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Abstract: This paper focuses on a joint model to analyze longitudinal proportional and survival data.
We utilize a logit transformation on the longitudinal proportional data and employ a partially linear
mixed-effect model. With this model, we estimate the unknown function of time using the B-splines
technique. Additionally, we introduce a centered Dirichlet process mixture model (CDPMM) to
capture the random effects, allowing for a flexible distribution. The survival data are assumed using
a Cox proportional hazard model, and the sharing random effects joint model is developed for
the two types of data. We develop a Bayesian Lasso (BLasso) approach that combines the Gibbs
sampler and the Metropolis–Hastings algorithm. The proposed method allows for the estimation
of unknown parameters and the selection of significant covariates simultaneously. We evaluate the
performance of our proposed methods through simulation studies and also provide an illustration of
our methodologies using an example from the MA.5 research experiment.

Keywords: longitudinal proportional data; survival data; joint model; Bayesian variable selection;
B-splines; CDPMM method
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1. Introduction

The joint analysis of longitudinal and survival data has gained widespread application
in clinical studies on cancer and HIV/AIDS, where the primary endpoints typically involve
time-to-event outcomes such as disease-free and overall survival. Notably, following
the seminal work by Faucett and Thomas [1] and Wulfsohn and Tsiatis [2], the standard
joint model has been extensively investigated. Researchers have extensively discussed
the advantages of joint models [3–8]. However, certain patients with a compromised
quality of life (QOL) may opt to discontinue their participation in the clinical trials due
to disease recurrence, or they may experience mortality. In this case, the absence of QOL
measures resulting from the withdrawal of patients provides informative insights into the
trade-off between intensive treatment and poor QOL. To establish strong evidence, we
conducted joint modeling of longitudinal life measures and survival data to investigate
their relationship. For the longitudinal quality of life and survival data, Henderson et al. [9]
and Zeng and Cai [10] considered the use of shared-normal-distribution random effects to
jointly analyze the relationship between longitudinal QOL and survival time. Tang et al. [11]
considered a novel semiparametric joint model for multivariate longitudinal and survival
data to analyze data from the International Breast Cancer Study. Longitudinal quality-of-
life measurement data can be linearly converted into longitudinal proportional data whose
value range is in the unit interval (0, 1) [12]. Song and Tan [12] emphasized that disregarding
the constraint of having values between 0 and 1 could lead to erroneous interpretations.
For the longitudinal component, there are two methods to deal with it. The first method
applied the classic linear mixed model to the longitudinal proportional data after logit
transformation [13], and the second method directly used the simplex distribution to model
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the longitudinal proportional data [14,15]. The models established using the two methods
both used the EM algorithm and the Laplace approximation to estimate the unknown
parameters. In order to be more flexible and practical, this paper will use a partial linear
mixed-effect model for the logit transformed longitudinal proportional data and use the
B-splines method to model the unknown function in the model. Meanwhile, to enhance the
feasibility of our proposed model, we use the CDPMM method to model random effects.

In addition, variable selection in the joint model is also considered. In traditional
regression models, variable selection methods include forward selection, backward elimina-
tion, stepwise selection, and the use of information criteria such as the Akaike information
criterion (AIC). However, these approaches can be computationally expensive and unstable
when dealing with complex models that have a large number of covariates. To address this
issue, penalized likelihood methods have been proposed, with one popular method being
the Lasso of Tibshirani [16]. The Lasso estimates linear regression coefficients by apply-
ing a constraint on the L1 norm of the least squares. Tibshirani [16] proposed that Lasso
estimates can be interpreted as posterior norm estimates when the regression parameters
have independent and identically Laplacian priors. Park and Casella [17] extended this
idea under the Bayesian framework and introduced the Bayesian Lasso (BLasso) variable
selection method. They used a double exponential prior for the regression coefficients
and a gamma distribution for the shrinkage parameter. The BLasso method has been
successfully applied to various models, including linear regression [18], semiparametric
structural equation models [19], and joint models of longitudinal and survival data [11].
Building on this work, our paper extends the BLasso variable selection method to the joint
model of longitudinal proportional data and survival data. We propose an approach called
BLasso, which aims to estimate unknown parameters while also identifying the significant
effects of crucial covariates.

The rest of this paper is organized as follows. In Section 2, the joint model of longitu-
dinal proportional and survival data is introduced. In Section 3, the Bayesian estimations
of the joint model are proposed. In Section 4, three numerical simulations are presented to
evaluate the performance of the proposed methods. In Section 5, we utilize the proposed ap-
proach to analyze the MA.5 research experiment’s data. We then provide some concluding
remarks in Section 6. For more technical information, please refer to Appendix A.

2. Model and Notation

Consider a dataset consisting of n individuals. Let yij be a longitudinal propor-
tional measurement for the i-th individual (i = 1, 2, . . . , n) at observation time point tij for
j = 1, 2, . . . , ni, and yij ∈ (0, 1), where ni represents the number of observations of individ-

ual i. We assume that y∗ij is the logit transformation of yij and y∗ij = logit
(
yij
)
= log

(
1−yij

yij

)
.

Furthermore, T∗i and Ci are the true survival time and censoring time, respectively. Addi-
tionally, we have the true survival time T∗i and the censoring time Ci for each individual i.
Let Ti = min(T∗i , Ci) denote the corresponding observed event time. Let δi = 1(T∗i ≤ Ci)
denote the failure indicator, where 1(·) is an indicator function.

Wedenote y∗ =
{

y∗1 , y∗2 , . . . , y∗n
}

, where y∗i =
{

y∗i1, y∗i2, . . . , y∗ini

}
. Let T = {T1, T2, . . . , Tn}

and ∆ = {δ1, δ2, . . . , δn}. The random effects b = {b1, b2, . . . , bn} are time-independent
and underlie both the longitudinal and survival processes for the i-th individual. Given the
random effects bi, we assume that y∗ij follows a partially linear mixed-effect model.

y∗ij|bi = X>ij β + g(tij) + Z>ij bi + εij, (1)

where Xij and Zij represent the time-independent design vectors of fixed and random effects
associated with y∗ij, respectively; β is a p1 × 1 vector of fixed effects’ regression parameters;
bi is a q × 1 random effects vector; g(t) is a twice-continuous differentiable unknown
function; and εij is a white noise process with variance σ2. Additionally, we assume that
εij’s are independent of bi. To facilitate the feasibility of our proposed model, instead of
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the traditional normality assumption, which may be violated in some applications [20], we
specify the random effects using a Dirichlet process (DP) mixture of normals.

