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Abstract: The aim of this paper is to focus on a fuzzy metric called Deng’s metric in [0, 1]-topology.
Firstly, we will extend the domain of this metric function from M0 ×M0 to M×M, where M0 and M
are defined as the sets of all special fuzzy points and all standard fuzzy points, respectively. Secondly,
we will further extend this metric to the completely distributive lattice LX and, based on this extension
result, we will compare this metric with the other two fuzzy metrics: Erceg’s metric and Yang-Shi’s
metric, and then reveal some of its interesting properties, particularly including its quotient space.
Thirdly, we will investigate the relationship between Deng’s metric and Yang-Shi’s metric and prove
that a Deng’s metric must be a Yang-Shi’s metric on IX , and consequently an Erceg’s metric. Finally,
we will show that a Deng’s metric on IX must be Q− C1, and Deng’s metric topology and its uniform
structure are Erceg’s metric topology and Hutton’s uniform structure, respectively.
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1. Introduction

In 1968, C.L. Chang [1] introduced the fuzzy set theory of Zadeh [2] into general
topology [3] for the first time, which declared the birth of [0, 1]-topology. Soon after that,
J.A. Goguen [4] further generalized the L-fuzzy set to the proposed [0, 1]-topology and
his theory has been recognized as L-topology nowadays. From then on, this kind of
lattice-valued topology formed another important branch of topology and thereafter many
creative results and original thoughts have been presented (see [5–38], etc.).

Nevertheless, how to reasonably generalize the classical metric to the lattice-valued
topology has always been a great challenge. So far, there are a significant number of fuzzy
metrics introduced in the branch of learning (see [6,12,14,15,29–33,39–42], etc.). Considering
that the codomain is either ordinary number or fuzzy number, these metrics are roughly
divided into two types.

One type is composed of these metrics, each of which is defined by such a function
whose distance between objects is fuzzy, while the objects themselves are crisp. Addi-
tionally, each of them always induces a fuzzifying topology. In recent years, these met-
rics have been promoted by many experts, such as I. Kramosil, J. Michalek, A. George,
P. Veeramani, V. Gregori, S. Romaguera, J. Gutiérrez García, S. Morillas, F.G. Shi, etc.
(see [17,18,32,33,40,43–49], etc.).

The other type consists of these metrics, each of which is defined by such a mapping
p : M×M → [0,+∞), where M is the set of all standard fuzzy points of the underlying
classical set X. In this case, every such fuzzy metric always induces a fuzzy topology
(see [6,12–14,31,36], etc.).
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Regarding the latter, there are roughly three kinds of fuzzy metrics in the history, with
which the academic community has gradually become familiar. Regarding the three fuzzy
metrics, we will list them below one by one.

The first is Erceg’s metric, presented by M.A. Erceg [14] in 1979. Since then, many
scholars have been engaged in its research and have obtained many compelling results on
this fuzzy metric. Among them, a typical conclusion is the Urysohn’s metrization theorem
presented by J.H. Liang [24] in 1984: an L-topological space is Erceg-metrizable if it is T1,
regular and CI I . In 1985, M.K. Luo [26] listed an example of Erceg’s metric on IX whose
metric topology has no σ-locally finite base. Therefore, the [0, 1]-topological space of this
example is not CI I , of course. Later on, based on Peng’s simplification method [50], Erceg’s
metric was further simplified by P. Chen and F.G. Shi (see [9,10]) as seen below:

(I) An Erceg’s pseudo-metric on LX is a mapping p : M×M → [0,+∞) satisfying the
following properties:

(A1) if a ≥ b, then p(a, b) = 0;

(A2) p(a, c) ≤ p(a, b) + p(b, c);

(B1) p(a, b) =
∨

c�b
p(a, c);

(A3) ∀a, b ∈ M, ∃x 6≤ a′ s.t. p(b, x) < r ⇔ ∃y 6≤ b′ s.t. p(a, y) < r.

An Erceg’s pseudo-metric p is called an Erceg’s metric if it further satisfies the following
property:

(A4) if p(a, b) = 0, then a ≥ b.

where “�′′ is the way below relation in domain theory and LX is a completely distributive
lattice [51–53].

The second is Yang-Shi’s metric (or p.q. metric), proposed by L.C. Yang [36] in 1988,
where Yang also showed such a result: each topological molecular lattice with CI I property
is p.q.-metrizable. After that, this kind of metric was studied in depth by F.G. Shi and P.
Chen (see [9,10,29–31], etc.), whose definition is as follows:

(II) A Yang-Shi’s pseudo-metric (resp., Yang-Shi’s metric) on LX is a mapping p : M×
M→ [0,+∞) satisfying (A1)–(A3) (resp., (A1)–(A4)) and the following property:

(B2) p(a, b) =
∧

c�a
p(c, b).

The third is Deng’s metric, supplied by Z.K. Deng [12] in 1982. Soon, Deng [13]
proved that if a [0, 1]-topological space is T1, regular and CI I , then it is Deng-metrizable.
Unfortunately, since Deng’s research is only limited to this special lattice IX and the family
of special fuzzy points M0 (see Definition 1), not many scholars later studied this metric.
In this paper, we will extend the domain of Deng’s pseudo-metric from IX to LX and its
definition from M0 to a class of standard fuzzy points M (see Definition 8 in this paper) as
seen below:

(III) An extended Deng’s pseudo-metric (resp., extended Deng’s metric) on LX is a mapping
p : M×M→ [0,+∞) satisfying (A1)–(A3) (resp., (A1)–(A4)) and the following condition:

(B3) p(a, b) =
∧

b�c
p(a, c).

Therefore, based on this extension result, we will compare this metric with the other
two fuzzy metrics, Erceg’s metric and Yang-Shi’s metric, and then reveal some of its
interesting properties, particularly including its quotient space. Additionally, we will
investigate the relationship between Deng’s metric and Yang-Shi’s metric and prove that
a Deng’s metric must be a Yang-Shi’s metric on IX, and consequently a Deng’s metric
also must be an Erceg’s metric. Finally, we also will show that a Deng’s metric on IX

must be Q− C1, and Deng’s metric topology and its uniform structure are Erceg’s metric
topology [14] and Hutton’s uniform structure [22], respectively.
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2. Preliminaries

All through this paper, (L,
∨

,
∧

,′ ) is a completely distributive lattice with an order-
reversing involution “ ′ ” [51,52]. X is a nonempty set. L-fuzzy set in X is a mapping
A : X → L, and LX is the set of all L-fuzzy sets. If L = [0, 1] and denote [0, 1] as I,
then each element in IX is claimed a fuzzy set in X [2]. A subfamily δ of IX is called a
[0, 1]-topology if it satisfies the following three conditions: (O1) 1, 0 ∈ δ; (O2) if A, B ∈ δ,
then A ∧ B ∈ δ; (O3) if {Aλ | λ ∈ Λ} ⊆ δ, then

