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Abstract: Predicting lithium-ion batteries’ state of charge (SOC) is essential to electric vehicle battery
management systems. Traditional lithium-ion battery models mainly include equivalent circuit
models (ECMs) and electrochemical models (EMs). ECMs are based on integer-order component
modeling, which cannot characterize the internal electrochemical reaction mechanism of the battery,
resulting in lower SOC prediction accuracy. In contrast, due to their complex structure, EMs are
limited in their application. This study takes lithium batteries as the research object and proposes a
fractional-order impedance model (FOIM) that characterizes the dynamic properties of the internal
behavior of lithium-ion batteries using fractional-order elements. Considering the highly nonlinear
characteristics of lithium-ion batteries, this study introduces the theory of fractional-order calculus
into the extended Kalman filter (EKF) algorithm, and proposes the fractional-order extended Kalman
filter (FEKF) algorithm applied to the prediction of battery charge state. Comparative analysis of
simulation and experimental results shows that the accuracy of the FOIM, compared to ECMs, is
significantly improved. The FEKF algorithm has good robustness in estimating the SOC, and the
SOC prediction accuracy achieved with the algorithm is also improved compared with that obtained
using the EKF algorithm of the integer-order model.

Keywords: state of charge; lithium-ion battery; fractional-order impedance model; fractional-order
extended Kalman filter; fractional-order calculus theory

MSC: 03C98

1. Introduction

The development of electric vehicles (EVs) should be vigorously promoted to protect
the deteriorating environment and cope with the energy crisis [1]. As one of the primary
power sources of electric vehicles or hybrid electric vehicles, the safety and reliability of
lithium-ion batteries are vital issues affecting the development of electric vehicles. The
battery management system (BMS), as one of the most critical systems of EVs, has the
functionality of improving the efficiency of battery use, preventing battery overcharge and
discharge and prolonging battery life [2–4]. In BMSs, state of charge (SOC) estimation is the
most basic and essential component [5]. However, the equipment cannot directly measure
SOC; it must be calculated. Additionally, due to complex electrochemical reactions inside
the battery, the system has strong nonlinear characteristics, increasing the difficulty of SOC
estimation [6]. Therefore, finding an accurate method to estimate SOC for the safe use and
popularization of EVs is significant.

Lithium-ion battery models mainly include EMs and ECMs [7]. Based on the porous
electrode theory and the concentrated solution theory, EMs describe the charge and dis-
charge behavior of lithium-ion batteries from the perspective of the electrochemical mech-
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anism by numerically quantifying the internal electrochemical reaction kinetics, mass
transfer, heat transfer, and other microscopic reaction processes.

Therefore, the electrochemical mechanism model has been widely used to optimize
lithium-ion batteries, simulate charge and discharge behavior, and diagnose charge, health,
and thermal states [8]. For example, Gopaluni et al. used the original pseudo-two-
dimensional model to build a model and developed a particle filter algorithm independent
of time and space coordinates to estimate the state of charge [9]. Bizeray et al. integrated
the Chebyshev orthogonal configuration method into the partial differential equation of
the pseudo-two-dimensional model for spatial discretization and then combined it with the
extended Kalman filter (EKF) algorithm for battery state estimation [10]. Domenico Di et al.
established an average electrode model and used the EKF to estimate the state of charge
and critical surface charge [11]. Gao et al. disassembled the same kind of estimated target
battery, measured the structural parameters of the battery via scanning electron microscopy,
identified other unknown electrochemical model parameters using a genetic algorithm,
and established a calculation rule of positive electrode capacity based on the stoichiometric
ratio [12]. However, its complex governing equations and significant calculation result in a
high computational load, which limits the application and development of EMs in practical
engineering.

