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Abstract: Technical and technological developments in recent decades have stimulated the rapid
development of methods and tools in the field of statistical process quality control, which also
includes control charts. The principle of control charts defined by Dr. W. Shewhart has been known
for more than 100 years. Since then, they have been used in many industries to monitor and control
processes. This paper aims to assess the possibilities of use and the selection of the most suitable type
of control chart for monitoring the quality of a process depending on its nature. This tool should help
operators in monitoring coking time, which is one of the important control variables affecting the
quality of coke production. The autoregressive nature of the variable being monitored was considered
when selecting a suitable control chart from the group of options considered. In addition to the three
traditional types of control charts (Shewhart’s, CUSUM, and EWMA), which were applied to the
residuals of individual values of different types of ARIMA models, various statistical tests, and plots,
a dynamic EWMA control chart was also used. Its advantage over traditional control charts applied
to residuals is that it works with directly measured coking time data. This chart is intended to serve
as a method to monitor the process. Its role is only to alert the process operator to the occurrence of
problems with the length of the coking time.

Keywords: statistical process control; control chart; autocorrelated process; ARIMA model; statistical
test; coking time

MSC: 62P30

1. Introduction

If a product is to meet customer needs and expectations, it should be created using
a stable process, i.e., a process that is capable of operating with little variability around
the target product characteristics. Therefore, statistical process quality control has been
used in industrial practice for almost 100 years. Montgomery calls it one of the greatest
technological achievements of the 20th century, given that it is easy to use, it has a significant
impact, and can be applied to a variety of processes [1]. Its basic method is the use of
control charts, which are based on a prevention strategy.

There is some variability in each process. The study of the various causes of this
variability enables us to understand the process better and to manage it in such a way as
to ensure that its outputs conform to the specified requirements. Maintaining a process
in a stable state, i.e., a state in which only a stable system of random or common causes
operates, is called a state of statistical control. The use of control charts allows the process
to be kept in a state of statistical control and thus prevents the occurrence of unusable
non-deterministic outputs of the process. It also makes it possible to identify, investigate,
and reduce the impact of systematic or attributable causes of variability that can negatively
affect the quality of process outputs.

A control chart is indeed an effective statistical control tool if a suitable one for the
process under study is selected from the many control charts that exist today and its
parameters are appropriately set.
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1.1. Traditional Control Charts

The first control charts for variables and control charts for attributes were designed and
introduced by Shewhart. They were developed for one regulated quality characteristic [2].
Since they are control charts without memory, they are suitable for identifying large shifts
in the mean, higher than three standard deviations, in the process.

The cumulative sum control chart (CUSUM) was proposed by Page [3]. Several
authors, e.g., Lucas [4], Hawkins [5] confirmed its effectiveness for identifying small shifts
in the process mean due to uniform and unlimited memory.

Roberts [6] introduced the exponentially weighted moving average control chart
(EWMA). Crowder [7,8] and Lucas and Saccucci [9] evaluated it as a suitable alternative
to the Shewhart control chart for the identification of small shifts in the mean, less than
0.5–2.0 standard deviations. It is a control chart with uneven and unlimited memory. The
memory is controlled by the size of the smoothing parameter λ, where 0 < λ < 1. Small λ
values are useful for identifying small shifts in the process, while large values of λ better
identify larger changes. Zhang et al. proposed the EWMA control chart, which is more
robust in avoiding estimation errors or standard deviation changes [10].

The basic assumptions for using the above three traditional control charts for variables
are normality, constant mean, homoscedasticity, and independence of the data of the
regulated quality characteristics. Failure to comply with these assumptions can negatively
affect their performance [11–13].

The sample size and the length of the sampling frequency also play an important role
in the effective use of control charts. Larger samples are more effective for identifying
smaller process shifts. However, current practice prefers rather small subgroups, which are
implemented more frequently, aided by automated measurement systems [14].

1.2. The Phases of Using Control Charts

The application of the control chart involves two phases—the retrospective phase
(Phase I) and the monitoring phase (Phase II). Each phase has a different content and objective.

In Phase I, measured data from about 20–25 samples are used to retrospectively
analyse the process behaviour and to calculate regulatory limits for the next phase. The
use of a control chart is a repeated test of the hypothesis that the process under study
is under statistical control. Thus, it is associated with the occurrence of a Type I error,
called the risk of a useless signal (α), and with the occurrence of a Type II error, called
the risk of a missing signal (β) [11]. Very often, control limits at a distance of three sigma
from the central line of the control chart (three-sigma control limits) are used. According
to Shewhart, mathematical theory, empirical evidence, and practical experience provide
evidence that it is the three-sigma limits that minimize the chance of a Type I or II error [2].
Costa and Fichera state in their study that originally the design of control charts only
considered statistical criteria [15]. The aim was to reduce the occurrence of Type I and
Type II errors. From the 1980s onwards, the economic aspect came to the fore. Nowadays,
the economic–statistical approach is preferred. In Phase I, which may involve several
cycles, the systematic causes of variability are gradually removed, and the control limits
are revised by means of a control chart.

Phase II begins when the process is already under statistical control. The calculated
control limits are used to monitor it using the newly measured data for each sample. In
this phase, it is useful to focus attention on monitoring patterns in control charts [16].
These clusters of out-of-control points can be visually identified in the control chart and
their cause in the controlled process can be removed in time. For these activities, process
operators often have an out-of-control action plan [14]. Other groupings of points such as
cyclic patterns, mixtures, process level shifts, or trends can also be found in control charts.
Cyclic patterns are related to systematic changes in the environment, e.g., temperature,
pressure fluctuations, voltage, or operator changes. Kalteh and Babouei presented a new
method for recognizing nine types of patterns in control charts based on the use of shape
and statistical features and an optimized fuzzy system [17]. For abnormality detection,



Mathematics 2023, 11, 3444 3 of 30

Fuqua and Razzaghi described a cost-sensitive classification scheme in the framework
of a deep convolutional neural network for the recognition of patterns in a control chart.
This approach is very suitable for intelligent manufacturing systems that work with large
datasets. Recognition algorithms for control chart patterns can make it easier to monitor
product quality [18]. Garcia et al. identified six basic recognition approaches to control
chart patterns [19]. In their review, they mapped the recognition of 21 different control
chart patterns in 41 publications to date, 11% of which included autocorrelated data. If
the existence of a trend visible in a control chart is implied by the nature of the process
itself, it is appropriate to use a regression control chart as reported by Shu et al. [20],
Hayati [21], and described in [22]. The faster the action of the systematic cause of variability
is identified in Phase II, the more effective the control chart is. The ability of the control
chart to quickly detect the existence of systematic causes of variability can provide clues to
more quickly and efficiently identify the source of the quality problem [23]. Therefore, as
Cuentas et al. state, current trends in statistical process control include the use of machine
learning algorithms [24].

Montgomery recommends the use of Shewhart control charts in Phase I [14]. Their
advantages are simple calculations and high efficiency in detecting large and permanent
shifts in process parameters, i.e., 2σ. In Phase II, small to moderate shifts in process param-
eters are often encountered. Shewhart control charts are then less effective, which can lead
to an increased false-alarm rate. Much more effective at this stage are the CUSUM [25,26]
and EWMA control charts [7–9,27]. Shewhart control diagrams always consider only the
results of the last sample. The CUSUM and EWMA control charts consider the control
results of the last sample, but also those of the preceding samples. CUSUM considers the
results of the previous subgroups with equal weight. EWMA allows the weights of the
previous subgroups to be set unequally using a smoothing parameter. Therefore, CUSUM
and EWMA control charts are more sensitive to small process variations than the Shewhart
control chart.

1.3. The Problems Caused by Autocorrelation of Observed Data

The Shewhart control chart, the CUSUM control chart, as well as the EWMA control
chart are based on the assumption that the processed data are statistically independent.
As several authors state in their papers, e.g., [28,29], this assumption is not valid in all
industries, e.g., for continuous processes in the metallurgical, chemical, and food industries,
but also for highly automated discrete manufacturing processes in the mechanical or
electrical engineering industries. According to [27], processes with dependent observations
can be divided into two basic types, which are

• Stationary autocorrelated processes, which are in a state of so-called statistical equilib-
rium. The basic behaviour of these processes does not change over time, neither do
the mean values and deviations.

• Non-stationary autocorrelated processes, which are not in a state of statistical equi-
librium. Their means and variances change, and it is often possible to observe the
occurrence of a trend.

As stated by [14,28,29], verifying the assumption of the independence of observations
is very important. Traditional control charts can give misleading results due to the large
number of false signals. Many authors pointed out the influence of correlation. Patel and
Divecha [30] state that the typical effect of autocorrelation is to reduce the average run
length, leading to a higher false-alarm rate than in the case of an independent process
(an explanation of the concept of average run length is included in Section 1.5). Cheng
et al. state that the presence of autocorrelation in the measured data affects the statistical
performance of control charts. It creates control limits that are much more stringent than
would be desirable. This causes an increase in the number of false signals and a decrease in
the reliability of the control chart application [31].
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1.4. The Approaches to Solving Problems with Autocorrelated Data

Many authors use different approaches to solve problems in autocorrelated processes
using industrial applications of control charts.