∨
λ∈Λ

Aλ ∈ δ. The pair (X, δ) is called a

[0, 1]-topological space. Two fuzzy sets A and B are quasi-coincidence if there is x such that
A(x) + B(x) > 1 (see [53–55]). An open set A [12] is called an open neighborhood of xλ if
λ < A(x). X(x) ≡ 1 and X(x) ≡ 0 are denoted by 1 and 0, respectively. And a is way below
b, denoted by a� b, if and only if for every directed subset D ⊆ LX , the relation b ≤ sup D
always implies the existence of d ∈ D with a ≤ d (“≤” refers to the following Definition 3).
A family of fuzzy sets Ψ is called locally finite (resp., discrete) in a space (X, δ) if and only if
each fuzzy point xλ of the space has an open neighborhood which is quasi-coincidental
with only finitely many members (resp., at most one member) of Ψ (see [52]). A family of
fuzzy sets is called σ-locally finite (resp., σ-discrete) in a space (X, δ) if and only if it is the
union of a countable number of locally finite (resp., discrete) subfamilies. A subfamily σ of
IX (resp., σ of δ) is called a (resp., an open) cover of a fuzzy set A in a space (X, δ) if for each
xα ∈ A, there exists B belonging to σ such that xα ∈ B. Stipulate ∨∅ = 0, and ∧∅ = 1.

In addition, the subsequent proofs also require some preliminary knowledge of defini-
tions and theorems as follows:

Definition 1 ([12]). A special fuzzy point xλ in X is a fuzzy set with membership function
xλ : X → I defined by

xλ(y) =
{

λ, y = x;
0, y 6= x,

where λ ∈ (0, 1). xλ(y) is usually written simply as xλ. x, λ, and x1−λ are called support, value, and
complementary point of xλ, respectively, and the family of all special fuzzy points is denoted by M0.

With the help of the above special fuzzy point, Deng [12] put forward a type of fuzzy
metric as follows:

Definition 2 ([12]). A Deng’s pseudo-metric on IX is a mapping p : M0 × M0 → [0,+∞)
satisfying the following conditions:

(A1) if λ1 ≥ λ0, then p(xλ1 , xλ0) = 0;

(A2) p(xλ1 , zλ3) ≤ p(xλ1 , yλ2) + p(yλ2 , zλ3);

(A3) if p(xλ1 , yλ2) < r, then ∃λ′ > λ2 such that p(xλ1 , yλ′) < r;

(A4) p(xλ1 , yλ2) = p(y1−λ2 , x1−λ1).

A Deng’s pseudo-metric p is called a Deng’s metric if it further satisfies the following condition:

(A5) if p(xλ1 , yλ2) = 0, then x = y, λ1 ≥ λ2.

Definition 3 ([12]). Let xα, yβ belong to M and let A, B be fuzzy sets in X. Then,

(1) xα ≤ A⇔ α ≤ A(x);

(2) xα ∈ A⇔ α < A(x);

(3) xα ≤ yβ ⇔ x = y, α ≤ β;

(4) A = B′ ⇔ A(x) = 1− B(x), ∀x ∈ X.

Definition 4 ([12]). Let p be a Deng’s pseudo-metric on IX and let r ≥ 0 and a ∈ M0. Define
Ur(a) =

∨{b ∈ M0 | p(a, b) < r}. Then, Ur(a) is called an open sphere of p.
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Theorem 1 ([12]). If p is a Deng’s pseudo-metric on IX, then the family of arbitrary unions of
members of open spheres {Ur(a) | a ∈ M0, r ∈ [0,+∞)} is a fuzzy topology denoted by ζp, and
{Ur(a) | a ∈ M0, r ∈ [0,+∞)} is a base for ζp.

Therefore, the pair (IX , ζp) and ζp are called Deng’s pseudo-metric space and Deng’s
pseudo-metric topology, respectively.

Definition 5 ([12]). The closure A of a fuzzy set A is the intersection of the members of the family
of all fuzzy closed sets containing A.

Definition 6 ([13]). (IX , δ) is T1 if and only if for each q ∈ M0, q = q.

Definition 7 ([52]). (IX , δ) is said the second axiom of countability denoted by CI I if and only if
there is a countable base for δ.

Pu and Liu [54] and Wang [52] have developed convincing theories about the Q-
neighborhood and Remote-neighborhood, respectively. Therefore, corresponding with
these theories, nowadays a standard fuzzy point on IX has been accepted widely as follows:

Definition 8 ([52–54]). yα(x) ∈ IX is called a standard fuzzy point if yα(x) satisfies

yα(x) =
{

α, y = x;
0, y 6= x,

where α ∈ (0, 1]. For convenience, yα(x) is denoted by yα. The set of all standard fuzzy points is
denoted by M.

Definition 9. For any r ≥ 0 and a ∈ M, define Br(a) =
∨{b | p(a, b) ≤ r}, where p is a

mapping from M×M to [0,+∞).

Definition 10 ([24,25,54]). Let (X, δ) be a [0, 1]-topological space. An open set B is called an
open neighborhood of a fuzzy set A if A < B. An open set A is called a Q-neighborhood of xλ if
λ + A(x) > 1. If the family Q(xλ) = {A | A is a Q-neighborhood of xλ} is countable for each xλ,
then the space (X, δ) is called Q− C1.

Theorem 2 ([30]). If p is a Yang-Shi’s pseudo-metric on LX , then it is Q− CI .

Theorem 3 ([12]). If p is a Deng’s pseudo-metric on IX , then for any A ∈ IX , A◦ =
∨{a | ∃r >

0, a ∈ M0, Ur(a) ≤ A}.

Theorem 4 ([12]). Let υ belong to IX . Then, υ =
∨{xα ∈ M0 | xα ∈ υ}=∨{xλ ∈ M0 | xλ ≤ υ}.

Definition 11 ([12]). A fuzzy point xα is called a cluster point of a fuzzy set A if and only if each
neighborhood of x1−α is quasi-coincidence with A.

Theorem 5 ([12,52]). Let A be a fuzzy set. Then, xα ≤ A if and only if xα is a cluster point of A.
Evidently, A =

∨{xα | xα is a cluster point of A}.

Theorem 6 ([30]). Let p be a Yang-Shi pseudo-metric on LX and define Pr(b) =
∨{c ∈ M |

p(c, b) ≥ r}. Then, for c, b ∈ M, c ≤ Pr(b)⇔ p(c, b) ≥ r.