For event time Ti, given random effects bi, we assume that Ti follows the hazard model:

λi(t|bi) = λ0(t) exp(W>
i γ + φ>bi), (2)

where the known fixed effects’ design matrix Wi connects the unknown p2 × 1 parameter
vector γ to λi(t|bi). Additionally, the unknown q× 1 parameter vector φ links bi to λi(t|bi).
Lastly, the basic hazard function λ0(t) remains unknown.

From the above discussion, it is suggested to link models (1) and (2) through shared
random effects, called a shared random effects joint model (JMSRE). The parameter φ in
model JMSRE reflects the correlation between transformed longitudinal proportional data
and survival data, given random effects. When φ = 0q×1, it means that the longitudinal
index is not necessarily related to the event time; i.e., longitudinal proportional data and
survival data can be modeled separately. So in this case, joint modeling is not necessary,
and longitudinal indicators can be ignored for modeling survival data.

Further, to make Bayesian inference on β based on model (1), we approximate g(t)
through a B-splines method :

g(t) ≈ B1(t)ϕ1 + B2(t)ϕ2 + . . . + BL(t)ϕL = B>(t)ϕ,

where L = d + K + 1, d is the degree of B-splines, K is the number of knots,
ϕ = (ϕ1, ϕ2, . . . , ϕL)

>is an L × 1 unknown coefficient vector, and B(t) = ((B1(t), B2(t),
. . . , BL(t)))>.

We denote θy =
{

β,ϕ, σ2} as the unknown parameters associated with model (1)
and θT = {γ, φ} as the unknown parameters associated with model (2). Thus, given
(θy, θT , b), the joint likelihood function of (y∗, T , ∆) can be written as

p(y∗, T , ∆|θy, θT , b) =
n

∏
i=1

p
(
y∗i |bi; θy

)
p(T , ∆|bi; θT), (3)

where

p
(
y∗i |bi; θy

)
=

ni

∏
j=1

1√
2πσ2

exp

−
(

y∗ij − X>ij β− B>(tij)ϕ− Z>ij bi

)2

2σ2

,

p(T , ∆|bi; θT) =
n

∏
i=1

[
exp(W>

i γ + φ>bi)

∑j∈Ri
exp(W>

j γ + φ>bj)

]δi

, Ri =
{

j : Tj ≥ Ti
}

.

3. Bayesian Estimation of Joint Model
3.1. Prior Specification

In order to develop Bayesian inference on the considered models, it is necessary
to specify the prior distributions for σ2,ϕ, β, γ and φ. For conjugation, we consider the
following priors for σ2,ϕ:

1
σ2 ∼ Γ(a0, b0), ϕ∼ NL

(
0, H0

ϕ

)
, (4)

where a0, b0, and H0
ϕ are pre-given hyperparameters. Γ(a0, b0) denotes the Gamma distri-

bution with parameter a0 and the shape parameter b0. We can set the prior distribution to a
non-informative prior distribution, which just needs to have a large variance. Thus, we
consider a0 = 1, b0 = 1 and H0

ϕ = 100 I4 in the paper.
As stated by Tang et al. [21], the random effects bi can be modeled using a Dirichlet

process (DP) mixture of normals. Specifically, we assume that bi values are independently
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and identically distributed according to a mixture distribution, where the mixture com-
ponents are drawn from a DP with a base distribution P that has unknown parameters
(µg, Ωg). To address the challenges of performing Bayesian estimation on the regression
parameters β and the dispersion parameter σ2 in the model (1), one common approach
is to use a Dirichlet process (DP) prior to approximate the unknown form of P . The DP
prior is specified as P ∼ DP(τF0), where F0 is a base distribution that serves as a starting
point for constructing the nonparametric distribution, and τ is a weight that represents
the researcher’s certainty of F0 being the distribution of P . Sethuraman [22] demonstrated
that the DP prior DP(τF0) can be represented using a stick-breaking prior. However, this
representation has some limitations. It leads to a non-zero mean of random effects [23],
which may not be desirable in certain cases. Additionally, it results in a discrete probability
distribution for random effects [20], which may not accurately capture the underlying
continuous distribution. The discrete Dirichlet processes proposed by Ishwaran and Zare-
pour [24] and Yang et al. [23] are commonly known as discrete Dirichlet processes. However,
these methods may not be suitable for continuous underlying densities of random effects.
Furthermore, violating the assumption of a zero mean on the random effects can lead
to non-identifiability in the random effects model. Additionally, the computational com-
plexity of the discrete DP methods with a stick-breaking prior for random effects can be
high for complex models. To tackle the mentioned challenges, Tang et al. [21] proposed a
truncated-approximate centered Dirichlet process mixture model (CDPMM).

In order to address these challenges, we also adopt the CDPMM approach [21] in the
model (1). This method allows us to specify the prior distribution of bi as follows:

bi
i.i.d.∼

G

∑
g=1

πgNq(µg, Ωg) with µg = µ∗g −
G

∑
g=1

πgµ∗g and (µ∗g, Ωg)
i.i.d.∼ F0,

where 1 ≤ G < ∞, and πg is a random probability weight chosen to be independent of
(µ∗g, Ωg) such that 0 ≤ πg ≤ 1 and ∑∞

g=1 πg = 1. To ease the computational intensity, we
consider G = 25, and πg is given by the following stick-breaking procedure, as proposed
by Ishwaran and Zarepour (2000) [24]:

π1 = ϑ1 and πg = ϑg

g−1

∏
ι=1

(1− ϑι) for g = 2, . . . , G, (5)

Let ϑg be independent and identically distributed (i.i.d.) random variables following
a Beta distribution with parameters (1, τ) for g = 1, 2, . . . , G − 1, and let ϑG = 1. This
implies that the sum of all πg values is equal to 1. The prior distribution for the unknown
parameter τ is a Gamma distribution with hyperparameters a1 and a2 [25]. Here, we take
the hyperparameters a1 and a2 to be 25 and 5, respectively.

An efficient and flexible method for solving the DP prior specified above is to represent
bi in terms of a latent variable Li ∈ {1, 2, . . . , G}, which records each bi’s cluster member-
ship and conveys its parametric value to the distribution of bi. Let L = {L1, L2, . . . , Ln},
π = {π1, π2, . . . , πG}, µ∗ = {µ∗1 , µ∗2 , . . . , µ∗G} and Ω = {Ω1, Ω2, . . . , ΩG}, where Ωg =
diag(ωg1, ωg2, . . . , ωgq). These variables can be reformulated as follows:

Li|π
i.i.d∼

G

∑
g=1

πgδg(·) and (π, µ∗, Ω) ∼ f1(π) f2(µ
∗) f3(Ω),

where δg(·) denotes a discrete probability measure concentrated at g, f1(π) is specified
by the stick-breaking prior as given in Equation (5), f2(µ

∗) = ∏G
g=1 f2(µ

∗
g), and f3(Ω) =

∏G
g=1 ∏

q
j=1 f3(ωgj), where f1(π), f2(µ

∗
g), and f3(ωgj), respectively, represent the probability
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density functions of the random variables π, µ∗g, and ωgj . Here, µ∗g and ωgj can be specified
by

µ∗g|ξ, Ψ
i.i.d∼ Nq(ξ, Ψ), ξ|ξ0, Ψ0 ∼ Nq(ξ

0, Ψ0), ψ−1
j |c1, c2 ∼ Γ(c1, c2) for j = 1, 2, . . . , q, (6)

ω−1
gj
|ωa

j , vj ∼ Γ(ωa
j , vj) and vj|va

j , vb
j ∼ Γ(va

j , vb
j ),

respectively. Let Ψ = diag(ψ1, ψ2, . . . , ψq), Γ(c1, c2) denote the Gamma distribution with
parameters c1 and c2, and ξ0, Ψ0, c1, c2, ωa

j , va
j and vb

j are prespecified hyperparameters [20].

