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Abstract: In traffic flow, the relationship between speed and density exhibits decreasing monotonicity
and continuity, which is characterized by various models such as the Greenshields and Greenberg
models. However, some existing models, i.e., the Underwood and Northwestern models, introduce
bias by incorrectly utilizing linear regression for parameter calibration. Furthermore, the lower
bound of the fitting errors for all these models remains unknown. To address above issues, this
study first proves the bias associated with using linear regression in handling the Underwood and
Northwestern models and corrects it, resulting in a significantly lower mean squared error (MSE).
Second, a quadratic programming model is developed to obtain the lower bound of the MSE for
these existing models. The relative gaps between the MSEs of existing models and the lower bound
indicate that the existing models still have a lot of potential for improvement.

Keywords: speed and density relationship; linear regression; quadratic programming

MSC: 90-10

1. Introduction

The traffic fundamental diagram is crucial in traffic flow theory [1–5], representing the
relationship between traffic flow (vehs/h), speed (km/h), and traffic density (vehs/km).
Greenshields [1] first proposed a linear model to describe the relationship between speed
and density and made a pioneering work in this field. This rudimentary relationship has
since been refined through the introduction of numerous models [3–18]. These studies
try to define precise relationships, utilizing practical parameters to reflect the traffic flow
features more accurately. This paper focuses on the four well-known models listed in
Table 1, each having two parameters.

Table 1. Four speed–density models (Qu et al., 2015) [19].

Models Function Parameters

Greenshields [1] v = v f

(
1− k

k j

)
v f , kj

Greenberg [3] v = v0ln
(

k j
k

)
v0, kj
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Table 1. Cont.

Models Function Parameters

Underwood [5] v = v f exp
(
− k

k0

)
v f , k0

Northwestern [20] v = v f exp
[
− 1

2

(
k
k0

)2
]

v f , k0

Note: v denotes the speed (the dependent variable), km/h; k denotes the density (the independent variable),
veh/km; v f denotes the free-flow speed, km/h; k j denotes the jam density, veh/km; k0 denotes the at-capacity
density, veh/km; v0 denotes the at-capacity speed, km/h.

At the same time, a great number of calibration models have been proposed related
to these well-known models. Qu et al. [19] proposed a least-squares method to calibrate
the model so that the model can be applied to both in light-traffic/free-flow conditions
and congested/jam conditions. Fan and Seibold [21] and Qu et al. [22] published research
works using data-driven approaches to generate a percentile-based speed–density relation-
ships for freeway traffic. Wang [23] addressed the shortcomings of data-driven stochastic
fundamental maps of diagram traffic by proposing a holistic modelling framework based
on the concept of mean absolute error minimization. For more related literature, please
refer to Bramich et al. [24]. Nearly all existing studies employ linear regression to solve
these famous models and estimate parameters [25–28]. For models that cannot be solved
directly by linear regression, such as the Underwood and Northwestern models, many
researchers resort to defining y = lnv and x = k for the Underwood model and y = lnv and
x = k2 for the Northwestern model to transform them into linear models of (x, y), whose
parameters can be easily estimated by linear regression. However, this transformation is
fundamentally flawed, as it fails to obtain an unbiased estimate of v. The problem arises
from the fact that the estimate of parameter lnv cannot accurately represent the estimate
of parameter v, leading to a distorted and biased final estimate. Given this challenge, this
study aims to address this issue.

In the calibration and validation of traffic flow fundamental diagrams, numerous stud-
ies use a specific dataset [13,19,22,23,29,30], which makes our comparison more consistent,
as shown in Figure 1. This dataset comprises 47,815 speed-density observations collected
over a year by loop detectors from 76 stations on Georgia State Route 400 (hereafter referred
to as the GA400 dataset). The GA400 dataset facilitates the examination of the performance
of the four models, as shown in Figure 1. Each of the four models has its own strengths
when describing the characteristics of the speed and density relationship: for example,
the Greenshields and Northwestern models perform better in low-density datasets, while
the Underwood model performs better in medium- to high-density datasets. Despite the
widespread application of the four models, a key issue—the gap between their fittings and
the “ideal” lower bound of the fitting error—remains unanswered in the existing literature.
To address this research gap, this paper defines the model that minimizes the MSE of the
dataset among all monotonically decreasing models as an “ideal” prediction model whose
optimal objective function value is thus termed the lower bound of the fitting error.