Theorem 7 ([10]). Let p be a Erceg pseudo-metric on IX. For any a ∈ M0 and each r ∈ [0, 1)
define Br(a) =

∨{b ∈ M0 | p(a, b) ≤ r}. Then,

1. Br(a) = Br(a);
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2. b ≤ Br(a)⇔ p(a, b) ≤ r.

Theorem 8 ([10]). If p is a Yang-Shi pseudo-metric on LX, then it is an Erceg pseudo-metric.
However, the converse is not true.

3. Expansion Theorem of Deng’s Metric

In this section, we will show that Deng’s metric can be equivalently defined by using
M0 and M, and then its corresponding metric topology and uniform structure are Erceg’s
metric topology [14] and Hutton’s uniform structure [22], respectively.

Definition 12. An extended Deng’s pseudo-metric metric on IX is a mapping p : M × M →
[0,+∞) satisfying the following conditions:

(E1) if a ≥ b, then p(a, b) = 0;

(E2) p(a, c) ≤ p(a, b) + p(b, c);

(E3) p(a, b) =
∧

b<c
p(a, c);

(E4) ∀a, b ∈ M, ∃x 6≤ b
′
such that p(a, x) < r ⇔ ∃y 6≤ a

′
such that p(b, y) < r.

Theorem 9. If p is a Deng’s pseudo-metric on IX, then p can be extended to p∗ : M × M →
[0,+∞) and p∗ is an extended Deng’s pseudo-metric.

Proof. Based on the given conditions, we can construct a mapping p∗ : M×M→ [0,+∞)
as follows:

(a) i f a, b ∈ M0, then p∗(a, b) = p(a, b);

(b) i f a ∈ M0, b = y1, then p∗(a, y1) =
∨

e<1
p(a, ye);

(c) i f a = x1, b ∈ M0, then p∗(x1, b) =
∧

e<1
p(xe, b);

(d) i f a = b = y1, then p∗(y1, y1) = 0;

(e) i f a = x1, b = y1, a 6= b, then p∗(x1, y1) =
∧

c<1
p∗(xc, y1) =

∧
c<1

∨
e<1

p(xc, ye).

Next, we will prove that p∗ satisfies (E1)–(E4) and p = p∗ | M0 ×M0.
(E1). Case 1. For any y1 ∈ M, by (d) we can obtain p∗(y1, y1) = 0. Case 2. For any

yλ ∈ M0, by (c) we can obtain p∗(y1, yλ) =
∧

α<1
p(yα, yλ) = 0. Therefore, p∗ satisfies (E1).

(E2). Case 1. Let x1, z1, b ∈ M. Assume that x1 = z1. Then, it is evident that
p∗(x1, yλ) + p∗(yλ, z1) ≥ p∗(x1, z1) = 0. Assume that x1 6= z1. Then, we can obtain the
following situations:

(1) Let b = yλ ∈ M0. By definition, we have

p∗(x1, z1) ≤ p∗(x1, yλ) + p∗(yλ, z1)⇔
∧

α<1

∨
γ<1

p(xα, zγ) ≤
∧

α<1

p(xα, yλ) +
∨

γ<1

p(yλ, zγ).

Since xα, zγ, yλ ∈ M0, it is true that p(xα, zγ) ≤ p(xα, yλ) + p(yλ, zγ). Therefore,
we have ∨

γ<1

p(xα, zγ) ≤ p(xα, yλ) +
∨

γ<1

p(yλ, zγ),

and then
∧

α<1

∨
γ<1

p(xα, zγ) ≤
∧

α<1
p(xα, yλ) +

∨
γ<1

p(yλ, zγ).

(2) Let b = y1. If y1 = x1 or y1 = z1, then

p∗(x1, z1) ≤ p∗(x1, y1) + p∗(y1, z1)⇔ p∗(x1, z1) ≤ p∗(x1, x1) + p∗(x1, z1) = p∗(x1, z1)
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or

p∗(x1, z1) ≤ p∗(x1, y1) + p∗(y1, z1)⇔ p∗(x1, z1) ≤ p∗(x1, z1) + p∗(z1, z1) = p∗(x1, z1).

Therefore, p∗ satisfies (E2).
Hence, let us assume that y1 6= x1 and y1 6= z1. In this case, we have the following

formula:

p∗(x1, z1) ≤ p∗(x1, y1) + p∗(y1, z1)⇔
∧

α<1

∨
γ<1

p(xα, zγ) ≤
∧

α<1

∨
β<1

p(xα, yβ) +
∧

β<1

∨
γ<1

p(yβ, zγ).

Since when xα, zγ, yβ ∈ M0, p(xα, zγ) ≤ p(xα, yβ) + p(yβ, zγ), we have

zγ :
∨

γ<1

p(xα, zγ) ≤ p(xα, yβ) +
∨

γ<1

p(yβ, zγ);

yβ :
∨

γ<1

p(xα, zγ) ≤ p(xα, yβ) +
∧

β<1

∨
γ<1

p(yβ, zγ);

yβ :
∨

γ<1

p(xα, zγ) ≤
∨

β<1

p(xα, yβ) +
∧

β<1

∨
γ<1

p(yβ, zγ);

xα :
∧

α<1

∨
γ<1

p(xα, zγ) ≤
∧

α<1

∨
β<1

p(xα, yβ) +
∧

β<1

∨
γ<1

p(yβ, zγ).

Therefore, p∗ still satisfies (E2).
Case 2. Let x1, zλ ∈ M0 and let b ∈ M.
(1) if b = yβ ∈ M0, then

p∗(x1, zλ) ≤ p∗(x1, yβ) + p∗(yβ, zλ)⇔
∧

α<1

p(xα, zλ) ≤
∧

α<1

p(xα, yβ) + p(yβ, zλ).

In fact, since for xα, zλ, yβ ∈ M0, p(xα, zλ) ≤ p(xα, yβ)+ p(yβ, zλ), we have
∧

α<1
p(xα, zλ)

≤ ∧
α<1

p(xα, yβ) + p(yβ, zλ). And so p∗ satisfies (E2).

(2) Let b = y1. If y1 = x1, then

p∗(x1, zλ) ≤ p∗(x1, y1) + p∗(y1, zλ)⇔ p∗(x1, zλ) ≤ p∗(x1, x1) + p∗(x1, zλ) = p∗(x1, zλ).

If y1 6= x1, then

p∗(x1, zλ) ≤ p∗(x1, y1) + p∗(y1, zλ)⇔
∧

α<1

p(xα, zλ) ≤
∧

α<1

∨
β<1

p(xα, yβ) +
∧

β<1

p(yβ, zλ).