The following values are used in the paper: ξ0 = 0q×1, Ψ0 = Iq, c1 = 11, c2 = 2.5, ωa
j = 3,

va
j = n, and vb

j = 10. Given the values of Li, µ∗, and Ω, we can sample bi from Nq(µLi
, ΩLi )

with µLi
= µ∗Li

− ΣG
g=1µ∗g.

Here, we will mainly introduce the variable selection principle of the
BLasso method [17,19] for the proposed joint model JMSRE. We need to identify not only
the important variables in models (1) and (2) but also whether the parameter φ is 0q×1.
Our proposed BLasso method accomplishes this. In general, the prior distribution of the
regression parameters is set to a multivariate normal distribution. Based on the concept of
Bayesian Lasso inference [17], we adopt hierarchical priors for β, γ, and φ as follows:

β|Hβ ∼ Np1(0, Hβ), with Hβ = diag(h2
β1

, h2
β2

, . . . , h2
βp1

),

f (h2
β1

, h2
β2

, . . . ,h2
βp1

) =
p1

∏
j=1

ϑ2
β j

2
exp

−ϑ2
β j

2
h2

β j

,
(7)

γ|Hγ ∼ Np2(0, Hγ), with Hγ = diag(h2
γ1

, h2
γ2

, . . . , h2
γp2

),

f (h2
γ1

, h2
γ2

, . . . ,h2
γp2

) =
p2

∏
j=1

ϑ2
γj

2
exp

(
−

ϑ2
γj

2
h2

γj

)
,

(8)

φ|Hφ ∼ Nq(0, Hφ), with Hφ = diag(h2
φ1

, h2
φ2

, . . . , h2
φq),

f (h2
φ1

, h2
φ2

, . . . ,h2
φq) =

q

∏
j=1

ϑ2
φj

2
exp

(
−

ϑ2
φj

2
h2

φj

)
,

(9)

where ϑβ =
{

ϑβ1 , ϑβ2 , . . . , ϑβp1

}
, ϑγ =

{
ϑγ1 , ϑγ2 , . . . , ϑγp2

}
, and ϑφ =

{
ϑφ1 , ϑφ2 , . . . , ϑφq

}
are the regularization parameters that control the tail decay. In particular, to better control
the effect of tail decay, this paper sets different regularization parameters for different
components of the same parameter. Inspired by Park and Casella [17], we further consider
the following super-priorities for these tuning parameters:

ϑ2
β j
∼ Γ

(
aϑβ

, bϑβ

)
, j = 1, 2, . . . , p1, (10)

ϑ2
γj
∼ Γ

(
aϑγ

, bϑγ

)
, j = 1, 2, . . . , p2, (11)

ϑ2
φj
∼ Γ

(
aϑφ

, bϑφ

)
, j = 1, 2, . . . , q. (12)

3.2. Bayesian Analysis of Joint Model

To obtain Bayesian estimates of the unknown parameters β,ϕ, σ2, b, γ, and φ, we use
a hybrid algorithm that combines the block Gibbs sampler and the Metropolis–Hastings
algorithm. This algorithm iteratively draws samples for these parameters.

(A) Conditional distribution of β.
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According to Equations (3) and (7), the conditional posterior distribution p(β|ϕ, σ2, b, y∗) is
given by

p(β|ϕ, σ2, b, y∗) ∝ exp

{
−1

2

[
n

∑
i=1

ni

∑
j=1

1
σ2

(
y∗ij − X>ij β− B>(tij)ϕ− Z>ij bi

)2
+ β>H−1

β β

]}
,

which yields

β|ϕ, σ2, b, y∗ ∼ Np1

(
Aβ,Vβ

)
, (13)

where V−1
β =

n
∑

i=1

ni
∑

j=1

1
σ2 X ijX>ij + H−1

β , Aβ = Vβ

(
n
∑

i=1

ni
∑

j=1

1
σ2 Xij

(
y∗ij − Z>ij bi − B>(tij)ϕ

))
.

(B) Conditional distribution of ϕ.
According to Equation (3) and the prior of ϕ in Equation (4), the conditional distribu-

tion p(ϕ|β, σ2, b, y∗) is given by

p(ϕ|β, σ2, b, y∗) ∝ exp

{
−1

2

[
n

∑
i=1

ni

∑
j=1

1
σ2

(
y∗ij − X>ij β− B>(tij)ϕ− Z>ij bi

)2
+ϕ>(H0

ϕ)
−1ϕ

]}
,

which yields

ϕ|β, σ2, b, y∗ ∼ NL
(
Aϕ,Vϕ

)
, (14)

whereV−1
ϕ =

n
∑

i=1

ni
∑
j=1

1
σ2 B(tij)B(tij)

>+(H0
ϕ)
−1,Aϕ = Vϕ

(
n
∑

i=1

ni
∑
j=1

1
σ2 B(tij)

(
y∗ij−X>ij β−Z>ij bi

))
.

(C) Conditional distribution of 1
σ2 .