Zhang applied the ARMA time series model to stationary autocorrelated processes,
denoted as an ARMAST chart, and an EWMAST chart [32]. In the next study, Zhang
compared EWMAST control charts, CUSUM control charts for residuals, and EWMA
control charts for residuals, using the average run length [33].

Woodal and Montgomery tracked the autocorrelated process level using a time series
model or using a control chart based on one-step-ahead forecast errors [34]. Shu et al. rec-
ommend the use of the triggered cuscore chart or the general likelihood-ratio test instead
of the traditional control charts for residuals [35]. The adaptive control chart proposed
by Capizzi and Masarotto weights past observations of the process under study using
an appropriate function of the current “error”. The proposed control chart is effective
in detecting shifts of different magnitudes, but the monitoring scheme is quite compli-
cated [36]. Testik reports that common approaches for autocorrelated observations are to
explain the dynamics of the process by an appropriate time series model and to monitor
the predicted residuals to be independent, or to monitor the autocorrelated observations
using a control chart with adjusted control limits [37]. Castagliola and Tsung investigated
the impact of skewness data from an autocorrelated process on traditional control charts
and provided a scaled weighted variance approach to improve their performance by using
a scaled weighted variance method [38].

Traditional control charts use samples of equal size measured at the same control
interval. Zou et al. used an adaptive control chart with a variable sample size and fixed
control interval for an autocorrelated process [39].

Patel and Divecha proposed a modified EWMA control chart. By combining the
Shewhart control chart and the EWMA control chart, they were able to identify both small
and large shifts. Some industrial processes with high levels of first-order autocorrelation
require this approach. Its basic idea is to adjust the weight of past observations, past
changes, current observations, and current change [30]. Khan et al. presented their version
of the modified EWMA control chart [40]. It is based on the statistic published by Patel and
Divecha and can be applied to autocorrelated data.

Evaluating clean coal quality by monitoring the clean coal ash content using the
Shewhart control chart is discussed by Fu et al. in their study. Due to the occurrence
of a significant autocorrelation of the monitored parameter, ten types of data collection
procedure were tested and compared in order to reduce the influence of autocorrelation on
the determination of the standard deviation of the process [41].

Osei-Aning et al. selected optimal parameters for the EWMA and CUSUM control
charts using an exhaustive search procedure that is suitable for monitoring autocorrelated
data. They determine the parameters that produce the smallest extra quadratic loss for
each autocorrelation coefficient. The paper provides optimal parameters that can be used
to increase the overall efficiency of control charts [42].

Li et al. present three different approaches. The first approach is to reduce the
frequency of data collection. The second approach is based on re-evaluating the actual
variance in the process and adjusting the control limits. The last one recommends the use
of residual charts. The authors described an improved hidden Markov model based on
a residual chart for monitoring the autocorrelated process. The conducted experiment
shows that this model outperforms both the conventional hidden Markov model and
autoregressive models in diagnosing quality shifts, thus reducing the cost of missing
signals [43].

Yao et al. [44] identified two main approaches for monitoring autocorrelated data. The
first approach is to use control charts for residuals of the time series model. However, the
authors point out that this approach introduces problems with the interpretability and
effectiveness of control charts and the lack of detection of assignable causes. The second
approach uses data from the autocorrelated process directly, and also uses time series
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models and takes into account the structure of variance and covariance when calculating
the control limits.

Reynolds et al. recommend investigating whether autocorrelation is a special cause
or whether it is part of common-cause variability. In the first case, the autocorrelation
should be removed and in the second case the autocorrelation should be accounted for in
the control chart. These authors distinguish two approaches to modelling autocorrelated
processes. The first involves the use of traditional control charts with modified control
limits. The second approach uses the residuals of time series models or prediction errors
in the regulation diagrams [45]. The level of autocorrelation should also be taken into
account. According to Yashchin [46], the first approach works better at low to medium
levels of autocorrelation, while the second approach will work better at high levels of
autocorrelation.

Based on the above sources from the literature, approaches to statistical process control
for autocorrelated processes can be summarized as follows:

• The extension of the control interval;
• The use of the traditional control charts with modified control limits;
• The use of the traditional control charts, or slightly modified versions of them, for

residuals of time series models that are not autocorrelated;
• The use of the non-parametric control charts.

These options are analysed in more detail in the following subsections.

1.4.1. The Extension of the Control Interval

Sampling at a lower frequency, i.e., extending the control interval, is the simplest
solution to remove autocorrelation in data. The appropriate length of the control interval
for a particular process should be verified by the autocorrelation function. However, this
procedure leads to a loss of information about the behaviour of the process. If, for example,
only every ninth observation is used, this means a loss of 90 percent of the data. It may
reduce the performance of the control chart used by taking longer to detect the actual
process drift than with a shorter interval [14,47,48].

Other options present solutions that are more complex. For example, Franco et al.
proposed a new mixed sampling strategy for the Shewhart chart. The mean value of the
sample at each control time is calculated by combining the measurements of the quality
characteristic from two consecutive samples taken hours apart [49]. Grimshaw proposes
exhaustive systematic sampling that is similar to Bayesian thinning. Practical guidance
is offered for selecting a systematic sampling interval large enough to be approximately
unbiased and not too large to increase the variance [50].

1.4.2. The Use of the Traditional Control Charts with Modified Control Limits

This approach uses the computation of control limits in such way that they respect
the autocorrelation structure of the data by using their distance from the central line, while
having the ability to provide an out-of-control signal fast enough. This requires a correct
estimation of the real standard deviation of the autocorrelated process, for example [51].
Osei-Aning et al. present modified Mixed EWMA-CUSUM and Mixed CUSUM-EWMA
control charts. The authors modified the control limits of traditional graphs to better moni-
tor autocorrelated data [42]. Garza-Venegaz et al. developed a bootstrapping technique to
adjust the control limits [52].

1.4.3. The Use of the Traditional Control Charts for Residuals of Time Series Models

The application of traditional control charts to the residuals of a time series model
computed according to the Box–Jenkins methodology appears in the work of many authors.
Individual authors using this approach differ in the type of time series model used.

Alwan and Roberts recommend the use of a common-cause chart, e.g., a chart of
forecasted values that are determined by fitting the correlated process with an ARIMA
model, and a special-cause chart, e.g., a traditional control chart of the residuals or one-



Mathematics 2023, 11, 3444 6 of 30

step-ahead prediction errors [53]. Wardell et al. followed up on their work [54,55]. They
showed that a special-cause diagram is more likely to detect process shifts quickly than
traditional control charts.

Lu et al. applied the EWMA control chart to the process residuals obtained as an
autoregressive model of the ARIMA (1,0,0) process and evaluated it using the integral
equation method. They found that for high levels of autocorrelation and large displace-
ments, the EWMA control chart applied to the residuals is faster than the EWMA control
chart applied to the original observations [56]. Jiang et al. described the autoregressive
moving average control chart and approach to monitoring autocorrelated data [57]. Lu et al.
confirmed in their study the appropriateness of using CUSUM and EWMA control charts
for monitoring the observations from the process as an autoregressive process [58]. Tas-
demir presents the effect of autocorrelation on process control charts to monitor two quality
characteristics of fine coal produced in a coal washer for a power plant. He used an ARIMA
(1,0,1) model for moisture content and an ARIMA (0,1,2) model for ash content. He found
the above time series models to be the best models to remove autocorrelation [59]. Magaji
et al. described the application of the EWMA control chart to the residuals of the ARIMA
(2,0,0) model obtained from autocorrelated chemical process viscosity data [60]. Li et al.
used and compared with each other two types of exponentially weighted moving averages
of autoregressive model residual (EWMA-R) control charts to monitor the autocorrelated
process of order p [48]. Costa and Fichera describe the design of an ARMA control chart. To
select the optimal model parameters, they developed a modified self-adaptive differential
evolution algorithm [61]. Li et al. pointed out that the use of ARIMA models requires
quite a lot of experience, which sometimes causes inconvenience in implementation. They
proposed hidden Markov models and showed that these models are more stable than
first-order autoregressive models in the case of both positive and negative autocorrelations
of observations [62]. Phanthuna and Areepong used a modified EWMA control chart for
an integrated moving average model and a fractional integrated moving average model
applied to datasets of natural gas and crude oil prices [63].

Mastrangelo and Montgomery presented a method based on an exponentially weighted
moving average that uses variable control limits. Their approach assumes that the au-
tocorrelated process can be modelled using an ARIMA (0,1,1) model. A control chart
for individual values is used for one-step prediction errors, i.e., to the residuals of the
EWMA model. The proposed control chart is only suitable for processes with a positive
autocorrelation of the non-constant mean with slow drift; a rapid change in the mean value
of the process leads to an exceedance of the control limits [64,65].

