust motion control approach allows for the
use of a constant control gains vector. However, it is important to note that this constant
selection can be dynamically adjusted or updated as required. This adjustment or update
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enhances the dynamical response of the mobile manipulation robotic system. In this context,
the artificial neural networks enter as intelligent entities exhibiting artificial cognition and
learning capabilities. Housing a vast interconnection of neurons, often depicted as simple
computational or processing units in the existing literature, the artificial neural networks
serve as complex conduits for processing information [78]. From predictive data analytics
to complex adaptive systems, these computational models, drawing inspiration from
the neural networks found in animal brains, demonstrate exceptional efficiency as they
undertake a wide range of tasks. With their innate ability to universally approximate any
continuous nonlinear multivariate function, the artificial neural networks become ideal
candidates for modeling and control applications across a wide range of contexts [79].

Overall, the implementation of neural networks in control systems presents a prof-
itable feature related to the reduction of complexity and computational costs associated
with certain nonlinear controllers as well as the capability for enhancing the performance
of designed controllers using conventional techniques. B-Spline artificial neural networks
have gained attention in recent years for their potential in control applications to straight-
forwardly face changing operational scenarios without the need for offline retraining of
the entire network. This adaptability and the ability to handle uncertainties are particu-
larly advantageous in complex dynamic systems, where control parameters need to be
adjusted over time to maintain optimal performance, such as in mobile manipulation
robotic systems.

In several interesting research articles reported in the literature, multilayer artificial
networks are utilized in control design to relax the requirement of the unknown infor-
mation on the mobile manipulation robotic system dynamics and external disturbances.
Nevertheless, increasing the number of layers increases the number of parameters to be
computed regarding the internal neuronal network outline (weighted inputs and learning
rules) and the control approach (control parameters), which is significantly improved in
this work by using the B-Spline artificial neural networks, allowing the alleviation of the
computational efforts and easing the design and implementation process.

As an associative memory network, B-Spline neural networks shape the output
through a weighted sum of multi-dimensional basis functions [79]. The B-Spline arti-
ficial neural network properties of real-time learning, guaranteed rate of convergence,
and temporal stability [80] are suitably exploited in this work for solving the problem of
determining proper values of control parameters introduced in Equation (31) within the
proposed robust approach, which is graphically described in Figures 5 and 6.

The control parameters have been selected to be the network output, which is dynamically
updated based on the continuous learning process and the monitoring of the closed-loop
tracking error, allowing adaptive system performance. Continuous training employs data
information of the instantaneously desired system output for adjustment to the synaptic
weights, permitting online computation of the dynamic control parameters. By performing
online adjustments to the dynamic control parameters, B-Spline artificial neural networks
substantially enhance the control strategy. Thus, the proposed B-Spline artificial-neural-
network-based motion-control scheme is depicted in Figure 5. The illustration elucidates how
the dynamic control parameters play a pivotal role in the motion-control process.

The B-Spline artificial neural networks, which build on the concept of adaptive control,
harness the power of online training to offer a dynamic update pathway for the proposed
control law. The adjustment structure depends primarily on the tracking error information.
This feedback mechanism allows the system to adjust its behavior in response to unexpected
changes in the system or environment, thus enhancing the robustness of the control strategy,
as in [59–62]. A distinctive feature of the B-Spline artificial neural networks is their unique
three-layer structure, which offers simplicity and reduces complexity compared to more-
conventional multilayer artificial neural networks employed in identification and control
applications [81]. In this sense, the B-Spline function, characterized by its boundary points,
utilizes a combination of single-variable and multi-variable basis functions to generate
a smooth and continuous piecewise polynomial output. This property is well-suited
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for system modeling and function approximation purposes [79]. Figure 6 presents the
implementation of the B-Spline artificial neural networks as associative networks with
adjustable synaptic weights to compute the dynamic control parameters required for the
motion-tracking control scheme.

B-Spline Artificial 

Neural Networks

Robust Motion 

Control Law

Mobile Manipulation 

Robotic System

Figure 5. B-Spline artificial-neural-network-based motion-control scheme.

Neuron

Output
Weight

 vector

Basis 

functions

Input

 vector

Input layer Hidden layer Output layer

Figure 6. B-Spline artificial neural network architecture (BS-ANN).

The simplified structure of B-Spline artificial neural networks makes them an attractive
alternative for real-time implementations and highlights their role in augmenting the adapt-
ability of motion-control strategies for various types of robotic systems. They demonstrate
how incorporating learning-based methods can boost the development of adaptive and
robust dynamic control systems. One critical advantage of adaptive control schemes is
managing parametric uncertainties without needing high-gain feedback or high-frequency
switching [82–84]. The current research aims to develop a neural motion-tracking con-
trol scheme tuned using B-Spline artificial neural networks. It is crucial to highlight that
these networks adjust their synaptic weights based on varied learning indexes and inputs,
thereby demonstrating an ability to manage the system’s nonlinearities and uncertainties.
Perpetual learning and adaptation to the intrinsic variables of the physical system achieve
this. The following output, proposed in [79], will serve as the basis for this research paper

yn = aw. (32)

Letting

w =
[
w1 w2 . . . wj

]T, a =
[
a1 a2 . . . aj

]
where wj and aj represent the j-th synaptic weight and the j-th basis function input, re-
spectively, and j corresponds to the number of synaptic weights. In this research, B-Spline
functions are crucial for determining the approximated numerical values of the dynamic
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control parameters by taking the tracking error and its derivative as inputs for each neural
network. The output yn defines the dynamic control parameters. The initial weight values
and input thresholds can be determined through offline training of the neural network,
exploring the system performance under various operating conditions using optimization
algorithms [59]. The learning process heavily relies on minimizing the error between the
actual output vector and the desired value. For this study, the following instantaneous
learning rule is adopted [85]

wn(t) = wn(t− 1) +
`en(t)
‖ a(t) ‖2

2
a(t). (33)

In Equation (33), ‖ · ‖2 represents the vector 2-norm or Euclidean norm, ` denotes
the learning rate, and en(t) corresponds to the instantaneous output error. This online
and continuous training method updates the weight values based on the feedback of
the tracking error and its derivative. This single inner-layer structure becomes a potent
mechanism with the boundaries properly set by choosing the correct knot vector and basis
function form. The B-Spline artificial neural networks’ functioning, different from other
architectures, relies on both offline and continuously online training, which is a promising
feature when properly exploited by the authors for control design of mobile manipulation
robotic systems.