An ECM does not need to consider the complex chemical reactions inside the battery
but only uses electrical components to simulate its characteristics. ECMs are the most
commonly used methods in modeling, simulation, and engineering applications, which
often combine filtering algorithms to estimate the battery’s SOC. Xie et al. established a
second-order RC equivalent circuit model and used the unsent-particle filter to estimate
SOC, and the results show that its estimation accuracy and real-time performance are
relatively good [13]. Li et al. took lithium iron phosphate batteries as the research object,
established the PNGV equivalent circuit model of batteries, and used the EKF algorithm
to estimate the SOC of lithium-ion batteries. The results show that the PNGV model
combined with the EKF method improved the SOC estimation accuracy [14]. Wang et al.
first established the second-order RC equivalent circuit model of lithium-ion batteries
and identified the model’s parameters. Second, given the shortcomings of the untracked
Kalman filter algorithm, the convergence criterion of the general filter was introduced,
and the SOC method of estimating the state of charge of lithium-ion batteries based on
the adaptive untracked Kalman filter was formed [15]. Zhang et al. established a dual-
polarization equivalent circuit model, integrated AEKF and PF algorithms, and developed
an adaptive extended Kalman particle filter algorithm (AEKPF) [16]. Qiao et al. took the
Thevenin equivalent circuit model as the initial model and improved it to form a dynamic
migration model. In addition, a chaotic firefly particle filter method was proposed to realize
the collaborative estimation of SOC and SOH for lithium-ion batteries [17]. However,
the traditional method of modeling the ECM of lithium-ion batteries is usually based on
integer-order modeling. There is an anomalous diffusion phenomenon based on the fractal
medium between electrodes inside lithium-ion batteries, and its diffusion coefficient is
directly related to the fractional order [18]. Moreover, in the application process of the
integer-order equivalent model, although the increase in RC parallel links will improve
the accuracy of the model to a certain extent, it will also lead to a significant increase in
the complexity and calculation of the model, which seriously affects the application of the
equivalent model. However, the application of fractional-order derivatives is becoming
more and more widespread. In particular, this mathematical device has been successfully
used to describe processes of an anomalous nature [19,20]. Examples of such systems
in different scientific fields, including problems related to electrochemical reactions, are
discussed in detail in [21]. As a result, the transition from an ECM to the fractional-order
impedance model (FOIM) becomes possible.

As seen above, the structure of an EM is complex, and the amount of computation
required is large. However, an ECM cannot describe the dynamic characteristics of the
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battery, and the model’s accuracy needs to be improved. Therefore, a new modeling method
needs to make up for the shortcomings of the above models.

In this paper, a fractional-order modeling approach for power batteries based on
the Grunwald–Letnikov (G-L) fractional-order calculus definition is used. The fractional-
order electrical component structure is used to establish an FOIM for lithium-ion batteries.
Compared with the existing electrochemical models, this model is more accurate than the
integer-order modeling method, simplifying the model structure and reducing the amount
of calculation required without lowering the model’s accuracy.

In addition, this study introduces the theory of fractional-order calculus into the
EKF algorithm, forming the fractional-order extended Kalman filter (FEKF) algorithm to
estimate the SOC of the battery. The simulation experiments, including the DST (dynamic
stress test) and FUDS (federal urban dynamic schedule) conditions, are compared with the
EKF algorithm. We further verify the robustness and accuracy of the algorithm.

2. Fractional-Order Modeling of Lithium-Ion Batteries
2.1. Thevenin Equivalent Circuit Model

In the Thevenin equivalent circuit model in the Rint equivalent circuit model based
on the addition of a parallel RC network, the nature of the RC network coincides with
the internal polarization phenomenon of the battery, which can be a good reflection of the
internal dynamic and static characteristics of the battery. The structure of the Thevenin
equivalent circuit model is shown in Figure 1, which mainly consists of three parts: the
open-circuit voltage UOC, the ohmic resistance R0, the polarization resistance R1, and the
polarization capacitance C1. The parallel link composed of R1 and C1 is used to describe
the polarization phenomenon of the battery.
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2.2. Fractional Calculus Modeling
2.2.1. Fractional-Order Calculus Definition