The main contributions of this paper are twofold. We first show that applying the
transformation on the Underwood and Northwestern models produces biased results. In
response to this finding, we correct the methodological errors involved in using linear
regression for parameter estimation in these models. Second, we construct a quadratic
programming model with the objective of minimizing the MSE to find the “ideal” lower
bound of the fitting error for existing models. The results show that the average relative gap
between the lower bound and the MSEs of existing models is about 197.322%. Therefore,
there is still a lot of room for further development of existing models.
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The rest of the paper is organized as follows. In Section 2, we prove that using linear
regression to calibrate nonlinear relationships between k and v is biased and then correct
this error using the enumeration approach. Section 3 establishes a quadratic programming
model to find the “ideal” lower bound of the fitting error of existing models. Section 4
concludes this study.

2. Correcting Generalized Linear Regression Models
2.1. Analysis

In the existing studies, the parameters v f and k0 of Underwood and Northwestern
models are estimated by linear regression. The procedures are as follows.

In the Underwood model, v = v f exp
(

1− k
k0

)
, and the parameters to be estimated are

v f and k0. By taking the logarithm on both sides of the equation, the model is equivalent
to lnv − lnv f = − k

k0
. After letting y = lnv and x = k, the model is transformed into

y = lnv f − x
k0

. By performing a linear regression on x and y, we obtain the equation
y = ax + b, where a and b are the parameters derived from the regression. Consequently,
the parameters v f and k0 can be estimated as v f = exp(b) and k0 = − 1

a .

In the Northwestern model, v = v f exp
⌈
− 1

2

(
k
k0

)2
⌉

, and the parameters to be esti-

mated are v f and k0. By taking the logarithm on both sides of the equation, the model

is equivalent to lnv = lnv f − 1
2

(
k
k0

)2
. After letting y = lnv and x = k2, the model is

transformed into y = lnv f − 1
2

x
k0

2 . By performing a linear regression on x and y, we obtain
the equation y = cx + d, where c and d are the parameters derived from the regression.

Consequently, the parameters v f and k0 can be estimated as v f = exp(d) and k0 =
√
− 1

2c .
The above procedures use the logarithm of v and then apply linear regression. In

order to correctly use linear regression to estimate the parameters of the models, we should
guarantee that the unbiased estimate of v is equivalent to the exponential of the unbiased
estimate of y. However, this condition may not be satisfied in some cases. For example,
assume v has three realizations: 3, 4, and 5. The unbiased estimate of the expectation of
v is 4 (the sample mean); however, exp

(
ln3+ln4+ln5

3

)
≈ 3.915 is not the original unbiased

estimate of the expectation of v. Therefore, the exponential of the unbiased estimate of
lnv results in a biased estimate of v. In the following, we discuss the unbiased and biased
estimation cases under transformation.

Lemma 1. If the transformed samples used for linear regression are strictly linearly correlated, the
estimates of parameters are unbiased.
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Proof. Using the least-squares method for linear regression, ŷi = axi + b (i ∈ {1, . . . , n} ,
where n is the number of data samples, we minimize the sum of squares of the errors
RSS(SSE), which can be expressed as given:

RSS(SSE) =
n

∑
i=1

(yi − ŷi)
2 =

n

∑
i=1

[yi − (axi + b)]2.

Solving the above equation by means of derivatives, we can obtain the following:

b = y− ax,

a =
∑n

i=1 (xi − x)(yi − y)

∑n
i=1(xi − x)2 ,

where x = 1
n ∑n

i=1 xi, and y = 1
n ∑n

i=1 yi.
When solving the Underwood model using linear regression, let y = lnv and x = k,

and we can obtain the following:

v̂i = exp(ŷi)

= exp
(

âxi + b̂
)

= exp(âxi + y− âx)

= exp
[

âx + b̂ + â(xi − x)
]

= exp
(

âxi + b̂
)

.