Due to any xα, zλ, yβ ∈ M0, p(xα, zλ) ≤ p(xα, yβ) +
∧

β<1
p(yβ, zλ), we have the follow-

ing formulas:

yβ : p(xα, zλ) ≤
∨

β<1

p(xα, yβ) +
∧

β<1

p(yβ, zλ);

xα :
∧

α<1

(xα, zλ) ≤
∧

α<1

∨
β<1

p(xα, yβ) +
∧

β<1

p(yβ, zλ).

Therefore, p∗ fulfills (E2).
Case 3. Let xλ ∈ M0 and let z1, b ∈ M.
(1) Assume that b ∈ M0. Then,
p∗(xλ, z1) ≤ p∗(xλ, b) + p∗(b, z1)⇔

∨
α<1

p(xλ, zα) ≤ p(xλ, b) +
∨

α<1
p(b, zα).

For any zα ∈ M0, we can obtain
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p(xλ, zα) ≤ p(xλ, b) + p(b, zα).

Furthermore, we have

zα :
∨

α<1

p(xλ, zα) ≤ p(xλ, b) +
∨

α<1

p(b, zα).

Therefore, p∗ satisfies (E2).
(2) Assume that b = y1. Then, we have the following two cases:
If y1 = z1, then

p∗(xλ, z1) ≤ p∗(xλ, y1) + p∗(y1, z1)

⇔ p∗(xλ, z1) ≤ p∗(xλ, z1) + p∗(z1, z1) = p∗(xλ, z1).

If y1 6= z1, then
p∗(xλ, z1) ≤ p∗(xλ, y1) + p∗(y1, z1)

⇔
∨

α<1

p(xλ, zα) ≤
∨

β<1

p(xλ, yβ) +
∧

γ<1

∨
δ<1

p(yγ, zδ).

For xλ, zα, yβ ∈ M0, we have

p(xλ, zα) ≤ p(xλ, yβ) + p(yβ, zα).

zα : p(xλ, zα) ≤ p(xλ, yβ) +
∨
δ<1

p(yβ, zδ).

yβ : p(xλ, zα) ≤ p(xλ, yβ) +
∧

γ<1

∨
δ<1

p(yγ, zδ),

yβ : p(xλ, zα) ≤
∨

β<1

p(xλ, yβ) +
∧

γ<1

∨
δ<1

p(yγ, zδ),

zα :
∨

α<1

p(xλ, zα) ≤
∨

β<1

p(xλ, yβ) +
∧

γ<1

∨
δ<1

p(yγ, zδ).

Therefore, in this case, p∗ still satisfies (E2).
Case 4. Let xα, zγ ∈ M0 and let b ∈ M.
(1) If b = yβ ∈ M0, then

p∗(xα, zγ) ≤ p∗(xα, yβ) + p∗(yβ, zγ)⇔ p(xα, zγ) ≤ p(xα, yβ) + p(yβ, zγ).

(2) If b = y1, then

p∗(xα, zγ) ≤ p∗(xα, y1) + p∗(y1, zγ)⇔ p(xα, zγ) ≤
∨

β<1

p(xα, yβ) +
∧

β<1

p(yβ, zγ).

For xα, zγ, yβ ∈ M0, we have

p(xα, zγ) ≤ p(xα, yβ) + p(yβ, zγ).

Taking union and intersection for yβ, respectively, we can obtain

p(xα, zγ) ≤
∨

β<1

p(xα, yβ) +
∧

β<1

p(yβ, zγ).

Hence, p∗ fulfills (E2).
In summary, p∗ satisfies (E2).
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(E3). Case 1. Let xλ1 , yλ2 ∈ M0. Since p∗ satisfies (E1) and (E2), we have p∗(xλ1 , y1) ≥
p∗(xλ1 , yλ). Thus,

p∗(xλ1 , yλ2) =
∧

1>s>λ2

p∗(xλ1 , ys) ∧ p∗(xλ1 , y1)⇔ p(xλ1 , yλ2) =
∧

s>λ2

p(xλ1 , ys).

Therefore, we have
p(xλ1 , yλ2) =

∧
s>λ2

p(xλ1 , ys).

Therefore, p∗ satisfies (E3).
Case 2. Let xλ1 ∈ M0 and let yλ2 = y1.
Since p∗ satisfies (E1) and (E2), we can obtain

p∗(xλ1 , y1) =
∧
s>1

p∗(xλ1 , ys).

Case 3. Let xλ1 = x1 and let yλ2 ∈ M0. Then, we have

p∗(x1, yλ2) =
∧

β>λ2

p∗(x1, yβ)⇔
∧

α<1

p(xα, yλ2) =
∧

β>λ2

∧
α<1

p(xα, yβ).

Since p∗ satisfies (E1) and (E2), it is true that p∗(x1, yλ2) ≤
∧

β>λ2

p∗(x1, yβ).

Conversely,
∀e ≤

∧
β>λ2

p∗(x1, yβ) =
∧

β>λ2

∧
α<1

p(xα, yβ)

⇒ ∀β > λ2, e ≤
∧

α<1

p(xα, yβ)⇒ ∀β > λ2, ∀α < 1, e ≤ p(xα, yβ)

⇒ ∀α < 1, e ≤
∧

β>λ2

p(xα, yβ) = p(xα, yλ2)

⇒ e ≤
∧

α<1

p(xα, yλ2) = p∗(x1, yλ2)

⇒ p∗(x1, yλ2) ≥
∧

β>λ2

p∗(x1, yβ).

Case 4. Let xλ1 = x1 and let yλ2 = y1. This situation is meaningless and negligible.
In summary, p∗ satisfies (E3).
(E4). Let xλ1 , yλ2 ∈ M.
Case 1. Let xλ1 = x1 and let yλ2 = yλ ∈ M0.
Since (E4)⇔ ∧

s>1−λ2

p∗(xλ1 , ys) =
∧

h>1−λ1

p∗(yλ2 , xh), we need to testify

∧
s>1−λ

p∗(x1, ys) =
∧

h>0

p∗(yλ, xh).

(1) Let x1 = y1. Owing to
∧

s>1−λ
p∗(x1, ys) =

∧
1>s>1−λ

p∗(y1, ys) ∧ p∗(y1, y1) = 0 and

∧
h>0

p∗(yλ, xh) =
∧

1>h>0

p∗(xλ, xh) ∧ p∗(xλ, x1)

=
∧

h>0

p(xλ, xh) ∧ p∗(xλ, x1) = 0 (Because h > 0⇒ ∃h = λ⇒ p(xλ, xλ) = 0),

we can obtain
∧

s>1−λ
p∗(x1, ys) =

∧
h>0

p∗(yλ, xh).
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(2) Let x1 6= y1. By (E1) and (E2), we have p∗(x1, ys) ≤ p∗(x1, y1) and p∗(yλ, xh) ≤
p∗(yλ, x1). Thus,∧

s>1−λ

p∗(x1, ys) =
∧

h>0

p∗(yλ, xh)⇔
∧

1>s>1−λ

p∗(x1, ys) ∧ p∗(x1, y1) =

∧
s>1−λ

∧
α<1

p(xα, ys) =
∧

1>h>0

p∗(yλ, xh) ∧ p∗(yλ, x1) =
∧

1>h>0

p(yλ, xh).