The weight values are updated online using a learning rule that depends on the instan-
taneous system output error and a learning rate value proposed after the offline training,
allowing, in this fashion, proper system adaptation to different operational scenarios. On
the other hand, the offline training stage, considering various sets of relationships between
the outputs and inputs, is implemented for the proper selection of initial values for the
synaptic weights, learning rate, and control points of the B-Spline functions. It is considered
that the input is normalized, and after the offline training, it is determined that a learning
rate value of 0.20 guarantees proper system functioning, allowing the manipulation system
to learn to recognize and respond correctly to new operational conditions not previously
faced. Additionally, Bézier polynomial trajectories are employed as the desired system
outputs used for the offline B-Spline neural networks training, where several dynamic
disturbances were intentionally injected for producing variations of the desired output up
to 10%, ensuring an acceptable system online response in the presence of undesired and
completely unknown exogenous disturbances.

5. Numeric Simulation Results

This section presents computer simulation results to numerically demonstrate the
robustness of the proposed motion-tracking control scheme for mobile manipulation robotic
systems in manufacturing applications. The evaluation unfolded through four disturbed
operational scenarios. The first scenario assesses the motion-control scheme’s capacity to
conduct position reference tracking tasks via Bézier polynomials within the joint space of
the coupled robotic system. The second scenario investigates the scheme’s aptitude for
tracking position reference profiles within the joint space of the coupled robotic system even
under external disturbance torques. The study showcases results from applying a nonlinear
PD-like control scheme with a high dependency on some nonlinear mathematical model
within this scenario. This control scheme aims to emphasize the superior performance
of the proposed neural motion-tracking control strategy compared to traditional model-
based controllers. The third scenario evaluates the motion-control scheme’s proficiency in
tracking a motion trajectory in the operative space, a common scenario in manufacturing
applications. The fourth scenario evaluates the motion-control scheme with the set of
system parameters presented in [70]. However, in the presented B-Spline neural network
adaptive output-feedback trajectory tracking control design for multi-input–multi-output
nonlinear mobile manipulation robotic system, a wide spectrum of disturbances was
considered. In all four scenarios, the performance is satisfactory, as evidenced by online
updating of control gains and independence from an accurate robot dynamic model. An
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important aspect is that manufacturing applications demand highly precise robotic motions
due to the complex and detailed procedures involved and are often subject to numerous
disturbances like mechanical vibrations or sudden environmental changes. Successfully
managing these disruptions is key, necessitating a control scheme that ensures precision
while remaining robust against such disturbances. These experiments demonstrate effective
use strategies for robotic systems in manufacturing scenarios.

During the simulations, the mobile manipulation robotic system with six degrees of
freedom previously described is considered, which is characterized by the set of parameters
presented in Table 2.

Table 2. Parameters and constants of the mobile manipulation robotic system used in simulation
scenarios.

Parameter Quantity Units Description

c 0.1920 m Distance from O to each side’s wheels of the robot
r 0.06 m Radius of each wheel of the mobile robot
l 0.2272 m Height of the mobile robot
lp 0.1 m Distance from O to the base of the manipulator robot
l1 0.0645 m First link length of the manipulator robot
l2 0.2031 m Second link length of the manipulator robot
l3 0.3018 m Third link length of the manipulator robot

mp 7.1368 Kg Mobile robot chassis mass
mw 0.18 Kg Mass of each wheel of the mobile robot
m1 0.7238 Kg First link mass of the manipulator robot
m2 0.8524 Kg Second link mass of the manipulator robot
m3 0.5085 Kg Third link mass of the manipulator robot
IzP 0.2308 Kg m2 Inertia moment in the Z-axis of the mobile robot
Iyw 0.0003 Kg m2 Inertia moment in the Y-axis of the wheels
Izw 0.0002 Kg m2 Inertia moment in the Z-axis of the wheels
Iz1 0.0015 Kg m2 Inertia moment in the Z-axis of the first link
Iy2 0.0054 Kg m2 Inertia moment in the Y-axis of the second link
Iz2 0.0013 Kg m2 Inertia moment in the Z-axis of the second link
Iy3 0.0031 Kg m2 Inertia moment in the Y-axis of the third link
Iz3 0.0032 Kg m2 Inertia moment in the Z-axis of the third link
g 9.81 m/s2 Gravitational acceleration constant

To eliminate abrupt motion, Equation (34) describes a position reference profile [86],
which ensures smooth transitions between the initial and final positions of the robotic
system

Π? =


Π0 0 ≤ t < T1 [s]

Π0 +
(

Π f −Π0

)
Bz(t, T1, T2) T1 ≤ t ≤ T2 [s]

Π f t > T2 [s].
(34)

In Equation (34), Π0 and Π f stand for desired initial and final values of linear and an-
gular motion trajectories planned for the mobile manipulation robotic system. Meanwhile,
Bz is a Bézier polynomial defined as

Bz(t, T1, T2) =
n

∑
k=0

δk

(
t− T1

T2 − T1

)k
. (35)

In Equation (35), n = 6, and δ1 = 252, δ2 = 1050, δ3 = 1800, δ4 = 1575, δ5 = 700,
δ6 = 126.
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5.1. Position Reference Tracking Control in the Joint Space

Figure 7 introduces the proposed motion-control scheme for the first and second
scenarios. In the first scenario, the mobile manipulation robotic system executes position
reference tracking control in the mobile robot’s local coordinate frame and the manipulator
robot’s joint space using the position reference profile presented in Equation (34).