One of the simplest non-parametric control charts, a Shewhart sign control chart
for tracking the position of a process, has been described, e.g., by Armin et al. [66].
Chakraboti et al. published a review of non-parametric control charts, highlighting their
various advantages [67]. Chakraboti and Graham, and Chakraboti and Eryilmaz, consid-
ered the main advantage of non-parametric control charts to be their general flexibility.
Their application does not require meeting the assumption of any specific probability
distribution for the measured data [68,69]. They assume only a continuous distribution.
Therefore, the term “distribution-free” is more appropriate than “non-parametric” for this
type of control chart. They are less sensitive to the random occurrence of outliers and
are often simpler than traditional control charts. Figueiredo and Gomes compared robust
control charts for mean and standard deviation tracking using Monte Carlo simulations in
terms of their robustness and performance [70]. Bakir presents an extensive review of the
literature related to non-parametric control charts, spanning a period of almost 80 years [71].
Kountras and Triantafyllou showed a general procedure for constructing non-parametric
regression charts. They use specific order statistics to determine appropriate control lim-
its. To decide whether a process was under control, they used order-based statistics as
well. They introduced three new non-parametric control charts based on minimum and
maximum rank statistics [72]. Smajdorová and Noskievičová stated that non-parametric
control charts are suitable for monitoring intelligent manufacturing processes with complex
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structures based on a large amount of data. Their study contains an algorithm for selecting
a suitable non-parametric control chart according to type of the distribution, skewness, and
kurtosis of the process data [73].

1.5. The Evaluate the Performance of Control Charts

An important part of using control charts is to evaluate their performance, i.e., their
ability to detect changes of a certain magnitude in the monitored process parameter as
quickly as possible. It helps to select the most appropriate control chart for a particular
process. Different performance indicators are used for this evaluation [1,14,74–78]. Most
of them are based on the run length, i.e., on the number of points that are recorded in the
control chart, before the out-of-control condition is identified. Average run length (ARL) is
the most used performance indicator. This indicator is also useful for evaluating different
subgroup sizes and control interval lengths [14]. For a process that is under control, ARL(0)
is used; for a process that is out of control, ARL(1) is used. ARL(δ) is also used, where the
value δ represents the specific magnitude of the shift in the mean value. When designing a
control chart, it is generally required that the value of ARL(0) be as large as possible and
the value of ARL(δ), conversely, be as small as possible [74].

Low et al. suggested using the median run length (MRL) value as a more robust
performance indicator [75]. Chin and Khoo state that MRL provides a more meaningful
interpretation of the graph results for under-control and out-of-control processes. Quality
practitioners easily understand MRL because it provides the probability of a signal at a
certain number of samples [76]. Jones et al. [77] or Antzoulakos and Rakitzis [78] consider
the standard deviation of run length (SDRL) as a complementary indicator to assess the
performance of control charts.

Graphical methods are also used to evaluate the performance of control charts. The
ARL curve shows the dependence of the average run length on the magnitude of the
process parameter shift δ expressed as the number of standard deviations. The operating
characteristic graph shows the dependence of the risk β on the magnitude of the process
parameter shift δ [74].

1.6. The Purpose of the Work

The study aims to assess the possibilities of the active use of SPC tools for monitoring
a technological process. The use of traditional control charts is based on several basic
assumptions. One of them is that the data characterizing the process are statistically
independent. In practice, however, there are many processes that are characterized by
dependent, autocorrelated data. In such cases, several solution options can be taken into
consideration, which have already been described in the previous section. Our main
purpose is to assess and compare their possible applications and to select a suitable tool for
application in a particular process.

2. Materials and Methods

The first subsection briefly describes the coking process and one of its important
control variables, which is the coking time. The datasets of the coking time used for
the calculations are described in the second subsection. It is this variable that is further
monitored by means of several types of control charts, which are explained in more detail
in the next subsections.

2.1. The Coking Process

Metallurgical coke production takes place in classical multi-chamber coke oven batter-
ies (Figure 1a), via high-temperature carbonisation of the coal charge at a temperature of
1000 ◦C in the absence of air [79]. The aim of the conversion of coal into metallurgical coke
(Figure 1b) is to produce a material rich in carbon and at the same time free of the chemical
impurities present in the coal in the coal charge. The operation of the coke battery should
be steady with the optimum amount of heat consumed and the desired quality of coke
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achieved. The quality and preparation of raw hard coal, the heating conditions, and several
technological control variables must be in balance. Even a small imbalance can lead to a
loss of stability of the whole coking process. The fulfilment of these requirements requires
the establishment of a technological regime for the dependence on coking time and coking
temperature [80].
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The coking time is the time taken for the carbonization of the coal charge in the
chamber in hours, from the occupation of the chamber by the charge to the obtaining
of high-temperature coke in the whole cross-section of the chamber. The complete coke-
making process takes approximately 20–24 h. Its length is influenced by

• The width of the coking chamber (the wider the chamber, the longer the coking time);
• The temperature of the heating walls (the higher the temperature in the heating

channels of the walls, the shorter the coking time);
• The quality and thickness of the heating walls (i.e., the distance between the channel

and the chamber depends on the type and quality of the dinas used, with a 10 mm
change in thickness caused by changing the coking time by 0.6–0.8 h);

• The quality of the coal charge (moisture content, grain composition, and density of
the charge have the greatest influence on the heat transfer through the charge, and
increasing these increases the coking time;

• Coking properties also change the coking time, a change of 5% in the proportion of
coking coals requires a change in coking time of 1.0–1.5 h [81].

In this paper, only coking time data are processed. Other important technological
control variables of coke oven battery operation, such as heating, exhaust, control of source
and equipment operators, etc., are not dealt with.

2.2. Description of the Data Used

The automated control system for the operating machines of the coke oven battery
that contains thirty chambers divided into three equal blocks (Figure 1b) is made up of a
set of programmable logic controller (PLC) machines and a computer. The main task of this
system is to control the operation of the operating machines (extruders, guide cars, filling
cars, and coke extinguishing technology sets), but the real-time recording of operational
activities is an equally relevant task. The most important data measured and collected
include coking time, as one of the quality characteristics of the technological process of
coke production. The PLC machine, which controls the time sequence of the work of the
machines, records the date and time of occupation and the date and time of coke extrusion
from the chamber. The difference between these times is the coking time, which then enters
statistical processing.

This study used coking time data for three selected days in two consecutive months
(January and February) of the same year. The January datasets were used for baseline vali-
dation of the assumptions about the investigated coking time and for the calculation of the
parameters of the control charts, i.e., for the retrospective analysis—Phase I. The February
datasets were used for process monitoring when control charts with calculated control
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limits were used for the monitoring phase—Phase II. Each dataset contains approximately
one hundred measured values of coking time.

2.3. Traditional Control Charts Calculations for Individual Measurements

The section describes the several control charts that later were used for the practical
calculations in Section 3, Results and Discussion. The charts for individual measurements
were used because the measured data of the variable under study, which is the coking time,
refer to different chambers of the coke battery.

2.3.1. Shewhart Control Chart for Individual Measurements

The upper control limit (UCL), centre line (CL), and lower control limit (LCL) for the
Shewhart control chart for an individual can be calculated using the following formulas:

UCL = CL + L · MR
d2

CL = µ0

UCL = CL− L · MR
d2

(1)

where µ0 is the target mean value. MR is the average moving range calculated using
Formula (2), parameter L for the control limits is equal to 3, and d2 is the constant for the
construction control chart for n = 2 [16].

MR =
1
n

n

∑
i=1

MRi =
1
n

n

∑
i=1
|xi − xi−1| (2)

2.3.2. Tabular CUSUM Control Chart for Individual Measurements

For tabular CUSUM control charts, the one-side upper and one-side lower CUSUM
statistics are calculated according to the following formulas:

C+
i = max

[
0, xi − (µ0 + K) + C+

i−1

]
C−i = max

[
0, (µ0 − K)− xi + C−i−1

] ; C+
0 = C−0 = 0 (3)

where the reference value K is a constant set by the user [5]. Very often, it is calculated
using the half-way point between the target mean value µ0 and the out-of-control value
µ1 = µ0 ± δ · σ, which need to be detected quickly, i.e., according to the formula

K =
|δ · σ|

2
=
|µ1 − µ0|

2
, (4)

where µ1 is the mean out-of-control value. C+
i and C−i represent deviations from µ0 that are

greater than K. Both start at zero and reset to zero again after becoming negative values [82].
The setting of the decision interval parameters H and reference value K for a particular
process affects the effective use of the CUSUM control chart. Hawkins lists the ranges of
k (K = k · σ) and h (H = h · σ), where σ is the standard deviation of the variable values
that are suitable for achieving an average run length equal to 370 [83].