As early as 1695, Leibnitz’s letter to L’Hospital mentioned the concept of fractional-
order calculus theory (fractional-order calculus, FOC). FOC is a generalization of the
traditional integral calculus theory, which is widely used in physics, fluid mechanics,
chemistry, biophysics, signal processing, aerodynamics, economics, control theory, and
other scientific and engineering fields [22,23]. At present, there are many definition forms of
fractional calculus, among which three standard definition forms are Grunwald–Letnikov
(G-L) definition, Riemann–Liouville (R-L) definition, and Caputo definition [24]. The G-L
definition form is often used in calculating fractional-order differentiation because it can
discretize calculus directly. The definition form of G-L fractional calculus for any function
is shown in Equation (1):

∆r
t f (x) = lim

h→∞

1
hr

∞

∑
j=0

(−1)j
(

r
j

)
f (x− jh), (1)
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where ∆ represents the differential operator; t is the upper bound of calculus; r stands for

fractional order; h means sampling time;
(

r
j

)
is Newton’s binomial coefficient with the

expansion as below, and its development is(
r
j

)
=

{
j!

j!(r−j)! =
Γ(r+1)

Γ(j+1)Γ(r−j+1) , j > 0,
1, j = 0.

(2)

Here Γ(·) is the Gamma function, j = 0, 1, 2, . . .. Generally, a coefficient calcula-

tion (−1)j
(

r
j

)
is inevitable in the fractional calculus operation. In order to simplify the

calculation process, a recursive method is adopted, as shown in Equation (3):

ω
(r)
1 = 1, ω

(r)
j = (1− r + 1

j
)ωr

j−1, j = 1, 2, 3, . . . , (3)

where ω(r) stands for (−1)j
(

r
j

)
.

2.2.2. Fractional-Order Impedance Model

Electrochemical Impedance Spectroscopy (EIS) is a method of electrochemical measure-
ment using small-amplitude sine wave potential (current) as the disturbance signal, which
can be used for nondestructive measurement of parameters and effective measurement
of battery dynamics. The shape of the electrochemical impedance spectra of lithium-ion
batteries under different SOC states is almost consistent, as shown in Figure 2. In the figure
below, the abscissa represents the impedance of the real part, and the ordinate represents
the impedance of the imaginary part. The impedance spectrum is divided into high-,
middle-, and low-frequency bands.
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As can be seen from Figure 2, the low-frequency part is a straight line with a constant
slope, which characterizes the ion diffusion phenomenon (concentration polarization) in
the electrochemical reaction of lithium-ion batteries. This part can be represented by a
constant-phase element, usually called the element.

Let Uoc be the open-circuit voltage, which is a function of SOC; Uc is the voltage of
element CPE in parallel with resistance R1; Uw is the voltage of element Warburg; Ut is
terminal voltage; R0 is ohmic resistance; the lithium-ion battery FOIM is shown in Figure 3.
In terms of architecture, it is similar to an ECM, and its ability to reflect the electrochemical
mechanism is better than that of an ECM, while it overcomes the shortcoming of the
complexity of an EM.
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Among them, the two constant components of CPE and Warburg are fractional com-
ponents formed in the frequency domain, so that they can be defined in the following
formula [25]:

ZCPE(jω) =
1

C1 · (jω)α , 0 ≤ α ≤ 1, (4)

ZWarburg(jω) =
1

W · (jω)β
, 0 ≤ β ≤ 1, (5)

where α and β are the fractional order of element CPE and element Warburg respectively;
ω is the sampling frequency; j represents imaginary units; C1 and W are constants.

According to Kirchhoff’s laws, the mathematical expression of FOIM is
∆αUc(t) = It

C1
− Uc(t)

C1R1
,

∆βUW(t) = It
W ,

•
SOC = − η·It

Qn
.

(6)

The mathematical expression of terminal voltage Ut is

Ut = Uoc(SOC)− R0 It −Uc −Uw, (7)

where Qn is the battery’s rated capacity; It is the current flowing through the battery at
the time t; η is the Coulomb efficiency, which generally ranges from 0.92 to 0.98, where
η = 0.98.

