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Abstract: Social networks have received considerable attention from the modal logic community.
In this article, we study and characterize one of the most important principles in the field of social
networks. Homophily, which means similarity breeds association, reveals the nature of social
organization. In order to be able to express similarity and association together, we generalize the basic
network and then define the heterogeneous network. The heterogeneous network is also defined to
provide a good foundation for the use of logical approaches. The Logic of Homophily LHG,M that
we propose in this article is based on Computation Tree Logic and Formal Concept Analysis. LHG,M

describes the homophily dynamics of the heterogeneous networks at a specified similarity coefficient.
Furthermore, we not only axiomatize the LHG,M and prove that the axiom system LHn

G,M is sound
and complete, but we also prove that the model checking and the validity checking for LHG,M are
both PSPACE-complete.

Keywords: homophily; computation tree logic; implication between attributes; axiom system; model
checking; validity checking
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1. Introduction

With the rapid development in recent years, social network analysis (SNA) has been
considered as an effective tool for solving various problems in sociology, economics, and
management. As a model that can intuitively represent knowledge, beliefs, and social
problems, social networks also received a lot of attention from modal logicians (e.g., [1–7]).
In this article, we will characterize one of the most influential principles of social networks,
homophily, from the perspective of logic.

Homophily describes the basic social organization rule that similarity breeds associa-
tion [8]. In other words, those who have more of the same attributes will be more likely
to tend to associate with each other. For example, people that have the same interests,
have the same academic background, and have the same hometown are more likely to
become friends.

In short, a general network is a structure composed of an object set and a relation
between objects, which is usually depicted by a graph, in which objects and relationships
are represented by nodes and edges. For example, in Figure 1, objects 1, 3 and 4 are,
respectively, associated with 2. Similarly, the affiliation network is a structure composed
of an object set, an attribute set and a relation between object and attribute. For example,
in Figure 2 (for all figures in this article, unshaded circles represent objects, shaded circles
represent attributes, straight lines represent relationships between objects and attributes,
and curved lines represent relationships between objects), the object 1 has the attribute
a and b, both the object 3 and 4 have the attribute c. However, neither of the two most
common types of networks can be directly used to represent homophily since they can only
represent association and similarity, respectively. In order to study homophily on the basis
of networks, sociologists often use additional data tables and some statistical methods,
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which are not suitable for logic. Therefore, we will use the heterogeneous network (HetNet
for short, e.g., Figure 3), which is a direct combination of general network and affiliation
network and can represent both association and similarity.

Figure 1. General Network.

Figure 2. Affiliation Network.

Figure 3. Heterogeneous Network.

In this article, the logic of homophily will be based on the HetNets to study and
describe the dynamics of networks under the principle of homophily. In a HetNet, if a
pair of objects has a certain number of the same attributes, it is considered that the two
are similar in a certain degree, and thus they will be associated with each other. If in the
HetNet, all similar objects have already been associated with each other, it is considered
that the network is homogenized.

The most related work to this article is logic of allies and enemies (LAE) [5–7,9]. LAE is
based on computation tree logic (CTL), and mainly characterizes another important structural
theory in social networks—structure balance theory. Similarly, the logic of homophily in
this paper will be also based on CTL to characterize the dynamics of the HetNet under



Mathematics 2023, 11, 3484 3 of 19

homophily. In addition, logic of homophily will introduce the methods in formal concept
analysis (FCA) to represent and extract the implicit information of the HetNet.

Previous logic study on social network structure is only about the structure balance
theory and stays on the general object networks. In this article, we generalize the logic
study of the structure of social networks to HetNets and the principle of homophily. We
first combine general object networks with affiliation networks to propose HetNets that
can be used to characterize the principle of homophily; secondly, we define similarity and
homophily in HetNets and construct the homophily-evolution models; thirdly, we establish
the logic of homophily, which is based not only on CTL but also on FCA, and is, therefore,
more expressive, to describe and analyze the HetNet and its homophily dynamic; fourthly,
we axiomatize the logic and prove that its axiom system is sound and complete; finally, we
propose the model checking and validity checking problem and prove that they are both
PSPACE-complete by improving the algorithms.

The structure of this article is as follows: In Section 2, we first introduce the defi-
nition of HetNet and define the similarity and homophily on it, and then establish the
homophily-evolution model to describe the dynamics. In Section 3, we first introduce
the implication between attributes on HetNet, then define the language and semantics of
logic of homophily LHG,M, and give some valid formulas. In Section 4, we first introduce
the description formula of the HetNet, and then define and explain the axiom system
LHn

G,M, and finally prove the soundness and the completeness of LHn
G,M. In Section 5,

we express what the model checking for LHG,M is and then prove it is PSPACE-complete.
In Section 6, we express what the validity checking for LHG,M is and then prove it is
PSPACE-complete. In Section 7, we summarize our work in this article and illustrate the
directions for future work.

2. HetNets and Homophily

Definition 1. HetNet is a quadruple N = (G, M, I, R), where G and M are non-empty finite
sets, I ⊆ G×M, R ⊆ G× G, and R is reflexive and symmetric.

In the above definition, requiring the relation R to be reflexive is to reflect that “the
object is always associated with itself”. In order to avoid ambiguity, we specifically require
that G ∩M = ∅. Then, in order to simplify the problem, we will only consider the case
that object relations always appear in pairs, that is, R is required to be symmetric. G and M
denote the object set and attribute set, respectively, I and R denote the relationship between
objects and attributes and the relationship between objects, respectively.

As mentioned in Section 1, the HetNet given in the Definition 1 is one of the simplest
and most intuitive heterogeneous networks and is a direct composition of a general network
and an affiliation network. In other words, any HetNet N = (G, M, I, R) can be regarded as
composed of the affiliation network (G, M, I) and the general network (G, R). For example,
the network in Figure 3 is combined by the network in Figure 1 and the network in Figure 2.

2.1. Similarity and Homophily

Consider sets X, Y. ↑: 2X × 2X×Y → 2Y and ↓: 2Y × 2X×Y → 2X , respectively, denote
the following operators (where,A ⊆ X, B ⊆ Y, E ⊆ X×Y):

A↑E= {y ∈ Y | ∀a ∈ A, aEy},
B↓E = {x ∈ X | ∀b ∈ B, xEb}.

For the sets X, Y, if the relation E is fixed, this pair of operators can be regarded as a pair of
concept-forming operators in FCA.

FCA, first proposed by Rudolf Wille in [10], is a formal tool that has a solid theoretical
foundation and is widely used in various areas, e.g., knowledge representation, information
management, and data mining. Not only is the the basic structure in FCA, called formal
context, isomorphic to the affiliation network, but the methods of FCA can also be used
to represent and extract implicit information in networks [11,12]. Although our work is
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heavily inspired by FCA, in this article, we will only introduce FCA where necessary since
this work has not yet covered the FCA methods in depth (See [13] for more details about
FCA).

Definition 2. Consider N = (G, M, I, R) and O ⊆ G, the similarity of the object set O is defined
as Sim(O) = |O↑I |. Let 0 < n ≤| M | be a similarity coefficient. If Sim(O) ≥ n, the objects in
set O are considered to be n-similar.

Intuitively, O↑I represents the common attributes in M of objects in O, and the more
they have the same attributes, the more similar they are and the higher the similarity
coefficient the set has. For example, in Figure 3, Sim({1, 2}) = |{a, b}| = 2, Sim({3, 4}) =
|{d}| = 1. Therefore, objects 1 and 2 are 2-similar and also 1-similar, but objects 3 and 4
are only 1-similar. In other words, objects 1 and 2 are more similar than 3 and 4. Since
∅↑I = M, the empty set always has similarities and has the largest similarity, For any g ∈ G,
{g}↑I = {m ∈ M | gIm}, so if one object has attributes, it is always the most similar to
itself.