If all points (xi, yi) are co-linear, then

v̂i = exp
(

âxi + b̂
)

= exp(ŷi)

= exp(yi).

Therefore, the estimates of the linear regression after transmission are unbiased;
namely, we have the following:

E(v̂) = v

where v̂ is the estimated v, and v = 1
n ∑n

i=1 vi. �

Taking the Underwood model as an example, suppose there are three given points
of (k, v), which are (30, 54.881), (60, 30.119), and (90, 16.530), as shown in Figure 2a.
Let y = lnv and x = k; the three points are transformed to (30, 4.005), (60, 3.405), and
(90, 2.805). Obviously, these three points can be linked by a straight line, as shown in
Figure 2b. Performing a linear regression on (k, lnv), we obtain the fitted linear expression
y = 4.6052 + (−0.02)x. We use the MSE to express the fitting error, which is the cumulative
value of the differences between actual observations and predicted values. The MSE can be
computed as follows:

MSE =
1
n∑n

i=1(vi − v̂i)
2 (1)

where v̂i is the value predicted by the model, vi is the real value, and n is the number of
observations in the dataset. Thus, the MSE of the fitted line to the transformed samples
is zero.
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Transforming the parameters from the linear regression back into the original model,
we obtain v f = exp(4.6052) and k0 = − 1

−0.02 . The original Underwood model should
be v = exp(4.6052 + 0.02k), and the MSE of the fitted exponential curve to the original
samples is also zero. Consequently, the density k and speed v of these samples obey
the exponential relationship and strictly adhere to the Underwood model, as illustrated
in Figure 2a.

However, when the data points used for linear regression do not lie on a straight
line, the linear fitting is meaningless, and the estimates are biased. Therefore, we give
the case where the linear transformation presents a bias against the Underwood and
Northwestern models.

Lemma 2. If the transformed samples used for linear regression are not strictly linearly correlated,
the estimates of the parameters are generally biased.

Proof. If we only have two points, they must be co-linear. We now discuss the case of
three points. If the estimate is biased when the transformed three points are not co-linear,
then the estimate must also be biased when more transformed points are not co-linear.
Consider the three points (x1, y1), (x2, y2), and(x3, y3) in the dataset that are not co-linear.
If there are two points with equal y values, the x values are different. However, it is not
possible for the y values of the three points to be equal since they would be co-linear.
Hence, the relationship between the y values of these three points can be expressed as
given: y1 < y2 < y3 or y1 ≤ y2 < y3 or y1 < y2 ≤ y3. We define the following:

v = v1 + v2 + v3

= exp(y1) + exp(y2) + exp(y3).

Let ŷi = yi + ∆i(i = 1, 2, 3); then, we define the following:

E(v̂) := exp(y1 + ∆1) + exp(y2 + ∆2) + exp (y3 + ∆3).

Therefore, we have the following:

E(v̂)− v =
∫ y1+∆1

y1

exp(x)dx +
∫ y2+∆2

y2

exp(x)dx +
∫ y3+∆3

y3

exp(x)dx.
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Meanwhile, in linear regression, the estimated y is unbiased; namely, we obtain
E(ŷ) = y, and 1

n ∑n
i=1 ŷi =

1
n ∑n

i=1 (y i + ∆i) =
1
n ∑n

i=1 yi. Thus, ∆1 + ∆2 + ∆3 = 0. Therefore,
we obtain the following:

(v̂)− v =
∫ y1+∆1

y1

exp(x)dx +
∫ y2+∆2

y2

exp(x)dx +
∫ y3−∆1−∆2

y3

exp(x)dx.

