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Abstract: BCube is one of the main data center networks because it has many attractive features.
In practical applications, the failure of components or physical connections is inevitable. In data
center networks in particular, switch failures are unavoidable. Fault-tolerance capability is one main
aspect to measure the performance of data center networks. Connectivity, fault tolerance Hamiltonian
connectivity, and fault tolerance Hamiltonicity are important parameters that assess the fault tolerance
of networks. In general, the distribution of fault elements is scattered, and it is necessary to consider
the distribution of fault elements in different dimensions. We research the fault tolerance of BCube
when considering faulty switches and faulty links/edges that distribute in different dimensions. We
also investigate the connectivity, fault tolerance Hamiltonian connectivity, and Hamiltonicity. This
study better evaluates the fault-tolerant performance of data center networks.
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1. Introduction

With the rapid growth of network resources and data, cloud computing has risen
rapidly in the field of computer applications [1,2]. The purpose of cloud computing is to
reduce the computing task burden of end users and complete the majority of computing
in the cloud by large data center networks. Data center networks are infrastructures of
cloud computing and innovation platforms of next-generation networks. Data center
network research has become a popular aspect in academia and industry. Scholars have
proposed many data center networks, for example, Fat-Tree [3], DCell [4–6], BCube [7,8],
VL2 [9], CamCube [10], Ficonn [11], FSquare [12], BCDC [13,14], and so on. Because of
its desirable features, such as symmetry, small diameter, high fault tolerance, and so on,
BCube has become a main data center network. It supports one-to-one and one-to-several
traffic patterns [15]. It has good communication performances because it can build serveral
vertex disjoint paths of shorter lengths [16]. The embedding of the path or the cycle is
one of the main research topics in networks because many effective algorithms for solving
various graph problems have been developed on the basis of paths and cycles [17–20] and
some parallel applications [21,22]. , Hamiltonian path and Hamiltonian cycle embeddings
are important properties because the occurrence of congestion and deadlock can be effec-
tively reduced or even avoided by multi-cast algorithms based on Hamiltonian paths and
Hamiltonian cycles [23]. Consequently, there are a great number of research findings on
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Hamiltonian properties on particular network topologies, such as hypercube [24], cross
cube [25,26], twist cube [27–29], extended cube [30], k-ary n-cube [31–33], and DCell [34,35].

In practical applications, the failure of components or physical connections in data
center networks is inevitable. Fault tolerance is a vital aspect to measure the performance
of networks [36,37]. Edge connectivity is the main feature used to assess the fault tolerance
of networks, which is often exactly equivalent to a network’s minimum degree. and the
set of faulty edges that make it disconnected is often connected to a node whose degree is
exactly equivalent to this network’s minimum degree. In general, that all the faulty edges
are concentrated on the adjacent edges of a certain node is almost impossible. Harary [38]
proposed the concept of edge connectivity under some conditions in 1983. There are several
related studies on this topic, such as conditional edge connectivity [39,40], extra edge
connectivity [41,42], and component edge connectivity [43]. In practical applications, the
distribution of fault elements may be scattered. The fault elements may be distributed in
different dimensions in networks. It is necessary to study the fault situation in terms of
dimensions. It is inevitable that switches in data center networks will fail. If a switch is
faulty, the servers connecting to it are disconnected from each other. Faulty switches will
have a more destructive effect on the stability of the networks. So, we research the fault
tolerance of BCube when considering faulty switches and faulty links/edges that distribute
in different dimensions.

A data center network can be denoted with a graph, where nodes are servers, edges
are links connecting servers, and switches can be considered transparent devices. The
topological properties of data center networks are critical to data center performance.
BCube(n, k) is a k-dimensional BCube that is constructed with n-port switches, where
n ≥ 2 and k ≥ 0 [7]. The graph BCn,k can be viewed as the topological structure of
BCube(n, k), where switches are considered to be transparent [44]. In this paper, we give the
corresponding relation between BCn,k and BCube(n, k) and research the connectivity, fault-
tolerant Hamiltonian connectivity, and Hamiltonicity of BCn,k when the faulty elements
distribute in different dimensions.

We give the definitions of BCube(n, k) and BCn,k. We research the connectivity, fault-
tolerant Hamiltonian connectivity, and Hamiltonicity of BCn,k in Section 3. We analyze the
performance of the results through computer simulation experiments in Section 4. Finally,
in Section 5, we draw some conclusions.

2. Preliminaries

In this section, we begin by introducing some notations. Next, we give the definitions
and properties of BCube(n, k) and BCn,k. We also show the corresponding relations between
BCn,k and BCube(n, k).

The graph-theoretical terminologies and notations mainly follow [45]. Given an
undirected simple graph G = (V(G), E(G)), V(G) denotes the node set, and E(G) =
{(u, v)|u, v ∈ V(G)} represents the edge set. For any node u in G, let NG(u) be the set of
its neighbors. The degree of u, marked as degG(u), is the number of neighbors of u. A
path P(v1, vn) = 〈v1, v2, · · · , vn〉 is a sequence of neighboring nodes in which all nodes
are different except possibly v1 = vn. If a path travels through each node of G precisely
once, it is called a Hamiltonian path. A path that starts and finishes at the same node is
said to be a cycle. A cycle containing all of G’s nodes is known as a Hamiltonian cycle.
If G has a Hamiltonian cycle, G is Hamiltonian. If there is a Hamiltonian path linking
any two different nodes in G, then G is said to be Hamiltonian-connected. For n ≥ 2,
let G1 = (V1, E1), G2 = (V2, E2), · · · , Gn = (Vn, En) be n disjoint graphs. The union of
G1, G2, · · · , Gn, represented by

⋃n
i=1(Gi), is the graph with the node set V1 ∪V2 ∪ · · · ∪Vn

and the edge set E1 ∪ E2 ∪ · · · ∪ En∪ {(u, v)|u ∈ Vi, v ∈ Vj} for any two positive integers
i and j with 1 ≤ i 6= j ≤ n. The graph G1 is isomorphic to the graph G2 if there exists a
bijection θ: V(G1) → V(G2) such that (x, y) ∈ E(G1) if and only if (θ(x), θ(y)) ∈ E(G2),
represented by G1