From the perspective of FCA, ·↑I is one of concept-forming operators of formal context
K = (G, M, I) that is isomorphic to the component affiliation network (G, M, I) of HetNet
(G, M, I, R), and any set of objects with similarity is a subset of the extension of one certain
maximal non-empty formal concept in K. Therefore, as long as all the maximal non-empty
formal concepts are obtained, all object sets with similarity in a HetNet can be also obtained.
Existing polynomial-delay algorithms for computing formal concepts can do this efficiently
(see [14] for details).

Definition 3. Consider N = (G, M, I, R), O ⊆ G and a similarity coefficient 0 < n ≤| M |.
If the object set O is n-similar and O ⊆ O↑R , the set O is homogenized at n. If all n-similar
object sets in N are homogenized, then the HetNet N is called homogenized at the given similarity
coefficient n. Otherwise, it is called not homogenized at n.

In the above definition, ·↑R can be understood as one of the concept-forming operators
of formal context (G, G, R) that is isomorphic to the component general network (G, R) of
HetNet (G, M, I, R), and O↑R represents the objects that are associated with all objects in O.
Similarly, the empty set is always homogenized since ∅↑R = G. And because R is reflexive,
any single-point set with similarity is always homogenized. In particular, if a HetNet does
not have any n-similar set, then it is vacuously homogenized at n. Take Figure 3 as an
example. Since {3, 4}↑R = {3, 4} and {1, 2}↑R = ∅, {3, 4} is homogenized at 2 but {3, 4} is
not even homogenized at 1.

The principle of homophily describes the process of individual aggregation and
organization caused by similarity. In other words, homophily shows that the network has a
tendency to be homogenized.

2.2. Homophily-Evolution Models

Definition 4. Consider HetNet N = (G, M, I, R) and a similarity coefficient 0 < n ≤| M |.
HetNet N′ = (G, M, I, R′), where R ⊆ R′, is called the n-immediate successor of N (denoted
N  n N′) if and only if N′ satisfies the following conditions:

(1) If N is homogenized, then N′ = N;
(2) If N is not homogenized, there is only one n-similar object set {i, j} ⊆ G, where i, j are

different objects, satisfying that the object set is not homogenized on N, but homogenized on
N′, i.e., Sim({i, j}) ≥ n, (i, j) 6∈ R, (j, i) 6∈ R, (i, j) ∈ R′ and (j, i) ∈ R′.

The Definition 4 means that each update of the non-homogenized HetNet can and
can only make a pair of objects with n-similarity associated. Although it is more intuitive
to associate objects with higher similarity first, the updates are “equal” to each pair of
objects that will be homogenized since we do not intend to discuss this issue in depth in
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this article. Take Figure 3 as an example. The HetNet in Figures 3–5 are its 1-immediate
successor, 2-immediate successor and 3-immediate successor, respectively. The update
made in Figure 4 is to associate object 2 with 3 since they have one common attribute b.
The update made in Figure 5 is to associate object 1 with 2 since they have two common
attributes a and b. In other words, the HetNet in Figure 5 is also a 1-immediate successor.
Because there are no 3-similar sets in Figure 3’s HetNet, it is homogenized at 3 and thus its
only 3-immediate successor is itself.

Figure 4. 1-immediate Successor.

Figure 5. 2-immediate Successor.

Definition 5. Consider HetNet N = (G, M, I, R) and 0 < n ≤| M |. If there is a sequence
N0  n N1  n · · ·  n Nm (m is a positive integer) such that N0 = N, and either m = 0, or
for any 0 ≤ i < m, Ni is not homogenized, then if and only if Nm is homogenized, we call this
sequence the n-homophily-evolution line of N (n-timeline for short, denoted ln(N)) and call Ni the
n-successor of N. The n-homophily-evolution tree tnN = (N ,S) of N (n-timetree, for short) is a
tuple, where N = {N′ | N′is the n-successor of N}, S = {(U, V) | U, V ∈ N and U  n V}.

By the immediate successor relation given in Definition 4, a HetNet will gradually
form an n-timetree, which is non-transitive, antisymmetric, and has self-loops only at
the terminal nodes. Since the network will eventually reach homogenized, the depth of
this timetree is finite. Let len(ln) and dep(tn) be the length of n-timeline and the depth of
n-timetree, respectively. len(ln) is the number of HetNets in an n-timeline and dep(tn) is
the length of the longest n-timeline in it.

Proposition 1. The depth of n-timetree is limited by |G|(|G|−1)
2 + 1.

For a HetNet N = (G, M, I, R), only when any two of the objects are not associated but are
all n-similar, the number of updates of N can reach the maximum.

3. Logic of Homophily LHG,M

In this section, we will introduce the implication between attributes (IbA) and generalize
it on HetNet, and then establish the Logic of Homophily LHG,M.
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3.1. Implication between Attributes and Index

IbA, or the IbA system is an important method in FCA, which is used to represent
and extract information from formal contexts. As the “language” of formal contexts, the
IbA system describes and characterizes a formal context by expressing the “implicative
relationship” between attributes. In other words, “the attribute set A “implicates” the
attribute set B” actually means” any object that has all the attributes in A also has all the
attributes in B”. Consider an affiliation network or a formal context (G, M, I) and attribute
sets A, B ⊆ M. An IbA of the formal context is denoted by A⇒ B. A⇒ B is valid on the
formal context (G, M, I) if and only if A↓I ⊆ B↓I .

Since the HetNet and the homophily principle involve not only the relationship
between objects and attributes, but also the association between objects, IbA in FCA cannot
be directly used to describe the HetNet and its homophily. However, because the formal
context is isomorphic to the affiliation network, and the general network (G, R) can also
be expressed in the form of the affiliation network (G, G, R), i.e., the HetNet can also be
similarly expressed, the IbA method can be naturally generalized to the HetNets.

Consider a HetNet N = (G, M, I, R). Let G̊ = {g̊ | g ∈ G} be its index set,
R̊ = R ∪ {(g, g̊) | g ∈ G} be its index expansion relation.

Definition 6. An IbA on HetNet N = (G, M, I, R) is a tuple (A, B) (denoted as A⇒ B), where
A, B ⊆ G ∪ G̊ ∪M. IbA A⇒ B is valid on a HetNet N if and only if A↓IR̊ ⊆ B↓IR̊ .

In definition 6, IR̊ is shorthand for I ∪ R̊ and This type of abbreviation in the following
also means the same. In addition, for the convenience of writing and avoiding ambiguity,
brackets around sets in IbA are usually omitted and the string will be arranged in the order
of numbers, indexes, and letters, and the numbers and letters will be arranged in the order
of natural numbers and alphabets, respectively. For example, we write 13̊a⇒ bd as an IbA
instead of {1, a, 3̊} ⇒ {b, d}.

The generalization made by Definition 6 is essentially to use the symbols in the object
set and index set to represent the attributes of being associated with the “object represented
by this symbol” and attributes of only being associated with the “object represented by this
symbol”, respectively. For example, IbA 1⇒ a means “the objects associated with object 1
all have the attribute a”, and “1” in this IbA means the attribute “has a relationship with
the object 1”, instead of “the object 1”. 1̊⇒ b means “the object only associated with 1 has
the attribute b”, and since all objects in the HetNet are associated with themselves, 1̊⇒ b
actually means “object 1 has attribute b”.

3.2. Syntax and Semantics

The language LG,M of logic of homophily LHG,M is built on the given object set G and
attribute set M (where, G and M is finite, non-empty and satisfies G∩M = ∅). The formula
φ of LG,M is defined as follows (where A, B ⊆ G ∪M∪G̊) :

φ ::= A⇒ B | > | Hom | ¬φ | φ ∨ φ | AXφ | E(φUφ) | A(φUφ).