According to Equation (3) and the prior of σ2 in Equation (4), the conditional distribu-
tion p( 1

σ2 |β,ϕ, b, y∗) is given by

p
(

1
σ2 |β,ϕ, b, y∗

)
∝ exp

{
− 1

σ2

(
1
2

n

∑
i=1

ni

∑
j=1

(
y∗ij − X>ij β− B>(tij)ϕ− Z>ij bi

)2
+ b0

)}

×
(

1
σ2

) 1
2

n
∑

i=1
ni+a0−1

,

which yields

1
σ2 |β,ϕ, b, y∗ ∼ Γ

(
1
2

n

∑
i=1

ni + a0,
1
2

(
y∗ij − X>ij β− B>(tij)ϕ− Z>ij bi

)2
+ b0

)
. (15)

(D) Conditional distribution of bi.
For reasons of space, the sampling of bi, i = 1, 2, . . . , n follows the steps in Appendix A,

which can also be seen in Tang et al. [21].
(E) Conditional distribution of γ.
It follows from Equation (3) and (8) that the conditional distribution p(γ|b, φ, T , ∆) is

proportional to

n

∏
i=1

[
exp(W>

i γ + φ>bi)

∑j∈Ri
exp(W>

j γ + φ>bj)

]δi

exp
{
−1

2
γT H−1

γ γ

}
, (16)

which is not a familiar distribution. Therefore, the well-known Metropolis–Hastings (MH)
algorithm is adopted to simulate observations from the conditional distribution given above,
which is implemented as follows. Given the current value γ(m), new candidates γ are gen-
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erated from Np2(γ
(m), σ2

γΣγ), where Σγ =
(
−∂2(ln(p(γ|b, φ, T , ∆))/∂γ∂γ>|γ=γ(m)

)−1
.

The new γ(m) is accepted with probability

min
{

1,
p(γ|b, φ, T , ∆)

p(γ(m)|b, φ, T , ∆)

}
,

where

Σγ =

 n

∑
i=1

∑j∈Ri
exp(·)WjW>

j ∑j∈Ri
exp(·) + ∑j∈Ri

exp(·)Wj ∑j∈Ri
exp(·)W>

j(
∑j∈Ri

exp(·)
)2 + H−1

γ


−1

. (17)

with exp(·) = exp(W>
j γ(m) + φ>bj). The variance coefficient σ2

γ can be adjusted to achieve
an average acceptance rate of approximately 0.25 or higher.

(F) Conditional distribution of φ.
From Equations (3) and (9), the conditional distribution p(φ|γ, b, T, ∆) is proportional to

n

∏
i=1

[
exp(W>

i γ + φ>bi)

∑j∈Ri
exp(W>

j γ + φ>bj)

]δi

exp
{
−1

2
φT H−1

φ φ

}
, (18)

which is not a familiar distribution. Similar to above (E), given the current value φ(m), new
candidates φ are generated from Nq(φ(m), σ2

φΣφ), where Σφ = (−∂2(ln(p(φ|γ, b, T, ∆))/

∂φ∂φ>|
φ=φ(m))−1. The new φ(m) is accepted with probability

min

{
1,

p(φ|γ, b, T , ∆)

p(φ(m)|γ, b, T , ∆)

}
,

where

Σφ =

 n

∑
i=1

∑j∈Ri
exp(·)bjb>j ∑j∈Ri

exp(·) + ∑j∈Ri
exp(·)bj ∑j∈Ri

exp(·)b>j(
∑j∈Ri

exp(·)
)2 + H−1

φ


−1

, (19)

and exp(·) = exp(W>
j γ + φ(m)>bj). The variance coefficient σ2

φ can be adjusted to achieve
an average acceptance rate of approximately 0.25 or higher.

Using the above iterative process, we can obtain a series of sample {(β(m),ϕ(m), σ2(m),
b(m)

i , γ(m), φ(m)) : m = 1, 2, . . . , M}. Then, Bayesian estimates of β, ϕ, σ2, bi, γ and φ can be
obtained using

β̂ =
1
M

M

∑
m=1

β(m), ϕ̂ =
1
M

M

∑
m=1

ϕ(m), σ̂2 =
1
M

M

∑
m=1

σ2(m)
,

b̂i =
1
M

M

∑
m=1

b(m)
i γ̂ =

1
M

M

∑
m=1

γ(m), φ̂ =
1
M

M

∑
m=1

φ(m).

Similarly, the consistent estimates of the posterior covariance matrices of
var(β|y∗, X, Z), var(ϕ|y∗, X, Z), var(σ2|y∗, X, Z), var(γ|W, T, ∆), and var(φ|y∗, X, Z, W, T, ∆)
can be obtained via the sample covariance matrices. For example,

ˆvar(β|y∗, X, Z) =
1

M− 1

M

∑
m=1

(β(m) − β̂)(β(m) − β̂)>.
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Therefore, the variance of the corresponding parameter can be obtained by considering
the diagonal elements of the sample covariance matrix of the random sample sequence.

4. Simulation Studies

In this section, we perform three simulation studies to examine the finite performance
of the previously mentioned methods.

The model used in these studies was the one defined in models (1) and (2), involving
a total of 200 individuals. The specific details of the model are as follows:

y∗ij|bi = X1ijβ1 + X2ijβ2 + X3ijβ3 + X4ijβ4 + X5ijβ5 + X6ijβ6 + g(tij) + bi + εij, (20)

λi(t|bi) = λ0(t) exp (W1iγ1 + W2iγ2 + W3iγ3 + W4iγ4 + φbi) . (21)

In model (1), Zij can be either one-dimensional or multi-dimensional. However,
in the following simulation study, Zij was set to be one-dimensional. In order to perform
variable selection on Xij and Wij, Xij and Wij were set to be multi-dimensional in the
simulation study. The data were generated as follows: observation time tij was randomly
generated between 0 and 3. The covariates X1ij and X6ij followed a Bernoulli distribu-
tion with success probabilities of 0.5 and 0.3, respectively. The covariates X2ij, X3ij, X4ij,
and X5ij were generated from a multivariate normal distribution N4(0, Σ) with mean vec-
tor 0 and covariance matrix Σ. The covariance matrix Σ is a symmetric positive definite
matrix with diagonal elements of 1 and all other elements of 0.5. The random error εij

was generated from a normal distribution with mean 0 and variance σ2 = 0.62. We de-
fine W i = (Wi1, Wi2, Wi3, Wi4)

> = (X3i1, X4i1, X5i1, X6i1)
>. The baseline hazard function

λ0(t) = 0.7 and φ = 0.6. The censoring time Ci was generated from the uniform distribu-
tion U[0, 3], and T∗i was generated from the exponential distribution with mean 1/λi(t|bi),
Ti = min(T∗i , Ci). Our main objective is to utilize the proposed approaches to identify
insignificant covariates and estimate non-zero coefficients. Bayesian results were obtained
from 200 replications.

To demonstrate the accuracy and flexibility of our proposed method, we conducted
three simulation studies. These simulations aimed to estimate parameters of interest,
identify unimportant variables, and capture the features of the unknown function g(t)
and random effects bi. The true values of unknown parameters β and γ were set to be
the same in Simulation I and Simulation II, and the parameter’s true values included
0. The true values of unknown parameters β and γ in Simulation III are all non-zero.
The settings of the unknown function g(t) and random effects bi are different between the
three simulation studies. The unknown function g(t) setting includes both nonlinear and
linear. The random effect bi was set to follow a mixed normal distribution with unimodal,
bimodal, and trimodal distributions, respectively. By conducting these simulation studies,
we can showcase the effectiveness and versatility of our method.