According to Equations (6) and (7), let state vector x =
[
Uc Uw SOC

]T , input vector
u = It, and output vector y = Ut; then, the state transition equation and measurement
equation of FOIM of lithium-ion batteries can be obtained as follows:{

∆N x = Ax + Bu,
y = Cx + Du.

(8)

where Ã =

−1/R1C1 0 0
0 0 0
0 0 0

; B =
[
1/C1 1/W −η/Qn

]T ; C =
[
−1 −1 0

]
; D =

[−R0]; N =
[
α β 1

]
; α, β, R1, C1, W, and R0 are the parameters to be identified.

2.3. Parameter Identification

Accurate identification of the six parameters of FOIM in lithium-ion batteries is a
prerequisite for accurate and predictive SOC.

(1) Identification of parameters α, β, R1, C1, W
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The FOIM of lithium-ion batteries involves several parameters that need to be iden-
tified. A genetic algorithm (GA) is selected to identify the model parameters to obtain
the optimal solution. This is an efficient and parallel global search method that can au-
tomatically acquire and accumulate knowledge about search space in the search process
and control the search process adaptively, so it can overcome the disadvantage of falling
into a local minimum in the general iterative method. GAs have been widely applied and
developed for parameter identification [26]. They are available for parameter identifica-
tion of the Thevenin equivalent circuit model and FOIM. After determining the model
parameters to be identified, a starting population that meets the requirements is randomly
generated. The value of the fitness function is calculated for the initial population, and then
new candidate populations are created using genetic operators (selection, crossover, and
mutation). The value of the fitness function for the new population is iteratively calculated.
The fitness function value of the new population is calculated repeatedly until the fitness
function value of an individual is less than the specified precision. The iteration ends at this
moment, and the individual is the best possible individual output. Otherwise, the iteration
continues.

The purpose of parameter identification is to minimize the error of terminal voltage,
so the fitness function of the genetic algorithm can be set as follows:

J = min


√√√√ 1

Nm

Nm

∑
k=1

(
Ut(k)−

∧
Ut(k,

∧
x)
)2
, (9)

where Nm is the length of terminal voltage Ut;
∧
Ut represents the estimated value of terminal

voltage, which can be calculated using Equation (8).

(2) Identification of parameter R0

The change curve of the battery terminal voltage under the known pulse discharge
current [27] is shown in Figure 4. When the discharge/charge current is executed or
stopped, the battery’s terminal voltage will rise or fall suddenly, mainly due to ohmic
polarization.
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Therefore, the two curves can be used to calculate the value of the ohm internal
resistance R0 of the battery. The calculation formula is as follows:

R0 =
|Ua −Ub|+|Uc −Ud|

2I
, (10)
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3. SOC Prediction Based on the Fractional-Order Extended Kalman Filter

The EKF algorithm is the extension of the traditional Kalman filter algorithm, which is
widely used in engineering because of its simplicity and ease of use. This paper introduces
the fractional calculus theory based on the EKF algorithm, and the SOC prediction is based
on it.

Equation (8) can be discretized to obtain{
∆N xk+1 = Ãxk + B̃uk + wk,

yk = C̃xk + D̃uk + νk.
(11)

In the above Equation, Ã =

−1/R1C1 0 0
0 0 0
0 0 0

; B̃ =
[
1/C1 1/W −η/Qn

]T ; C̃ =

[
−1 −1 0

]
; D̃ = [−R0]; uk = Ik is the current flowing through the battery at the time

k; yk is the terminal voltage of the battery at the time k; wk and vk are process noise and
measurement noise, respectively; xk and xk+1 are state variables corresponding to time k
and time k + 1, respectively.

Equation (11) is transformed by the G-L calculus definition to give the discrete equa-
tions of the system as:xk+1 = TN

s Ãxk + TN
s B̃uk + TN

s wk −
k+1
∑

j=1
(−1)jγjxk+1−j,

yk = C̃xk + D̃uk + νk.
(12)

where Ts represents sampling time; the coefficient γj =

(
N
j

)
= diag

[(
α
j

) (
β
j

) (
1
j

)]
.