Robust Motion 

Control Law

B-Spline Artificial 

Neural Networks

Figure 7. Motion-control scheme of the mobile manipulation robotic system in the joint space.

Figures 8 and 9 present an insightful overview of the mobile robot’s trajectory, dis-
playing the linear and angular position reference profiles within its local coordinate frame.
These visualizations exhibit the computed driving force and torque for the intended track-
ing and shed light on the linear and angular position errors inherent in the mobile robot’s
motions. Simultaneously, these figures depict the progressive variation to the dynamic
control parameters, which is critical to accomplishing the required motion-tracking task for
this scenario.
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Figure 8. Cont.
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Figure 8. Controlled linear motion of the mobile robot in its local coordinate frame. (a) Controlled
linear position pml . (b) Computed driving force Fml . (c) Linear position error Errml . (d) Adaptive ωml

control parameter. (e) Adaptive ζml control parameter. (f) Adaptive Pml control parameter.

Figures 8a and 9a illustrate the effective motion-tracking control exhibited in the linear
and angular position profiles of the mobile robot. Figures 8b and 9b further show that the
demanded force and torque signals remain stable, without abrupt changes or reaching
high magnitudes. Additionally, the linear and angular position error graphs, as depicted
in Figures 8c and 9c, provide evidence of successful tracking performance. In this context,
the B-Spline neural networks prove invaluable. They provide an effective method for
determining the approximate values of dynamic control parameters that align closely with
an optimal initial value, thereby facilitating the execution of the desired tracking task.

Figure 10 provides a detailed visual representation of several key aspects of the
manipulator robot’s first link. Firstly, it showcases the tracking of the position reference
within its joint space. Additionally, it calculates the torque signal necessary for tracking
the motion profile. The figure also includes a graph of the link’s position error to illustrate
the system’s performance further. Lastly, it depicts the progression of the dynamic control
parameters, which are crucial for completing the motion-tracking task.
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Figure 9. Cont.
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Figure 9. Controlled angular motion of the mobile robot in its local coordinate frame. (a) Con-
trolled angular position pma . (b) Computed driving torque τma . (c) Angular position error Errma .
(d) Adaptive ωma control parameter. (e) Adaptive ζma control parameter. (f) Adaptive Pma control
parameter.
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Figure 10. Controlled angular motion of the manipulator robot in its joint space. (a) Controlled
angular position pq1 . (b) Computed driving torque τq1 . (c) Angular position error Errq1 . (d) Adaptive
ωq1 control parameter. (e) Adaptive ζq1 control parameter. (f) Adaptive Pq1 control parameter.

Figure 11 provides detailed insights into the operation of the second link of the
manipulator robot. Figure 11a demonstrates the tracking of the desired motion reference
profile within its joint space explicitly. Complementing this, Figure 11b displays the
corresponding computed torque signal, a critical component for successful motion profile
tracking.
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Figure 11. Controlled angular motion of the manipulator robot in its joint space. (a) Controlled
angular position pq2 . (b) Computed driving torque τq2 . (c) Angular position error Errq2 . (d) Adaptive
ωq2 control parameter. (e) Adaptive ζq2 control parameter. (f) Adaptive Pq2 control parameter.

Figure 11 also presents the position error graph of the link and the evolution of the
dynamic control parameters essential for the tracking task. The B-Spline artificial neural
networks play a crucial role here by computing suitable numerical values for these control
parameters, both in transient and steady states. As the previous figures demonstrate, this
computation significantly contributes to the system’s performance. Given the system’s
objective of disturbance-free motion, these control parameters exhibit minor variations
from the magnitude initially calculated by the B-Spline artificial neural networks. Shifting
focus, Figure 12 displays the controlled angular motion of the manipulator robot’s third
link within its joint space. Along with the depiction of controlled angular motion, it exhibits
the corresponding calculated torque signal necessary to accomplish the desired motion
tracking of the link attached to the end-effector of the coupled system.

The results demonstrate the superior performance of the proposed control scheme
in tracking the desired position reference profiles for all five variables within the mobile
manipulation robotic system. Notably, the position errors reflected across these instances
are of minimal magnitudes, resulting in minor variations to the control parameters. Precise
regulation of these parameters, ensured by the B-Spline artificial neural networks, bolsters
the efficiency and accuracy of the motion-control system. Consequently, the control scheme
assures robust tracking of the desired position profiles and clearly indicates high suitability
for applications requiring precision within manufacturing contexts.
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Figure 12. Controlled angular motion of the manipulator robot in its joint space. (a) Controlled
angular position pq3 . (b) Computed driving torque τq3 . (c) Angular position error Errq3 . (d) Adaptive
ωq3 control parameter. (e) Adaptive ζq3 control parameter. (f) Adaptive Pq3 control parameter.

5.2. Position Reference Tracking Control in the Joint Space Subjected to External Vibratory Torques

The second scenario unfolds in this subsection, showcasing the mobile manipulation
robotic system’s performance as it undertakes position reference tracking control within the
mobile robot’s local coordinate frame and the manipulator robot’s joint space. The position
reference profile, as defined in Equation (34), provides the framework for this operation.
The objective of this scenario is to demonstrate the system’s successful tracking of motion
reference profiles under sudden external vibratory torques. It seeks to highlight the control
scheme’s efficiency in countering these sudden disturbances during the control operation.
Despite the challenging operational conditions presented, the proposed control scheme
demonstrates its robustness, stability, and adaptability.

In this scenario, unknown and undesired sudden external vibratory torques deliber-
ately disturb the mobile manipulation robotic system, as defined in Equation (36) through
Equation (40). Subsequently, Figure 13 presents a graphical visualization of these perturba-
tions. A critical aspect to observe in Figure 13 is the magnitude of the induced disturbance
torques, which directly impacts the complexity of the control tasks.