∼= G2. [i, j] is used to represent the integer set {d|i ≤ d ≤ j} for any two
positive integers i and j with i ≤ j.
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The BCube can be recursively defined, which contains three types of elements, namely
switches, servers, and links. Multi-port servers are connected to switches with a fixed num-
ber of ports by links. For any integers k ≥ 0 and n ≥ 2, a server y of BCube(n, k) can be de-
noted by ykyk−1 · · · y0. Each switch in BCube(n, k) can be represented by
< l, sk−1sk−2 · · · s0 >, where l is the level(or dimension) of the switch and 0 ≤ l ≤ k.
A link is represented by {(ykyk−1 · · · y0),< l, sk−1sk−2 · · · s0 >}. Each server with k + 1
ports is linked to one switch at every level. These levels are recorded from Level 0 to Level
k. Obviously, there exist k + 1 switch levels and nk+1 servers in BCube(n, k). Each level has
nk switches. Following [7], we define BCube(n, k) recursively.

Definition 1 ([7]). The definition of BCube(n, k) is as below.
(1) For k = 0, BCube(n, 0) contains one switch with an n-port and n servers, which are

connected to the switch.
(2) For k ≥ 1, BCube(n, k) contains nk switches with an n-port and n disjoint copies of

BCube(n, k− 1), where:
α For every 0 ≤ j ≤ n− 1, we obtain the subgraph BCubej

n,k−1 by prefixing the label of every
server with j in one copy of BCube(n, k− 1);

β For any 0 ≤ j ≤ n− 1, a server jxk−1 · · · x0 is connected to the switch < k, sk−1 · · · s0 > if
and only if xk−1 · · · x0 = sk−1 · · · s0, where j denotes the j-th port of the switch to which the server
is connected to.

BCube(4, 1) has four servers and one four-port switch (see Figure 1). BCube(4, 1)
contains four disjoint copies of BCube(4, 0), which are connected by four four-port Level 1
switches (see Figure 1). Each server has two ports in BCube(4, 1).

<0,0>

00 01 02 03

<0,1>

10 11 12 13

<0,2>

20 21 22 23

<0,3>

30 31 32 33

<1,0> <1,1> <1,2> <1,3>

Server Switch Link

1

0 1 2 3

(a) BCube(4,0)

(b) BCube(4,1)

Figure 1. BCube(4, 0) and BCube(4, 1).

By making all switches transparent, we can obtain the topological structure of BCube.
The topological structure of BCube(n, k) is represented by BCn,k, which is defined as follows.

Definition 2. Given two integers k, n, k ≥ 0 and n ≥ 2, BCn,k is represented by a simple undirect
graph BCn,k = (V(BCn,k),E(BCn,k)), where V(BCn,k) = {ukuk−1 · · · u0|ui ∈ [0, n − 1] and
i ∈ [0, k]}. For any two nodes x = xkxk−1 · · · x0 and y = ykyk−1 · · · y0, (x, y)∈ E(BCn,k) if and
only if there exists an integer i ∈ [0, k] such that xi 6= yi and xl = yl for all l ∈ [0, k]− {i}. We
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say (x, y) is an i-dimensional edge, denoted by i-edge. We set Ei(BCn,k) being the set of all i edges
of BCn,k.

A graph BCn,k can be decomposed into n disjoint subgraphs: BC0
n,k−1, BC1

n,k−1, . . . ,

BCn−1
n,k−1 along dimension k, where BCj

n,k−1, for every 0 ≤ j ≤ n− 1, is a subgraph of BCn,k
induced by {juk−1uk−2|juk−1uk−2 · · · u0 ∈ V(BCn,k)}. Any two subgraphs are connected by
the k-edges, which correspond to the Level k switches in BCube(n, k). Clearly, each BCj

n,k−1

is isomorphic to BCn,k−1 for 0 ≤ j ≤ n− 1. The subgraph BCj
n,k−1 of BCn,k, 0 ≤ j ≤ n− 1, is

also the topological structure of the subgraph BCubej
n,k−1 of BCube(n, k) making switches

transparent. Along k different dimensions, BCn,k can be decomposed into n copies of
BCn,k−1 .

BC4,0 and BC4,1 are shown in Figure 2. BCn,k is a kind of generalized hypercube. The
graph BC2,k is isomorphic to the hypercube Qk+1. For any node y in BCn,k, the degree of
y is (n− 1)(k + 1). BCn,k is a highly symmetric network with vertex symmetry and edge
symmetry.

00 01 02 03

10 11 12 13

20 21 22 23

30 31 32 33

0 1 2 3

(b) BC4,1

(a) BC4,0

Figure 2. BC4,0 and BC4,1.

The corresponding relation between the elements in BCn,k and the elements in BCube(n, k)
will be discussed below. Let z be one of the elements in BCube(n, k). If the element z is a
server, it corresponds to a node in BCn,k. If the element z is a switch, it corresponds to an
edge subset {(x, y)|x and y are two distinct nodes, which correspond to two distinct servers
of BCube(n, k) connected by the switch z}. If the element z is a link, it corresponds to an
edge subset {(u, v)|u and v are two distinct nodes, which correspond to two servers of
BCube(n, k) connected through the link z}. Given an integer l, 0 ≤ l ≤ k, if the element z is
a switch of BCube(n, k) in Level l, it corresponds to the edge subset of El(BCn,k), which has
n(n−1)

2 edges. As shown in Figure 3, the corresponding element of the fault switch < 1, 0 >
in BCube(4, 1) is the edge subset {(00, 10), (00, 20), (00, 30), (10, 20), (10, 30), (20, 30)} in
BC4,1.

We let Fs be a set, each element of which is a faulty edge subset in BCn,k, which is
affected by a broken switch in BCube(n, k). And let Fi

s be the set, each element of which is
a faulty edge subset in BCn,k, which is caused by a broken switch of BCube(n, k) in Level
i, with 0 ≤ i ≤ k. Clearly, Fs = F0

s ∪ F1
s ∪ · · · ∪ Fk

s . Let Fe be the set of the faulty edges in
BCn,k which is not caused by faulty switches. Let u and v be two servers in BCn,k. If a faulty
edge (u, v) exists, the server u is unable to communicate with the server v. Furthermore, let
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Fi
e be the set of the i-edges in the faulty edge set Fe, 0 ≤ i ≤ k. We let F = Fs ∪ Fe, f = |F|,

fs = |Fs|, fe = |Fe|, f i
s = |Fi

s |, f i
e = |Fi

e |, Fi = Fi
s ∪ Fi

e , f i = |Fi|, 0 ≤ i ≤ k. Because BCn,k is
able to reflect the characteristics of BCube(n, k), we will carry out the below study on BCn,k.