The FEKF algorithm was used to predict the SOC of lithium-ion batteries. The
flowchart of the FEKF algorithm is shown in Figure 5, and the process is as follows:
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(1) Initialization

Suppose the estimated value of the initial state is
∧
x0 and the error covariance matrix of

the initial state is
∧
P0, then:

∧
x0 = E(x0), (13)



Mathematics 2023, 11, 3401 8 of 15

∧
P0 = E

[(
x0 −

∧
x0

)(
x0 −

∧
x0

)T
]

, (14)

In the above Equation, E[·] is the expected value.

(2) Time update

The prior estimation of the state and error covariance matrix at the time k is obtained
through the posterior estimation of the state matrix and error covariance matrix at the time
k− 1, namely:

∆γ∧xk|k−1 = Ã
∧
xk−1 + B̃uk−1, (15)

∧
Pk|k−1 = (Ã + γ1)

∧
Pk−1(Ã + γ1)

T
+

k

∑
j=2

γj
∧
Pk−1γT

j + Qk, (16)

where Qk is the covariance matrix for measuring noise wk.

(3) Measurement update

Posteriori estimate of the state and error covariance matrix at the time k can be obtained
by updating the prior estimate of the state matrix and error covariance matrix at the time k,
namely:

∧
xk =

∧
xk|k−1 + Lk(yk − ŷk), (17)

∧
Pk = (E− LkC̃)

∧
Pk|k−1, (18)

Lk =
∧
Pk|k−1C̃T(C̃

∧
Pk|k−1C̃T + Rk−1)

−1
, (19)

where
∧
xk =

[∧
Uc,k

∧
Uw,k

∧
SOCk

]T
;
∧

SOCk is the estimated SOC value at the time k; ŷk is the
estimated value of the terminal voltage at the time k; Lk is the gain matrix of Kalman filter;
Rk is the covariance matrix of process noise vk; E is the identity matrix of 3× 3.

4. Experiment Results
4.1. Data Acquisition

These data used here were obtained from the experimental data provided openly by
the laboratory of the University of Maryland [27]. The battery model used in the experiment
is the INR18650-20R power battery, whose rated capacity is 2 Ah and cut-off voltage is 4.2 V.
Under the constant temperature conditions of 0 ◦C, 25 ◦C, and 45 ◦C, pulse current charge
and discharge, constant current charge and discharge, and multi-condition dynamic test
experiments were carried out. All three test experiments could be used to verify the model,
and the pulse discharge test data were selected to verify the model.

4.2. Battery Model Verification

Model parameters were identified using the aforementioned parameter identification
method and compared with the first-order fractional impedance model (IM) and integer
Thevenin equivalent circuit model in the literature [28].

The parameter identification results for the FOIM, IM, and Thevenin models are shown
in Table 1.

Table 1. Parameter identification results.

Parameter α β R1 C1 W R0

FOIM 0.998 0.982 0.2452 Ω 15,879 F 526,190 Ω 0.2129 Ω

IM 0.995 - 0.2834 Ω 18,527 F - 0.2129 Ω

Thevenin model - - 0.3521 Ω 25,413 F - 0.2129 Ω
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Further, a terminal voltage comparison diagram of the FOIM, IM, and Thevenin model
and its error comparison diagram under pulse discharge conditions could be obtained, as
shown in Figures 6 and 7.
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It can be seen from Figure 7 that the FOIM had a certain degree of improvement in
accuracy compared with the IM and the integer-order Thevenin model, which can better
track the actual measurements.

The error analysis results show that significant errors occurred at the beginning and
end of the operating condition test, which were caused by the battery model error. The
terminal voltage error of the FOIM constantly fluctuated within±0.02 V and decreased with
time, while the terminal voltage error of the integer Thevenin model increased with time.
The root mean square error (RMSE) calculation results for the FOIM, IM, and Thevenin
terminal voltage models are shown in Table 2.

Table 2. FOIM, IM, and Thevenin model terminal voltage root mean square error.