The formula A ⇒ B represents the IbA A ⇒ B, Hom represents the HetNet is homoge-
nized, and the propositional connectives and temporal operators are consistent with the
conventional definitions (more information about CTL temporal operators, please refer
to [15,16]). Other propositional connectives and temporal operators are also defined as
usual. For example, φ→ ψ = ¬φ ∨ ψ, EXφ = ¬AX¬φ, AFφ = A(>Uφ). In addition, also
for the convenience of writing, in the following, the expression of “atomic formula” A⇒ B
is consistent with the specification of IbA in the Section 3.1.

Consider LHG,M. The formula φ ∈ LG,M is satisfied on a HetNet N = (G, M, I, R) and
at a similarity coefficient n (denoted as N �n φ) defined as follows (where A, B ⊆ G∪M∪G̊,
ψ ∈ LG,M, 0 < n ≤| M |):
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N �n A⇒ B ⇐⇒ IbA A⇒ B is valid on N.

N �n > always.

N �n Hom ⇐⇒ N  n N.

N �n ¬φ ⇐⇒ N 6�n φ.

N �n φ ∨ ψ ⇐⇒ N �n φ or N �n ψ.

N �n AXφ ⇐⇒ ∀N′, if N  n N′, then N′ �n φ.

N �n E(φUψ) ⇐⇒ There is a timeline N0  n N1  n · · · with N0 = N,

∃i ∈ N, Ni �n ψ, for any j < i, Nj �n φ.

N �n A(φUψ) ⇐⇒ For any timeline N0  n N1  · · · with N0 = N,

∃i ∈ N, Ni �n ψ, for any j < i, Nj �n φ.

Take Figure 3 as an example to briefly explain the semantics. Let N denote the network
in it. First, N �n 2a⇒ b, N �n ¬4̊⇒ b, N �n ¬c⇒ b represent “all objects associated with
object 2 that have attribute a have attribute b”, “object 4 does not have attribute b”, and
“there is an object that has attribute c and does not have attribute b”. Then, N �1 EX(1̊⇒ 2)
and N �1 ¬Hom represent, respectively, “there is a 1-immediate successor of N such that
object 1 is associated with object 2” and “the HetNet N is not homogenized at 1”. Next,
N �1 A(¬1̊ ⇒ 3 ∨ ¬1̊ ⇒ 2UHom) means “On any timeline starting from N with the
similarity coefficient 1 until the network homogenized, there is always that ‘object 1 has
no association with 3 or object 1 is no associated with 2’”. Finally, N �2 ¬EX(1̊⇒ 2) and
N �3 Hom shows that “there is not a 2-immediate successor of N such that object 1 is
associated with object 2” and “the HetNet N is homogenized at 3”.

Given a formula φ ∈ LHG,M and a similarity coefficient n. φ is called satisfied if and
only if there is an N = (G, M, I, R) s.t. N �n φ. φ is called valid (denoted �n φ) if and only
if for any N = (G, M, I, R), N �n φ. Consider a formula set Φ and a HetNet N. N �n Φ
if and only if for any ψ ∈ Φ, N �n ψ. In addition, φ is called a semantic consequence of Φ
(denoted Φ �n φ) if and only if for any HetNet N, if N �n Φ, then N �n φ.

The Proposition 2 gives some basic valid formulas of LHG,M.

Proposition 2. For LHG,M, the following formulas are valid (where A ⊆ G ∪ M∪G̊, a ∈ M,
g̊, g̊′ ∈G̊, 0 < n ≤| M |):
(1) �n AFHom;
(2) �n g̊⇒ A→ AX g̊⇒ A;
(3) �n ¬g̊⇒ a→ AX¬g̊⇒ a;

The three valid formulas in the Proposition 2 state the following: (1) The HetNet will
eventually be homogenized; (2) The update will not change the existing relationship; (3)
The update will not generate new relationships between objects and attributes.

4. Axiom System LHn
G,M

The axiomatization of the logic of homophily LHG,M relies on the description method
first introduced by [9]. In short, the description is a formula used to characterize the HetNet.
The description formula in this article is based on the regular atomic formula.

Consider LHG,M. If the atomic formula A ⇒ B satisfies B ⊆ G ∪M, then A ⇒ B is
called regular. Otherwise, A⇒ B is irregular. For any regular atomic formula φ = A⇒ B,
the complement of φ (denoted as ∼ φ) is a conjunction defined as follows:

∼ (A⇒ B) =
∧

a∈(G∪M)\B
(¬A⇒ a).
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For any g ∈ G, Ag represents the subset of G ∪M only determined and selected by g.
The description, denoted as δ, is composed of the following series of regular formulas and
their complements:

δ =
∧

g∈G
(g̊⇒ Ag∧ ∼ (g̊⇒ Ag)).

For the conjunction ψ in which each branch is a regular atomic formula, let ∼ ψ
represent the conjunction of the complement of all branch formulas in ψ. Let δ+ be the
conjunction of all regular atomic formulas in δ, and∼ δ+ be the conjunction of complements
of all its regular atomic formulas, and obviously δ↔ δ+∧ ∼ δ+.

For the HetNet N = (G, M, I, R), the description of N, δ(N) is defined as follows (the
order of branches of conjunction is determined and IR is shorthand for I ∪ R):

δ(N) =
∧

g∈G
(g̊⇒ {g}↑IR∧ ∼ (g̊⇒ {g}↑IR)).

Since in a HetNet, objects are always associated with themselves and the associations
between objects are always symmetric, not all description formulas describe a HetNet. In
this article, we specifically stipulate the order of branches of conjunction in the description
formula, i.e., the atomic formula is always on the left side of its complement, arrange the
atomic formulas in the order of natural numbers according to the object indexes in them, and
arrange the branches of complements of atomic formulas in the order of natural numbers
and alphabetical order according to the symbols on the right of ⇒. Therefore, it is not
difficult to prove that if δ(N) is the description of HetNet N, δ(N) is the unique description
of N. Take Figure 3 as an example. Let N denote the network in it. Its description formula
δ(N) = (1̊ ⇒ 14ab ∧ 2̊ ⇒ 24ab ∧ 3̊ ⇒ 34bc ∧ 4̊ ⇒ 1234c) ∧ ((¬1̊ ⇒ 2 ∧ ¬1̊ ⇒ 3 ∧ ¬1̊ ⇒
c) ∧ (¬2̊⇒ 1∧ ¬2̊⇒ 3∧ ¬2̊⇒ c) ∧ (¬3̊⇒ 1∧ ¬3̊⇒ 2∧ ¬3̊⇒ a) ∧ (¬4̊⇒ a ∧ ¬4̊⇒ b)).

Table 1 represents the axiom system LHn
G,M of the logic of homophily LHG,M with the

similarity coefficient n. In Table 1, φ, ψ, χ are arbitrary formulas, A, B, C, D ⊆ G ∪M ∪ G̊,
a ∈ M, En ⊆ M and | En |≥ n, g, g′ ∈ G, g̊, g̊′ ∈ G̊, O̊ ⇒ A and ∼ O̊ ⇒ A, respectively,
represent

∧
g∈O g̊ ⇒ A and

∧
g∈O ¬g̊ ⇒ A (O is not empty and O ⊆ G), σ(g,g′) means∧

a∈M(g̊⇒ a↔ ¬g̊′ ⇒ a), δ represents the description of a HetNet, and homophily axiom is
the following formula (where δ1, δ2, . . . , δm enumerate the descriptions of all HetNets that
are homogenized at n):

(HF) Hom↔ (δ1 ∨ δ2 ∨ . . . ∨ δm).

The axiom system LHn
G,M consists of three parts: CTL axioms and rules, axioms about

IbAs and axioms and rules about HetNet and update.
CTL axioms and rules are consistent with those in [16].
In the axioms about IbAs, (Ref), (Frag), (Comp), and (Trans) are the axioms of Arm-

strong’s system (see [17] for more details). (Frag)¬, (Comp)¬ are the negative extensions
of the (Frag) and (Comp). (Incl) indicates the feature of the inclusion relationship. (Abs)
explain how the attribute set A implicates the attribute set B. (Emp) means that the set of
attributes not owned by any object implicates any set of attributes.