2.3.3. EWMA Control Chart for Individual Measurements

The EWMA statistic is calculated as the exponentially weighted moving average of
the following formula:

zi = λ · xi + (1− λ) · zi−1, with z0 = µ0; (5)

where λ is a constant chosen by the user from 0 to 1 [14]. The starting value of EWMA for
the first step i = 1, is the process target µ0. Because the used weights decline geometrically,
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EWMA is called a geometric moving average. The control limits are calculated according
to the following formulas:

UCLi = CL + L · σi,
CL = µ0,
LCLi = µ0 − L · σi;

(6)

these are narrowed limits where standard deviation σi is calculated as

σi = σ ·
√

λ

2− λ
·
[
1− (1− λ)2·i

]
. (7)

The control limits are initially narrower, gradually widening, and after a few periods,
they approach the steady state. This is due to the part of the formula in square brackets
approaching the unit. The used values of the parameters L and λ are important for the
efficiency of the EWMA control chart. Small values of λ are useful for identifying small
shifts, while large values of λ better identify large changes. The values 0.05 ≤ λ ≤ 0.25
are often used. Montgomery warns about the inertia effect when low values of λ are used,
which can reduce the effectiveness of EWMA control chart. When a shift occurs on the
opposite side of the centre line, it could take several periods for the EWMA values to
respond to the shift, since a small value of λ does not weigh the new data very heavily [14].
A convenient way to find the optimal value for the investigated process is to use the
nomograms created by Crowder [7] for ARL(0) equal to 50, 100, 250, 370, 750, 1000, 1500,
and 2000. Very often, ARL(0) = 370 is used because it corresponds to α = 0.0027. Generally,
the three sigma control limits are used, e.g., L = 3, but for λ ≤ 0.1 Montgomery suggests
using narrowed limits with L = 2.6 ∼ 2.8 [14]. A second type of Crowder nomogram using
the already determined λ value helps to find a suitable value of the parameter L [7].

2.3.4. Traditional Control Charts for Residuals of ARIMA Time Series Models

The Box–Jenkins ARIMA (autoregressive integrated moving average) time series
model consists of three parts: the AR, the I, and the MA. The individual parts have specific
meanings and are used in different combinations depending on the characteristics of the
variable being modelled [14,64].

The AR (autoregressive) part of the ARIMA model takes into account that the variable
xt being modelled is directly dependent on previous observations xt−1, xt−2, . . . , xt−p. The
autoregressive model AR (p) can be expressed using Formulas (8) or (9)

xt = ξ + φ1 · xt−1 + φ2 · xt−2 + · · · φp · xt−p + εt, (8)

Φ(B) · xt = ξ + εt (9)

where ξ and φ1, φ2, · · · φp(−1 < φ < 1) are unknown constants and B is the backshift
operator. B represents a lag of one period, i.e., B · xt = xt−1. Generally, a lag of the s
period can be written using the formula Bs · xt = xt−s. Its use simplifies the writing of
models. The variable εt is white noise, i.e., the random component that is normally and
independently distributed, the mean is equal to zero and the standard deviation is σ.
Partial autocorrelation function (PACF) can be used for identification of order p for AR (p)
model because is expected to “cut off” after lag p. On the other hand, the autocorrelation
function (ACF) of an AR (p) process can be a mixture of exponential decay and damped
sinusoid [64,84,85].

The MA (moving average) part of the ARIMA model refers to the regression error,
which is a linear combination of the error terms. Their values occurred simultaneously and
at different periods in the past. The moving average model MA (q) can be expressed by
the formula

xt = µ + εt − θ1 · εt−1 − θ2 · εt−2 − · · · − θq · εt−q, (10)
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or by the formula

xt = µ + (1−
q

∑
i=1

θi · Bi) · εt = µ + Θ(B) · εt, (11)

where µ and θ1, θ2, · · · , θq are the are unknown constants and B is the backshift operator.
The correlation between xt and previous observations xt−1, xt−2, . . . , xt−p is equal to zero.
ACF is a good tool for identifying the order q of an MA (q) process. It is expected to “cut off”
after lag q. The PACF of an MA (q) process is a mixture of exponential decay and damped
sinusoid [64,84,85].

The mixed autoregressive moving average model ARMA (p,q) can be expressed by
combining the previous two models into the Formula (12) or expressed as Formula (13)

xt = ξ + φ1 · xt−1 + φ2 · xt−2 + · · · φp · xt−p + εt − θ1 · εt−1− θ2 · εt−2− · · · − θq · εt−q. (12)

or as the formula
Φ(B) · xt = ξ + Θ(B) · εt. (13)

The identification of the order p and order q of the ARMA model with the help of ACF and
PACF is more difficult; both exhibit exponential decay and/or damped sinusoid patterns.
Therefore, Montgomery et al. suggest using an Extended sample ACF, a generalized sample
PACF, or an inverse ACF [64].

Of the models described so far, AR (p), MA (q), and ARMA (p,q), are suitable for
describing mainly stationary processes.

The I (integrated) part of the ARIMA model is used when the differencing is applied
to the time series data xt to reduce a non-stationary time series to a stationary one. The
result is a new time series yt, calculated according to the formula

yt = (xt − xt−1) = ∇ · xt = (1− B) · xt, (14)

where ∇ is backward difference operator. The powers of the backshift operator B and
the backward difference operator ∇ for the dth difference are defined as ∇d = (1− B)d.
Montgomery et al. report that in most applications, first differencing (d = 1) and occasionally
second differencing (d = 2) would be enough to achieve stationarity of the time series.
Vandaele also points out that most series should not require more than two differences.
He states that a sign of an over-differenced series is a first autocorrelation close to −0.5
and small values elsewhere [86]. The simplest non-stationary model is the ARIMA (0,1,0)
model, i.e., the I(1) model, often called the random walk process [87]. It is given by the
formula

(1− B) · xt = ξ + εt. (15)

For non-stationary processes with a variable xt which is not fixed in the process mean,
Montgomery recommends using an integrated moving average IMA (d,q) model which is
given for d = 1 and q = 1 by the formula

(1− B) · xt = ξ + (1− θ · B) · εt. (16)

The full autoregressive integrated moving average ARIMA (p,d,q) model can be ex-
pressed by the formula

Φ(B) · ∇d · xt = ξ + Θ(B) · εt. (17)

Several methods can be used to estimate the parameters of the identified ARIMA
model: the method of moments, the maximum likelihood method, and the least
squares method.
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All calculated model parameters are first tested by the t-test to verify their significance.
Then, the residuals are used for calculation, for example for an ARMA (p,q) model following
the formula

ε̂t = xt −
(

ξ̂ +
p

∑
i=1

φ̂i · xt−i −
q

∑
i=1

θ̂i · ε̂t−i

)
, t = 1, 2, . . . , n. (18)

Values of the root mean square error of the residuals s2, the coefficient of determination
R2, or the adjusted R2 can be used to compare the goodness of fit of several models. A
smaller value of s2 indicates a more appropriate model. R2 indicates how much of variable
variation is explained by the model; therefore, the higher value, the better the model. These
are often expressed as percentages. The adjusted R2 takes into account the number of
model parameters, making it suitable for comparing models that differ in the number
of parameters.

The suitability of the model can also be evaluated using the Akaike information crite-
rion (AIC) value [88], corrected AIC (AICc) value [89], and Schwarz Bayesian information
criterion (SIC) value [90]. These criteria penalize the sum of the square residuals for in-
cluding m parameters in the model. The model that has smallest values of AIC or SIC is
considered the best model. Montgomery et al. preferred using SIC value [64].

To assess the fit of the chosen models, the Ljung–Box test can also be used [91], which
is a modification of the original Box–Pierce test. This test assesses k autocorrelations
simultaneously. Therefore, it is suitable for checking whether the chosen type of ARIMA
model has removed autocorrelation and thus its residuals are no longer autocorrelated.

If a suitable ARIMA model is selected and all the assumptions for its residuals are
satisfied, one of the traditional control charts can be constructed.

The dynamic EWMA control chart for individual measurements is the procedure de-
veloped by Montgomery and Mastrangelo [29]. It uses the EWMA statistic with parameter
smoothing parameters λ and the ARIMA (0,1,1) model that is expressed by the equation

xt = xt−1 + εt − θ1 · εt−1. (19)

If the prediction is the value of the variable under study at time t + 1, which is calculated at
the previous time step t, then

x̂t+1 = EWMAt = λ · xt + (1− λ) · EWMAt−1. (20)

The following relation (21) can calculate the one-step prediction error at time t:

ε̂t = xt − x̂t, (21)

where x̂t is the estimate of the value of the variable under study at time t, which was
calculated at time t− 1. The prediction errors follow a normal distribution and are not
autocorrelated. The memory of the control chart is controlled by the size of the smoothing
parameter λ, where 0 < λ < 1. To determine the optimal value of the λ, an iterative
procedure is recommended in which the minimum value of the sum of squares of the one-
step prediction is successively found. Mastrangelo and Montgomery recommended the
use of n ≥ 50 [29]. The control limits for the dynamic EWMA control chart are calculated
according to the following formulas:

UCLt+1 = CLt+1 + L · σ̂ε,
CLt+1 = EWMAt,
LCLt+1 = CLt+1 − L · σ̂ε ,

(22)

where L = 3. The estimate of the standard deviation σε is calculated according to
the formula
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σ̂ε =

√√√√√
[

n
∑

t=1
ε̂2

t

]
opt

n
, (23)

which uses the found minimum sum of squares of the one-step prediction.