Simulation I

β = (β1, . . . , β6)
> = (1, 0, 0,−0.5, 0.5,−1)>, γ = (γ1, . . . , γ4)

> = (0, 1,−0.5, 0)>,

g(t) = sin
(

3
4

πt
)

, bi
i.i.d∼ 0.6N(−0.8, 0.12) + 0.4N(1.2, 0.52),

Simulation II

β = (β1, . . . , β6)
> = (1, 0, 0,−0.5, 0.5,−1)>, γ = (γ1, . . . , γ4)

> = (0, 1,−0.5, 0)>,

g(t) = t, bi
i.i.d∼ 0.4N(0, 0.32) + 0.3N(−1.5, 0.12) + 0.3N(1.5, 0.12),
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Simulation III

β = (β1, . . . , β6)
> = (1, 0.5,−0.5,−0.5, 0.5,−1)>, γ = (γ1, . . . , γ4)

> = (−0.5, 1,−0.5, 1)>,

g(t) = t2, bi
i.i.d∼ N(0, 0.82).

We utilized the proposed semiparametric Bayesian procedure to simultaneously es-
timate unknown parameters and identify significant covariates in each of the three sim-
ulation studies. The mean censoring rates for the survival times in these studies were
44%, 45%, and 37%. The prior hyperparameters were set as follows: aϑβ

= aϑγ
= aϑφ

= 1,
bϑγ

= bϑβ
= bϑφ

= 0.1. These hyperparameters correspond to the hyperpriors for the

adjustment coefficients in Equations (10)–(12). We set a0 = 1, b0 = 1, and H0
ϕ = 100I4,

which correspond to the prior parameters of σ2 and ϕ. We set the degree of B-splines d = 3,
the number of knots K = 4, and G = 25.

To assess the convergence of the proposed algorithm, we computed the estimated
potential scale reduction (EPSR) values for the parameters. Additionally, we also need to
test the convergence of the unknown function fitted using the B-splines method. Figure 1
indicates that the EPSR values remained consistently below 1.2 after around 3000 iterations
in all three simulation studies. Consequently, we collected 3000 observations (M = 3000) to
calculate the Bayesian estimates of the parameters after 3000 iterations in order to produce
Bayesian results for each of the 200 replications. For comparison, we also applied Gaussian
priors as the prior distribution of random effects. The purpose of these simulations is to
compare the semi-parametric approach based on the CDPMM prior with the parametric
approach based on the Gaussian prior from a Bayesian perspective. Results obtained
from three simulation studies were reported in Tables 1–3, which include five measures:
“Median”, “Bias”, “SD”, “RMS”, and “F0”. “Median” represents the median of the estimates
from 200 replications. “Bias” indicates the difference between the true value and the
mean of the estimates from 200 replications. “SD” indicates the standard deviation of the
estimates from 200 replications. “RMS” is the root mean square between the estimates
from 200 replications and their true values. “F0” indicates the proportion of parameters
identified as zero in 200 replications, considering a parameter to be identified as zero if its
95% confidence interval contains zero.

Iteration
0 1000 2000 3000 4000 5000 6000

E
P

S
R

1

1.2

2

3

Iteration
0 1000 2000 3000 4000 5000 6000

E
P

S
R

1

1.2

2

3

Iteration
0 1000 2000 3000 4000 5000 6000

E
P

S
R

1

1.2

2

3

Figure 1. EPSR values of all parameters against iteration numbers for a randomly selected replication
in Simulation I (left panel), Simulation II (middle panel), and Simulation III (right panel). The colored
lines represent the EPSR values for all parameters, and the red dashed lines determine the number of
iterations when all parameters converge.
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Table 1. Bayesian estimates of parameters based on the CDPMM prior and Gaussian prior in
Simulation I.

Pra. True
CDPMM Prior Gaussian Prior

Median Bias SD RMS F0 (%) Median Bias Median RMS F0 (%)

β1 1.00 0.993 −0.005 0.058 0.058 0.0 0.980 −0.016 0.124 0.125 0.0
β2 0.00 0.001 0.002 0.036 0.036 99.0 −0.006 −0.010 0.086 0.087 95.5
β3 0.00 −0.005 −0.002 0.033 0.033 99.0 −0.009 −0.005 0.090 0.090 95.0
β4 −0.50 −0.493 0.005 0.041 0.041 0.0 −0.477 0.009 0.108 0.109 0.5
β5 0.50 0.499 −0.001 0.037 0.037 0.0 0.509 0.008 0.104 0.104 0.5
β6 −1.00 −0.985 0.013 0.064 0.066 0.0 −0.965 0.034 0.161 0.164 0.0
γ1 0.00 0.010 0.010 0.119 0.120 95.5 −0.026 −0.028 0.122 0.125 95.5
γ2 1.00 1.007 0.001 0.148 0.148 0.0 0.988 0.004 0.157 0.156 0.0
γ3 −0.50 −0.478 0.018 0.137 0.138 5.0 −0.479 0.030 0.134 0.137 6.0
γ4 0.00 0.010 −0.002 0.198 0.197 97.0 0.026 0.031 0.183 0.185 97.5
φ 0.60 0.610 0.006 0.106 0.106 0.0 0.598 0.032 0.121 0.125 0.0
σ2 0.36 0.357 −0.002 0.018 0.018 – 0.363 0.004 0.021 0.022 –

Table 2. Bayesian estimates of parameters based on the CDPMM prior and Gaussian prior in
Simulation II.

Pra. True
CDPMM Prior Gaussian Prior

Median Bias SD RMS F0 (%) Median Bias Median RMS F0 (%)

β1 1.00 0.932 −0.076 0.091 0.118 0.0 0.893 −0.113 0.142 0.182 0.0
β2 0.00 0.003 0.002 0.047 0.047 98.5 0.000 0.003 0.098 0.098 93.0
β3 0.00 0.004 0.000 0.049 0.049 99.0 0.000 0.003 0.109 0.109 94.5
β4 −0.50 −0.494 0.009 0.057 0.058 0.0 −0.484 0.012 0.117 0.117 0.5
β5 0.50 0.483 −0.013 0.056 0.058 0.0 0.487 −0.018 0.112 0.113 1.0
β6 −1.00 −1.014 −0.007 0.101 0.101 0.0 −1.001 0.012 0.191 0.191 0.0
γ1 0.00 0.002 0.002 0.106 0.106 98.5 −0.002 0.005 0.131 0.131 94.5
γ2 1.00 0.964 −0.027 0.144 0.146 0.0 0.999 0.003 0.142 0.142 0.0
γ3 −0.50 −0.457 0.031 0.128 0.131 3.5 −0.501 −0.001 0.144 0.143 6.0
γ4 0.00 −0.006 −0.014 0.174 0.174 98.0 0.002 0.008 0.226 0.225 96.5
φ 0.60 0.571 −0.028 0.086 0.091 0.0 0.596 0.005 0.101 0.100 0.0
σ2 0.36 0.361 0.000 0.020 0.020 – 0.365 0.005 0.021 0.021 –

Table 3. Bayesian estimates of parameters based on the CDPMM prior and Gaussian prior in
Simulation III.