Therefore, we need to prove∧
s>1−λ

∧
α<1

p(xα, ys) =
∧

1>h>0

p(yλ, xh).

In fact, by (A4) we have∧
s>1−λ

∧
α<1

p(xα, ys) =
∧

s>1−λ

∧
α<1

p(y1−s, x1−α) =
∧

β<λ

∧
γ>0

p(yβ, xγ).

Thus, we need to prove∧
1>h>0

p(yλ, xh) =
∧

β<λ

∧
γ>0

p(yβ, xγ).

This proof is as follows: for each e ≤ ∧
β<λ

∧
γ>0

p(yβ, xγ), we can obtain

e ≤
∧

β<λ

∧
γ>0

p(yβ, xγ)⇔ ∀β < λ and ∀γ > 0, e ≤ p(yβ, xγ)⇔ ∀γ > 0 have e ≤
∧

β<λ

p(yβ, xγ)

⇔ ∀γ > 0, e ≤
∧

β<λ

p(yβ, xγ) = p(yλ, xγ)⇔ e ≤
∧

γ>0
p(yλ, xγ) =

∧
h>0

p(yλ, xh).

Conversely, it is true for inequality similarly.
Case 2. Let xλ1 = xλ ∈ M0 and let yλ2 = y1. By above Case 1 and (A4), we exchange

x1 and yλ to fulfill. This proof is omitted.
Case 3. Let xλ1 = x1 and let yλ2 = y1.
Since∧

s>1−λ2

p∗(xλ1 , ys) =
∧

h>1−λ1

p∗(yλ2 , xh)⇔
∧

s>0
p∗(x1, ys) =

∧
h>0

p∗(y1, xh)

⇔
∧
s>0

(
∧
t<1

p(xt, ys)) =
∧

h>0

(
∧
r<1

p(yr, xh)) =
∧

h>0

(
∧
r<1

p(x1−h, y1−r))

=
∧

h>0

(
∧

v>0
p(x1−h, yv)) =

∧
u<1

(
∧

v>0
p(xu, yv)),

it is necessary to prove ∧
s>0

(
∧
t<1

p(xt, ys)) =
∧

u<1

(
∧

v>0
p(xu, yv)).

This proof is based on the following equation:

w =
∧
s>0

(
∧
t<1

p(xt, ys))⇒ ∀s > 0, ∀t < 1, p(xt, ys) ≥ w⇒
∧

u<1

(
∧

v>0
p(xu, yv)) ≥ w.

Similarly, the inequality holds conversely.
In summary, p∗ satisfies (E4).
Therefore, p∗ is an extended Deng’s pseudo-metric on IX. Let p = p∗ | M0 × M0.

Then, it is obvious that p is a Deng’s pseudo-metric.
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Now, we analyze the relationship between the two topologies induced by p∗ and p,
respectively. For this purpose, we will need the following two lemmas:

Lemma 1. Let p : M×M→ [0,+∞) be a mapping and define Wr(a) = {b ∈ M | p(a, b) < r,
r ∈ [0,+∞)}. Then, p satisfies (A4) if and only if for each b ∈ M,

∨
b<a

Wr(b) = Wr(a).

Proof. Because Wr(b) 6≤ a′ ⇔, there exists x 6≤ a′ such that p(b, x) < r, (E4) is equivalent
to Wr(a) 6≤ b′ ⇔Wr(b) 6≤ a′ for any a, b ∈ M. Therefore,

Wr(a) ≤ b′ ⇔Wr(b) ≤ a′ =
∧
x<a

x′

⇔ x < a, Wr(b) ≤ x′ ⇔ x < a, Wr(x) ≤ b′ ⇔
∨
x<a

Wr(x) ≤ b′.

Therefore, the proof is completed.

Lemma 2. Let p be an extended Deng’s pseudo-metric on IX. Then, the family {Wr(a) | a ∈
M, r ∈ [0,+∞)} is a base for a topology.

Proof. We need to prove that the family τp of arbitrary unions of members of {Wr(a) | a ∈
M, r ∈ [0,+∞)} is a [0, 1]-topology, whose base is exactly the family {Wr(a) | a ∈ M, r ∈
[0,+∞)}. Hence, we only need to prove that the intersection of any two elements of τp
belongs to τp.

Let A = Ws(a)
∧

Wt(b). If s = 0 or t = 0, then A = 0. Thus, we may as well suppose
s 6= 0 and t 6= 0 and let A 6= 0. For any standard fuzzy point c < A (here and in the
proof, each "< " is strictly smaller), we have c < Ws(a) and c < Wt(b), and then we have
p(a, c) < s and p(b, c) < t. Let rc = (s− p(a, c)) ∧ (t− p(b, c)). Now, we come to prove
A =

∨
c<A

Wrc(c).

It is obvious that A ≤ ∨
c<A

Wrc(c). Conversely, let a standard fuzzy point e <∨
c<A

Wrc(c), then there exists c < A such that e < Wrc(c), and then p(c, e) < rc. There-

fore, there are p(c, e) < s− p(a, c) and p(c, e) < t− p(b, c), which imply that p(a, e) < s
and p(b, e) < t hold. Hence, we can obtain e ≤ Ws(a) and e ≤ Wt(b), and then e ≤ A.
Therefore, A ≥ ∨

c<A
Wrc(c). The proof is completed.

Theorem 10. Both p∗ and p induce the same topology.

Proof. By Theorem 1 and Lemma 2, {Ur(a) | a ∈ M0, r ∈ [0,+∞)} and {Wr(b) | b ∈ M, r ∈
[0,+∞)} are a base for ζp and τp∗ , respectively.

(i) let b = xα ∈ M0.
Because Wr(xα) = ∨{yβ ∈ M | p∗(xα, yβ) < r}, we have

Wr(xα) =
∨
{yβ ∈ M0 | p(xα, yβ) < r} = Ur(xα)

for each yβ ∈ M⇒ yβ ∈ M0. Thus, in this case, Wr(xα) = Ur(xα).
In the other case, besides yβ ∈ M0, there exists index Γ with ∀i ∈ Γ such that yβi = y1

and p∗(xα, y1) < r.
By (b) in definition of p∗ (see Theorem 9), we can obtain

∨
β<1

p(xα, yβ) = p∗(xα, y1) < r.