3. Results and Discussion

This section describes the calculation procedure, which includes a retrospective phase
(Phase I) and a monitoring phase (Phase II) of statistical process control.

The first subsection deals with the verification of four important assumptions for the
use of traditional control charts within Phase I. For this purpose, various tests and charts
are used, which help to correctly identify the properties of the processed datasets of the
investigated coking time variable. Based on the fulfilment or non-fulfilment of the verified
assumptions, suitable control charts for monitoring the variable under study are proposed
and verified in the following sections. Figure 2 shows the calculation algorithm used in
this study.
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The next step of Phase I was to assess which of the four options identified in Section 1.4
for autocorrelated data is appropriate to use for the investigated variable. This step is
described in the second subsection. All alternatives are discussed in turn and concrete
arguments are given that do not allow the application of some of them.

A suitable alternative—the use of traditional control diagrams for the residuals of time
series models—is elaborated in more depth. The extensive table lists all tested types of
ARIMA models, together with the results of tests that confirm their suitability or inappro-
priateness for the monitored variable. The parameters of traditional control charts were
calculated for the most suitable ARIMA (1,1,1) model at the end of Phase I. As part of this
phase, the parameters of the dynamic exponentially weighted moving average control chart
were also calculated. The parameters of three traditional control charts calculated for the
most suitable ARIMA (1,1,1) model at the end of Phase I were subsequently used in Phase
II. Similarly, in Phase II, the parameters of the dynamic control diagram of exponentially
weighted moving averages, which uses the residuals of the ARIMA time series model, but
whose control limits change dynamically, were also used for process monitoring.

3.1. The Verification of Assumptions for the Use of Traditional Control Charts

The basic assumptions for using traditional control charts for variables are normality,
homoscedasticity, constant mean value, and independent data (non-autocorrelated data).
In this subsection, all these assumptions for the quality attribute of coking time will be
successively verified. Table 1 contains a numerical summary of three datasets.

Table 1. Numerical summary of three datasets of coking time before excluding outliers.

Dataset n Mean Standard
Deviation Variance Coeff. of

Variation Skewness Kurtosis Min First
Quartile Median Third

Quartile Max Range Interquartile
Range

0116 98 20.85 2.09 4.38 10.04 6.82 59.14 19.08 19.68 20.82 21.32 39.00 19.92 1.64
0117 98 21.68 0.99 0.98 4.58 4.14 28.31 20.28 21.08 21.65 22.02 28.87 8.58 0.94
0118 100 21.80 1.03 1.06 4.73 1.27 7.97 18.93 21.39 21.79 22.36 27.37 8.43 0.98

First, the presence of outliers in the datasets was checked. As can be seen from the
box-and-whisker plots in Figure 3a, all three datasets contain outliers.
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Figure 3. Box-and-whisker plots: (a) before excluding outliers; (b) after excluding outliers.
(“*” indicates an outlier).

Details of the outliers are given in Table 2. In front of the lower fences on the bottom
side of the box-and-whisker plot, two outliers were identified for the third dataset only.
Behind the fences on the top side of the box-and-whisker plot, one outlier and one extreme
outlier too were identified in every dataset. The larger number of outliers at the top of the
box-and-whisker plots results from the nature of the random variable being treated—coking
time. For the quality of the output product of the coke oven battery, the interval of the
optimal coking time is set when the established technological prescription is observed, and
the occurrence of definable causes of variability leads rather to the extension of this time
above the optimal maximum.
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Table 2. The identification of outliers of the coking time for three datasets.

Dataset
The Bottom Side of Box Plot The Top Side of Box Plot

Far
Outlier

Lower
Far Fence Outlier Lower

Fence
Upper
Fence Outlier Upper

Far Fence
Far

Outlier

0116 - 14.77 - 17.23 23.78 23.88 26.24 39.00
0117 - 18.27 - 19.68 23.43 24.57 24.83 28.87
0118 - 18.46 18.93; 19.68 19.92 23.83 24.33 25.29 27.37

Eight identified outliers were excluded from the datasets. The box-and-whisker plots
in Figure 3b show datasets without outliers and Table 3 contains a numerical summary
of these datasets. The biggest changes in Table 3 compared to Table 1 can be seen in
the reduced values of skewness, kurtosis, standard deviation, variance, and coefficient
of variation.

Table 3. Numerical summary of three datasets of coking time after excluding outliers.

Dataset n Mean Standard
Deviation Variance Coeff. of

Variation Skewness Kurtosis Min First
Quartile Median Third

Quartile Max Range Interquartile
Range

0116 95 20.64 0.92 0.84 4.45 −0.21 −0.97 19.08 19.68 20.82 21.27 22.57 3.48 1.58
0117 96 21.57 0.60 0.36 2.78 −0.04 −0.86 20.28 21.05 21.65 21.94 22.65 2.37 0.89
0118 96 21.77 0.76 0.58 3.50 −0.37 −0.76 20.03 21.40 21.79 22.35 23.03 3.02 0.95

The null hypothesis (H0) “data follow a normal distribution” versus the alternative
hypothesis (H1) “data do not follow a normal distribution” were tested via Anderson–
Darling’s test, Ryan–Joiner’s test, and Kolmogorov–Smirnov’s test. The results of these
tests are presented in Table 4. Even when outliers were excluded from the sets, the normality
assumption was not always confirmed. The p-value for four executed tests is less than the
chosen significance level α = 0.05, but for five tests is more than the significance level. For
dataset 0116, the null hypothesis was rejected for all three tests conducted. For the data
0117 set, the null hypothesis was not rejected for either test. For the 0118 dataset, the null
hypothesis was rejected only for Anderson–Darling’s test. Thus, it can be concluded that
the decision on the null hypothesis being tested is not clear-cut.

Table 4. Normality test results.

Dataset

Anderson–Darling’s Test Ryan–Joiner’s Test Kolmogorov–Smirnov’s Test

AD
Statistic p-Value H0 RJ Statistic p-Value H0

KS
Statistic p-Value H0

0116 2.392 <0.005 rejected 0.969 <0.010 rejected 0.122 <0.010 rejected
0117 0.933 0.017 not rejected 0.988 0.077 not rejected 0.099 0.028 not rejected
0118 1.247 <0.005 rejected 0.982 0.015 not rejected 0.101 0.025 not rejected

If an informal approximation of the normality test, referred to as the “bold pencil test”,
is applied to the probability plots in Figure 4, it is possible to conclude that the coking time
is a variable coming from a near-normal distribution.
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0118 1.247 <0.005 rejected 0.982 0.015 not rejected 0.101 0.025 not rejected 

If an informal approximation of the normality test, referred to as the “bold pencil 

test”, is applied to the probability plots in Figure 4, it is possible to conclude that the cok-

ing time is a variable coming from a near-normal distribution. 
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Figure 4. Probability plots for three datasets: (a) 0116; (b) 0117; (c) 0118. Figure 4. Probability plots for three datasets: (a) 0116; (b) 0117; (c) 0118.

Figure 5 shows histograms with the fitted probability density function for the three
datasets. Sturges’ rule was used to calculate the optimal number of classes in the histograms.
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Figure 5. Histograms with fitted probability density function for three datasets: (a) 0116; (b) 0117;
(c) 0118.

Two tests were used to test the assumption of homoscedasticity, i.e., to test the null
hypothesis (H0) “the difference between the variances of coking times is not statistically
significant” versus the alternative hypothesis (H1) “at least one variance is statistically
significantly different from the others”. Bartlett’s test is appropriate if the data come from
a normal or near-normal distribution. Levene’s test is used for data from continuous but
not necessarily normal distributions. The tests were applied to data from three datasets.
The null hypothesis of homoscedasticity was rejected at the 0.05 significance level based on
the results of both tests, as shown in Table 5. The differences in the variability of the three
datasets can be seen in Figure 6a, which shows the confidence intervals for the standard
deviations calculated using the Bonferroni method.

Table 5. Tests results of homoscedasticity tests and constant mean tests.

Bartlett’s Test Levene’s Test One-Way Analysis of Variance Kruskal–Wallis’ Test

B Statistic p-Value H0 W Statistic p-Value H0 F Statistic p-Value H0 H Statistic p-Value H0

18.90 0.000 rejected 8.37 0.000 rejected 53.40 0.000 rejected 66.33 0.000 rejected

The null hypothesis (H0) “the difference between the means of coking times is not
statistically significant” versus the alternative hypothesis (H1) “at least one mean is sta-
tistically significantly different from the others”, i.e., the assumption of a constant mean
of coking time over three days, was verified using a one-way analysis of variance and
Kruskal–Wallis’ test. This assumption was not confirmed as shown in Table 5.