<0,0>

00 01 02 03

<0,1>

10 11 12 13

<0,2>

20 21 22 23

<0,3>

30 31 32 33

<1,0> <1,1> <1,2> <1,3>

Fault SwitchServer Switch Link

00 01 02 03

10 11 12 13

20 21 22 23

30 31 32 33

Fault Edge

(a) BCube(4,1) with the fault switch <1,0>

(b) BC4,1 with the fault edges set

{(00.10),(00,20),(00,30),(10,20),(10,30),(20,30)}

Figure 3. BCube(4, 1) with the fault switch and BC4,1 with the fault edges set.

3. Fault-Tolerant Properties of BCn,k

Considering that BCn,k is edge symmetric and node symmetric, we assume f 0 ≤ f 1 ≤
· · · ≤ f k−1 ≤ f k. For 1 ≤ t ≤ k, we set St

n,k = {ukuk−1 · · · u0|ui = 0 for each i ≥ t and
uj ∈ [0, n− 1] for each j ∈ [0, t− 1]}. Note that the subgraph of BCn,k induced by St

n,k is
isomorphic to BCn,t−1. The graph BC2,k is isomorphic to the (k + 1)-dimensional hypercube
Qk+1. The relevant conclusions have been drawn and will be presented in another paper.
So, we discuss the properties of BCn,k for n ≥ 3 in this paper.

Theorem 1. For any faulty set F of BCn,k, F = Fs ∪ Fe, BCn,k − F is connected if f ≤ nk+1−n
n−1 − k

and f i ≤ ni − 1 for each 0 ≤ i ≤ k.

Proof. The proof of this theorem is by induction on k. Obviously, BCn,0 is connected if
f = 0. Suppose that this theorem holds on BCn,k−1, where n ≥ 3 and k ≥ 1. Since BCn,k is
edge symmetric, we assume that |Fk| = max{|Fi||i ∈ [0, k]}. Then, |F| − |Fk| = ∑k−1

i=0 |F
i| =

∑k−1
i=0 f i ≤ ∑k−1

i=0 (n
i − 1) = nk−n

n−1 − (k − 1). For 0 ≤ j ≤ n − 1, let Fi
s(j) be the set, each

element of which is a faulty edge subset in BCj
n,k−1, which is caused by a faulty switch in

BCubej
n,k−1 in Level i with 0 ≤ i ≤ k− 1. Fs(j) = F0

s (j)∪ F1
s (j)∪ · · · ∪ Fk−1

s (j) =
⋃k−1

i=0 Fi
s(j).

Let Fi
e(j) be the edge subset of the faulty i-edges in Fe

⋂
E(BCj

n,k−1). Fe(j) = ∪k−1
i=0 Fi

e(j). Let
Fi(j) = Fi

s(j) ∪ Fi
e(j), f i(j) = |Fi(j)|, F(j) = Fs(j) ∪ Fe(j). Since Fi

s(j) ⊆ Fi
s , Fi

e(j) ⊆ Fi
e for
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each j. Hence, |Fi
s(j)| ≤ |Fi

s |, |Fi
e(j)| ≤ |Fi

e | for each 0 ≤ j ≤ n− 1; that is, |Fi
s(j) + Fi

e(j)| ≤
|Fi

s + Fi
e | = |Fi| = f i ≤ ni − 1. |Fi(j)| ≤ ni − 1, ∑k−1

i=0 f i(j) ≤ ∑k−1
i=0 (n

i − 1) = nk−n
n−1 − (k−

1). By induction hypothesis, BCj
n,k−1 − F(j) is connected for each j ∈ [0, n − 1]. Since

f k ≤ nk − 1, there is an edge e between BCα
n,k−1 and BCβ

n,k−1 such that e ∈ E(BCn,k − F) for
each 0 ≤ α, β ≤ n− 1. Hence, BCn,k − F is connected.

We use the following example to show that the bound is tight.

Example 1. Let us consider that f t ≥ nt for some t ∈ [0, n− 1] with fixed t. We discuss two cases.
Case 1. t = 0. We set u = uk−1uk−2 · · · u0 ∈ V(BCn,k) and assume that all the switches

are faulty, which are connected with the node u and |Fe| = 0. Obviously, |Fi
s | = 1, |Fi

e | = 0
for 0 ≤ i ≤ k. Then, BCn,k − F is disconnected since degBCn,k−F(u) = 0 and one component of
BCn,k − F is the node u.

Case 2. t ≥ 1. Let B be the connected subgraph of BCn,k which is induced by St
n,k. Obviously, B

is isomorphic to BCn,t−1. Then, we have |Fi| = |Fi
s | = nt for each t ≤ i ≤ k, and |Fi| = |Fi

s | = 0
for each 0 ≤ i < t. We set F = ∪k

i=0Fi. We have (1) |F| = (k − t + 1)nt ≤ nk+1−n
n−1 − k,

(2) |Ft| = nt > nt − 1, and (3) |Fi| ≤ ni − 1 for each i 6= t. Then, BCn,k − F is not connected and
one component of it is the subgraph B.

Theorem 2 ([46]). For 2 ≤ m ≤ n, let A = {BCj1
n,k−1, BCj2

n,k−1, . . . , BCjm
n,k−1} with ji ∈

[0, n− 1] and i ∈ [1, m]. Let F(BCji
n,k−1) be the set of faulty elements in BCji

n,k−1. For any two nodes

x ∈ V(BCj1
n,k−1 − F(BCj1

n,k−1)) and y ∈ V(BCjm
n,k−1 − F(BCjm

n,k−1)), there is a fault-free Hamilto-

nian path HP(x, y) in
⋃m

i=1(BCji
n,k−1− F(BCji

n,k−1)) where (1) For any integer t ∈ {j1, j2, . . . , jm},
BCt

n,k−1 − F(BCt
n,k−1) is Hamiltonian-connected. (2) There exist at least three fault-free k-edges

between any two distinct graphs in the subgraph set A.