In exp(x), all the different ranges of x values correspond to different function values.
Therefore, to guarantee the estimates are unbiased, E(v̂)− v = 0 should be satisfied. To
meet E(v̂) = v, we need y1 + ∆1 = y2 and y3−∆1 − ∆2 = y1; namely, ŷ1 = y2, and ŷ3 = y1.
Obviously, this situation does not exist. Thus, in the transformed dataset, the solution using
linear programming is biased as long as the three points are not co-linear. �

Taking the Underwood model as an example, suppose there are three given points of
(k, v), which are (30, 80), (60,70), and (90,20), as shown in Figure 3a. Let y = lnv and x = k;
the three points are transformed to (30, 4.382), (60, 4.249), and (90, 2.996). Clearly, these three
points are not collinear, as shown in Figure 3b. Performing a linear regression on (k, lnv),
we obtain the fitted linear expression y = 5.2617 + (−0.023105)x, whose MSE is 0.069593.
However, when transforming the parameters from the linear regression back into the
original model, v f = exp(5.2617), and k0 = − 1

−0.023105 , and the original Underwood model
should be v = exp(5.2617 + 0.023105k), whose MSE is 253.6947. Because the transformed
samples used for linear regression is not on the fitted line, it is meaningless to use linear
regression to estimate the parameters of the model. Therefore, the fitted results obtained
from the linear regression are not the true picture of the model, and the estimates of the
model are biased.
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Taking the example in the Underwood model, suppose the three given points of co-
incide with the above example, as in Figure 4a. Let y = lnv and x = k2; the three points
are transformed to (900, 4.382), (3600, 4.248), and (8100, 2.996). Obviously, these points are
also not collinear, as in Figure 4b. Performing a linear regression on

(
k2, lnv

)
gives results

with an MSE of 0.03248981, and the fitted linear expression is y = 4.7209 + (−0.0002013)x.
However, when substituting the parameters from the linear regression back into the original
model, we obtain v f = exp(4.7209) and k0 =

√
− 1

2×(−0.0002013) , and the original Under-

wood model should be v = exp
(
4.7209− 0.0002013k2), whose MSE is 144.75979. Although

the MSE value of the linear regression is good, this advantage cannot be reflected in the
original model because the points used for linear regression are not collinear (as shown in
Figure 4a). As a result, the linear regression approach is biased.
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Figures 5 and 6 depict the samples after the transformation of GA400 for the Un-
derwood and Northwestern models. It is evident that these simple, straight lines in
Figures 5 and 6 cannot fully capture the underlying structure of these points. Consequently,
these two linear regression models provide biased estimates in this context.
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2.2. Correction

For the case where the linear regression provides biased estimates, we re-solve the
model parameters using an enumeration algorithm. That is, we try to find the parameter
values corresponding to the smallest MSE within the feasible ranges of the parameters,
as shown in Algorithm 1. The estimated parameters obtained are unbiased for a given
precision, and better estimates may exist as the precision becomes smaller. The enumeration
algorithm is universal for estimated parameters that are difficult to solve by approximation
or derivation methods.

Algorithm 1: An enumeration algorithm.

Input: A set of candidate pairs of parameters
{((

v f i, k0j

)∣∣∣i = 1, 2, . . . , M; j = 1, 2, . . . , N
)}

.
Output: The minimum MSE, the optimal values of parameters.

MSE
(

v f i, k0j

)
denotes the MSE value of the pair of parameters

(
v f i, k0j

)
; the minimum MSE and

its corresponding optimal parameters are denoted as MSE′, v f
′, k0

′.
Initialize the MSE′ = ∞, v f

′ = 0, k0
′ = 0.

For i = 1, 2, . . . , M do:
For j = 1, 2, . . . , N do:

Calculate the MSE value MSE
(

v f i, k0j

)
for the pair of parameters

(
v f i, k0j

)
.

If MSE
(

v f i, k0j

)
≤ MSE′ do:

v f
′ = v f i,

k0
′ = k0j,

MSE′ = MSE
(

v f i, k0j

)
.