Figure 13a,b showcase the disruptive force and torque proposed to disturb the mo-
bile robot’s linear and angular motion within its local coordinate frame. Henceforth,
Figure 13c–e depict the disruptive torques that aim to unsettle the articulated motion of
the manipulator robot within its joint space.
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FdL =

{
0 [N] 0 ≤ t < 10 [s]

1.5 + 2 sin(t) [N] t ≥ 10 [s]
(36)

τdA =

{
0 [Nm] 0 ≤ t < 15 [s]

2.5 + 2 cos(t) [Nm] t ≥ 15 [s]
(37)

τd1 =

{
0 [Nm] 0 ≤ t < 10 [s]

0.8 sin(0.2t) + 0.4 cos(t) [Nm] t ≥ 10 [s]
(38)

τd2 =

{
0 [Nm] 0 ≤ t < 15 [s]

− 0.6 + 0.15 sin(3t) [Nm] t ≥ 15 [s]
(39)

τd3 =

{
0 [Nm] 0 ≤ t < 18 [s]

0.4 + 0.15 cos(4t) [Nm] t ≥ 18 [s]
(40)
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Figure 13. Induced external vibratory torques. (a) Vibratory force FdL . (b) Vibratory torque τdA .
(c) Vibratory torque τd1

. (d) Vibratory torque τd2 . (e) Vibratory torque τd3 .

Continuing, Figures 14 and 15 illustrate the tracking of the differential-drive mobile
robot’s linear and angular reference position profiles within its local coordinate frame while
subjected to the external vibratory force and torque shown in Figure 13a,b. Figure 14a
presents significant changes to the mobile robot’s desired linear position. Nonetheless,
even in the presence of the introduced perturbation force, the robot showcases outstanding
performance in adhering to the position profile. Figure 14b portrays the force necessary to
uphold the tracking abilities and concurrently reject the sudden disturbance introduced
during the mobile robot’s linear position tracking control.
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Figure 14. Controlled linear motion of the mobile robot in its local coordinate frame subjected to
the external force FdL . (a) Controlled linear position pml . (b) Computed driving force Fml . (c) Linear
position error Errml . (d) Adaptive ωml control parameter. (e) Adaptive ζml control parameter.
(f) Adaptive Pml control parameter.

Figure 14b illustrates that even under challenging operating conditions, the required
force retains a low numerical magnitude, effectively avoiding actuator saturation. Con-
currently, Figure 14c presents the mobile robot’s linear position error, which maintains
a notably low magnitude, testifying to the efficacy of the motion-control scheme on this
variable. The adjustments and changes to dynamic control parameters over time play a
crucial role in the superior performance of the proposed control scheme. Figure 15 repre-
sents the reference tracking control of the mobile robot’s angular position within its local
coordinate frame. It is remarkable that even under the sudden influence of the external vi-
bratory torque τdA , the tracking performance of the mobile robot’s angular position profiles
demonstrates outstanding results, echoing the achievements seen previously in Figure 14a
with the tracking of linear position reference profiles.
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Figure 15. Cont.
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Figure 15. Controlled angular motion of the mobile robot in its local coordinate frame subjected
to the external torque τdA . (a) Controlled angular position pma . (b) Computed driving torque τma .
(c) Angular position error Errma . (d) Adaptive ωma control parameter. (e) Adaptive ζma control
parameter. (f) Adaptive Pma control parameter.

Examination of the tracking results of the mobile robot, depicted in Figures 14 and 15,
reveals three essential aspects. Firstly, high precision characterizes the linear and angular
position reference profile tracking. Secondly, the magnitude of forces and torques emerges
as a critical factor in the execution of the demanding motion-tracking task. Notably, the
computed driving force and torque maintain a low numerical value despite the significant
magnitude of the disturbance forces and torques. Thirdly, the linear and angular position er-
ror manifests with a remarkably small magnitude. This smallness underlines the proposed
control scheme’s suitability for manufacturing tracking tasks. Applying B-Spline artificial
neural networks further amplifies these findings, facilitating the system’s adaptation to a
disturbed and changing environment.

Figure 16 offers a continued exploration detailing the controlled angular motion of the
manipulator robot’s first link in its joint space. The external torque τd1 and the computed
driving torque signal for the motion profile tracking define this motion. The figure includes
the position error graph of the link and the variation to the dynamic control parameters in
the motion-tracking task. Several changes to the position reference profiles increase the
complexity of this scenario, simulating demanding work conditions to test the system’s
robustness and adaptability. Despite these challenges, the system adjusts continuously
and effectively to these changes while maintaining high precision in motion tracking. This
successful management of varying conditions underscores the robustness of the control
scheme and, by extension, the powerful potential of the B-Spline artificial neural networks.
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Figure 16. Cont.
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Figure 16. Controlled angular motion of the manipulator robot in its joint space subjected to the exter-
nal torque τd1

. (a) Controlled angular position pq1 . (b) Computed driving torque τq1 . (c) Angular posi-
tion error Errq1 . (d) Adaptive ωq1 control parameter. (e) Adaptive ζq1 control parameter. (f) Adaptive
Pq1 control parameter.

The numerical simulation results show remarkable adaptability and are relevant to
manufacturing settings where conditions frequently change and precision is paramount.
Next, as Figure 17 depicts, the external torque τd2 is suddenly applied to the controlled
angular motion of the manipulator robot’s second link in its joint space.
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Figure 17. Controlled angular motion of the manipulator robot in its joint space subjected to the exter-
nal torque τd2 . (a) Controlled angular position pq2 . (b) Computed driving torque τq2 . (c) Angular posi-
tion error Errq2 . (d) Adaptive ωq2 control parameter. (e) Adaptive ζq2 control parameter. (f) Adaptive
Pq2 control parameter.
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Lastly, the external torque τd3 influences the controlled angular motion of the manip-
ulator robot’s third link in its joint space, as depicted in Figure 18. The precision of the
manipulator robot’s three motion-tracking links within this scenario is noteworthy.
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Figure 18. Controlled angular motion of the manipulator robot in its joint space subjected to the exter-
nal torque τd3 . (a) Controlled angular position pq3 . (b) Computed driving torque τq3 . (c) Angular posi-
tion error Errq3 . (d) Adaptive ωq3 control parameter. (e) Adaptive ζq3 control parameter. (f) Adaptive
Pq3 control parameter.