Theorem 3. For n ≥ 3, let F be any faulty set of BCn,1, F = Fs ∪ Fe, BCn,1 − F is Hamiltonian-
connected if f 0 = 0 and f 1 ≤ n− 3.

Proof. BC3,1 is Hamiltonian-connected if f 0 = 0 and f 1 = n− 3 = 0. So, we discuss the
case n ≥ 4.

BCn,1 can be divided into n subgraphs BCj
n,0 for 0 ≤ j ≤ n− 1. For each j ∈ [0, n−

1], BCj
n,0 is Hamiltonian-connected because it is a complete graph with n nodes. Since

f 0 = 0, there is no fault element in BCj
n,0, 0 ≤ j ≤ n− 1. Since f 1 ≤ n− 3, there are at

least three fault-free switches in Level 1 in BCube(n, 1). We consider any three fault-free
switches. We assume these switches individually connect with the nodes {a0, a1, . . . , an−1},
{b0, b1, . . . , bn−1} and {c0, c1, . . . , cn−1}, aj, bj, cj ∈ V(BCj

n,0) for 0 ≤ j ≤ n− 1. For any two

nodes u ∈ V(BCα
n,0), v ∈ V(BCβ

n,0), 0 ≤ α, β ≤ n− 1, we divide into two cases to discuss
the existence of a Hamiltonian path connecting the nodes u and v in BCn,1 − F.

Case 1. α 6= β.
By Theorem 2, there exists a fault-free Hamiltonian path connecting u and v in⋃n−1

j=0 (BCj
n,0 − F1).

Case 2. α = β.
W.L.O.G., we suppose α = β = 0. We have two subcases.
Case 2.1. |{u, v}⋂{a0, b0, c0}| ≤ 1.
We assume that {u, v}⋂{a0, b0} = ∅. Since BC0

n,0 is a complete graph, there is an
edge (u, a0) and a path P(b0, v), which contains all the nodes in V(BC0

n,0)− {u, a0}. By
Theorem 2, a fault-free Hamiltonian path P(a1, bn−1) exists, which connects a1 and bn−1

in
⋃n−1

j=1 (BCj
n,0 − F1). So, < u,a0, a1, P(a1, bn−1), bn−1, b0, P(b0, v), v > is a fault-free

Hamiltonian path connecting u and v in BCn,1 − F (see Figure 4).
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b0

a0 P(a1, bn-1)

a1

P(b0, v)

v

bn-1

u

Figure 4. The illustration for Case 2.1 of Theorem 3.

Case 2.2. |{u, v}⋂{a0, b0, c0}| = 2.
We assume that u = a0, v = b0. Since BC0

n,0 is a complete graph, BC0
n,0 − {a0} is also a

complete graph. In BC0
n,0 − {a0}, there is a Hamiltonian path P(c0, b0) connecting c0 and

b0. By Theorem 2, a Hamiltonian path P(a1, cn−1) exists, which connects a1 and cn−1 in⋃n−1
j=1 (BCj

n,0 − F1). So, < a0, a1, P(a1, cn−1), cn−1, c0, P(c0, b0), b0 > is a Hamiltonian path

connecting u and v in BCn,1 − F. So, BCn,1 − F is Hamiltonian-connected if f 0 = 0 and
f 1 ≤ n− 3 (see Figure 5).

c0

a0 P(a1, cn-1)

a1

P(c0, b0)
cn-1

b0

Figure 5. The illustration for Case 2.2 of Theorem 3.

Theorem 4. For n ≥ 3 and k ≥ 2, let F be any faulty set of BCn,k, F = Fs ∪ Fe, BCn,k − F is
Hamiltonian-connected if f i ≤ bni/2c − 1 for each 2 ≤ i ≤ k and f 0 = 0, f 1 ≤ n− 3.

Proof. The proof of this theorem is by induction on k. By Theorem 3, BCn,1 is Hamiltonian-
connected if f 0 = 0 and f 1 ≤ n− 3. Assume that this theorem holds on BCn,k−1 with n ≥ 3,
k ≥ 2.

For 0 ≤ j ≤ n− 1, let Fi
s(j) be the set, each element of which is a faulty edge set in

BCj
n,k−1, which is caused by a faulty switch in BCubej

n,k−1 in Level i with 0 ≤ i ≤ k− 1.

Fs(j) = F0
s (j) ∪ F1

s (j) ∪ · · · ∪ Fk−1
s (j) =

⋃k−1
i=0 Fi

s(j). Let Fi
e(j) be the edge subset of the

faulty i-edges in Fe
⋂

E(BCj
n,k−1). Fe(j) =

⋃k−1
i=0 Fi

e(j). F(j) = Fs(j) ∪ Fe(j). Since Fi
s(j) ⊆ Fi

s ,
Fi

e(j) ⊆ Fi
e for each j ∈ [0, n− 1]. Hence, |Fi

s(j) + Fi
e(j)| ≤ |Fi

s + Fi
e | = |Fi| = f i ≤ bni/2c− 1

for 2 ≤ i ≤ k− 1, and |F0(j)| = 0, |F1(j)| ≤ n− 3. By induction hypothesis, BCj
n,k−1 − F(j)

is Hamiltonian-connected for each j ∈ [0, n− 1]. Since f k ≤ bnk/2c − 1, there are more
than three fault-free edges between BCα

n,k−1 and BCβ
n,k−1 for 0 ≤ α, β ≤ n− 1 in BCn,k − F.