Therefore, for each i ∈ Γ, we have p(xα, yβ) < r if p∗(xα, y1) < r, where β < 1. It
follows that yβ ∈ Ur(xα), and then ∨yβ = y1 ≤ Ur(xα), which implies Wr(xα) ≤ Ur(xα).

Conversely, it is evident that Ur(xα) ≤Wr(xα).
(ii) let b = x1.
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Since p∗ is an extended Deng’s pseudo-metric, by Lemma 1 and (i) we can obtain

Wr(x1) =
∨

α<1

Wr(xα) =
∨

α<1

Ur(xα).

Therefore, for any Wr(x1), it is the union of some members of {Ur(b) | b ∈ M0, r ∈
[0,+∞)}.

Corollary 1. If p is a Deng’s pseudo-metric, then ζp=τp∗ .

Proof. From Theorems 9 and 10, it is evident.

Just because of Theorems 9 and 10, it is very natural for us to use M0 to research
Deng’s pseudo-metric and its deduced topology. Therefore, it is no surprise that many
scholars have achieved many excellent works by utilizing M0 to investigate Deng’s metric
(for more details, see [12,13] etc.).

It is equivalent for us to use M0 and M to characterize Deng’s metric topology. There-
fore, if we do not offer a special explanation, the subsequent discussions are based on
M0.

4. Quotient Space and the Further Extension of Deng’s Metric

In this section, in order to discuss the properties of quotient space related to Deng’s
metrics, first of all, we define T = {p | p as an extended Deng’s pseudo-metric on IX} and
D = {pd | pd is a Deng’s pseudo-metric on IX}. Then, we can acquire the following result:

Theorem 11. Define a mapping f : T → D, where f is defined by ∀p ∈ T, let f (p) = pd =
p | M0 ×M0. Then,

(i) pd is a Deng’s pseudo-metric.

(ii) The mapping f is subjective.

Proof. (i). By the definition of extended Deng’s pseudo-metric, it is evident that (i) holds.
(ii). By Theorem 9, we easily obtain that (ii) holds.

According to Theorem 11, we can obtain a very interesting quotient space of the family
of all extended Deng’s pseudo-metrics. The details are as follows:

Take any pd ∈ D and let Bpd = f−1(pd). Then, Bpd is the equivalence class of
D = {pd | pd is a Deng’s pseudo-metric on IX}. Define Ω = {Bpd | pd ∈ D}. It is evident
that Ω is a quotient space of T. The metric topology of each extended Deng’s pseudo-metric
in the equivalence class f−1(pd) is the same topology induced by the expansion function
p∗d of pd. It follows that there is a one-to-one mapping from D to Ω.

In addition, by Theorem 9, we can define an extended Deng’s pseudo-metric on LX ,
by using M(LX) as follows:

Definition 13. A mapping p : M(LX)×M(LX) −→ [0,+∞) is called a Deng’s pseudo-metric
on LX if it satisfies the following conditions:

(M1)∀a, b ∈ M(LX), if a ≥ b, then p(a, b) = 0;

(M2)∀a, b, c ∈ M(LX), p(a, c) ≤ p(a, b) + p(b, c);

(M3)∀a, b ∈ M(LX), p(a, b) =
∧

a�c
p(c, b);

(M4)∀a, b ∈M(LX), ∃x 6≤ a
′
such that p(b, x) <r⇔ ∃y 6≤ b

′
such that p(a, y) < r.

This is a type new metric on completely distributive lattice LX, which is parallel to
Erceg’s metric [14] and Yang-Shi’s metric [29]. So far, there almost is not any research about
it on LX . Maybe, this extended Deng’s metric should be investigated.
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5. The Relationship between Deng’s Metric and Yang-Shi’s Metric

In this section, we will show a commutative property of Deng’s metric and investigate
the relationship between Deng’s metric and Yang-Shi’s metric on IX .

Theorem 12. If a mapping p : M0 × M0 → [0,+∞) satisfies (A1)–(A3) and the following
property: (C4)∗ ∀xλ1 , yλ2 ∈ M0, p(xλ1 , yλ2) = p(yλ2 , xλ1), then p is a Deng’s pseudo-metric.

Proof. Case 1. Let xλ1 , yλ2 ∈ M0 and let y = x. (i) if λ1 ≥ λ2, then by (A1) p(xλ1 , xλ2) = 0.
In addition, since 1 − λ1 < 1 − λ2, it is true that p(x1−λ2 , x1−λ1) = 0. Therefore, we
can obtain p(xλ1 , xλ2) = p(x1−λ2 , x1−λ1). (ii) when λ1 < λ2, by (C4)∗, this conclusion is
also valid.

Case 2. Let xλ1 , yλ2 ∈ M0 and x 6= y. In this case, we will discuss it in two different situations.
Situation 1. Let λ1 ≤ 1− λ1. Under this condition, we still divide the discussion into

two sub-situations (a) and (b) as follows:
(a) Assume that λ2 ≤ 1− λ2. Then,

p(yλ2 , xλ1) = p(xλ1 , yλ2) ≤ p(xλ1 , y1−λ2) + p(y1−λ2 , yλ2)

= p(xλ1 , y1−λ2) = p(y1−λ2 , xλ1).

Moreover, we can obtain the following equation:

p(y1−λ2 , xλ1) ≤ p(y1−λ2 , yλ2) + p(yλ2 , xλ1) = p(yλ2 , xλ1).

Thus,

p(yλ2 , xλ1) = p(y1−λ2 , xλ1). (1)

Similarly, we can obtain

p(y1−λ2 , xλ1) ≤ p(y1−λ2 , x1−λ1) + p(x1−λ1 , xλ1) ≤ p(y1−λ2 , x1−λ1).

In addition, we have

p(y1−λ2 , x1−λ1) ≤ p(y1−λ2 , xλ1) + p(xλ1 , x1−λ1) = p(y1−λ2 , xλ1).