Pra. True
CDPMM Prior Gaussian Prior

Median Bias SD RMS F0 (%) Median Bias Median RMS F0 (%)

β1 1.00 0.990 −0.015 0.103 0.104 0.0 0.984 −0.013 0.102 0.102 0.0
β2 0.50 0.487 −0.009 0.077 0.077 0.0 0.487 −0.013 0.083 0.084 0.0
β3 −0.50 −0.488 0.011 0.085 0.085 0.0 −0.477 0.018 0.076 0.078 0.0
β4 −0.50 −0.499 0.001 0.079 0.079 0.0 −0.507 −0.005 0.076 0.076 0.0
β5 0.50 0.496 0.000 0.083 0.083 0.0 0.513 0.006 0.078 0.078 0.0
β6 −1.00 −0.977 0.028 0.134 0.136 0.0 −0.976 0.024 0.133 0.135 0.0
γ1 −0.50 −0.502 0.002 0.125 0.125 0.5 −0.479 0.022 0.124 0.126 2.5
γ2 1.00 0.987 −0.008 0.141 0.141 0.0 0.983 −0.025 0.144 0.146 0.0
γ3 −0.50 −0.492 0.008 0.127 0.127 2.5 −0.483 0.015 0.123 0.123 2.5
γ4 1.00 0.997 −0.007 0.191 0.191 0.0 1.015 −0.001 0.205 0.205 0.0
φ 0.60 0.604 −0.002 0.145 0.145 1.0 0.626 0.021 0.157 0.158 0.5
σ2 0.36 0.365 0.005 0.020 0.020 – 0.364 0.004 0.019 0.019 –

The results from Tables 1–3 suggest that the Bayesian estimates of the parameters
are reasonably accurate. One can see that in all simulations, the proposed CDPMM prior
performed better in both parameter estimation and inferential characteristics. This is
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indicated by the fact that the bias (Bias) values of the results based on the CDPMM prior
method are all less than 0.10, and the root mean square (RMS) value and standard deviation
(SD) value are both less than 0.20. Furthermore, the BLasso method was able to correctly
identify the important covariates in most cases, regardless of the prior inputs of parameters.
This is supported by the fact that the F0 values corresponding to the important covariates
were less than 10%, indicating a high level of significance. On the other hand, the F0 values
corresponding to the unimportant covariates were more than 90%, indicating a lack of
significance. The recovery performance of the proposed method for the unknown function
g(t) can be measured using the RMSE (the root mean square error), which is expressed as

RMSE
(

g(r)
)
=

√√√√ 1
300

300

∑
l=1

(
g(ul)− ĝ(r)(ul)

)2, r = 1, 2, . . . , 200, (22)

where ĝ(r)(t) = B>(t)ϕ̂(r), ϕ̂(r) represents the Bayesian estimated value of the parameter
vector ϕ in the r-th replication. Similar to the RMSE of the unknown function, we also
calculate the RMSE of the random effects. Figure 2 plots the estimated curve and estimated
density of the unknown function ĝ(t) and the random effects bi of the replication based on
different priors. The mean of the RMSE of the unknown function and the random effects
is in the middle of the 200 replications and is compared against the true curves and true
density in three simulation studies, respectively.

Upon inspection of Figure 2, it is evident that the Bayesian B-splines method proposed
in this paper is flexible enough to accurately fit the true curve of the unknown function g(t).
Additionally, the CDPMM prior proposed demonstrates sufficient flexibility compared to the
Gaussian prior to capture the general shapes of the three distribution assumptions considered
for bi. The results presented in Table 4, based on 200 replications in three simulation studies
under the CDPMM prior and Gaussian prior, further support the robustness of the CDPMM
method. The estimated means and standard deviations (SDs) of the random effects bi closely
align with their corresponding true values. Moreover, the 25%, 50%, and 75% quantiles of the
RMSE of the unknown function and the random effects are sufficiently small, indicating the
effectiveness of the CDPMM approach in estimating random effects.
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Figure 2. Estimation versus true values of unknown function g(t) (upper panels) and estimated
versus true densities for random effects bi (lower panels) based on the CDPMM prior (CDPMM) and
Gaussian prior (GP) method in Simulation I (left panels), Simulation II (middle panels), and Simula-
tion III (right panels).
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All these findings show that, compared with the Gaussian prior method, our CDPMM
prior method makes the Bayesian B-spline curve flexible enough to accurately fit the real
curve of nonlinear data. Additionally, the Bayesian procedure effectively captures the true
information of bi, regardless of their true distributions and forms. Furthermore, BLasso has
a high probability of correctly identifying the true model.

Table 4. Estimated mean and standard deviation for random effects and quantiles of RMSE for
unknown functions and random effects based on the CDPMM prior (CDPMM) and Gaussian prior
(GP) method in three simulation studies.

Method
Est of Random Effects Quantile of RMSE

Mean Est Mean SD Est SD 25% 50% 75%

Simulation I CDPMM −0.011 −0.007 1.004 0.961 0.091 0.115 0.138
GP 0.004 −0.036 1.052 0.903 0.130 0.159 0.198

Simulation II CDPMM −0.040 0.009 1.251 1.236 0.086 0.112 0.139
GP −0.151 −0.040 1.224 1.135 0.088 0.111 0.140

Simulation III CDPMM −0.001 −0.001 0.879 0.797 0.109 0.152 0.227
GP 0.018 0.004 0.739 0.663 0.102 0.144 0.209

“Mean” denotes true empirical mean of the distribution; “Est mean” denotes mean of the posterior samples. “SD”
denotes true empirical standard deviation of the distribution; “Est SD” denotes standard deviation of the posterior
samples.