The non-constant mean coking time can be seen in the box-and-whisker plots, with
the marking of mean values in Figure 6b and the time series plot in Figure 6c. It can be
concluded that the coke production process is non-stationary in terms of coking time.
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Figure 6. (a) Boniferroni confidence intervals for the three standard deviations; (b) the box-and-
whisker plot for the three datasets; (c) the time series plot for the three datasets.

The assumption of an independent distribution of the observed variable coking time
was verified using the autocorrelation coefficients. Following the general rule, autocorrela-
tion coefficient values were calculated for 24 (24 ≤ n/4) lags. The plots in Figure 7 show
autocorrelation function plots with the 5% significance critical limits (red dashed lines) for
the null hypothesis “the autocorrelations coefficients do not show statistically significant
autocorrelation”. Three (Figure 7b) to six (Figure 7a) autocorrelation coefficients in the plots
show significant spikers because of the overrun of the critical limits. The null hypothesis
must be rejected in favour of the alternative hypothesis “the autocorrelation coefficients
show statistically significant autocorrelation”. It can be concluded that the coking time
variable exhibits a significant positive autocorrelation for all three datasets examined.
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Figure 7. Autocorrelation function plots with 5% significance limits for three datasets: (a) 0116; (b) 

0117; (c) 0118. 

The slowly decreasing ACF plot in Figure 7a gives a signal that the process is non-

stationary, and an opposite signal is given by the sinusoidal wave ACF in Figure 7b,c. The 

PACF plots (Figure 8), with a significant value at lag 1, which is close to 0.8, confirm that 

indeed the coking process can be deemed non-stationary. 
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Figure 8. Partial autocorrelation function plots with 5% significance limits for three datasets: (a) 

0116; (b) 0117; (c) 0118. 

Based on all the calculations described above, it can be concluded that coking time is 

a variable that does not meet three of the four assumptions for the use of traditional con-

trol charts. From Figures 6–8, it is evident that the coking time exhibits a non-stationary 
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Figure 7. Autocorrelation function plots with 5% significance limits for three datasets: (a) 0116;
(b) 0117; (c) 0118.

The slowly decreasing ACF plot in Figure 7a gives a signal that the process is non-
stationary, and an opposite signal is given by the sinusoidal wave ACF in Figure 7b,c. The
PACF plots (Figure 8), with a significant value at lag 1, which is close to 0.8, confirm that
indeed the coking process can be deemed non-stationary.
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Figure 8. Partial autocorrelation function plots with 5% significance limits for three datasets: (a) 
0116; (b) 0117; (c) 0118. 
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Based on all the calculations described above, it can be concluded that coking time
is a variable that does not meet three of the four assumptions for the use of traditional
control charts. From Figures 6–8, it is evident that the coking time exhibits a non-stationary
autocorrelated behaviour. Such a process can be monitored in several ways that have been
tested and are described in the following subsections.

3.2. The Approaches to Solving Problems with Autocorrelated Coking Time Data

The following subsections describe the four identified problem-solving options using
control charts for autocorrelated data, which are described in Section 1.4. It should be noted
that not all the options described have a suitable application for the variable under study.

3.2.1. The Extension of the Control Interval for Monitoring of Coking Time

Due to the nature of the variable of interest, which is the coking time obtained from
the individual chambers of the coke battery, it is not possible to use the former option
described in Section 1.4.1. Extending the control interval would mean that not all the values
obtained would be monitored, but only each k observation would be monitored, thus
making the monitoring of the coke production process in the coke oven battery insufficient.
This method of solving the problem with non-stationary autocorrelated processes also
cannot be used because the assumptions of homoscedasticity and constant mean are not
satisfied (see Section 3.1).

3.2.2. The Use of the Traditional Control Chart with Modified Control Limits

Jarošová and Noskievičová state that one of the conditions for the use of the traditional
control chart with modified control limits is that the process is stationary. This condition, as
mentioned above, is not fulfilled by the coking process [74]. It is a non-stationary process
with a non-constant mean and heteroscedasticity.

3.2.3. The Use of the Control Charts for Residuals of Time Series Models

This option for solving problems with autocorrelated data is applicable to the variable
of interest. In both phases of statistical regulation, two approaches were used, which were
compared at the end.

As part of the first approach, it was necessary during Phase I to find a suitable type
of ARIMA model (Section 3.2.3.1). The parameters of three traditional control charts
for its residuals were then calculated and used in Phase II to monitor the coking time
(Section 3.2.3.2).

The second approach—the use of a dynamic EWMA control chart—was simpler than
the first one because the type of ARIMA model used results from the essence of this control
chart. In this case, too, the parameters calculated in Phase I were used to monitor the coking
time in Phase II.

3.2.3.1. Selection of the Most Suitable Type of ARIMA Model for the Coking Time

The procedure for selecting the most suitable type of ARIMA model is shown in
Figure 9. Table 6 provides details of the ARIMA models that have been validated for the
0116 dataset data. Based on the shape of the ACF waveform in Figure 7a, which decays
exponentially to zero, and the shape of the PACF waveform in Figure 8a, which has only
one peak at the first position, the fit of the ARIMA (1,0,0) model was examined.
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Table 6. Results of various ARIMA models for the 0116 dataset.

Type of
Model

Estimated Model
Parameters

Significance Test of Parameters
s2 R2

in %
R2

adj
in %

Ljung–Box’s Test for Lag = 24
AIC AICC SIC

T Statistic p-Value H0 Q Statistic p-Value H0

ARIMA (1,0,0)
ξ̂ 1.629 21.60 0.000 rejected

0.142 83.47 83.59 22.6 0.425
not

rejected −181.8 −181.6 −176.5
φ̂1 0.922 41.66 0.000 rejected

ARIMA (2,0,0)
ξ̂ 1.356 34.64 0.000 rejected

0.140 83.72 84.07 22.2 0.386
not

rejected −180.8 −181.7 −173.1φ̂1 0.787 7.57 0.160 not rejected
φ̂2 0.148 1.42 0.000 rejected

ARIMA (0,0,1)
µ̂ 20.649 189.55 0.000 rejected

0.367 56.83 57.29 393.9 0.000 rejected −93.1 −94.8 −88.0
θ̂1 −0.761 −11.08 0.000 rejected

ARIMA (1,0,1)
ξ̂ 0.991 31.61 0.000 rejected

0.139 83.82 84.16 21.7 0.415
not

rejected −184.4 −185.2 −176.7φ̂1 0.952 25.48 0.000 rejected
θ̂1 0.199 1.79 0.077 not rejected

ARIMA (2,0,1)
ξ̂ 0.687 29.17 0.000 rejected

0.141 83.86 84.37 21.2 0.386
not

rejected −182.6 −184.9 −172.4
φ̂1 1.168 2.19 0.031 rejected
φ̂2 −0.201 −0.40 0.689 not rejected
θ̂1 0.406 0.80 0.423 not rejected

ARIMA (1,1,0)
ξ̂ 0.014 0.35 0.078 not rejected

0.140 83.35 83.70 23.8 0.258
not

rejected −180.6 −181.6 −172.9
φ̂1 −0.184 −1.78 0.725 not rejected

ARIMA (0,1,1)
µ̂ 0.012 0.42 0.674 not rejected

0.141 83.56 83.91 23.0 0.401
not

rejected −178.8 −179.9 −171.1
θ̂1 0.243 2.39 0.019 rejected

ARIMA (1,1,1)
ξ̂ 0.007 3.62 0.000 rejected

0.126 85.46 85.92 20.9 0.464
not

rejected −191.5 −193.4 −181.3φ̂1 0.723 8.79 0.000 rejected
θ̂1 0.973 23.34 0.000 rejected
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Montgomery also states that in the chemical and process industries, first-order au-
toregressive process behaviour is fairly common [14]. Figure 7b,c for dataset 0117 show a
sinusoidal ACF waveform, and in Figure 8b,c one distinct peak at the first position and a
sinusoidal waveform with a second non-synchronous peak at other positions can be seen.
Therefore, the ARIMA (2,0,0) model was also tested. The ARIMA (0,0,1) model was used to
demonstrate one of the inappropriate models. Next, the ARIMA (1,0,1) and ARIMA (2,0,1)
models were tested. Among the recommended models for non-stationary processes, the
ARIMA (1,1,0), ARIMA (0,1,1), and ARIMA (1,1,1) models were used. Model calculations
were performed using Minitab 15 statistical software.

The middle part of Table 6 shows the values of the mean squared error of the residuals
s2, the coefficient of determination R2, and the adjusted R2 to compare the fit of the ARIMA
models. The smallest value of s2 indicates the most appropriate model. On the other hand,
the highest value of adjusted R2 indicates that the model is the best fit. The ARIMA (1,1,1)
model is the best fit according to these indicators.