Thereby, we can assert

p(y1−λ2 , xλ1) = p(y1−λ2 , x1−λ1). (2)

Furthermore, by (1) and (2), we know p(yλ2 , xλ1) = p(y1−λ2 , x1−λ1), that is to say, we
have the following equation:

p(xλ1 , yλ2) = p(y1−λ2 , x1−λ1). (3)

(b). Assume that λ2 > 1 − λ2. If β = 1 − λ2, then λ2 = 1 − β, and consequently,
1− β = λ2 > 1− λ2 = β. Due to the fact that β satisfies (a), by (3) we have p(xλ1 , yβ) =
p(y1−β, x1−λ1). Hence, let p(xλ1 , y1−λ2) replace p(y1−λ2 , xλ1). Then, in this way we can obtain

p(y1−λ2 , xλ1) = p(yλ2 , x1−λ1). (4)

Moreover, by (4) we have the following formula:

p(y1−λ2 , x1−λ1) = p(x1−λ1 , y1−λ2) ≤ p(x1−λ1 , yλ2) + p(yλ2 , y1−λ2)

= p(x1−λ1 , yλ2) = p(yλ2 , x1−λ1) = p(y1−λ2 , xλ1).
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Again by p(y1−λ2 , xλ1) ≤ p(y1−λ2 , x1−λ1) + p(x1−λ1 , xλ1) = p(y1−λ2 , x1−λ1), we can
obtain

p(y1−λ2 , xλ1) = p(y1−λ2 , x1−λ1), (5)

According to (5), we need to prove

p(yλ2 , xλ1) = p(x1−λ1 , y1−λ2) = p(y1−λ2 , x1−λ1)

⇔ p(yλ2 , xλ1) = p(y1−λ2 , xλ1)⇔ p(y1−β, xλ1) = p(yβ, xλ1).

This is exactly the case of (a). Thereby, it is true for p(yλ2 , xλ1) = p(y1−λ2 , x1−λ1), that
is, it holds for

p(xλ1 , yλ2) = p(y1−λ2 , x1−λ1). (6)

Situation 2. Let λ1 > 1− λ1. If α = 1− λ1, then λ1 = 1− α. Thus, 1− α > α. By case
1, we can assert either λ2 ≤ 1− λ2 or λ2 > 1− λ2. Therefore, when 1− α > α, we must
have the following equation:

p(xα, yλ2) = p(y1−λ2 , x1−α). (7)

Namely

p(x1−λ1 , yλ2) = p(y1−λ2 , xλ1). (8)

Similarly, by repeating the process from (4) to (6), we can obtain p(xλ1 , yλ2) = p(y1−λ2 ,
x1−λ1). In summary, this conclusion is true. Therefore, this proof is completed.

Theorem 13. If p is a Deng’s pseudo-metric on IX , then p is a Yang-Shi’s pseudo-metric.

Proof. For any two fuzzy points xa and yb, we only need to prove p(xa, yb) =
∧

c<a
p(xc, yb).

If c < a, then p(xa, yb) ≤ p(xc, yb), and then p(xa, yb) ≤
∧

c<a
p(xc, yb). If p(xa, yb) = r <∧

c<a
p(xc, yb) = t, then by (A4) we have p(y1−b, x1−a) = r < t, so that by (A3) there exists

a number s > 1− a such that p(y1−b, xs) < t, i.e., p(x1−s, yb) < t. But this contradicts∧
c<a

p(xc, yb) = t. Consequently, p(xa, yb) =
∧

c<a
p(xc, yb), as desired.

Conversely, we have the following conclusion:

Theorem 14. If p is a Yang-Shi’s pseudo-metric and further satisfies the following condition: (K3)∗

p(xλ2 , yλ1) =
∨

s>λ2

p(xs, yλ1), then p is a Deng’s pseudo-metric.

To prove Theorem 14, we first need to prove the following two Lemmas.

Lemma 3. Let p be a Yang-Shi pseudo-metric on IX and for each r ∈ [0, 1) define Ur(a) =
∨{b ∈

IX | p(a, b) < r}. Then, Ur(yλ) =
∨

α>1−λ
Pr(yα)′.

Proof. Let xβ ∈
∨

α>1−λ
Pr(yα)′ and take γ such that xβ < xγ ≤

∨
α>1−λ

Pr(yα)′. Because

1− γ ≥ ∧
α>1−λ

Pr(yα)(x), there exists a number α > 1− λ such that 1− γ ≥ Pr(yα)(x), and

then for each δ > 1− γ we have δ > Pr(yα)(x). Therefore, by Theorem 6 we can obtain
p(xδ, yα) < r. Again, by (A3) of (I) in Introduction ((A3) on the special case IX of LX is : for
any xλ1 , yλ2 , ∃t > 1− λ1 s.t. p(yλ2 , xt) < r ⇔ ∃s > 1− λ2 s.t. p(xλ1 , ys) < r), there exists
xω(xδ) (xω which has something to do with xδ) with ω > 1− δ such that p(yλ, xω) < r.
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Let xq =
∨{xω(xδ) | δ > 1− γ}. Then, xδ 6≤ x1−q, i.e., xδ > x1−q. This implies that as long

as xδ > x1−γ, it must hold that xδ > x1−q. Thus, xγ ≤ xq. Since xβ < xγ ≤ xq, there exists
xω(xδ) such that xβ ≤ xω , and so p(yλ, xβ) ≤ p(yλ, xω) < r. Hence, xβ ≤ Ur(yλ). Because
xβ is arbitrary, we have

∨
α>1−λ

Pr(yα)′ ≤ Ur(yλ).

Conversely, let xα ∈ Ur(yλ). Then, p(yλ, xα) < r. For each xβ > x1−α, i.e., α > 1− β,
by (A3) there exists γ > 1− λ such that p(xβ, yγ) < r, and then by Theorem 6, xβ 6≤ Pr(yγ).
Hence, xβ 6≤

∧
γ>1−λ

Pr(yγ). That is to say, as long as xβ > x1−α, i.e., xβ 6≤ x1−α, it is true

that xβ 6≤
∧

γ>1−λ
Pr(yγ). Consequently,

∧
γ>1−λ

Pr(yγ)(x) ≤ x1−α, i.e., xα ≤
∨

γ>1−λ
Pr(yγ)′.

Because xα is arbitrary, we have Ur(yλ) ≤
∨

γ>1−λ
Pr(yγ)′, as desired.

Lemma 4. If p is a Yang-Shi’s pseudo-metric on IX , then
∨

α>1−λ1

p(xα, yλ2) =
∨

β>1−λ2

p(yλβ
, xλ1).

Proof. Denote
∨

α>1−λ1

p(xα, yλ2) =
∨

β>1−λ2

p(yλβ
, xλ1) as (H1). Then, it is easy to verify that

(H1) is equivalent to the following property:
(H1)∗ ∃α > 1− λ1 s.t. p(xα, yλ2) > r ⇔ ∃β > 1− λ2 s.t. p(yλβ

, xλ1) > r.
Now, let us prove (H1)∗.
Assume that there is α with α > 1− λ1 such that p(xα, yλ2) > r. Take a number s such

that p(xα, yλ2) > s > r. By Theorems 7 and 8, we assert that λ2 > Bs(xα)(y). Therefore, by
Lemma 3, we can obtain the following formula:

λ2 > Bs(xα)(y) ≥ Us(xα)(y) =
∨

γ>1−α

Ps(xγ)
′(y).