Model FOIM IM Thevenin

Root mean square error 0.0139 V 0.0152 V 0.0195 V

As seen in Table 2, the root mean square error of the terminal voltage of the FOIM was
0.0139 V, which is 0.013 V and 0.056 V less than the RMSE of the IM and Thevenin model,
respectively.
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The above analysis shows that the FOIM is effective. Its accuracy was significantly
improved compared with the IM and Thevenin model. This is because, on the one hand,
the ECM usually contains one or more RC links, and RC links can only describe the
physical characteristics of batteries, while the CPE components in the FOIM can explain the
diffusion phenomenon inside batteries, which not only accords with the electrochemical
mechanism inside the battery but also dramatically improves the accuracy of the model;
on the other hand, compared with the IM, the FOIM increases the description of the low-
frequency part of the electrochemical impedance spectrum, thus improving the accuracy
of the model. In addition, based on integer-order equivalent circuit modeling, an FOIM
for lithium-ion batteries is proposed. If compared with the Thevenin equivalent circuit
model, the second- or third-order models are more accurate. As a matter of fact, these
higher-order models can result in a significant increase in the complexity and calculation of
the model, which seriously affects the application of the equivalent model. In addition, the
accuracy of the model does not considerably increase when the order of the RC network
increases to the third order or higher, and a significant amount of computation has to be
considered [29,30]. Apparently, the Thevenin equivalent circuit model satisfies a better
balance between accuracy and computational efficiency [31]. The transition from the
Thevenin equivalent circuit model to the FOIM is justified. In a word, the Thevenin
equivalent circuit model is more advantageous according to the results.

4.3. SOC Prediction and Analysis of Lithium-Ion Batteries

The complex driving conditions of electric vehicles lead to frequent and irregular
charging and discharging behaviors of lithium-ion batteries during the driving process.
Therefore, verifying the effectiveness and reliability of SOC estimation algorithms under
different driving conditions is necessary.

Here, two commonly used test conditions, DST and FUDS, are selected; the FOIM is
combined with the FEKF algorithm; the SOC estimation strategy is established; parameters
are substituted into the algorithm; and the FEKF algorithm calculates the SOC value. The
SOC predicted value is compared with the SOC predicted value of the traditional EFK
algorithm and SOC reference value. The SOC reference value can be calculated using
Equation (20):

SOC = SOC0 −
t∫

0

i·η
Qn

dt, (20)

where SOC0 is the value of the charge status at the initial time; Qn indicates the battery’s
rated capacity; i represents the current flowing through the battery.

4.3.1. DST Working Condition Simulation Verification

The DST condition is a widely used dynamic driving test condition which can be
used to evaluate a vehicle’s performance and verify the accuracy of the battery model or
algorithm efficiency. To verify the FEKF algorithm, DST operating condition test data were
obtained from the University of Maryland at 25 ◦C. The experimental results show that
the working range of SOC was reduced from 80% to 10%, including over multiple DST
operating cycles. The DST test operating current and terminal voltage curves are shown in
Figures 8 and 9, respectively. In order to verify the accuracy and robustness of the FEKF
algorithm under the DST condition, the initial SOC value was set as 70% and compared
with the EKF algorithm of the integer-order model.

Here, the SOC value calculated using Equation (20) was used as the reference value,
compared with the SOC predicted value calculated using the FEKF algorithm and the one
calculated using the integer-order EKF; then, the error analysis was carried out further. The
results are shown in Figures 10 and 11.
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Figure 10 shows that the SOC curves of the FEKF and EKF algorithms could converge
to the true SOC value despite different initial SOC values, indicating that both algorithms
have good robustness. Figure 11 shows that the SOC convergence error of the FEKF
algorithm was within ±0.02, which is significantly less than the SOC convergence error
of the EFK algorithm. Meanwhile, the time taken for the error of the FEFK algorithm to
reach convergence was considerably less than the convergence time of the EKF algorithm.
This indicates that the FEKF algorithm has higher accuracy and efficiency than the EFK
algorithm under the DST test condition.