In the axioms and rules about HetNet and updates, (Loop) indicates that the object
is always associated with itself. (Loop)¬ indicates that the index symbol only indicates
the relationship between the object and itself. (Symm) indicates that the relationship be-
tween objects is always symmetric. (A-gen) and (A-gen¬) are valid formulas introduced
in Section 3.2. (E-gen) represents the relationship generation in an update. (E-gen)¬ rep-
resents the relationship that will not be generated in an update. (Exp) represents the
immediate successor. (Hom) and (Hom¬) indicate that the immediate successor of a
homogenized HetNet is always itself and the immediate successor of a HetNet which
is not homogenized cannot be itself. In fact, (Hom) and (Hom¬) can be derived from
(HF), (A-gen), (A-gen¬), (E-gen) and (Exp). However, for the convenience of the follow-
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ing proofs, these two formulas are still retained as axioms. (HF), (Tm1) and (Tm2) are
consistent with the similar axioms and rules in [9].

Consider a formula set Φ and a formula φ. If φ can be derived by axioms and rules of
LHn

G,M, φ is a theorem of LHn
G,M (denoted `n φ). If φ can be derived from Φ by axioms and

rules of LHn
G,M, Φ `n φ.

Table 1. Axiom system LHn
G,M.

CTL axioms and rules:

(PC) Substitutions of all propositional tautologies
(Kx) AX(φ→ ψ)→ (AXφ→ AXψ)

(Dx) EX>
(EU) E(φUψ)↔ ψ ∨ (φ ∧ EXE(φUψ))

(AU) A(φUψ)↔ ψ ∨ (φ ∧AXA(φUψ))

(MP) From φ and φ→ ψ to infer ψ

(Nec) From φ to infer AXφ

(A-ind) From ψ ∨ (φ ∧AXχ)→ χ to infer A(φUψ)→ χ

(E-ind) From ψ ∨ (φ ∧ EXχ)→ χ to infer E(φUψ)→ χ

Axioms about IbAs:

(Ref) A⇒ A
(Frag) A⇒ B ∪ C → A⇒ B
(Frag¬) ¬A ∪ B⇒ C → ¬A⇒ C
(Comp) A⇒ B ∧ C ⇒ D → (A ∪ C ⇒ B ∪ D)

(Comp¬) ¬A⇒ B ∧ ¬A⇒ C → ¬A⇒ B ∪ C
(Trans) A⇒ B ∧ B⇒ C → A⇒ C
(Incl) (A⇒ B ∧ ¬A⇒ C)→ ¬B⇒ C
(Abs) (O̊⇒ A ∧ O̊⇒ B∧ ∼ ˚(G \O)⇒ A)→ A⇒ B
(Emp) ∼ G̊ ⇒ A→ A⇒ B

Axioms and rules about HetNet and update:

(Loop) g̊⇒ g
(Loop¬) ¬g⇒ g̊′ (g 6= g′)
(Symm) g̊⇒ g′ ↔ g̊′ ⇒ g
(A-gen) g̊⇒ A→ AXg̊⇒ A
(A-gen¬) ¬g̊⇒ a→ AX¬g̊⇒ a
(E-gen) (g̊⇒ En ∧ g̊′ ⇒ En)→ EXg̊⇒ g′

(E-gen¬) From δ→ ¬g̊⇒ g′ ∧ σ(g,g′) to infer δ→ ¬EXg̊⇒ g′

(Exp) From δ→ ¬g̊⇒ g′ ∧ EXg̊⇒ g′

to infer δ→ EX(g̊⇒ g′∧ ∼ (δ+ ∧ g̊⇒ g′ ∧ g̊′ ⇒ g))
(HF) Homophily axiom
(Hom) (δ→ Hom)↔ (δ→ AXδ)

(Hom¬) (δ→ ¬Hom)↔ (δ→ ¬AXδ)

(Tm1) From δ→ Hom to infer δ→ (A(φUψ)→ ψ)

(Tm2) From δ→ Hom to infer δ→ (E(φUψ)→ ψ)

4.1. Soundness

We will prove the validity of all other axioms and rules except the CTL axioms and
rules and Armstrong’s axioms which have been proven to be valid. Next, a lemma used to
assist the following proofs will be first proved.

Lemma 1. Consider LHG,M. For any description δ, HetNet N and similarity coefficient n, δ is the
description of N iff N �n δ.



Mathematics 2023, 11, 3484 10 of 19

Proof. By definition, left to right obviously holds. Only from right to left is shown here.
Consider the description δ =

∧
g∈G(g̊⇒ Ag∧ ∼ (g̊⇒ Ag)), the HetNet N = (G, M, I, R)

and the similarity coefficient n. If δ does not describe N, then there exists g′ ∈ G such that
Ag′ 6= {g′}↓IR , i.e., either Ag′ ⊂ {g′}↑IR , or {g′}↑IR ⊂ Ag′ . For the former, according to the
definition of ∼ (g̊ ⇒ Ag), there must exist a ∈ {g′}↑IR so that ¬g̊′ ⇒ a is a branch of δ.
Therefore, N 6�n δ. Similarly, for the latter, there must exist a ∈ Ag′ such that N 6�n g̊′ ⇒ a
(otherwise, a ∈ {g′}↑IR ). Thus, N 6�n δ.

Here, we only show the axioms and rules that should be proved, and the proof will be
given in the Appendix A.

Theorem 1. For LHG,M, the following axioms and rules are valid (where φ, ψ are arbitrary
formulas, A, B, C ⊆ G ∪ M ∪ G̊, a ∈ M, g, g′ ∈ G, g̊, g̊′ ∈ G̊, En ⊆ M and | En |≥ n
(0 < n ≤| M |), O is not empty and O ⊆ G, δ is a description of HetNet):

(Frag¬) ¬A ∪ B⇒ C → ¬A⇒ C;
(Comp¬) ¬A⇒ B ∧ ¬A⇒ C → ¬A⇒ B ∪ C;
(Incl) (A⇒ B ∧ ¬A⇒ C)→ ¬B⇒ C;
(Abs) (O̊⇒ A ∧ O̊⇒ B∧ ∼ ˚(G \O)⇒ A)→ A⇒ B;
(Loop) g̊⇒ g;
(Loop¬) ¬g⇒ g̊′ (g 6= g′);
(Symm) g̊⇒ g′ ↔ g̊′ ⇒ g;
(A-gen) g̊⇒ A→ AXg̊⇒ A;
(A-gen¬) ¬g̊⇒ a→ AX¬g̊⇒ a;
(E-gen) (g̊⇒ En ∧ g̊′ ⇒ En)→ EXg̊⇒ g′;
(E-gen¬) From δ→ ¬g̊⇒ g′ ∧ σ(g,g′) to infer δ→ ¬EXg̊⇒ g′;
(Exp) From δ → ¬g̊ ⇒ g′ ∧ EXg̊ ⇒ g′ to infer δ → EX(g̊ ⇒ g′∧ ∼ (δ+ ∧ g̊ ⇒ g′ ∧ g̊′ ⇒

g));
(HF) Homophily axiom;
(Hom) (δ→ Hom)↔ (δ→ AXδ);
(Hom¬) (δ→ ¬Hom)↔ (δ→ ¬AXδ);
(Tm1) From δ→ Hom to infer δ→ (A(φUψ)→ ψ);
(Tm2) From δ→ Hom to infer δ→ (E(φUψ)→ ψ).

Theorem 2 (Soundness). For any formula set Φ and formula φ, if Φ `n φ, then Φ �n φ.

4.2. Completeness

In this section, we will first prove that the tomorrow formula is the theorem of LHn
G,M.