5. An Example

In this section, we apply the method proposed in the previous sections to the MA.5
research experiment conducted by the Clinical Trial Group of the National Cancer Institute
of Canada. The data pertain to 716 women with early-stage breast cancer before menopause.
A total of 356 patients were randomly selected to receive cyclophosphamide, epirubicin,
and fluorouracil (CEF) adjuvant chemotherapy as the experimental group. The remaining
360 patients received cyclophosphamide, methotrexate, and fluorouracil (CMF) adjuvant
chemotherapy as the control group of the trial. In clinical trials, visits were made before
the start of treatment, during each of the six treatment cycles, and every three months
after treatment. At each visit, medical history and physical examination were conducted,
and the Breast Cancer Questionnaire (BCQ) is used to assess the patient’s QOL. The dataset
consists of a total of 7807 observations. By the end of the study, 366 patients had died,
resulting in a censoring rate of approximately 49%. For a detailed study of these data,
please refer to Song et al. [26] and Levine et al. [27]. We linearly convert the evaluated BCQ
score into a unit interval (0, 1), and the longitudinal data constrained to the interval (0, 1)
are the longitudinal proportional data of interest. The trial focuses on the recurrence-free
survival time (RFS), which is the duration between randomization and disease recurrence.
Different treatment options, age, and the number of tumor-positive lymph nodes may
directly affect RFS and the patient’s QOL. We fitted the MA.5 research experiment dataset
to the following model:

y∗ij|bi = β1EMi + β2NODE_POSi + β3AGEi + g(tij) + bi + εij, (23)

λi(t|bi) = λ0(t) exp (γ1EMi + γ2NODE_POSi + γ3AGEi + φbi), (24)

where variable y∗ij represents the BCQ score after applying the logit function transformation.
EMi is a two-class treatment index, where EMi = 1 indicates that the i-th patient underwent
CEF treatment, and EMi = 0 indicates that the i-th patient underwent CMF treatment. Age
and the number of lymph node metastases are binary variables. Patients who are 40 years
old or younger are classified as belonging to the younger group, denoted as AGE = 1.
Patients who are older than 40 years old belong to the elderly group, denoted as AGE = 0.
When the number of lymph node metastases is 0–3, NODE_POS = 0; otherwise, it is 1.
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The term g(t) in Equation (23) represents an unknown function related to the observation
time t.

The unknown function g(t) is estimated using a cubic B-spline function, and the
domain of the cubic B-spline function is [min(tij), max(tij)]. The prior distributions and
values of all hyperparameters in the case study are the same as those set in the simulation
study above. Based on the above settings, we calculated EPSR values for all parameters.
The results indicate that after approximately 3000 iterations, all EPSR values are less than
1.2. Therefore, we use the 3000 iterations after the 3000th iteration to calculate the Bayesian
estimation. The results of the example analysis are shown in Table 5 based on two different
prior methods.

Table 5. Bayesian estimations of parameters based on the CDPMM prior and Gaussian prior in the
MA.5 experimental research study.

Pra.
CDPMM Prior Gaussian Prior

Est SD IC Est SD IC

β1 0.239 0.035 ( 0.176, 0.312) 0.242 0.045 ( 0.163, 0.331)
β2 0.304 0.041 ( 0.219, 0.377) 0.296 0.043 ( 0.220, 0.379)
β3 0.269 0.049 ( 0.180, 0.375) 0.275 0.059 ( 0.166, 0.387)
γ1 −0.341 0.150 (−0.625, −0.033) −0.316 0.152 (−0.636, −0.048)
γ2 0.745 0.133 ( 0.480, 1.013) 0.747 0.141 ( 0.472, 1.017)
γ3 0.628 0.136 ( 0.355, 0.902) 0.611 0.154 ( 0.310, 0.934)
φ 0.269 0.126 ( 0.036, 0.519) 0.292 0.133 ( 0.020, 0.551)
σ2 0.180 0.003 ( 0.174, 0.186) 0.180 0.003 ( 0.174, 0.186)

From Table 5, the following observations can be made. (i) The parameter estimation
based on the CDPMM prior proposed in this paper has a smaller standard deviation (SD)
and a shorter confidence interval than that based on the Gaussian prior. This suggests
that the approach proposed in this paper is more effective. (ii) Under the CDPMM prior,
the risk ratio of randomly receiving CEF and CMF treatment is HR = exp (γ1) = 71.106%,
implying that patients who randomly receive CEF chemotherapy have a lower risk. (iii)
The credible interval (0.176, 0.312) for β1 does not include 0, indicating that different
adjuvant chemotherapy regimens have a significant impact on patients’ QOL. Additionally,
it suggests that CEF chemotherapy is more toxic than CMF chemotherapy. (iv) The risk ratio
for the number of lymph node metastases being greater than or equal to four compared to
less than four is calculated as HR = exp (γ2) = 210.644%. This implies that patients with a
higher number of lymph node metastases have a greater risk of breast cancer recurrence and
a shorter RFS. (v) The regression coefficient β2 for lymph node metastasis numbers greater
than or equal to 4 is 0.304, and its credible interval does not include 0, indicating high
significance. This suggests that patients with a higher number of lymph nodes experience
a lower QOL, which aligns with clinical experience; (vi) The risk ratio between the young
group and the old group is HR = exp(γ3) = 187.386%, implying that the risk of breast
cancer recurrence is higher and the RFS is shorter in the young group; (vii) The credible
interval (0.180, 0.375) for β3 = 0.269 does not contain 0, indicating that age has a significant
impact on where variable y∗ij represents the BCQ score after applying the logit function
transformation. This suggests that the quality of life for the elderly group is better than
that of the young group. (viii) The value of φ is 0.269, and the credible interval for φ is
(0.036, 0.519), which does not include 0. This indicates that φ is significantly different
from 0, suggesting a significant correlation between the longitudinal proportional data
and survival data. Therefore, the JMSRE model proposed in this paper is applicable and
reasonable for analyzing the MA.5 research experiment’s data.

6. Concluding Remarks

In this paper, a semiparametric joint model is proposed for longitudinal proportional
data and survival data. The model does not assume the normality of random effects
and does not require the specification of an unknown function influencing longitudinal
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responses. The proposed model offers several advantages. Firstly, it improves the flexibility
of jointly modeling longitudinal proportional data and survival data. Secondly, the pro-
posed B-splines method effectively captures different unknown functions in a flexible
manner. Thirdly, compared to a Gaussian prior, the proposed CDPMM method accu-
rately captures the unimodal, bimodal, and multimodal features of random effects. Lastly,
the computational burden is not heavy, with the replication in the simulation study taking
approximately 4 min and the breast cancer dataset taking about 78 min to run.

Our simulation studies and example analysis demonstrate that the Bayesian estimation
approach proposed based on the joint model is accurate and robust. The use of Bayesian
B-splines allows for a more flexible estimation of the unknown function curve, enabling it
to capture the true characteristics of the unknown function more effectively. Additionally,
compared with the Gaussian prior method, the CDPMM method effectively captures the
true information of bi. Furthermore, the BLasso method has a high probability of correctly
identifying the true model. In comparison to the method proposed by Song et al. [26]
for jointly modeling longitudinal proportional data and survival data, the joint model
proposed in this paper offers greater flexibility.