By Theorem 2, for any two nodes u ∈ V(BCα
n,k−1), v ∈ V(BCβ

n,k−1), 0 ≤ α, β ≤ n− 1 and

α 6= β, a Hamiltonian path exists, which connects u and v in
⋃n−1

j=0 (BCj
n,k−1 − F).
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Here, we consider the situation α = β. W.L.O.G., we suppose α = β = 0. So, u, v ∈
V(BC0

n,k−1). In BC0
n,k−1− F0, there is a Hamiltonian path HP0(u, v) of length nk. Since f k ≤

bnk/2c − 1, there exists an edge (w0, z0) on the Hamiltonian path such that the two Level k
switches are fault-free in BCube(n, k), which connect with the nodes u and v individually.
Let HP0(u, v) =< u, HP1(u, w0), w0, z0, HP2(z0, v), v >. Let w1 be the node that connects
to the same Level k switch with the node w0. Let zn−1 be the node that connects to the
same Level k switch with the node z0. By Theorem 2, a Hamiltonian path HP(w1, zn−1)

exists, which connects w1 and zn−1 in
⋃n−1

j=1 (BCj
n,k−1 − F). Then, < u, HP1(u, w0), w0, w1,

HP(w1, zn−1), zn−1, z0, HP2(z0, v), v > is a fault-free Hamiltonian path connecting u and v
in BCn,k − F. So, BCn,k − F is Hamiltonian-connected if f i ≤ bni/2c − 1 for each 2 ≤ i ≤ k
and f 0 = 0, f 1 ≤ n− 3.

Theorem 5. For n ≥ 4 and n mod 2 = 0, k ≥ 2, let F be any faulty set of BCn,k, F = Fs ∪ Fe,
BCn,k − F is Hamiltonian if f i ≤ bni/2c − 1 for each 2 ≤ i ≤ k− 1 and f 0 = 0, f 1 ≤ n− 3,
f k ≤ nk − 2.

Proof. By Theorem 4, BCj
n,k−1 − F(j) is Hamiltonian-connected for each j ∈ [0, n − 1].

Since f k ≤ nk − 2, there are at least two fault-free switches in Level k in BCube(n, k). So,
we assume that one switch connects with the nodes {a0, a1, . . . , an−1}, and the other con-
nects with the nodes {b0, b1, . . . , bn−1}, aj, bj ∈ V(BCj

n,k−1), 0 ≤ j ≤ n− 1. By Theorem 4,

BCj
n,k−1 − F(j) is Hamiltonian-connected for each j ∈ [0, n− 1]. So, there is a Hamiltonian

path Pj(aj, bj) or Pj(bj, aj) between aj and bj in BCj
n,k−1 − F(j). Since n is even, the cycle

< a0, P0(a0, b0), b0, b1, P1(b1, a1), a1, b2, . . . , bn−1, Pn−1(bn−1, an−1), an−1, a0 > is a Hamilto-
nian cycle in BCn,k − F. So, BCn,k − F is Hamiltonian for n ≥ 4 and n mod 2 = 0, as shown
in Figure 6.

b0

a0

P1(b1, a1)

b1

a1

P0(a0, b0) Pn-2(an-2, bn-2)

an-2

bn-2

Pn-1(bn-1, an-1)

bn-1

an-1

Figure 6. The illustration of Theorem 5.

Note that there is no Hamiltonian cycles in BCn,k − F for f k = nk − 2 if n is odd. We
have the theorem below for odd number n.

Theorem 6. For n ≥ 3 and n mod 2 6= 0, k ≥ 2, let F be any faulty set F of BCn,k, F = Fs ∪ Fe,
BCn,k − F is Hamiltonian if f i ≤ bni/2c − 1 for each 2 ≤ i ≤ k− 1 and f 0 = 0, f 1 ≤ n− 3,
f k ≤ nk − 3.

Proof. By Theorem 4, BCj
n,k−1− F(j) is Hamiltonian-connected for each j ∈ [0, n− 1]. Since

f k ≤ nk − 3, there are at least three fault-free switches in Level k in BCube(n, k). So, we
assume that one switch connects with the nodes {a0, a1, . . . , an−1}, one switch connects
with the nodes {b0, b1, . . . , bn−1}, and the other connects with the nodes {c0, c1, . . . , cn−1},
aj, bj, cj ∈ V(BCj

n,k−1), 0 ≤ j ≤ n − 1. By Theorem 4, BCj
n,k−1 − F(j) is Hamiltonian-

connected for each j ∈ [0, n− 1].
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So, there is a Hamiltonian path Pj(aj, bj), Pj(bj, cj) or Pj(cj, aj) between any two nodes

of {aj, bj, cj} in BCj
n,k−1 − F(j). Since n is odd, the cycle < a0, P0(a0, b0), b0, b1, P1(b1, c1),

c1, c2, P2(c2, a2), a2, a3, P3(a3, b3), . . ., cn−1, Pn−1(cn−1, an−1), an−1, a0 > is a Hamiltonian
cycle in BCn,k− F. So, BCn,k− F is Hamiltonian for n ≥ 4 and n mod 2 6= 0 if f i ≤ bni/2c− 1
for each 2 ≤ i ≤ k− 1 and f 0 = 0, f 1 ≤ n− 3, f k ≤ nk − 3, as shown in Figure 7.

b0

a0

P1(b1, c1)

b1

c1

P0(a0, b0) P2(c2, a2)

c2

a2

Pn-1(bn-1, an-1)

cn-1

an-1

Figure 7. The illustration of Theorem 6.

4. Performance Analysis

Up to now, we have shown BCube(n, k) is connected when faulty switches and faulty
links distributing in different dimensions are considered. In this section, we are going to
demonstrate the superiority of our results from two aspects. Compared with link faults,
switch faults are more destructive, so we assume that all the fault elements are switches
when analyzing performance. We discuss the maximum number of faulty switches that the
network BCube(n, k) can tolerate while maintaining connectivity. We also investigate the
maximum distance between any two nodes in BCn,k when the number of faulty elements
reaches the maximum.

4.1. Number of Faulty Switches

According to the proof, the maximum number of faulty switches that BCube(n, k) can
tolerate is nk+1−n

n−1 − k when BCube(n, k) is still connected. We list the maximum number
of faulty switches for n ∈ {3, 4, 5} and k ∈ {1, 2, 3, 4, 5, 6} that BCube(n, k) can tolerate in
Table 1. These results indicate that BCube(n, k) still has good properties while there are
more faulty elements compared with the traditional method.