Tomorrow formula, denoted as (t(δ)), is the following formula:

(t(δ)) δ→ (AX(δ1 ∨ . . . ∨ δn) ∧ EXδ1 ∧ . . . ∧ EXδn).

δ1, . . . , δn is the description of the n-immediate successor of the HetNet described by δ.
(t(δ)) can be abbreviated as δ→ ∇{δ1, . . . , δn}, ∇ is the so-called cover modality.

Lemma 2. `n δ→ ∇{δ1, . . . , δn}.

Proof. Consider a description δ which describes a HetNet and a similarity coefficient n.
If δ describes a HetNet that is homogenized at n, according to (HF), `n δ→ Hom. By

(HOM), `n δ→ AXδ, i.e., `n δ→ ∇{δ}.
If δ does not describe a homogenized HetNet, then `n δ→ ¬(δ1 ∨ δ2 ∨ . . . ∨ δn), i.e.,

`n δ → ¬Hom. According to (Hom¬) and `n δ ↔ δ+∧ ∼ δ+, `n δ → ¬AX(δ+∧ ∼
δ+), i.e., `n δ → EX(¬δ+ ∨ ¬(∼ δ+)). And by (A-gen), `n δ → AXδ+. Therefore,
`n δ → EX(¬(∼ δ+)). According to (A-gen¬), for all formulas in the form of ¬g̊ ⇒ a
in ∼ δ+ (where a ∈ M), `n δ → AX¬g̊ ⇒ a. Similarly, according to (E-gen¬), for all
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formulas in the form of ¬g̊ ⇒ g′ (where g, g′ ∈ G) in ∼ δ+, if `n δ → σ(g,g′), then
`n δ → AX¬g̊ ⇒ g′. Therefore, there exists g, g′ ∈ G such that ¬g̊ ⇒ g′ is the branch
of ∼ δ+ and `n δ → ¬(σ(g,g′)), then according to (E-gen), `n δ → EXg̊ ⇒ g′, i.e.,
`n δ → ¬g̊ ⇒ g′ ∧ EXg̊ ⇒ g′. Thus, according to (Exp), there exists g, g′ ∈ G such that
`n δ → EX(g̊ ⇒ g′∧ ∼ (δ+ ∧ g̊ ⇒ g′ ∧ g̊′ ⇒ g)), and since (A-gen) and (Symm), there
exists g, g′ ∈ G such that `n δ→ EX((δ+ ∧ g̊⇒ g′ ∧ g̊′ ⇒ g)∧ ∼ (δ+ ∧ g̊⇒ g′ ∧ g̊′ ⇒ g)),
obviously (δ+ ∧ g̊ ⇒ g′ ∧ g̊′ ⇒ g)∧ ∼ (δ+ ∧ g̊ ⇒ g′ ∧ g̊′ ⇒ g) is equivalent to the
description of one HetNet. Suppose for δ, there are m pairs of g, g′ ∈ G that satisfy
the above conditions. Let δ1, . . . , δm represent the above equivalent HetNet descriptions,
respectively. `n δ → EXδ1 ∧ . . . ∧ EXδn. According to the definition of n-immediate
successor, it is easy to know that δ1, . . . , δm are the descriptions of n-immediate successor
of the HetNet described by δ. Finally, since G is finite, it is easy to verify that the above
g, g′ ∈ G has exhausted all the cases, thus, `n δ→ AX(δ1 ∨ . . . ∨ δm) ∧ EXδ1 ∧ . . . ∧ EXδm,
i.e., `n δ→ ∇{δ1, . . . , δm}.

Lemma 3 ([9]). Suppose `n δ→ ∇{δ1, . . . , δm}. The following situations hold:

(1) If for all i = 1, . . . , m, `n δi → φ, then `n δ→ AXφ;
(2) If there exists i ∈ {1, . . . , m} such that `n δi → ¬φ, then `n δ→ ¬AXφ.

Proof. Suppose `n δ→ ∇{δ1, . . . , δm}.
(1) Suppose that for all i = 1, . . . , m, `n δi → φ. `n δ1 ∨ . . . ∨ δm → φ. By (Nec),

`n AX(δ1 ∨ . . . ∨ δm → φ). By(Kx), `n AX(δ1 ∨ . . . ∨ δm) → AXφ. Since `n δ →
∇{δ1, . . . , δm}, `n δ→ AXφ.

(2) Suppose that there exists i ∈ {1, . . . , m} s.t. `n δi → ¬φ. In other words, there exists
i ∈ {1, . . . , m} s.t. `n φ → ¬δi. By (Nec), `n AX(φ → ¬δi). By(Kx), `n AXφ →
AX¬δi, i.e., `n EXδi → ¬AXφ. Since `n δ→ ∇{δ1, . . . , δm}, `n δ→ ¬AXφ.

Lemma 4. For any description δ and formula φ, one and only one of `n δ→ φ and `n δ→ ¬φ
must hold.

Proof. According to the definition of description, the description is obviously consistent,
so `n δ→ φ and `n δ→ ¬φ cannot be held at the same time.

Applying induction on φ to prove that for any description δ and formula φ, either
`n δ→ φ or `n δ→ ¬φ must hold.

φ = A⇒ B: (1) For any δ and an atomic formula in the form of g̊ ⇒ A (where g ∈ G,
A ⊆ G ∪M ∪ G̊), either `n δ→ g̊⇒ A or `n δ→ ¬g̊⇒ A must hold.
Let ψ be an atomic formula in the form of g̊ ⇒ A. If ψ is the conjunction branch of
δ+, or can be derived from one of the conjunction branches by (Frag), then `n δ→ ψ.
According to (Frag) and (Comp), `n ψ↔ ∧

a∈A(g̊⇒ a). If ψ is not a conjunction of
δ+ and cannot be obtained by (Frag), then there is at least one conjunction branch in∧

a∈A(g̊⇒ a) that also satisfy this condition. Let g̊⇒ a′ be the formula that satisfies
the condition. Suppose that g̊⇒ a′ is g̊⇒ g̊. If there is no other formula that satisfies
the condition, according to (Ref), `n δ→ ψ. If there are other formulas, it is obviously
impossible to be g̊ ⇒ g̊. If g̊ ⇒ a′ is of the form g̊ ⇒ g̊′ (where g′ ∈ G and g 6= g′),
then according to (Frag) , (Loop) and (Loop¬), `n δ→ ¬ψ. If it is not the above two
cases, then according to the definition of δ, it is easy to know that ¬g̊ ⇒ a′ must be
the conjunction branch of ∼ δ+. Therefore, `n δ → ¬g̊ ⇒ a′, i.e., `n δ → ¬ψ. In
summary, (1) holds.
(2) Consider δ and non-empty sets O ⊆ G and A ⊆ G ∪M∪G̊.

(2.1) `n δ→ O̊⇒ A or `n δ→ ¬O̊⇒ A must hold.
(2.2) `n δ→∼ O̊⇒ A or `n δ→ ¬(∼ O̊⇒ A) must hold.
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(2.3) If `n δ → O̊ ⇒ A, then there exists O′ ⊆ G satisfying O ⊆ O′ such that
`n δ→ O̊′ ⇒ A and `n δ→∼ ˚(G \O′)⇒ A.