Insights drawn from the previous figures underscore the superior performance of the
proposed control scheme in tracking reference position profiles in mobile manipulation
robotic systems. The robotic system under consideration was subjected to challenging
working conditions induced by sudden external vibratory torques and continuous changes
to position profiles for tracking. While such extreme conditions are unlikely to occur in
real-world environments, the demonstrated performance emphasizes the robustness and
reliability of the control scheme in handling unpredictable conditions.

To compare and contrast the capabilities and the performance of the proposed neural
motion-tracking control scheme, the following mathematical model-based nonlinear PD-
like control policy is presented

τ = Ē−1D̄(q)
[
p̈? −Kpep −Kdėp

]
+ C̄(q, q̇)v + Ḡ(q) (41)

This nonlinear PD-like control approach shows a strong dependency on detailed math-
ematical modeling of highly nonlinear robotic systems. This high dependence represents a
possible disadvantage against inherent uncertainty in robotic system parameters and consid-
erably disturbed operational environments. Figures 19–23 depict the motion of the nonlinear
PD-like control performance for reference trajectory tracking under the influences of external
vibratory torques. The results show tracking errors that may be inadmissible in high-precision
manufacturing applications where uncertain disturbances play a significant role.
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It is important to note that the performance of the nonlinear PD-like control approach
relies heavily on detailed accurate dynamic system modeling. In practical applications of
robotic systems, an approximate mathematical model could not include some unmodeled
dynamics and completely unknown perturbations. Parametric uncertainty may also be
present in mobile manipulation robotic systems. Friction and forced vibration constitute
other exogenous disturbances that could not be incorporated in some mathematical repre-
sentation. Unmodeled factors might thus introduce discrepancies between the nonlinear
mathematical model and the actual dynamic system, affecting the performance and reliabil-
ity of the control system. Therefore, the control strategy must be robust and adaptable to
account for these uncertainties and exogenous disturbances, as has been addressed in the
present study.
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Figure 19. Controlled linear motion of the mobile robot in its local coordinate frame subjected to the
external force FdL with nonlinear PD-like control. (a) Controlled linear position pml . (b) Computed
driving force Fml . (c) Linear position error Errml .
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Figure 20. Controlled angular motion of the mobile robot in its local coordinate frame subjected
to the external torque τdA with nonlinear PD-like control. (a) Controlled angular position pma .
(b) Computed driving torque τma . (c) Angular position error Errma .
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Figure 21. Controlled angular motion of the manipulator robot in its joint space subjected to the
external torque τd1

with nonlinear PD-like control. (a) Controlled angular position pq1 . (b) Computed
driving torque τq1 . (c) Angular position error Errq1 .
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Figure 22. Controlled angular motion of the manipulator robot in its joint space subjected to the
external torque τd2 with nonlinear PD-like control. (a) Controlled angular position pq2 . (b) Computed
driving torque τq2 . (c) Angular position error Errq2 .

5.3. Trajectory Tracking Control in Cartesian Space

The third scenario presents the trajectory tracking control of the mobile manipulation
robotic system in Cartesian space. This scenario involves precisely controlling the coupled
robotic system’s position and orientation in three-dimensional space to align with a de-
sired trajectory. The primary focus is to demonstrate the proposed controller’s efficacy in
managing simultaneously the differential-drive mobile robot’s linear and angular positions
and the anthropomorphic manipulator robot’s articular positions while tracking a standard
manufacturing trajectory. Key goals of this research paper include ensuring high-precision
tracking, robustness against disturbances, and adaptability to changing work environments.
The importance of these key attributes is underlined by their critical role for successfully
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integrating mobile manipulation robotic systems in manufacturing applications. Providing
visual reinforcement to these statements, Figure 24 illustrates the proposed motion-control
scheme of the mobile manipulation robotic system operating in Cartesian space.
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Figure 23. Controlled angular motion of the manipulator robot in its joint space subjected to the
external torque τd3 with nonlinear PD-like control. (a) Controlled angular position pq3 . (b) Computed
driving torque τq3 . (c) Angular position error Errq3 .

Neural Motion-Tracking 

Dynamic Controller

Figure 24. Motion-control scheme of the mobile manipulation robotic system in Cartesian space.

Inverse differential kinematics calculates tracking velocities in joint space as a function
of velocities in Cartesian space of the desired trajectory for this task. The numerical
integration of the joint space tracking velocities yields the joint space position reference
profiles. Also, direct differential kinematics obtains the actual velocities of the robotic
system in Cartesian space. Integration of these actual velocities results in the current
position of the mobile manipulation robotic system. In conjunction with inverse differential
kinematics, a simple kinematic-level control law generates tracking velocities in the joint
space—staying within the capabilities of the robotic system’s actuators—and facilitates the
transition from the initial position of the end-effector to the initial coordinate of the desired
trajectory. With this methodology, the system avoids the generation of excessively high
torque signals at the dynamic level.