Table 1. Maximum Number of Faulty Switches that BCube(n, k) Can Tolerate When BCube(n, k) is
still Connected.

n = 3 n = 4 n = 5

BCube(n, 1) 2 3 4
BCube(n, 2) 10 18 28
BCube(n, 3) 36 81 152
BCube(n, 4) 116 336 776
BCube(n, 5) 358 1359 3900
BCube(n, 6) 1086 5454 19,524

4.2. The Average Value of The Maximum Distance between Any Two Nodes

In this subsection, we investigate the maximum distance between any two nodes in
BCn,k when nk+1−n

n−1 − k switches become faulty in BCn,k. The fault switches are distributed
in different levels of BCn,k and each level i has f i = ni − 1 faulty switches where 0 ≤ i ≤ k.
We design an algorithm AverageMaxDistance(n, k) to calculate the maximum distance
between any two nodes in BCn,k. The faulty switches are distributed randomly in BCn,k.
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We repeat the algorithm 100 times to obtain the average value of the maximum distance
between any two nodes in BCn,k.

BCn,k has k + 1 switch levels where there exist nk n-port switches in each level. To
remove a switch s of level i, we need to disconnect all the servers adjacent to s. If two servers
µ and ν are connected to the same switch of level i, they are connected by an i-dimensional
edge, and ν is an i-dimensional neighbor of µ. We use Ni(µ) to denote the i-dimensional
neighbor set of µ in BCn,k. In BCn,k, the switches are transparent. To randomly remove a
switch of level i, we can randomly select a node µ, then remove all the i-dimensional edges
between any two nodes in Ni(µ) ∪ {µ}. Please see Algorithm 1 for an illustration. The
results obtained from Algorithm 2 are shown in Table 2. These results indicate that the
distance between any two nodes is still small in BCn,k while there are more faulty elements.

Algorithm 1 removeSwitches(g,n,k)

Input: g: a k-dimensional BCn,k; n: the port number of a switch in the BCube; k: the
dimension of the BCube;

1: List nodesList = null;
2: for i = 1; i <= k; i ++ do
3: nodesList = new ArrayList();
4: for j = 1; j <= Math.pow(n, i)− 1; j ++ do
5: select a random vertex x from BCn,k;
6: if (!nodesList.contains(x)) then
7: nodesList.add(x);
8: remove the i-dimensional edge of Ni(x) ∪ {x};
9: add all i-dimensional nodes of x into nodesList;

10: else
11: j−−;
12: end if
13: end for
14: end for

Algorithm 2 AverageMaxDistance(n, k)

Input: n: the port number of a switch in the BCube; k: the dimension of the BCube;
Output: the average value of the maximum distance between any two nodes in BCn,k;

1: sum = 0.0;
2: for i = 1; i <= 100; i ++ do
3: g← createBCube(n, k);
4: removeSwitches(g, n, k);
5: obtain the maximum distance d between any two nodes in graph g.
6: sum← sum + d;
7: end for
8: return sum/100;

Table 2. The average value of the maximum distance between any two nodes.

Nodes Faulty Switches Average Values of the
Maximum Distance

BC3,1 9 2 3
BC3,2 27 10 5.72
BC3,3 81 36 7.34
BC4,1 16 3 3
BC4,2 64 18 5.79
BC4,3 256 81 7.48
BC5,1 25 4 3
BC5,2 125 28 5.75
BC5,3 625 152 7.61
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5. Conclusions

In this work, we investigate the fault tolerance of BCube while faulty links and faulty
switches distribute in different dimensions. We reveal the properties of BCube in its
topological graph BCn,k for k ≥ 1 and n ≥ 3. This paper shows that (1) BCn,k − F is

connected if f ≤ nk+1−n
n−1 − k and f i ≤ ni − 1 for each 0 ≤ i ≤ k; (2) BCn,k − F is Hamiltonian

if f i ≤ bni/2c − 1 for each 2 ≤ i ≤ k − 1 and f 0 = 0, f 1 ≤ n− 3, f k ≤ nk − 2; (3) If n
mod 2 = 0, BCn,k − F is Hamiltonian if f i ≤ bni/2c − 1 for each 2 ≤ i ≤ k− 1 and f 0 = 0,
f 1 ≤ n− 3, f k ≤ nk − 2; (4) If n mod 2 6= 0, BCn,k − F is Hamiltonian if f i ≤ bni/2c − 1
for each 2 ≤ i ≤ k− 1 and f 0 = 0, f 1 ≤ n− 3, f k ≤ nk − 3. These results indicate that
compared with the traditional method, BCube still has good properties while there are more
faulty elements. Based on the results obtained here, we will consider several properties
such as fault tolerant routing, diameter of BCube as future research directions. In addition,
our results can be extended to other data center networks.

Author Contributions: Conceptualization, Y.L.; methodology, L.Y.; investigation, C.-K.L.; writing—
original draft preparation, Y.L. and C.-K.L.; writing—review and editing, L.Y. All authors have read
and agreed to the published version of the manuscript.

Funding: This work is supported by the Shin Kong Wu Ho Su Memorial Hospital National Yang
Ming Chiao Tung University Joint Research Program (No. 111-SKH-NYCU-03), the National Natural
Science Foundation of China (No. 61902113), the Doctoral Research Foundation of Henan University
of Chinese Medicine (No. BSJJ2022-14) and the Research Project of Suzhou Industrial Park Institute
of Services Outsourcing (No. SISO-ZD202202).

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Khan, A.; Uthansakul, P.; Duangmanee, P.; Uthansakul, M. Energy efficient design of massive MIMO by considering the effects of

nonlinear amplifiers. Energies 2018, 11, 1045. [CrossRef]
2. Uthansakul, P.; Anchuen, P.; Uthansakul, M.; Khan, A. Qoe-aware self-tuning of service priority factor for resource allocation

optimization in LTE networks. IEEE Trans. Veh. Technol. 2022, 69, 887–900. [CrossRef]
3. Mohammad, A.; Alexander, L.; Amin, V. A scalable, commodity data center network architecture. In ACM SIGCOMM Computer

Communication Review; Association for Computing Machinery: New York, NY, USA, 2008; pp. 63–74.
4. Guo, C.; Wu, H.; Tan, K.; Shi, L.; Zhang, Y.; Lu, S. DCell: A scalable and fault-tolerant network structure for data centers. In

SIGCOMM ’08, Proceedings of the ACM SIGCOMM 2008 Conference on Data Communication, Seattle, WA, USA, 17–22 August 2008;
ACM: New York, NY, USA, 2008; pp. 75–86.