End if
End for

End for

The examples in Lemma 2 are solved with the enumeration algorithm, as shown in
Figure 7. For the Underwood and Northwestern models, we enumerate the two parameters

v f and k0 in functions v = v f exp
(

1− k
k0

)
and v = v f exp

[
− 1

2

(
k
k0

)2
]

, both with a precision

of 1 and a range of 0 to 200. The resulting optimal MSE values are 161.36348 and 93.4532,
respectively. They are much better than the MSE values 253.6947 and 144.75979 obtained
from the linear regression.
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Above, we have corrected two simple examples using the enumeration algorithm, and
next, we will examine how this algorithm performs on the entire GA400 dataset.

In the Underwood model, for parameters v f and k0, we set the iteration precision to
0.1 and the range to (0, 160) and (0, 120), respectively. The optimal values of parameters
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obtained are v f = 126.5790 and k0 = 52.3435, and the corresponding MSE is 50.36096,
smaller than the MSE 59.4544 obtained from linear regression. Figure 8 illustrates the
curves before and after the correction.
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Figure 8. Correction of the Underwood model.

In the Northwestern model, for parameters v f and k0, we set the iteration precision
to 0.1 and the range to (0, 160) and (0, 120), respectively. Then, we use the enumeration
algorithm to find v f = 107.0668 and k0 = 34.9348. The MSE is 25.9371, much smaller than
the MSE 44.3233 obtained from linear regression. The curves before and after correction are
shown in Figure 9.
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Figure 9. Correction of the Northwestern model.

From Figures 8 and 9, the corrected models appear to dominate only in the low-density
range. This is because about 86% of the data points in the GA400 are concentrated in the
[0, 20) range of the density. Figure 10a shows the average MSE value of the Underwood
model for different density intervals, where the corrected results outperform the results
solved by linear regression for densities in [0, 40) and [140, ∞), which account for 93% of all
data points. Figure 10b shows the average MSE values of the Northwest model for different
density intervals, and the corrected results are better than those solved by linear regression
for densities [0, 60) and [140, ∞), which account for 98% of all data points. As a result, the
features of a small portion of the data may be discarded in order to optimize the fit for the
entire dataset.
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Northwestern model.

3. Lower Bound of the Fitting Error of Existing Models
3.1. MSE Values of Existing Models

Table 2 illustrates the MSE values of the four models based on the GA400 dataset. Since
linear regression is biased, the Underwood and Northwestern models make the differences
in MSE values before and after the correction. The results show that the Northwestern
model performs the best. Nevertheless, the MSE value of the Northwestern model is still
high, motivating us to explore the lower bound of the fitting error for existing models.

Table 2. MSE values of the four models for the GA400 dataset.

Models Function Transformation Original MSE Corrected MSE

Greenshields (Greenshields et al., 1935) [1] v = v f

(
1− k

kj

)
v = y, k = x 46.727 46.727

Greenberg (1959) [3] v = v0 ln
( kj

k

)
v = y, lnk = x 107.948 107.948

Underwood (1961) [5] v = v f exp
(

1− k
k0

)
lnv = y, k = x 59.4544 50.3609

Northwestern (Drake et al., 1967) [20] v = v f exp
[
− 1

2

(
k

k0

)2
]

lnv = y, k2 = x 44.3233 25.9371

We use an example to illustrate how to compute the “ideal” lower bound of the fitting
error. Given a dataset containing the three points (30,80), (60,78), and (90,40), Table 3
presents the MSEs for each of the four models, with the corresponding fitted curves
displayed in Figure 11. Due to the models’ structure, none of them could be adjusted to
achieve an MSE of zero, as evidenced by their inability to pass through all three points
simultaneously. Consistent with the monotonicity and decreasing characters of the traffic
flow, the speeds corresponding to each density value to achieve the minimum MSE are
found and simply connected to form a piecewise linear function. This value is the lower
bound of the model’s fitting error. Therefore, assessing the differences between the existing
models’ MSEs and the lower bound exposes potential areas for improvement.

Table 3. MSE values of the four models based on the three data points.