Equation (42) expresses the kinematic control law employed in this scenario as

v? = J−1(q)
(

ḣ? −Kphe

)
(42)
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where v? denotes the joint space tracking velocity vector of the coupled robotic system, ḣ?

symbolizes the desired Cartesian space velocity vector of the end-effector, and Kp defines a
proportional control gain matrix. Kp has the following form

Kp =

kp 0 0
0 kp 0
0 0 kp

. (43)

Moreover, he signifies the end-effector position error of the mobile manipulation
robotic system in Cartesian space and is given by

he =

hx − h?x
hy − h?y
hz − h?z

. (44)

Setting the numerical values of the control gain matrix Kp to 0.1 guides the robot
towards the desired trajectory’s initial coordinates. Moreover, this value ensures that
the calculated tracking velocities in the joint space remain within the capabilities of the
robotic system.

In this scenario, a Cartesian reference trajectory is selected that is typically used in
manufacturing applications. The Cartesian position references h? are expressed as follows,
with a simulation time of 252 s

x? = 1.5 + 4.5 sin(0.025t) [m]

y? = −2.8 + 3 cos(0.025t) [m]

z? = 0.5 + 0.2 sin(0.1t) [m].
(45)

Figure 25 comprehensively depicts the trajectory tracking outcomes of the mobile
manipulation robotic system operating within Cartesian space. The figure initially presents
an overview of the three-dimensional trajectory tracking results, which is critical to under-
standing the system’s performance in a broad spatial context. It is relevant to mention that
the red dot in the figure stands for the initial position of the end-effector in Cartesian space.
Thus, the initial system state is intentionally located outside the desired motion trajectory
planning area for purposes of control performance evaluation. The robust and efficient
transference of the disturbed multi-input–multi-output nonlinear mobile manipulation
robotic system from its initial state towards the planned reference trajectories is depicted in
Figure 25. Following the three-dimensional overview, Figure 25 delves into a more detailed
examination of trajectory tracking along each axis within the Cartesian coordinate system.

Figure 25 reveals the mobile manipulation robotic system’s performance in the Carte-
sian space, providing valuable insights into the robustness and the performance of the
control scheme implemented for trajectory tracking tasks in a real scenario.

Figure 26 provides a detailed illustration of the controlled linear motion of the mobile
robot within its local coordinate frame. This operation represents a crucial prerequisite for
the trajectory tracking task depicted in Figure 25 to be successfully completed. Moreover,
Figure 26 gives insight into the linear velocity achieved by the robotic system during the
trajectory tracking task.

In addition to the controlled linear motion and the corresponding velocity, Figure 26
also presents a comprehensive overview of the computed driving force and the linear
position error encountered during the trajectory tracking task. The dynamic control
parameters—specifically ωml , ζml , and Pml , which correspond to this operation—show
a tendency to converge towards a constant value in a short simulation time.
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Figure 25. Trajectory tracking control of the mobile manipulation robotic system in Cartesian space.
(a) Three-dimensional trajectory tracking. (b) Trajectory tracking on the x-axis; (c) x-axis position
error. (d) Trajectory tracking on the y-axis; (e) y-axis position error. (f) Trajectory tracking on the
z-axis; (g) z-axis position error.

Figure 27 portrays the successful control of the mobile robot’s angular motion within
its local coordinate frame, another critical prerequisite for the successful execution of the
trajectory tracking task. Not only does this figure highlight the mobile robot’s ability to
control its angular position, denoted as pma , but it also showcases the magnitude of the
angular velocity, φ̇, that the robot was able to attain during the required task.

The three dynamic control parameters presented in the figure showcase the adaptabil-
ity and resilience of the motion-control scheme presented. These parameters, by converging
to a constant value, ensure the stability of the robot’s motion, thereby significantly con-
tributing to the successful and satisfactory completion of the trajectory tracking task.

Figure 28 illustrates the controlled angular motion of the manipulator robot’s first
link within its joint space, which is a pivotal requirement for successfully completing the
trajectory tracking task depicted in Figure 25. This figure also displays the angular velocity
achieved during the trajectory tracking task.
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Figure 26. Controlled linear motion of the mobile robot in its local coordinate frame. (a) Controlled lin-
ear position pml . (b) Performed linear velocity u. (c) Computed driving force Fml . (d) Linear position
error Errml . (e) Adaptive ωml control parameter. (f) Adaptive ζml control parameter. (g) Adaptive
Pml control parameter.
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Figure 27. Cont.
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Figure 27. Controlled angular motion of the mobile robot in its local coordinate frame. (a) Controlled
angular position pma . (b) Performed angular velocity φ̇. (c) Computed driving torque τma . (d) Angular
position error Errma . (e) Adaptive ωma control parameter. (f) Adaptive ζma control parameter.
(g) Adaptive Pma control parameter.
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Figure 28. Cont.
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Figure 28. Controlled angular motion of the manipulator robot in its joint space. (a) Controlled angu-
lar position pq1 . (b) Performed angular velocity q̇1. (c) Computed driving torque τq1 . (d) Angular posi-
tion error Errq1 . (e) Adaptive ωq1 control parameter. (f) Adaptive ζq1 control parameter. (g) Adaptive
Pq1 control parameter.

Further examination of Figure 28 reveals the computed driving torque and the angular
position error encountered during the trajectory tracking task. Torque is an essential factor
in the performance of angular motions, especially in this link. This stems from the fact
that it carries the total load of the manipulator robot; thus, it is anticipated that this link
necessitates a higher degree of torque to execute the needed motions.

Figure 29 illustrates the controlled angular motion of the manipulator robot’s second
link. The control of this motion within the joint space is another one of the fundamental
requirements for successfully completing the trajectory tracking task, as previously depicted
in Figure 25. This figure also displays the angular velocity achieved during the trajectory
tracking task.
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Figure 29. Controlled angular motion of the manipulator robot in its joint space. (a) Controlled angu-
lar position pq2 . (b) Performed angular velocity q̇2. (c) Computed driving torque τq2 . (d) Angular posi-
tion error Errq2 . (e) Adaptive ωq2 control parameter. (f) Adaptive ζq2 control parameter. (g) Adaptive
Pq2 control parameter.