According to (1), (2.1) and (2.2) obviously hold. Therefore, according to (1), (2.1), (2.2)
and the definition of description, it is easy to know that (2.3) holds.
(3) Consider a description δ and A, B ⊆ G ∪M∪G̊. If there exists g̊ ∈ G̊ such that
`n δ→ g̊⇒ A and `n δ→ ¬g̊⇒ B, then according to (Incl), `n δ→ ¬A⇒ B. If for
any g̊ ∈ G̊, 6`n δ → g̊ ⇒ A or 6`n δ → ¬g̊ ⇒ B, then according to (1), for any g̊ ∈ G̊,
either `n δ→ ¬g̊⇒ A, or `n δ→ g̊⇒ B (3.1). If there is a non-empty set O ⊆ G such
that `n δ → O̊ ⇒ A, then according to (2.3), there exists O′ ⊆ G satisfying O ⊆ O′

to make `n δ→ O̊′ ⇒ A and `n δ→∼ ˚(G \O′)⇒ A hold. Thus, according to (3.1),
`n δ → O̊′ ⇒ B. Therefore, according to (Abs), `n δ → A ⇒ B. If there is no such
non-empty set O ⊆ G that `n δ → O̊ ⇒ A, i.e., for any g ∈ G, `n δ → ¬g̊ ⇒ A.
According to (Emp), `n δ→ A⇒ B.
Therefore, when φ is the atomic formula A⇒ B, the conclusion holds.

φ = ¬ψ: Suppose 6`n δ → ¬ψ. According to the induction hypothesis, `n δ → ψ, i.e.,
`n δ→ ¬¬ψ.

φ = ψ ∨ χ: Suppose 6`n δ→ ψ∨χ. 6`n δ→ ψ and 6`n δ→ χ. According to the induction
hypothesis, `n δ→ ¬ψ and ` δ→ ¬χ, i.e., `n δ→ ¬(ψ ∨ χ).

φ = AXψ: Suppose 6`n δ → AXψ. According to Lemma 2 and Lemma 3 (1), there
exists i = 1, . . . , m such that 6`n δi → ψ (where for i = 1, . . . , m, δ1, . . . , δm are the
descriptions of the n-immediate successor of δ). According to the induction hypothesis,
`n δi → ¬ψ. Therefore, by Lemma 3 (2), `n δ→ ¬AXψ.

φ = Hom: Suppose 6`n δ→ Hom. According to (Hom), 6`n δ→ AXδ. According to the
induction hypothesis, `n δ→ ¬AXδ. Then according to (Hom¬), `n δ→ ¬Hom.

φ = E(ψUχ): Suppose 6`n δ→ E(ψUχ). According to (EU), 6`n δ→ χ∨ (ψ∧EXE(ψUχ)).
Assume that 6`n δ → χ and 6`n δ → ψ, according to the induction hypothesis,
`n δ → ¬χ and `n δ → ¬ψ. Therefore, `n δ → ¬(χ ∨ (ψ ∧ EXE(ψUχ))) and ac-
cording to (EU), `n δ → ¬E(ψUχ). Assume that 6`n δ → χ and 6`n δ → EXE(ψUχ).
For i = 1, . . . , m, let δ1, . . . , δm be the descriptions of the n-immediate successor of δ.
According to the Lemma 3 (2), for i = 1, . . . , m, 6`n δi → E(ψUχ). Thus, it is back to the
condition at the beginning of the proof. Repeat finitely many times until the descrip-
tion δ′ describes the homogenized HetNet, i.e., `n δ′ → Hom. Since 6`n δ′ → E(ψUχ),
6`n δ′ → χ ∨ (ψ ∧ EXE(ψUχ)). If 6`n δ′ → χ and 6`n δ′ → ψ, the conclusion also holds.
Assume that 6`n δ′ → χ and 6`n δ′ → EXE(ψUχ). According to the Lemma 3 (2)
and δ′ → ∇δ′, 6`n δ′ → E(ψUχ) and thus `n δ′ → ¬E(ψUχ) by (Tm2). Using the
Lemma 3 (1) and (EU) repeatedly, we can finally obtain `n δ→ ¬E(ψUχ).

φ = A(ψUχ): The case of φ = A(ψUχ) is similar to φ = E(ψUχ), as long as (Tm1) is
used instead of (Tm2), it can be proved.

Lemma 5. Consider a description δ, a maximal consistent formula set Φ and a formula φ. If
δ, φ ∈ Φ, then `n δ→ φ.

Proof. Suppose δ, φ ∈ Φ and 6`n δ→ φ. By the Lemma 3, `n δ→ ¬φ. And according to the
definition of the maximal consistent set, ¬φ ∈ Φ. Therefore, Φ is inconsistent, contradictory,
and the assumption does not hold.

Consider LHG,M. For any maximal consistent set Φ, the relation in the HetNet NΦ =
(G, M, I, R) of Φ is defined as follows (where g, g′ ∈ G, m ∈ M and g̊ ∈ G̊):

(g, m) ∈ I ⇐⇒ g̊⇒ m ∈ Φ,

(g, g′) ∈ R ⇐⇒ g̊⇒ g′ ∈ Φ.
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Lemma 6. Consider any description δ of the HetNet and a set of maximal consistent Φ, the
following propositions are equivalent:

(1) NΦ �n δ, (2) δ describes NΦ, (3) δ ∈ Φ.

Proof. According to the definition, it is easy to know that (1) is equivalent to (2). Suppose
(2) holds. Let g̊⇒ A represent any conjunction branch of δ+. According to the definition
of NΦ, for any a ∈ A, g̊ ⇒ a ∈ Φ. Therefore, by (Comp), g̊ ⇒ A ∈ Φ, i.e., δ+ ∈ Φ.
In the same way, ∼ δ+ ∈ Φ can also be proved. Therefore, δ ∈ Φ. Suppose (3) holds.
Consider g̊⇒ a (where g ∈ G, a ∈ G ∪M). According to the Lemma 5, if g̊⇒ a ∈ Φ, then
`n δ → g̊ ⇒ a, and if ¬g̊ ⇒ a ∈ Φ, then `n δ → ¬g̊ ⇒ a. Therefore, one and only one of
g̊⇒ a ∈ Φ and ¬g̊⇒ a ∈ Φ must hold. Thus, by definition, NΦ is completely determined
by δ, i.e., δ describes NΦ.

Lemma 7. Consider any maximal consistent formula set Φ. NΦ �n Φ.

Proof. Suppose δ describes NΦ. According to the Lemma 6, NΦ �n δ and δ ∈ Φ. And
according to the Lemma 5, for any φ ∈ Φ, `n δ→ φ. According to the Theorem 2, for any
φ ∈ Φ, �n δ→ φ. Therefore, for any φ ∈ Φ, NΦ �n φ, i.e., NΦ �n Φ.

Theorem 3 (Completeness). For any formula set Φ and formula φ, if Φ �n φ, then Φ `n φ.

Since the timetrees of the logic of homophily LHG,M are all finite, i.e., they must be
able to be homogenized in the end, the axiom system LHn

G,M has strong completeness.

5. Model Checking

In this section, we consider the model checking problem of LHG,M. Consider LG,M,
N = (G, M, I, R) and a similarity coefficient n. For any φ ∈ LG,M, the model checking
problem is to check whether N �n φ.

Lemma 8. The model checking for LHG,M is PSPACE-hard.

Proof. First, since the model checking problem (TQBF) and the validity checking problem
(QBFSAT) for quantified boolean formulas (QBF) are both PSPACE-complete [18], we use
the QBFSAT problem for reduction to prove the model checking problem for LHG,M is
PSPACE-hard.

Let ψm = Q1x1Q2x2 · · ·Qmxmφ(x1, x2, · · · , xm) be the QBF, where Qi = ∃ or ∀, φ is a
propositional formula, and the value range of x1, x2, · · · , xm is {0, 1}.

Consider a positive integer n. Let Nn
m = (G, M, I, R) satisfy the following conditions:

1. G = {0i, 1i, 2i | 1 ≤ i ≤ m};
2. M = {a1

i , · · · , an
i , b1

i , · · · , bn
i | 1 ≤ i ≤ m};

3. I = {(0i, a1
i ), (1i, a1

i ), · · · , (0i, an
i ), (1i, an

i ), (1i, b1
i ), (2i, b1

i ), · · · , (1i, bn
i ), (2i, bn

i ) | 1 ≤
i ≤ m};

4. R = {(0i, 0i), (1i, 1i), (2i, 2i) | 1 ≤ i ≤ m}.
In the HetNet N, the object sets that are n-similar but not homogenized must be in

the form of {0i, 1i} or {1i, 2i}. In other words, an update of the HetNet N can only add at
most one association between 0i and 1i or 1i and 2i for a given i. Therefore, the selection of
the object sets can be described by the value of xi. If {0i, 1i} becomes homogenized in an
update, xi takes 1. And if {1i, 2i} becomes homogenized, xi takes 0.