Models Corrected MSE

Greenshields (Greenshields et al., 1935) [1] 72.0000
Greenberg (1959) [3] 117.3113

Underwood (1961) [5] 95.7534
Northwestern (Drake et al., 1967) [20] 57.0006
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3.2. Quadratic Programming Model

Considering the monotonically decreasing and continuous characteristics of traffic
flow, the prediction model, denoted by f (k), with the minimum MSE should be selected
among all possible monotonically decreasing continuous functions. This means that for
two given densities, i.e., k1 < k2, we should have f (k1) ≥ f (k2) and that for each density,
there is only one speed output. We use the following two cases to illustrate this model.

Case 1: As shown in Figure 12a, actual speed may increase with increasing density,
contrary to the general relationship where speed decreases as density increases. However,
to capture the overall characteristic of traffic flow, any fitted model should exhibit both
continuity and a monotonically decreasing trend. This allows the model to accommodate
the unique cases while reflecting the general behavior of traffic flow.
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Case 2: As shown in Figure 12b, different speeds can exist at the same density. How-
ever, the estimated speed in the model can only be a single value, which should ideally be
the average of these speeds.

Considering these factors, we developed a quadratic programming model that defines
the lower bound of the fitting error. The optimal objective function value of this model
corresponds to the lower bound, providing a quantifiable measure of the fitting error. The
model is shown as follows:

min
1
m∑m

i=1

(
vij − v̂i

)2 (2)

Subject to
v̂i − v̂i+1 ≥ 0, ∀i = 1, . . . , m. (3)
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Here, v̂i = f (ki) denotes the decision variable, representing the estimated speed at the
i-th density f (ki), and m is the number of all different densities. Considering that a same
speed may correspond to multiple densities, we denote vij as the j-th real speed value at
the i-th density. Equation (2) is the objective function of the model that minimizes the MSE
value. Constraint (3) requires that the estimated speeds should satisfy the characteristics of
monotonically decreasing continuity in traffic flow.

3.3. Results

The above model capturing the lower bound of the fitting error can be viewed as a
piece-wise linear function that links the optimal speed at each density. We utilize GUROBI
to solve the model on the GA400 dataset, which achieves a minimum MSE of 19.360.
This fitting error is significantly lower than the results obtained by the four models, as
demonstrated in Figure 13. In the GA400 dataset, more than 80% of the data points are
concentrated within the 0–20 density range. As a result, models tend to primarily focus on
these points. However, our model optimizes the lower bound across all density intervals,
making it applicable in all cases of density distribution. Furthermore, in different models,
the free-flow speed depends on the form of the model. However, the lower bound is
derived from the dataset following the monotonicity and continuity characteristics of the
traffic flow. Therefore, the free-flow speed of the lower bound depends on the speed when
the density of the dataset is extremely small. This result ignores factors such as length and
width of the road, and vehicle type and is ideal for observing the situation on the road.
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The fitting results vary across models, but the lower bound is unique for the same
dataset. In order to measure the effectiveness of each model and the room for improvement
in a more standardized way, we define the “relative gap”, |MSEs−MSEL |

MSEL
× 100%, which

represents the gap between one existing model and the “ideal” lower bound. MSEL is
the MSE value of the “ideal” lower bound, and MSEs is the MSE of any other model
(i.e., Greenshields, Greenberg, Underwood, and Northwestern models). The relative gaps
of the four models are shown in Table 4, where the Northwestern model performs the best
but still has a 33.973% relative gap. Therefore, there is significant room for improvement
for existing models to achieve a better fit of the dataset and reduce the MSE closer to the
“ideal” lower bound.
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Table 4. MSE and relative gap of four models based on the GA400 dataset.

Models MSE Relative Gap

Greenshields [1] 46.7270 137.603%
Greenberg [3] 107.9480 457.583%

Underwood [5] 50.3609 160.129%
Northwestern [20] 25.9371 33.973%

Average value 57.8053 197.322%

To further validate the correction method and the method of exploring the lower limit
of fitting error, we sample datasets of different sizes from the GA400 dataset, shown in
Tables 5 and 6. It can be noticed that, for different sizes, the MSE values obtained by the
correction method are smaller and much closer to the lower bounds. At the same time, the
lower bound always represents the limit of fitting error.