The figure points to the dynamic control parameters corresponding to this variable.
These parameters converge to a constant value, highlighting the adaptability of the control
scheme. The convergence to steady state is instrumental for enabling the task’s satisfactory
completion. This pattern also signifies the stability of the control scheme in the task.

Figure 30 graphically portrays the intricately controlled angular motion of the manip-
ulator robot’s third link within its own joint space. This aspect is crucial, as it represents the
final and arguably most essential requirement for the successful execution of the trajectory
tracking task, initially outlined in Figure 25. In addition to this, the figure conveniently
showcases the angular velocity of the third link that was obtained during the progression
of the trajectory tracking task.
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Figure 30. Controlled angular motion of the manipulator robot in its joint space. (a) Controlled angu-
lar position pq3 . (b) Performed angular velocity q̇3. (c) Computed driving torque τq3 . (d) Angular posi-
tion error Errq3 . (e) Adaptive ωq3 control parameter. (f) Adaptive ζq3 control parameter. (g) Adaptive
Pq3 control parameter.

It is also worth noting that the three dynamic control parameters corresponding to this
variable steadily converge to a steady-state value. This adaptive behavior of the control
parameters is a key factor for enabling the task to reach its satisfactory conclusion.

5.4. Trajectory Tracking Control in Cartesian Space with Parameter Variation

The fourth scenario presents the trajectory tracking control of a mobile manipulation
robotic system in Cartesian space. The main objective of this case study is to demonstrate
the proposed control efficacy for a larger robotic system with a set of parameters different
from those presented in Table 2. The main features of the neural adaptive control method
based on output feedback for highly nonlinear mobile manipulation robotic systems are
numerically confirmed. The values of system parameters and constants used for control
robustness simulation analysis are described in Table 3 [70]. Nevertheless, the proposed
planned motion trajectory tracking control scheme admits parameters for any realistic
application into the operating region specified in the mechatronic design of the robotic
system. In contrast to other control design methodologies, the introduced adaptive motion
trajectory tracking control design perspective based on B-Spline artificial neural networks
and dynamic disturbance compensation reduces the dependency on accurate and detailed
knowledge of all multi-input–multi-output nonlinear robotic system parameters consider-
ably. Additional development of effective strategies for accurate real-time estimation of
parameters, velocity signals, and time-varying disturbances on multivariable uncertain
nonlinear dynamic systems are unnecessary in the presented alternative design approach.

In this scenario, the Cartesian position references h? are expressed as follows, with a
simulation time of 450 s

x? = 0.75 + 3 sin(0.03t) [m]

y? = −4.5 + 4.5 cos(0.015t) [m]

z? = 0.95 [m].
(46)

For implementation of the presented neural adaptive control scheme, velocity and ac-
celeration reference trajectories are unnecessary. Moreover, efficient and robust tracking of
planned motion reference trajectories Equation (46) should be performed on the controlled
mobile manipulation robotic system by using measurements of position signals only. The
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acceptable control performance of the overall mobile manipulation robotic system for this
last operational scenario is depicted in Figures 31–36.

Table 3. Parameters and constants of the mobile manipulation robotic system used for the fourth
simulation scenario.

Parameter Quantity Units Description

c 0.25 m Distance from O to each side’s wheels of the robot
r 0.075 m Radius of each wheel of the mobile robot
l 0.4 m Height of the mobile robot
lp 0.27 m Distance from O to the base of the manipulator robot
l1 0.2 m First link length of the manipulator robot
l2 0.3 m Second link length of the manipulator robot
l3 0.3 m Third link length of the manipulator robot

mp 19.2372 Kg Mobile robot chassis mass
mw 0.901 Kg Mass of each wheel of the mobile robot
m1 3.293 Kg First link mass of the manipulator robot
m2 3.436 Kg Second link mass of the manipulator robot
m3 1.229 Kg Third link mass of the manipulator robot
IzP 0.7004 Kg m2 Inertia moment in the Z-axis of the mobile robot
Iyw 0.0015 Kg m2 Inertia moment in the Y-axis of the wheels
Izw 0.0030 Kg m2 Inertia moment in the Z-axis of the wheels
Iz1 0.0230 Kg m2 Inertia moment in the Z-axis of the first link
Iy2 0.0457 Kg m2 Inertia moment in the Y-axis of the second link
Iz2 0.0461 Kg m2 Inertia moment in the Z-axis of the second link
Iy3 0.0242 Kg m2 Inertia moment in the Y-axis of the third link
Iz3 0.0255 Kg m2 Inertia moment in the Z-axis of the third link

Satisfactory control performance in Cartesian space of the mobile manipulation robotic
system is revealed in Figure 31. Effective tracking of reference trajectories is clearly evi-
denced. Furthermore, asymptotic convergence of the tracking errors to zero is confirmed.
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Figure 31. Trajectory tracking control of the mobile manipulation robotic system in the Cartesian
space. (a) Three-dimensional trajectory tracking. (b) Trajectory tracking on the x-axis; (c) x-axis
position error. (d) Trajectory tracking on the y-axis; (e) y-axis position error. (f) Trajectory tracking on
the z-axis; (g) z-axis position error.

Figure 32 presents the controlled linear motion of the mobile robot within its local
coordinate frame. The responses of the respective control inputs are depicted. Tuning
parameters employing B-Spline artificial neural networks to compute online the control
gains are also displayed. The tracking of the position reference trajectory p?ml

is efficiently
executed. Convergence of the trajectory tracking error to zero is similarly achieved.
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Figure 32. Controlled linear motion of the mobile robot in its local coordinate frame. (a) Controlled lin-
ear position pml . (b) Performed linear velocity u. (c) Computed driving force Fml . (d) Linear position
error Errml . (e) Adaptive ωml control parameter. (f) Adaptive ζml control parameter. (g) Adaptive
Pml control parameter.