Let αi = ¬0̊i → 1i ∧ ¬1̊i → 2i, α1
i = 0̊i → 1i, and α0

i = 1̊i → 2i. α1
i means xi takes 1, α0

i
means xi takes 0, and αi represents the initial situation, i.e., the situation where the value of
xi is undecided. The inductive definition of βm ∈ LG,M is as follows:

1. β0 = φ(α1
1, α1

2 · · · , α1
m);
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2. βi+1 =

 αi+1 ∧AX(¬αi+1 → βi) if Qi = ∀
αi+1 ∧ EX(¬αi+1 ∧ βi) if Qi = ∃

For any βm, we should only consider the m-step n-successors of the root HetNet
and since ¬αi+1 should be satisfied first in every update, for any 1 ≤ j ≤ m, it is impos-
sible for α1

j and α0
j to be satisfied at the same time in the above m-step n-successors.

Therefore, Nn
m �n βm if and only if ψm is satisfied. For the HetNet N defined above,

dep(tn(Nn
m)) = 2m + 1. And the length of βm is also linear-related to m. The above re-

duction is thus a linear-time reduction. The model checking problem for LHG,M is PSPACE-
hard.

Lemma 9. The model checking problem for LHG,M is in PSPACE.

Proof. First, determining whether an atomic formula is satisfied on a HetNet or not requires
only a few basic calculations on sets. In addition, the model checking algorithms for
basic propositional connectives are polynomial-time. Therefore, what we should consider
carefully here are Hom and temporal operators.

Consider a HetNet N = (G, M, I, R) and a similarity coefficient n. The Algorithm 1
can determine whether N �n Hom or not. Since Algorithm 1 performs at most |G|(|G|−1)

2 + 1
calculations, it is in PSPACE.

Algorithm 1: Model Checking Algorithm for Hom

initialize i = 0;
for i <| G | do

j = i + 1;
for j <| G | do

if (i, j) 6∈ R and Sim({i, j}) ≥ n then
return FALSE

else
j++;

end
end
i++;

end
return TRUE

The algorithms for temporal operators are based on the algorithms for CTL given
in [19] since the temporal operators in LHG,M come from CTL. Here, we only give the
algorithm of E(φUψ) (Algorithm 2) as an example and other cases are shown in Appendix B.

According to Algorithm 2, it is not difficult to find that it is a recursive algorithm. Each
run of the algorithm either shortens the input formula or makes input HetNet “jump to”
one of its immediate successors. Therefore, since the formula is finite, and the HetNet will
finally reach homogenized, the algorithm will eventually halt.

The model checking algorithms for CTL temporal operators are all in PSPACE with
respect to the size of the input computation tree and the length of the input formula.
However, the size of the computation tree of an input HetNet (G, M, I, R) is at most
( |G|(|G|−1)

2 + 1)!, i.e., the growth of the size of the computation tree with that of the HetNet
can even be greater than exponential. To reduce storage space usage, we use the depth-first
algorithm like Algorithm 2, and release the storage space of the non-overlapping part of
the old branch before starting to calculate a new branch. In other words, we do not need
the storage space that can store the whole time tree, but only the space that can store the
longest timeline, i.e., the size of the storage space is linear to the depth of the tree.
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Algorithm 2: Model Checking Algorithm for E(φUψ)

if N �n ψ then
return TRUE

else if N 6�n φ then
return FALSE

else if N �n φ then
if N �n Hom then

return FALSE
else
N = {N′ | N  n N′};
for N′ ∈ N do

if N′ �n E(φUψ) then
return TRUE

end
end
return FALSE

end
end

Therefore, the model checking for LHG,M is in PSPACE.

Theorem 4. The model checking for LHG,M is PSPACE-complete.

6. Validity Checking

Consider non-empty finite sets G and M s.t. G ∩M = ∅, and a similarity coefficient n.
For any φ ∈ LG,M, the validity checking problem is to check whether �n φ.

Lemma 10. The validity checking for LHG,M is PSPACE-hard.

Proof. Consider a QBF ψm = Q1x1Q2x2 · · ·Qmxmφ(x1, x2, · · · , xm), where m is any posi-
tive integer, Qi = ∃ or ∀, φ is a propositional formula, and the value range of x1, x2, · · · , xm
is {0, 1}, and a positive integer n.

Let G = {0i, 1i, 2i | 1 ≤ i ≤ m}, M = {a1
i , · · · , an

i , b1
i , · · · , bn

i | 1 ≤ i ≤ m}, and

δn
m =

m∧
i=1

((0̊i ⇒ 0ia1
i a2

i . . . an
i ∧ ∼ (0̊i ⇒ 0ia1

i a2
i . . . an

i )) ∧ (1̊i ⇒ 1ia1
i a2

i . . . an
i b1

i b2
i . . . bn

i ∧ ∼

(1̊i ⇒ 1ia1
i a2

i . . . an
i b1

i b2
i . . . bn

i )) ∧ (2̊i ⇒ 2ib1
i b2

i . . . bn
i ∧ ∼ (2̊i ⇒ 2ib1

i b2
i . . . bn

i ))). It is obvious
that δn

m is the description of the HetNet Nn
m in the Proof of Lemma 8. Here, we take the

value of the similarity coefficient as n. Since | M |= 2 mn and hence 1 ≤ n ≤| M |, if
N �n δm, N �n βm if and only if ψm is satisfied (βm is the same as that defined in the Proof
of Lemma 8). Therefore, �n δn

m → βm if and only if ψm is satisfied. The validity checking
for LHG,M is PSPACE-hard.

Lemma 11. The validity checking for LHG,M is in PSPACE.

Proof. When non-empty finite sets G and M and a similarity coefficient n are given, the
number of HetNets composed of G and M is determined and apparently finite. Let N
be the set of all those HetNets. We can check whether �n φ by enumeration, i.e., we can
use model checking algorithms to check whether N �n φ for all N ∈ N . Since the model
checking algorithm is in PSPACE and the storage only needs to keep one HetNet during
each model checking process, the validity checking for LHG,M is in PSPACE.

Theorem 5. The validity checking for LHG,M is PSPACE-complete.
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7. Conclusions

In this article, we explore the homophily dynamics of HetNets at a determined sim-
ilarity coefficient from the perspective of logic. More precisely, we establish the Logic
of Homophily LHG,M, which describes the homophily dynamics, construct a sound and
complete axiom system LHn

G,M, and propose the PSPACE-complete model checking and
validity checking algorithms for LHG,M. IbAs in FCA are actually some first-order formulas
constrained by universal quantifiers. Index expansion enables these first-order formulas to
represent “exists and only exists”, and to represent the edges in a HetNet. The method of
description formulas based on index expanded IbAs is the key to proving the completeness
of axiom systems and solving the validity checking problem. The axiom system LHn

G,M not
only provides the axioms and rules that directly describe the update, but can also be able
to prove the tomorrow theorems, which can only be axioms in previous work [9]. Finally,
the model checking algorithms provide the basis for implementation.

There are two main directions for future work:

1. The Logic of Homophily LHG,M is based on CTL and FCA. However, in this article, we
only discussed the temporal logic aspect of LHG,M, but did not conduct an in-depth
study of the aspect of FCA. Therefore, we will explore the properties of LHG,M from
the perspective of IbA systems (e.g., Attribute Exploration) in the following work.