5. Kliegl, M.; Lee, J.; Li, J.; Zhang, X.; Guo, C.; Rincón, D. Generalized dcell structure for load-balanced data center networks. In
Proceedings of the 2010 INFOCOM IEEE Conference on Computer Communications Workshops, San Diego, CA, USA, 15–19
March 2010; pp. 1–5.

6. Wang, X.; Fan, J.; Lin, C.-K.; Jia, X. Vertex-disjoint paths in dcell networks. J. Parallel Distrib. Comput. 2016, 96, 38–44. [CrossRef]
7. Guo, C.; Lu, G.; Li, D.; Wu, H.; Zhang, X.; Shi, Y.; Tian, C.; Zhang, Y.; Lu, S. BCube: A high performance, server-centric network

architecture for modular data centers. In SIGCOMM ’09, Proceedings of the ACM SIGCOMM 2009 Conference on Data Communication,
Barcelona, Spain, 16–21 August 2009; Association for Computing Machinery: New York, NY, USA, 2009; pp. 63–74.

8. Lin, D.; Liu, Y.; Hamdi, M.; Muppala, J.K. Hyper-BCube: A scalable data center network. In Proceedings of the 2012 IEEE
International Conference on Communications (ICC), Ottawa, ON, Canada, 10–15 June 2012; pp. 2918–2923.

9. Greenberg, A.; Hamilton, J.R.; Jain, N.; Kandula, S.; Kim, C.; Lahiri, P.; Maltz, D.A.; Patel, P.; Sengupta, S. Vl2: A scalable
and flexible data center network. In SIGCOMM ’09, Proceedings of the ACM SIGCOMM 2009 Conference on Data communication,
Barcelona, Spain, 16–21 August 2009; Association for Computing Machinery: New York, NY, USA, 2009; pp. 51–62.

10. Abu-Libdeh, H.; Costa, P.; Rowstron, A.; O’Shea, G.; Donnelly, A. Symbiotic routing in future data centers. In SIGCOMM ’10,
Proceedings of the ACM SIGCOMM 2010 Conference, New Delhi, India, 30 August–3 September 2010; Association for Computing
Machinery: New York, NY, USA, 2010; pp. 51–62.

11. Li, D.; Guo, C.; Wu, H.; Tan, K.; Zhang, Y.; Lu, S. FiConn: Using backup port for server interconnection in data centers. In
Proceedings of the INFOCOM 2009, Rio de Janeiro, Brazil, 19–25 April 2009; pp. 2276–2285.

12. Li, D.; Wu, J.; Liu, Z.; Zhang, F. Dual-centric data center network architectures. In Proceedings of the 2015 44th International
Conference on Parallel Processing, Beijing, China, 1–4 September 2015; pp. 679–688.

13. Lv, M.; Cheng, B.; Fan, J.; Wang, X.; Zhou, J.; Yu, J. The conditional reliability evaluation of data center network bcdc. Comput. J.
2021, 64, 1451–1464. [CrossRef]

http://doi.org/10.3390/en11051045
http://dx.doi.org/10.1109/TVT.2019.2952568
http://dx.doi.org/10.1016/j.jpdc.2016.05.001
http://dx.doi.org/10.1093/comjnl/bxaa078


Mathematics 2023, 11, 3404 12 of 12

14. Wang, X.; Fan, J.; Lin, C.-K.; Zhou, J.; Liu, Z. Bcdc: A high-performance, server-centric data center network. J. Comput. Sci. Technol.
2018, 33, 400–416. [CrossRef]

15. Lin, W.; Li, X.; Chang, J.-M.; Jia, X. Constructing multiple CISTs on BCube-based data center networks in the ccurrence of switch
failures. IEEE Trans. Comput. 2023, 72, 1971–1984.

16. Li, X.; Lin, W.; Guo, W.; Chang, J.-M. A secure data transmission scheme based on multi-protection routing in datacenter networks.
J. Parallel Distrib. Comput. 2022, 167, 222–231. [CrossRef]

17. Lin, L.; Xu, L.; Huang, Y.; Xiang, Y.; He, X. On exploiting priority relation graph for reliable multi-path communication in mobile
social networks. Inf. Sci. 2019, 477, 490–507. [CrossRef]

18. Lv, M.; Zhou, S.; Sun, X.; Lian, G.; Liu, J. Reliability of (n, k)-star network based on g-extra conditional fault. Theor. Comput. Sci.
2019, 757, 44–55. [CrossRef]

19. Xu, D.; Fan, J.; Jia, X.; Zhang, S.; Wang, X. Hamiltonian properties of honeycomb meshes. Inf. Sci. 2013, 240, 184–190. [CrossRef]
20. Xue, L.; Yang, W.; Zhang, S. Number of proper paths in edge-colored hypercubes. Appl. Math. Comput. 2018, 332, 420–424.

[CrossRef]
21. Li, X.; Liu, B.; Ma, M.; Xu, J. Many-to-many disjoint paths in hypercubes with faulty vertices. Discret. Appl. Math. 2017, 217,

229–242. [CrossRef]
22. Sabir, E.; Meng, J. Parallel routing in regular networks with faults. Inf. Process. Lett. 2019, 142, 84–89. [CrossRef]
23. Lin, X.; McKinley, P.; Ni, L. Deadlock-free multicast wormhole routing in 2d mesh multicomputers. IEEE Trans. Parallel Distrib.

Syst. 1994, 5, 783–804.
24. Tsai, C.-H.; Tan, J.J.; Liang, T.; Hsu, L.-H. Fault-tolerant hamiltonian laceability of hypercubes. Inf. Process. Lett. 2002, 83, 301–306.

[CrossRef]
25. Hung, H.-S.; Fu, J.-S.; Chen, G.-H. Fault-free hamiltonian cycles in crossed cubes with conditional link faults. Inf. Sci. 2007, 177,

5664–5674. [CrossRef]
26. Wang, D. Hamiltonian embedding in crossed cubes with failed links. IEEE Trans. Parallel Distrib. Syst. 2012, 23, 2117–2124.