The effectively controlled angular motion response of the mobile robot within its local
coordinate frame is indicated in Figure 33. The control capability to follow the angular
position reference trajectory p?ma is verified. As shown, the angular position reference
trajectory tracking error is asymptotically transferred to zero. The closed-loop angular
velocity response and computed driving torque to carry out this specified motion task are
portrayed. Fast control parameter adaptation based on B-Spline artificial neural networks
can be observed as well.
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Figure 33. Controlled angular motion of the mobile robot in its local coordinate frame. (a) Controlled
angular position pma . (b) Performed angular velocity φ̇. (c) Computed driving torque τma . (d) Angular
position error Errma . (e) Adaptive ωma control parameter. (f) Adaptive ζma control parameter.
(g) Adaptive Pma control parameter.

Figure 34 illustrates the adaptively controlled angular motion of the first link of the
manipulator robot within its joint space. Satisfactory tracking of the angular position
reference trajectory p?q1

planned for the robot’s first link is corroborated under the influence
of the disturbances described in Section 3. Fast neural network tuning of the control
parameters ωq1 (rad/s), ζq1 , and Pq1 (rad/s) associated with the desired tracking error
dynamics is attained. In this way, appropriate control torque input is exhibited.
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Figure 34. Controlled angular motion of the manipulator robot in its joint space. (a) Controlled angu-
lar position pq1 . (b) Performed angular velocity q̇1. (c) Computed driving torque τq1 . (d) Angular posi-
tion error Errq1 . (e) Adaptive ωq1 control parameter. (f) Adaptive ζq1 control parameter. (g) Adaptive
Pq1 control parameter.

The closed-loop angular motion responses of the second link of the uncertain nonlinear
manipulator robot are displayed in Figure 35. Robust and efficient dynamic control perfor-
mance can also be verified. The proposed robust neural control scheme similarly achieves
effective tracking of the angular position reference profile given by p?q2

. The asymptotically
stable closed-loop trajectory tracking error response associated with the second link of the
manipulator robot can be appreciated. Acceptable control torque input response is shown.
Indeed, the proposed B-Spline neural network adaptive control architecture avoids adverse
high-gain effects to actively suppress disturbances. It can also be observed that the control
tuning parameters are efficiently computed online.
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Figure 35. Controlled angular motion of the manipulator robot in its joint space. (a) Controlled angu-
lar position pq2 . (b) Performed angular velocity q̇2. (c) Computed driving torque τq2 . (d) Angular posi-
tion error Errq2 . (e) Adaptive ωq2 control parameter. (f) Adaptive ζq2 control parameter. (g) Adaptive
Pq2 control parameter.

Figure 36 graphically portrays the intricately controlled angular motion of the ma-
nipulator robot’s third link within its joint space. This represents the final requirement
for the successful execution of the tracking task of the motion planning, initially outlined
in Figure 26. Adaptive trajectory tracking control dynamic performance using position
measurements is again confirmed.
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Figure 36. Controlled angular motion of the manipulator robot in its joint space. (a) Controlled angu-
lar position pq3 . (b) Performed angular velocity q̇3. (c) Computed driving torque τq3 . (d) Angular posi-
tion error Errq3 . (e) Adaptive ωq3 control parameter. (f) Adaptive ζq3 control parameter. (g) Adaptive
Pq3 control parameter.

As illustrated in the provided figures within this scenario, the efficacy of the control
scheme is evaluated in the face of a collection of numerical parameters that represent a
larger system than initially contemplated. Upon scrutinizing these results, it is observed
that the real-time adjustment of the dynamic control parameters facilitates the generation of
low-magnitude control signals. Likewise, the control velocities manifested are of relatively
diminutive magnitude, thereby ensuring smooth motion that maintains the system’s stability
throughout the task execution process. This indicates well-modulated, controlled operation,
safeguarding against abrupt fluctuations that could potentially destabilize the system.

6. Conclusions

This research delved into the complexities of controlling the motion of a mobile manip-
ulation robotic system by employing B-Spline artificial neural networks. This innovative
approach to motion control delivered robust and adaptive results in the regulation and
tracking of both linear and angular motion through rigorous simulation experiments and
extensive analysis. The implementation of the B-Spline artificial neural networks as an
integral part of the control scheme showcased their remarkable effectiveness in mitigating
challenges. Their proficiency was evident when addressing issues related to both the
differential-drive mobile robot and the anthropomorphic manipulator robot. For the mobile
robot, the control scheme ensured regulated linear and angular motion within its local
coordinate frame, a critical necessity for trajectory tracking tasks. Meanwhile, for the
manipulator robot, the control scheme facilitated proficient management of angular motion
within the joint space across its three links, underscoring its importance for successful task
completion. A salient feature of B-Spline artificial neural networks is their dynamic adapt-
ability and learning capacity, which found expression in the controllers’ ability to stabilize
control parameters to a constant value. This ability proved instrumental to ensuring task
completion despite unforeseen external disturbances. Furthermore, the control scheme
demonstrated resilience to unexpected environmental changes and scalable, adaptable
capacity to handle robotic systems with varying degrees of freedom, highlighting the sub-
stantial potential of B-Spline neural networks in motion control. The control scheme also
excelled in tracking desired position profiles with high precision, even when confronted
with induced external vibratory torques, illustrating its robust nature. Its adaptability, as
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evidenced by the stable response to continuous changes to position profiles, is invaluable
in dynamic and unpredictable work environments. An in-depth examination of the control
scheme’s minimal numerical output for both force and torque emphasizes its efficiency.
This level of efficiency, despite considerable magnitudes of disturbance forces and torques,
not only validates the control scheme’s proficiency but also precludes actuator saturation,
extending the operational lifespan of the system. Adaptive neural-network robust control of
other architectures of mobile manipulation robotic systems for special application scenarios
of large-scale manufacturing under substantially disturbed operational environments will
be developed in future research work. In this sense, several experimental and numerical
comparative analysis case studies of different methods will be introduced in subsequent
contributions as well.
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