The joint model of longitudinal proportional data and survival data proposed in this
paper still has many unsolved problems, and we need to address the following issues in the
future: (i) It does not impose any constraints on the form of the basic hazard function. (ii) We
should consider more complex spline models, such as automatically selecting nodes to
enhance the performance of the proposed model. (iii) We should also explore a joint model
for the variable longitudinal proportional outcome and the multivariate survival outcome.
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Appendix A. Conditional Distribution of bi

Let θbi
denote the unknown parameters associated with the distribution of bi for i =

1, 2, . . . , n. The parameters θbi
can be iteratively drawn using the following steps.

Step (a) The conditional distribution of ξ given (µ∗, Ψ, b) is a normal distribution given
by

ξ|µ∗, Ψ, b ∼ Nq(A,B), (A1)

where B = (GΨ−1 + (Ψ0)−1)−1 and A = B((Ψ0)−1ξ0 + Ψ−1 ∑G
g=1 µ∗g).

Step (b) For j = 1, 2, . . . , q, the diagonal elements of Ψ is conditionally distributed as

ψ−1
j |µ

∗, ξ ∼ Γ(c1 +
G
2

, c2 +
1
2

G

∑
g=1

(µ∗gj
− ξ j)

2), (A2)

where µ∗gj
is the jth element of µ∗g and ξ j is the jth element of ξ.
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Step (c) For j = 1, 2, . . . , q, vj|Ω is conditionally distributed as

vj|Ω ∼ Γ(va
j , vb

j +
G

∑
g=1

ω−1
gj

), (A3)

where ωgj is the jth diagonal element of Ωg.
Step (d) According to Ishwaran and Zarepour [24], the conditional distribution of τ

can be determined based on the given π:

τ|π ∼ Γ(a1 + G− 1, a2 −
G−1

∑
g=1

log(1− ν∗g)),

where ν∗g represents a randomly sampled weight from the beta distribution.
Step (e) Given L and τ, the conditional distribution of π can be obtained by following

generalized Dirichlet distribution:

π|L, τ ∼ Dir(a∗1 , b∗1 , a∗2 , b∗2 , . . . , a∗G−1, b∗G−1). (A4)

where a∗g = 1 + dg and b∗g = τ + ∑G
ι=g+1 dι for g = 1, 2, . . . , G− 1. Here, dg represents the

number of L′is values that are equal to g, and ν∗g is generated autonomously from a Beta
distribution characterized by the parameters (a∗g, b∗g). Then, the values π1, π2, . . . , πG are
derived using the following formula:

π1 = ν∗1 , πG = 1−
G−1

∑
g=1

πg, and πg =
g−1

∏
ι=1

(1− ν∗ι )ν
∗
g , for g 6= 1 or G. (A5)

Step (f) Let L∗1 , L∗2 , . . . , L∗d represent the d distinct values of {L1, L2, . . . , Ln} (i.e., the unique
number of “clusters”). For g = 1, 2 . . . , G, the conditional distribution of µ∗g is as follows:

µ∗g|ξ, Ψ ∼ Nq(ξ, Ψ) for g 6∈ {L∗1 , L∗2 , . . . , L∗d}, (A6)

µ∗g|ξ, Ψ, Ω, L, b ∼ Nq(Eg,Fg) for g ∈ {L∗1 , L∗2 , . . . , L∗d}, (A7)

whereFg is defined as (Ψ−1 +Σ{i:Li=g}Ω
−1
i )−1, andEg is defined asFg(Ψ

−1ξ+Σ{i:Li=g}Ω
−1
i bi)

for g ∈ {L∗1, L∗2, . . . , L∗d}. Given µ∗g, µg = µ∗g − ΣG
g=1πgµ∗g, µ∗ = {µ∗1, µ2, . . . , µ∗G}, and µ =

{µ1, µ2, . . . , µG}.
Step (g) Given a value g, for j = 1, 2, . . . , q, the conditional distribution of the diagonal

elements of Ωg is as follows:

ωgj ∼ Γ(ωa
j , vj) for g 6∈ {L∗1 , L∗2 , . . . , L∗d}, (A8)

ωgj ∼ Γ(
dg

2
+ ωa

j , vj + ∑
{i:Li=g}

1
2
(bij − µgj)

2) for g ∈ {L∗1 , L∗2 , . . . , L∗d}, (A9)

where bij represents the jth element of vector bi, while µgj denotes the jth element of
vector µg. Additionally, given the value of ωgj , we can construct the diagonal matrix
Ωg = diag(ωg1 , ωg2 , . . . , ωgq). Finally, the set Ω consists of matrices {Ω1, Ω2, . . . , ΩG}.

Step (h) Given π, µ, Ω, b, the conditional distribution of Li is obtained by

Li|π, µ, Ω, b i.i.d∼ Multinomial(π∗ig, g = 1, 2, . . . , G), (A10)
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the value of π∗ig is directly proportional to πg p(bi|µg, Ωg), where bi|µg, Ωg ∼ Nq(µg, Ωg).
The values of πg (g = 1, 2, . . . , G) are randomly selected from step (e). When given Li, µ,
and Ω, the prior distribution of bi follows a normal distribution Nq(µLi

, ΩLi ), where µLi
and ΩLi represent the Li elements of the sets µ and Ω, respectively.

Step (i) The conditional distribution p(bi|β,ϕ, σ2, γ, φ, y∗, T, ∆) cannot be directly
derived using Gibbs sampling for i = 1, 2, . . . , n as it is non-standard. Specifically, it can be
expressed as follows:

p(bi|β,ϕ, σ2, γ, φ, y∗, T , ∆) ∝ p(bi|µLi
, ΩLi )p

(
y∗i |bi; θy

)
p(T , ∆|b; θT). (A11)

The Metropolis–Hastings algorithm, which is employed to sample bi, is implemented
in the following manner. During the mth iteration, a new candidate bi is drawn from
a normal distribution Nq(b

(m)
i , σ2

b Σbi
), where b(m)

i represents the current value, Σbi
=

(Ω−1
Li

+ Ξi)
−1 and Ξi = −∂2(ln(p

(
y∗i |bi; θy

)
p(T , ∆|b; θT))/∂bi∂b>i |bi=b(m)

i
. The new bi is

accepted with probability

min

1,
p(bi|µLi

, ΩLi )p
(
y∗i |bi; θy

)
p(T , ∆|b; θT)

p(b(m)
i |µLi

, ΩLi )p
(

y∗i |b
(m)
i ; θy

)
p
(

T , ∆|b(m)
i , b−i; θT

)
, (A12)

The remaining random effects, denoted as b−i, represent the random effects of all
individuals except the ith individual. The value of the variance σ2

b can be adjusted to ensure
that the average acceptance rate is about 0.25 or higher.
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