[CrossRef]
27. Fan, J.; Jia, X.; Lin, X. Embedding of cycles in twisted cubes with edge-pancyclic. Algorithmica 2008, 51, 264–282. [CrossRef]
28. Hung, R.-W. Embedding two edge-disjoint hamiltonian cycles into locally twisted cubes. Theor. Comput. Sci. 2011, 412, 4747–4753.

[CrossRef]
29. Lai, P.-L. Geodesic pancyclicity of twisted cubes. Inf. Sci. 2011, 181, 5321–5332. [CrossRef]
30. Hsieh, S.-Y.; Cian, Y.-R. Conditional edge-fault hamiltonicity of augmented cubes. Inf. Sci. 2010, 180, 2596–2617. [CrossRef]
31. Lv, Y.; Lin, C.-K.; Fan, J. Hamiltonian cycle and path embeddings in k-ary n-cubes based on structure faults. Comput. J. 2017, 60,

159–179.
32. Lv, Y.; Lin, C.-K.; Fan, J.; Jia, X. Hamiltonian cycle and path embeddings in 3-ary n-cubes based on k1,3-structure faults. J. Parallel

Distrib. Comput. 2018, 120, 148–158. [CrossRef]
33. Zhuang, H.; Li, X.; Chang, J.-M.; Wang, D. An efficient algorithm for hamiltonian path embedding of k-ary n-cubes under the

partitioned edge fault model. IEEE Trans. Parallel Distrib. Syst. 2023, 34, 1802–1815. [CrossRef]
34. Qin, X.; Hao, R. Conditional edge-fault-tolerant hamiltonicity of the data center network. Discret. Appl. Math. 2018, 247, 165–179.

[CrossRef]
35. Wang, X.; Erickson, A.; Fan, J.; Jia, X. Hamiltonian properties of dcell networks. Comput. J. 2015, 58, 2944–2955. [CrossRef]
36. Wang, X.; Fan, J.; Zhou, J.; Lin, C.-K. The restricted h-connectivity of the data center network dcell. Discret. Appl. Math. 2016, 203,

144–157. [CrossRef]
37. Zhou, S.; Xu, J. Conditional fault tolerance of arrangement graphs. Inf. Process. Lett. 2011, 111, 1037–1043. [CrossRef]
38. Harary, F. Conditional connecticity. Networks 1983, 13, 347–357. [CrossRef]
39. Chen, Y.-C.; Tan, J.J. Restricted connectivity for three families of interconnection networks. Appl. Math. Comput. 2007, 188,

1848–1855. [CrossRef]
40. Guo, L.; Guo, X. Fault tolerance of hypercubes and folded hypercubes. J. Supercomput. 2014, 68, 1235–1240. [CrossRef]
41. Gu, M.; Hao, R.; Cheng, E. Note on applications of linearly many faults. Comput. J. 2020, 63, 1406–1416. [CrossRef]
42. Guo, L.; Zhang, M.; Zhai, S.; Xu, L. Relation of extra edge connectivity and component edge connectivity for regular networks.

Int. J. Found. Comput. Sci. 2021, 32, 137–149. [CrossRef]
43. Hao, R.; Gu, M.; Chang, J. Relationship between extra edge connectivity and component edge connectivity for regular graphs.

Theor. Comput. Sci. 2020, 833, 41–55. [CrossRef]
[CrossRef]

44. Li, X.; Fan, J.; Lin, C.-K.; Jia, X. Diagnosability evaluation of the data center network dcell. Comput. J. 2017, 6, 129–143. [CrossRef]
45. Hsu, L.-H.; Lin, C.-K. Graph Theory and Interconnection Networks; CRC Press: Boca Raton, FL, USA, 2008.
46. Wang, G.; Lin, C.-K.; Fan, J.; Zhou, J.; Cheng, B. Fault-tolerant hamiltonicity and hamiltonian connectivity of bcube with various

faulty elements. J. Comput. Sci. Technol. 2020, 35, 1064–1083. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s11390-018-1826-3
http://dx.doi.org/10.1016/j.jpdc.2022.05.010
http://dx.doi.org/10.1016/j.ins.2018.10.035
http://dx.doi.org/10.1016/j.tcs.2018.07.017
http://dx.doi.org/10.1016/j.ins.2013.03.044
http://dx.doi.org/10.1016/j.amc.2018.03.063
http://dx.doi.org/10.1016/j.dam.2016.09.013
http://dx.doi.org/10.1016/j.ipl.2018.10.019
http://dx.doi.org/10.1016/S0020-0190(02)00214-4
http://dx.doi.org/10.1016/j.ins.2007.05.032
http://dx.doi.org/10.1109/TPDS.2012.30
http://dx.doi.org/10.1007/s00453-007-9024-7
http://dx.doi.org/10.1016/j.tcs.2011.05.004
http://dx.doi.org/10.1016/j.ins.2011.07.030
http://dx.doi.org/10.1016/j.ins.2010.03.005
http://dx.doi.org/10.1016/j.jpdc.2018.06.007
http://dx.doi.org/10.1109/TPDS.2023.3264698
http://dx.doi.org/10.1016/j.dam.2018.03.049
http://dx.doi.org/10.1093/comjnl/bxv019
http://dx.doi.org/10.1016/j.dam.2015.09.002
http://dx.doi.org/10.1016/j.ipl.2011.07.017
http://dx.doi.org/10.1002/net.3230130303
http://dx.doi.org/10.1016/j.amc.2006.11.085
http://dx.doi.org/10.1007/s11227-013-1078-5
http://dx.doi.org/10.1093/comjnl/bxz088
http://dx.doi.org/10.1142/S0129054121500076
http://dx.doi.org/10.1016/j.tcs.2020.05.006
http://dx.doi.org/10.1016/j.tcs.2020.05.006
http://dx.doi.org/10.1093/comjnl/bxx057
http://dx.doi.org/10.1007/s11390-020-9508-3

	Introduction
	Preliminaries
	Fault-Tolerant Properties of BCn,k
	Performance Analysis
	Number of Faulty Switches
	The Average Value of The Maximum Distance between Any Two Nodes

	Conclusions
	References