Table 6 also shows the results of the Ljung–Box test for k = 24. The null hypothesis
of this test, “autocorrelations for all lags to lag k are zero”, is tested against the alternative
hypothesis, “at least one autocorrelation for lags to lag k is non-zero”. The null hypothesis
was rejected in favour of the alternative hypothesis only for the ARIMA (0,0,1) model.

The last three columns of Table 6 show the results of AIC, AICc, and BIC criteria. A
model that has the smallest values of these criteria is considered the best one. According to
these indicators, the ARIMA (1,1,1) model is the best fit.

The ARIMA (1,0,0) model follows the formula xt = 1.629 + 0.922 · xt−1 + εt. The
p-value is equal to 0.000 for both the constant ξ̂ and the φ̂1 parameter, and therefore it can
be stated that both are statistically significant for α ≤ 0.05. Figure 10 shows three plots
for the 0116 dataset. Figure 10a shows that the mean of the residuals is approximately
stable. Figure 10b,c show a damped sinusoidal behaviour of ACF and PACF, respectively.
In neither of these plots are the two standard deviation limits exceeded. These plots
confirm the absence of significant autocorrelation of the residuals as well as the result of
the Ljung–Box test (Q statistic = 22.6; p-value = 0.425). The AIC = −181.8, AICc = −181.6,
and SIC = −176.5 values achieved by this model are not the lowest in the group of models
studied. Based on all results presented, it can be concluded that the ARIMA (1,0,0) model
could be appropriate for the variable of interest but is not the best one.
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Figure 10. Plots for the ARIMA (1,0,0) model residuals for 0116 dataset: (a) time series plot; (b) au-

tocorrelations function plot; (c) partial autocorrelations function plot. 

Figure 11 shows the plots for the ARIMA (0,0,1) model for the 0116 dataset. This 

model follows the formula 
1

20.649 0.791
t t t

x  
−

= + −  . The p-Value is equal to 0.000 for 

both the constant ̂  and the 
1

̂  parameter, and therefore it can be stated that both are 

statistically significant for 0.05  . In Figure 11a, it can be seen that the mean and vari-

ance of the residuals are not stable; an increasing trend is visible. The presence of signifi-

cant autocorrelation is confirmed by the five values exceeding the upper red lines in the 

ACF plot in Figure 11b, by two values exceeding the upper red lines in the PACF plot in 

Figure 11c, and the results of the Ljung–Box test in Table 6 (Q statistic = 393.9; p-value = 

0.000). This test suggests that autocorrelation remained in the residuals. As can be seen 

from Table 6, the null hypothesis was rejected in only this one case, i.e., for the ARIMA 

(0,0,1) model. The highest values of AIC = −93.1, AICc = −94.8, and SIC = −88.0 were 

achieved by this model, which also confirms the conclusion of its inappropriateness for 

the variable of interest. 
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Figure 11. Plots for the ARIMA (0,0,1) model for 0116 dataset: (a) time series plot; (b) autocorrela-

tions function plot; (c) partial autocorrelations function plot. 

Figure 10. Plots for the ARIMA (1,0,0) model residuals for 0116 dataset: (a) time series plot;
(b) autocorrelations function plot; (c) partial autocorrelations function plot.

Figure 11 shows the plots for the ARIMA (0,0,1) model for the 0116 dataset. This
model follows the formula xt = 20.649 + εt − 0.791 · εt−1. The p-Value is equal to 0.000
for both the constant µ̂ and the θ̂1 parameter, and therefore it can be stated that both are
statistically significant for α ≤ 0.05. In Figure 11a, it can be seen that the mean and variance
of the residuals are not stable; an increasing trend is visible. The presence of significant
autocorrelation is confirmed by the five values exceeding the upper red lines in the ACF plot
in Figure 11b, by two values exceeding the upper red lines in the PACF plot in Figure 11c,
and the results of the Ljung–Box test in Table 6 (Q statistic = 393.9; p-value = 0.000). This
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test suggests that autocorrelation remained in the residuals. As can be seen from Table 6,
the null hypothesis was rejected in only this one case, i.e., for the ARIMA (0,0,1) model. The
highest values of AIC = −93.1, AICc = −94.8, and SIC = −88.0 were achieved by this model,
which also confirms the conclusion of its inappropriateness for the variable of interest.
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Figure 10. Plots for the ARIMA (1,0,0) model residuals for 0116 dataset: (a) time series plot; (b) au-

tocorrelations function plot; (c) partial autocorrelations function plot. 
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Figure 11. Plots for the ARIMA (0,0,1) model for 0116 dataset: (a) time series plot; (b) autocorrela-

tions function plot; (c) partial autocorrelations function plot. 
Figure 11. Plots for the ARIMA (0,0,1) model for 0116 dataset: (a) time series plot; (b) autocorrelations
function plot; (c) partial autocorrelations function plot.

The last model in Table 6 is the ARIMA (1,1,1) model that follows the formula
xt = 0.007 + (1 + 0.723) · xt−1 + εt − 0.973 · εt−1. All its parameters are statistically sig-
nificant. Figure 12a shows that the mean of the residuals is stable. Figure 12b,c shows a
damped sinusoidal behaviour of ACF and PACF, respectively. In neither of these plots are
the two standard deviation limits exceeded. These plots confirm the absence of significant
autocorrelation of the residuals as well as the result of the Ljung–Box test (Q statistic = 20.9;
p-Value = 0.464). The AIC =−191.5, AICc =−193.4, and SIC =−181.3 values are the smallest
in the group of models studied. It should be noted that ARIMA (1,1,1) is the best-fitting
model of all in Table 6 and it is appropriate for the variable of interest.
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Figure 12. Plots for ARIMA (1,1,1) model residuals for the 0116 dataset: (a) time series plot of first 

difference; (b) autocorrelations function plot; (c) partial autocorrelations function plot. 

3.2.3.2. The Use of the Traditional Control Charts for Residuals of Selected ARIMA  

Models 

Figure 13 shows three traditional control charts for the ARIMA (1,1,1) model residu-

als of dataset 0116, which was selected as the best of the compared models in Phase I. The 

target mean for residuals is set to 0 and the target standard deviation is set to 0.5 in all 

three control charts. The residuals in the control charts show a stationary pattern. 

Shewhart’s control chart (control chart without memory) in Figure 13a for the 13th indi-

vidual value signals an over-run of the upper control limit. Similarly, the CUSUM control 
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Figure 13. Traditional control charts for residuals of ARIMA (1,1,1) model of the dataset 0116: (a) 

Shewhart control chart; (b) CUSUM control chart; (c) EWMA control chart. 

Figure 12. Plots for ARIMA (1,1,1) model residuals for the 0116 dataset: (a) time series plot of first
difference; (b) autocorrelations function plot; (c) partial autocorrelations function plot.

3.2.3.2. The Use of the Traditional Control Charts for Residuals of Selected ARIMA Models

Figure 13 shows three traditional control charts for the ARIMA (1,1,1) model residuals
of dataset 0116, which was selected as the best of the compared models in Phase I. The
target mean for residuals is set to 0 and the target standard deviation is set to 0.5 in all three
control charts. The residuals in the control charts show a stationary pattern. Shewhart’s
control chart (control chart without memory) in Figure 13a for the 13th individual value
signals an over-run of the upper control limit. Similarly, the CUSUM control chart (control
chart with uniform and unlimited memory) signals the crossing of the upper decision
interval limit (Figure 13b). The sudden shift in residuals did not cause the upper limit in
the EWMA control chart (control chart with uneven and unlimited memory) to be exceeded
(Figure 13c). The shift was damped by the value of the parameter λ, which was set to 0.5.
Since all outliers were excluded from the 0116 dataset at the beginning of the processing
prior to calculating the residuals, the EWMA control chart appears to be the best; therefore,
it gives signals that the process is under control.
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Figure 12. Plots for ARIMA (1,1,1) model residuals for the 0116 dataset: (a) time series plot of first 

difference; (b) autocorrelations function plot; (c) partial autocorrelations function plot. 

3.2.3.2. The Use of the Traditional Control Charts for Residuals of Selected ARIMA  

Models 

Figure 13 shows three traditional control charts for the ARIMA (1,1,1) model residu-

als of dataset 0116, which was selected as the best of the compared models in Phase I. The 
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Figure 13. Traditional control charts for residuals of ARIMA (1,1,1) model of the dataset 0116: (a) 

Shewhart control chart; (b) CUSUM control chart; (c) EWMA control chart. 
Figure 13. Traditional control charts for residuals of ARIMA (1,1,1) model of the dataset 0116:
(a) Shewhart control chart; (b) CUSUM control chart; (c) EWMA control chart.