4.3.2. FUDS Working Condition Simulation Verification

The FUDS condition is another typical dynamic driving cycle test condition which
can be used to verify the model’s and algorithm’s effectiveness. Similar to the DST test
condition, after several FUDS charging and discharging cycles, the SOC operating range
was reduced from 80% to 10%. The current and terminal voltage curves of the FUDS test
condition are shown in Figures 12 and 13. In order to verify the accuracy and robustness
of the FEKF algorithm under the FUDS condition, the initial SOC value was set to 70%,
and the predicted SOC value of the FEKF algorithm was compared with that of the EKF
algorithm of the integer-order model. The comparison results and error diagrams are
shown in Figures 14 and 15.
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It can be seen from Figure 14 that the FEKF algorithm had good robustness under
the FUDS test condition. The SOC error diagram in Figure 15 shows that the SOC error
predicted by the FEKF algorithm converged to 0.02, while the SOC error predicted by the
EKF algorithm converged to 0.035 under the FUDS condition, which indicates that the
accuracy of the former is significantly better than that of the EKF algorithm. According
to the SOC error diagram, under DST and FUDS test conditions, when the SOC is in a
low or high range, there is an increase in the error in SOC prediction. The increased SOC
error under the FEKF algorithm is less than that under the EKF algorithm because the
battery parameters change when the SOC is in the lower or higher range. This leads to
the phenomenon wherein the predicted value deviates from the real value, but the FEKF
algorithm can inhibit this phenomenon.

In order to quantify the accuracy of the proposed algorithm, error analysis of the
predicted SOC of the FEKF algorithm and EKF under DST and FUDS test conditions was
carried out. The statistical results for the root mean square error and maximum error of
SOC estimation are shown in Tables 3 and 4.

Table 3. Comparison of the RMSE between FEKF and EKF for the SOC estimation.

Conditions EKF FEKF

DST 0.0352 0.0121
FUDS 0.0348 0.0233

Table 4. Comparison of max SOC estimation error between FEKF and EKF.

Conditions EKF FEKF

DST 0.042 0.020
FUDS 0.060 0.045
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It can be seen from Tables 3 and 4 that under DST and FUDS test conditions, the
SOC estimation RMSE of the FEKF algorithm was 0.0121 and 0.0233, respectively, being
reduced by 0.0231 and 0.0115 compared with the EKF estimation effect, respectively. In
the DST and FUDS tests, the maximum estimation error of SOC estimated by the FEKF
algorithm was 0.042 and 0.020, respectively, being significantly reduced compared with the
maximum error of SOC estimated using the EKF. Noted that modeling error is the main
factor affecting SOC estimation, and the accuracy of SOC estimation of the FEKF algorithm
was better than that of the EKF due to the use of fractional models to reduce modeling error.
Therefore, the FEKF algorithm used in the fractional-order model had good robustness to
the SOC estimation, and the SOC prediction accuracy was improved compared with the
EKF algorithm of the integer-order model.

5. Conclusions

This paper introduces the fractional calculus theory into lithium-ion battery modeling
and state prediction. A fractional-order battery modeling and SOC prediction methods
based on the FEKF are also proposed. Compared with the traditional ECM, the FOIM can
accurately describe the electrochemical mechanism of the battery. Simulation experiments
and calculations were carried out to verify the accuracy of the FOIM, and the RMSE error of
the FOIM was reduced by 0.013 V and 0.058 V compared with the IM and Thevenin model,
respectively. Based on the fractional impedance model, the FEKF algorithm was used to
predict the SOC of the battery, and compared with the EKF algorithm, the root mean square
errors of the FEKF algorithm were reduced by 0.0231 and 0.0115 under DST and FUNDS
working conditions, respectively; the maximum errors were reduced by 0.022 and 0.015,
respectively. The FEKF algorithm has the characteristics of good robustness, high accuracy,
and high efficiency in predicting SOC. Therefore, the FOIM proposed in this paper can
accurately simulate battery characteristics, and the FEKF algorithm used to predict the
battery SOC provides an effective way to improve the accuracy of state estimation in the
battery management system of electric vehicles.
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