Thus, for every γ > 1− α it is true that λ2 > Ps(xγ)′(y). That is to say, as long as
α > 1− λ1, i.e., xλ1 6≤ x1−α such that p(xα, yλ2) > r, it is true that λ2 > Ps(xλ1)

′(y), i.e.,
1− λ2 < Ps(xλ1)(y). Therefore, there exists yω such that y1−λ2 < yω ≤ Ps(xλ1), and then
p(yω, xλ1) ≥ s > r by Theorem 7. Similarly, so is the reverse, as desired.

Proof. The proof of Theorem 14 is as follows:
Let p be a Yang-Shi’s pseudo-metric on IX and it satisfies p(xλ2 , yλ1) =

∨
s>λ2

p(xs, yλ1).

Then, we only need to prove that p satisfies (A3) and (A4).
(A4). Given any xλ1 , yλ2 ∈ M0. According to Lemma 4, we have∨

α>1−λ1

p(xα, yλ2) =
∨

β>1−λ2

p(yλβ
, xλ1),

and then p(x1−λ1 , yλ2) = p(y1−λ2 , xλ1).
(A3). By (A1) and (A2), if λ3 > λ1, then p(yλ2 , xλ1) ≤ p(yλ2 , xλ3). Thus, p(yλ2 , xλ1) ≤∧

λ3>λ1

p(yλ2 , xλ3).

Conversely, take any r with r ∈ (0,+∞) such that p(yλ2 , xλ1) < r. Then, by (A4) we
have

p(yλ2 , xλ1) = p(x1−λ1 , y1−λ2) =
∧

h<1−λ1

p(xh, y1−λ2) < r.

Therefore, there at least exists h with h < 1 − λ1 such that p(xh, y1−λ2) < r, i.e.,
p(yλ2 , x1−h) < r. Let 1− h = λ3. Then, h < 1− λ1 ⇔ λ1 < 1− h = λ3 and p(yλ2 , xλ3) < r.
Consequently, p(yλ2 , xλ1) ≥

∧
λ3>λ1

p(yλ2 , xλ3), as desired.

Example: Suppose that p0 is distance function in usual sense on X. For any bµ, aλ ∈ M,
let p(bµ, aλ) = p0(b, a) + max{λ− µ, 0}. Then (IX , p) is a Deng’s pseudo-metric.
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Let us use Theorem 14 to verify this example. In fact, because aλ 6≤ b′µ implies a = b
and λ > 1− µ, and aλ � bµ is equivalent to a = b and λ < µ, we need to verify that
p satisfies the following conditions: (A1)–(A2), (B2), (A4) and (K3)∗ by max{λ− µ, 0} =
1
2 (λ− µ + |λ− µ|).

(A1). For any aλ, bµ ∈ M and aλ ≤ bµ, we can obtain a = b and λ ≤ µ. Therefore,
p(bµ, aλ) = 0.

(A2). For any aλ, bµ, cν ∈ M, we have
p(bµ, aλ) + p(cν, bµ)

= p0(b, a) + 1
2 (λ− µ + |λ− µ|) + p0(c, b) + 1

2 (µ− ν + |µ− ν|)
= p0(b, a) + p0(c, b) + 1

2 (λ− ν) + 1
2 (|λ− µ|+ |µ− ν|)

≥ p0(c, a) + 1
2 (λ− ν + |λ− µ|) = p(cν, aλ).

(B2). For any aλ, bµ ∈ M, we have∧
cτ�bµ

p(cτ , aλ) =
∧

c=b,τ<µ
[p0(c, a) + 1

2 (λ− τ + |λ− τ|)]

= p0(b, a) +
∧

τ<µ

1
2 (ν− µ + |ν− µ|)

= p0(b, a) + 1
2 (λ− µ + |λ− µ|) = p(bµ, aλ).

(A4). To prove (B3), it only suffices to verify
∧

xν 6≤a′λ

p(bµ, xν) =
∧

yτ 6≤b′µ
p(aλ, yτ). In fact,

its proof is as follows:∧
xν 6≤a′λ

p(bµ, xν) =
∧

x=a,ν>1−λ
[p0(b, x) + 1

2 (ν− µ + |ν− µ|)]

= p0(b, a) +
∧

ν>1−λ

1
2 (ν− µ + |ν− µ|)

= p0(b, a) + 1
2 (1− λ− µ + |1− λ− µ|)] + ∧

τ>1−µ

1
2 (τ − λ + |τ − λ|)

=
∧

yτ 6≤b′µ
p(aλ, yτ).

(K3)∗. For any a1−λ, bµ ∈ M, we can verify the following equations:∨
xν 6≤a′λ

p(xν, bµ) =
∨

x=a,ν>1−λ
[p0(x, b) + 1

2 (µ− ν + |µ− ν|)]

= p0(a, b) +
∨

ν>1−λ

1
2 (µ− ν + |µ− ν|)

= p0(a, b) + 1
2 (λ + µ− 1 + |λ + µ− 1|)] = p(a1−λ, bµ).

Corollary 2. A Deng’s pseudo-metric on IX is Q− C1.

Proof. By Theorem 2 and Theorem 13, it is evident for the result to hold.

According to Theorem 8, we have known that an Erceg’s metric must be a Yang-Shi’s
metric. Again by Theorem 13, we can obtain that a Deng’s metric must be an Erceg’s metric.
In addition, existing achievements (refer to [14,24,25]) have shown that Erceg’s metric’s
uniform structure must be Hutton’s uniform structure [22]. Therefore, we can assert that
Deng’s metric topology and its uniform structure are Erceg’s metric topology and Hutton’s
uniform structure, respectively.

6. Conclusions

In this paper, firstly, we extend the domain of Deng’s metric function from M0 ×M0
to M × M. Secondly, we further extend this metric to LX and, based on this extension
result, we compare this metric with the other two kinds of familiar fuzzy metrics: Erceg’s
metric and Yang-Shi’s metric, and then reveal some of its interesting properties, particularly
including its quotient space. Thirdly, we prove that a Deng’s metric must be a Yang-Shi’s
metric on IX, and consequently an Erceg’s metric. Finally, we will show that a Deng’s
metric must be Q− C1, and Deng’s metric topology and its uniform structure are Erceg’s
metric topology and Hutton’s uniform structure, respectively.
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In the future, we will continue to consider Deng’s metric on L-topology. Additionally,
we will further investigate Erceg’s metric, Yang-Shi’s metric and Deng’s metric on LX.
Moreover, we will continue to conduct research on the kind of lattice-valued topological
spaces, each of whose topologies has a σ-locally finite base. Beyond that, we also intend to
inquire into the metrization problem in [0, 1]-topology.
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