Subsequently, in Phase II, the parameters calculated for the 0116 dataset in Phase
I. were used for the 0216 dataset obtained in February. The three control charts for the
residuals of the ARIMA (1,1,1) model of the 0216 dataset are shown in Figure 14.
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Figure 15. Dynamic EWMA control charts for individual data of the three datasets: (a) 0116; (b) 0117; 

(c) 0118. 
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Figure 14. Traditional control charts for residuals of ARIMA (1,1,1) model of the dataset 0216:
(a) Shewhart control chart; (b) CUSUM control chart; (c) EWMA control chart.

Shewhart’s control chart (Figure 14a) detects two important signals. The 68th individ-
ual value lies just above the upper control limit and the next value lies below the lower
control limit. The CUSUM control chart (Figure 14b) shows up to ten values below the
lower control limit. The EWMA control chart (Figure 14c) provides no signal of exceeding
the control limits.

The disadvantage of using control charts for the residuals of ARIMA models is that
the scaling of the y-axis does not correspond to the measured values of the coking time.
This can be inconvenient for the operator monitoring the coking process.

3.2.3.3. The Use of the Dynamic EWMA Control Chart

The dynamic EWMA control chart for individual measurements with the optimum
value equal to 0.33 was calculated using the procedure described in Section 3.2.1 during
Phase I. The initial EWMA0 value was equal to the mean target value µ0 = 22. Figure 15
shows these control charts for the three processed datasets. The control limits change
dynamically and adapt to changes in the coking time values. Since all outliers were
excluded at the beginning of the processing, the control limits are not exceeded in any of
the control charts, i.e., all three charts show a process that is in a state of statistical control.
The calculated λ and σa parameters for datasets 0116, 0117, and 0118 were applied to the
other three datasets obtained in February (0216, 0217, 0218) during Phase II. Outliers have
not been removed from these datasets, and, as can be seen in the control charts in Figure 16,
there are several cases where the dynamic control limits are exceeded.
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The advantage of a dynamic EWMA control chart, as opposed to traditional control
charts applied to residuals, is that it contains directly measured coking time data. The
scaling of the y-axis corresponds to the unmeasured values and thus the monitoring of the
coking process is more convenient for the operator than with control charts using residuals.
The disadvantage of this control chart is that the control limits are not constant but change
dynamically and must therefore have to be calculated for every new observation.

3.2.4. The Use of the Non-Parametric Control Chart

The main advantage of nonparametric control charts is their general flexibility since
their use does not require the assumption of a particular probability distribution for the
measured data to be satisfied. However, they do require the creation of samples of the
measured data for every period; their application to coking time data is not possible. The
individual values refer to different chambers of the coke battery and it is therefore not
logical to justify their association into samples.

4. Conclusions
4.1. Summary of the Study

One of the assumptions for effective and efficient monitoring of the quality of tech-
nological processes is the use of appropriate statistical tools. Statistical process control is
widely used to monitor the quality of a process or its final product. Control charts allow
continuous monitoring of the process, making it easier to identify assignable causes in time
so that corrective action can be taken and the process can be brought back under control.

Coking time data for three selected days in two consecutive months (January and
February) were analysed. The January datasets were used to validate the assumptions
about the coking time under study and to calculate the parameters of the control charts
in Phase I. The February datasets were used to monitor the processes in Phase II, when
control charts with calculated control limits were used.
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From many existing control charts, we found a suitable type for monitoring the
quality of the coke production process in the coke battery. The basic assumptions for using
traditional control charts for variables are normality, homoscedasticity, constant mean, and
independent data (i.e., data without autocorrelation). Multiple comparable alternatives
were used in testing the assumptions to ensure that decisions were not based on a single
outcome. This procedure is appropriate and recommended for similar situations. The
normality of the data was verified by Anderson–Darling’s test, Ryan–Joiner’s test, and
Kolmogorov–Smirnov’s test. Through Bartlett’s test, Levene’s test, and Kruskal–Wallis’
test, the coke production process was found to be non-stationary in terms of coking time.
Based on the ACF and PACF plots, it was found that the coking time variable shows a
significant positive autocorrelation. The observed data came from an approximately normal
distribution but were not shown to be stable, have constant variability, and be independent.
The use of traditional control charts to monitor the coking process would result in a high
incidence of false signals.

For the autocorrelated variables, four possible ways forward were identified based on
the literature: the extension of the control interval; the use of traditional control charts with
modified control limits; the use of traditional control charts, or slightly modified versions
of them, for residuals of time series models; and the use of non-parametric control charts.
Based on an examination of the nature of the variable under study, the best of these options
is the application of traditional control charts to the residuals of time series models.

Different types of ARIMA models have been validated and their suitability for the
variable of interest has been assessed under several criteria. First, a test was used to
assess the significance of the calculated parameters of the models. Next, it was determined
which model had the lowest value of means square error s2 and, conversely, the highest
value of the adjusted coefficient of determination R2. Autocorrelation was removed from
the residuals due to the introduction of the autoregressive and/or integrated part of the
ARIMA model, and its absence was verified using Ljung–Box’s test and using the ACF
and PACF plots. The calculations showed that the coking process can be evaluated as a
homogeneously non-stationary autocorrelated process based on the coking time. All of the
calculated criteria confirm that this model is the best fit for the variable of interest. The
suitability of this model has also been demonstrated by traditional control charts applied
to its residuals. The dynamic EWMA control chart proved to be even more suitable for
monitoring the coking time. Its advantage is that it uses directly measured coking time data,
not residuals. The scaling of the y-axis corresponds to the measured values and therefore
monitoring the coking process is more convenient for the operator than with control charts
using residuals.

The aim of this study was not to develop a model of the high-temperature carboniza-
tion process in the coke oven chamber, nor was it concerned with the thermal behaviour
of the heating walls in the coke oven battery as in, e.g., Smolka et al. [80]. It was not
the intention of the study to create a new type of control chart, nor to develop a general
methodology for the application of control charts in the field. The aim was to assess and
select a suitable tool for monitoring the selected control variable of the coking process from
the large number of existing control chart types.

The presented EWMA dynamic control chart for individual measurements serves to
monitor the coking time as one of the important control variables of the coking process.
It is not intended for direct intervention in the coking process; its role is only to alert the
process operator to the occurrence of problems with this control variable.

The goal of this study was not to look for complex solutions, but rather to find the
simplest possible control chart that process operators could use to quickly identify the
occurrence of a problem in coke production. The application of existing control charts in
a new area, namely metallurgical coke production, is the main contribution of this study.
Considering the lack of papers oriented to the implementation of control charts in this area,
the presented approach could be an inspiration for other authors to address similar issues.
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4.2. Options for Further Research Direction

Further research on monitoring the coking process could be oriented in three directions.
The first one is to extend this research to other months. The second direction could make use
of multivariable control charts, and the third could be based on the monitoring of profiles.

Data from 3 days of one month were used to calculate the parameters of the control
charts in Phase I, and data from the next 3 days of the following month were used to
verify them in Phase II. These were the winter months when coking times are longer due
to the lower temperature and higher moisture content of the hard coking coal—the coke
battery charge—than in the summer months. Therefore, it would be advisable to extend
this research to summer months of the year when the parameters of the charge are different
due to the weather.

Multivariate control charts, which have been in use since 1947, allow processes to
be monitored based on the simultaneous use of multiple control variables [14]. The T2

control chart, the multivariate EWMA control chart, and the multivariate CUSUM chart
were developed by extending traditional control charts for a single variable. Their use
is currently of interest because automatic control procedures allow multiple regulated
variables to be measured simultaneously with relative ease. These control charts are
more complex in their construction, and more difficult and complicated to interpret. A
multidimensional variable used in a control chart does not give a completely unambiguous
signal as to which, if any, of the original control variables are out of control. Designing an
appropriate control intervention can therefore be problematic; nevertheless, it would be
useful to validate this line of research in practice.

Process monitoring using control charts can be based not only on the monitoring of
characteristics of quality, as used in this study, but also on the monitoring of profiles. In that
case, process quality is modelled through a functional relationship between a response (de-
pendent) variable and one or more explanatory (independent) variables. Profile monitoring,
as a specialized field in SPC, emerged in the last two decades of the twentieth century. It is
carried out similarly to the monitoring of characteristics of quality in two phases. Studies
using different types of profiles (single and multiple linear profiles, nonlinear profiles,
semiparametric and nonparametric profiles, and geometric and spatial profiles) have been
published [92,93]. Certain assumptions must be verified when using profiles, as well as
when using characteristics. The assumption that observations between (between-profile
correlation) or within profiles (within-profile autocorrelation) are independent of each other
is often violated in manufacturing practice. Several methods accounting for autocorrelation
have been published [94–96]. For example, Yeganeh et al. describe the use of several
machine learning techniques instead of statistical approaches in monitoring autocorrelated
linear profiles [97].

The availability of suitable methods, together with technological advances, makes it
possible to collect and process a large number of process control variables. This opens the
way for the application of these approaches to coking process monitoring too.
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