Table 5. Results of different sample sizes of the Underwood model.

Sample Size MSE Values
for Linear Regression

MSE Values
after Correction

MSE Values
for Lower Bound

Relative Gap
for Linear Regression

Relative Gap
for Corrected Results

1 100 79.266 67.860 24.084 229.126% 181.766%
2 100 44.656 43.402 10.827 312.444% 300.863%
3 500 62.533 50.326 14.262 338.467% 252.871%
4 500 68.246 58.360 18.631 266.316% 213.249%
5 1000 57.880 48.574 16.318 254.691% 197.667%
6 1000 53.204 44.782 12.246 334.443% 265.675%
7 5000 61.323 51.584 19.455 215.196% 165.137%
8 5000 58.771 50.546 18.529 217.175% 172.787%
9 10,000 59.292 50.461 19.010 211.899% 165.446%

10 10,000 60.492 51.296 19.657 207.732% 160.950%
11 30,000 59.321 49.987 18.852 214.672% 165.157%
12 30,000 59.220 50.062 19.505 203.620% 156.668%

Note: Relative gap for linear regression = |MSE value for linear regression − MSE value for lower bound|
MSE value for lower bound ; relative gap after

correction = |MSE value after correction − MSE value for lower bound|
MSE value for lower bound .

Table 6. Results of different sample sizes of the Northwestern model.

Sample Size MSE Values
for Linear Regression

MSE Values
after Correction

MSE Values
for Lower Bound

Relative Gap
for Linear Regression

Relative Gap
for Corrected Results

1 100 26.520 26.288 15.640 69.562% 68.082%
2 100 99.182 65.021 24.821 299.583% 161.955%
3 500 29.822 24.064 16.680 78.787% 44.271%
4 500 43.881 29.784 17.6181 149.064% 69.054%
5 1000 38.354 23.915 15.793 142.859% 51.433%
6 1000 49.473 23.244 14.825 233.723% 56.790%
7 5000 52.530 28.479 20.810 152.427% 36.852%
8 5000 49.058 27.132 19.101 156.829% 42.045%
9 10,000 40.869 24.552 17.541 132.990% 39.969%

10 10,000 46.855 25.510 18.658 151.124% 36.722%
11 30,000 43.821 26.410 19.684 122.624% 34.172%
12 30,000 43.286 26.440 19.655 120.226% 34.521%

Note: Relative gap for linear regression = |MSE value for linear regression − MSE value for lowerbound|
MSE value for lower bound ; relative gap after

correction = |MSE value after correction − MSE value for lower bound|
MSE value for lower bound .

4. Conclusions

In this study, we conducted a comprehensive analysis of the errors associated with
the generalized linear regression models on the fundamental diagram, focusing on the
bias introduced when linear regression is improperly applied for parameter estimation
in the Underwood and Northwestern models. To address this issue, we employed an
enumeration algorithm to resolve these models, resulting in significant decreases in MSE
values and improving the model fits. Moreover, we developed a quadratic programming



Mathematics 2023, 11, 3460 14 of 15

model that takes advantage of the inherent properties of monotonicity and continuity in
traffic flow. This enabled us to determine the lower bound of the fitting error for existing
models. Our presented model demonstrates robust performance across various density
intervals, achieving a minimum MSE of 19.360. This indicates a relative gap of 33.973%
between the lower bound and the best result obtained by other models. The substantial gap
highlights the potential for further refinements and advancements in model performance.

The proposed correction method in this study is universally applicable, particularly
for models where parameter estimation through derivation or approximation is not feasible.
Additionally, the quadratic programming model can serve as a measure of model quality
for any traffic flow dataset. Furthermore, it is important to consider the influence of hetero-
geneous traffic flow data on the fitting process. Therefore, future studies should investigate
the effects of multiple factors on the fitting process, enhancing the comprehensiveness and
credibility of the research.
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