2. Cognitive balance theory, as another important dynamic theory in SNA, is not only
closely related to the theory of homophily, but we have also conducted some work
on this theory (e.g., [9]). Thus, we will consider further exploring the principle of
sentiment homophily by introducing cognitive balance theory. In other words, for
sentiment homophily, only when two objects like or dislike a certain attribute at the
same time, they can be associated with. Since sentiment homophily can better and
more accurately describe the formation of object relationships, it is very important and
meaningful to generalize the logic of homophily to the logic of sentiment homophily.
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Abbreviations
The following abbreviations are used in this manuscript:

SNA Social network analysis
HetNet Heterogeneous network

LAE Logic of allies and enemies
CTL Computation tree logic
FCA Formal concept analysis
IbA Implication between attributes
QBF Quantified Boolean Formula
TQBF True Quantified Boolean Formula
QBFSAT Satisfiability of Quantified Boolean Formulas

Appendix A. Proof of Theorem 1

Proof. Consider a HetNet N = (G, M, I, R) and a similarity coefficient n.
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(Frag¬) Suppose N �n ¬A ∪ B ⇒ C. There is a g ∈ G s.t. g ∈ A ∪ B↓IR̊ and g 6∈ C↓IR̊ ,
i.e., g ∈ A↓IR̊ and g 6∈ C↓IR̊ . Therefore, N �n ¬A⇒ C.

(Comp¬) Suppose N �n ¬A ⇒ B ∧ ¬A ⇒ C. There is a g ∈ G s.t. g ∈ A↓IR̊ , g 6∈ B↓IR̊

and g 6∈ C↓IR̊ i.e., g ∈ A↓IR̊ and g 6∈ B ∪ C↓IR̊ . Therefore, N �n ¬A⇒ B ∪ C.
(Incl) Suppose N �n A ⇒ B ∧ ¬A ⇒ C. There is a g ∈ G s.t. g ∈ A↓IR̊ , g ∈ B↓IR̊ and

g 6∈ C↓IR̊ Therefore, N �n ¬B⇒ C.
(Abs) Suppose N �n O̊ ⇒ A ∧ O̊ ⇒ B∧ ∼ ˚(G \O) ⇒ A. By the definition of O̊, for

any o ∈ O, N �n o̊ ⇒ A ∧ o̊ ⇒ B and for any o′ ∈ G \O, N �n ¬o̊′ ⇒ A. Therefore,
A↓IR̊ = O and O ⊆ B↓IR̊ , i.e., A↓IR̊ ⊆ B↓IR̊ . Thus, N �n A⇒ B.

(Loop) Since R is reflexive, N �n g̊⇒ g.
(Loop¬) Consider g, g′ ∈ G s.t. g′ 6= g. According to (Loop), for any o ∈ G, o̊ ⇒ o, i.e.,

o ∈ o̊↓IR̊ . Therefore, g ∈ g̊↓IR̊ . Since g̊′
↓IR̊ = {g′}, g 6∈ g̊′

↓IR̊ , i.e., N �n ¬g⇒ g̊′.
(Symm) Since R is symmetric, N �n g̊⇒ g′ ↔ g̊′ ⇒ g.
(A-gen) Suppose N �n ¬AXg̊ ⇒ A. N �n EX¬g̊ ⇒ A. There is an n-immediate

successor of N, N′ = (G, M, I, R′), s.t. N′ �n ¬g̊ ⇒ A. Therefore, g 6∈ A↓IR̊′ . Since
R ⊆ R′, i.e., A↓IR̊ ⊆ A↓IR̊′ , g 6∈ A↓IR̊ . Thus, N �n ¬g̊⇒ A.

(A-gen¬) Suppose N �n ¬g̊⇒ a. Since for any n-immediate successor of N, I keeps the
same. Therefore, N �n AX¬g̊⇒ a.

(E-gen) Suppose N �n g̊ ⇒ En ∧ g̊′ ⇒ En. By the definition of satisfication, {g, g′} is
n-similar on N. If (g, g′) ∈ R, N �n EXg̊⇒ g′ by (A-gen). If (g, g′) 6∈ R, there is an n-
immediate successor N′ = (G, M, I, R′) of N satisfying (g, g′) ∈ R′, i.e., N′ �n g̊⇒ g′

and N �n EXg̊⇒ g′.
(E-gen¬) If δ describes N and N �n δ → ¬g̊ ⇒ g′ ∧ σ(g,g′), then according to the

lemma 1, N �n ¬g̊ ⇒ g′ ∧ σ(g,g′). Therefore, {g, g′} is not n-similar on N, and
(g, g′) 6∈ R, i.e., for any n-immediate successor N′ = (G, M, I, R′) of N, (g, g′) 6∈ R′.
Thus, N �n ¬EXg̊⇒ g′, N �n δ→ ¬EXg̊⇒ g′.

(Exp) If δ describes N and N �n δ → ¬g̊ ⇒ g′ ∧ EXg̊ ⇒ g′, then according to the
lemma 1, N �n ¬g̊⇒ g′ ∧ EXg̊⇒ g′. Thus, {g, g′} is n-similar on N, (g, g′) 6∈ R, and
there is an n-immediate successor of N, N′ = (G, M, I, R′) satisfying that (g, g′) ∈ R′.
For this n-immediate successor N′, obviously N′ �n g̊⇒ g′∧ ∼ (δ+ ∧ g̊⇒ g′ ∧ g̊′ ⇒
g). Therefore, N �n EX(g̊⇒ g′∧ ∼ (δ+ ∧ g̊⇒ g′ ∧ g̊′ ⇒ g)), i.e., N �n δ→ EX(g̊⇒
g′∧ ∼ (δ+ ∧ g̊⇒ g′ ∧ g̊′ ⇒ g)).

(HF) Since the n-immediate successor of a HetNet that is homogenized at n is itself, the
homophily axiom is valid.

(Hom) Suppose N �n δ → Hom. If δ describes N, N is homogenized at n. By the
definition, N �n AXδ. Therefore, N �n (δ → Hom) → (δ → AXδ). Suppose
N �n δ → AXδ. If δ describes N, N �n AXδ, i.e., N �n Hom. Therefore, N �n (δ →
Hom)↔ (δ→ AXδ).

(Hom¬) Suppose N �n δ→ ¬Hom. If δ describes N, there is a HetNet N′ s.t. N  n N′

and N′ 6= N. Therefore, N′ �n δ and hence N �n (δ → ¬Hom) → (δ → ¬AXδ).
Suppose N �n δ → ¬AXδ. If δ describes N, N �n ¬AXδ, i.e., N �n EX¬δ. There
is a HetNet N′ s.t. N  n N′ and N′ 6= N. Therefore, N �n ¬Hom and hence
N �n (δ→ ¬Hom)↔ (δ→ ¬AXδ).

(Tm1) Suppose N �n δ → Hom and δ describes N. N is homogenized at n. If N �n ψ,
the conclusion holds directly. If not, i.e., N �n ¬ψ, by (Hom), N �n AX¬ψ, i.e.,
N �n ¬EXψ. According to (A-ind), N �n A(φUψ) → ψ. Therefore, N �n δ →
(A(φUψ)→ ψ).

(Tm2) By (Tm1) and (E-ind), the conclusion holds directly.

Appendix B. Algorithms of Model Checking

In this appendix, we show model checking algorithms for AXφ and A(φUψ).
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Algorithm A1: Model Checking Algorithm for AXφ

N = {N′ | N  n N′};
for N′ ∈ N do

if N′ 6�n φ then
return FALSE

end
end
return TRUE

Algorithm A2: Model Checking Algorithm for A(φUψ)

if N �n ψ then
return TRUE

else if N 6�n φ then
return FALSE

else if N �n φ then
if N �n Hom then

return FALSE
else
N = {N′ | N  n N′};
for N′ ∈ N do

if N′ 6�n A(φUψ) then
return FALSE

end
end
return TRUE

end
end
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