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Abstract: In this investigation, a novel (3+1)-dimensional Lax integrable Kadomtsev–Petviashvili–
Sawada–Kotera–Ramani equation is constructed and analyzed analytically. The Painlevé integrability
for the mentioned model is examined. The bilinear form is applied for investigating multiple-soliton
solutions. Moreover, we employ the positive quadratic function method to create a class of lump
solutions using distinct parameters values. The current study serves as a guide to explain many
nonlinear phenomena that arise in numerous scientific domains, such as fluid mechanics; physics of
plasmas, oceans, and seas; and so on.
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1. Introduction

Over the previous few decades, studying higher-dimensional integrable differential
equations has gained immense research interest due to its significance in solitary wave the-
ory [1,2]. These equations have exerted considerable effects supporting the developments
of scientific areas. Nonlinear integrable models appear in many scientific disciplines, such
as mathematical physics, plasma physics, fluid mechanics, nonlinear optics, ocean waves,
tsunamis, fluid dynamics, electrical engineering, atmospheric science, matter-wave pulses
in Bose–Einstein condensates, and solitary wave (SW) theory [3–10]. A nonlinear system
becomes integrable if it belongs to one of the integrable senses, namely the Liouville inte-
grable sense, Painlevé integrable sense, Lax integrable sense, infinite symmetry integrable
sense, etc. It is known that the idea of integrability has no one definition; in discussing the
integrability of any system, it is necessary to specify the integrability sense of the examined
system [11–19]. The mathematical or physical properties of higher-dimensional integrable
models have attracted a considerable number of research investigations. This is due to
the fact that the integrability phenomenon is an essential characteristic that led to several
scientific applications [20–27].

This has led to investing a significant amount of research being conducted to explicitly
introduce extensions to integrable hierarchies. Thus, this led to the introduction of some
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extensions of known integrable models. We can study several important results in SW
theory thanks to the integrable extensions of the well-known models in higher dimen-
sions [27–29]. Due to the existence of the Lax pair or Painlevé property, the integrable
models become completely solvable. The combinations of two or more components of an
integrable hierarchy have recently attracted some useful works that led to new integrable
systems with reliable results.

Lately, various theoretical proposals to form linear structures or combinations of two or
more arbitrary integrable members of a specific hierarchy have been introduced [3–14]. For
example, the Burgers equation was combined with the STO equation to form an integrable
linear system that led to kink solutions and molecule solutions [5–7]. Other works of
combining the standard KdV equation with any of the fifth-order KdV equations were
given in [3–10] and some of the references therein. In [3], a linear combination of the
standard KdV equation and the fifth–order Sawada–Kotera equation, a member of the KdV
hierarchy [3–5], was proposed as

ut + a(3u2 + uxx)x + b(15u3 + 15uuxx + uxxxx)x = 0, (1)

called the KdV–SK–R equation. Hirota and Ito [4] utilized this equation to explain the
resonances of solitons in a one-dimensional space. In Equation (1), for b = 0, the KdV
equation is recovered. However, for a = 0, the fifth-order Sawada–Kotera equation
is recovered.

Using the same sense of the KdV–SK–R Equation (1), the authors in Ref. [4] developed
a new Lax integrable equation given as

uxt + (3u2 + uxx)xx + (15u3 + 15uuxx + uxxxx)xx + σuyy = 0, (2)

which will be called Kadomtsev–Petviashvili–Sawada–Kotera–Ramani (KP–SK–R) equation.
Also, this equation can be reduced to Equation (1) for σ = 0. Also, in Ref. [4], the Lax
pair was constructed to confirm its Lax integrability; by introducing the potential function,
an infinite number of conservation laws are introduced. Additionally, this equation was
applied to characterize the solitons’ resonances in a two-dimensional space. Motivated by
the above scientific applications and many other, the aim of this paper is to present a study
on integrability of a (3+1)-dimensional extension of the KP–SK–R Equation (2) that takes
the sixth-order form

uxt + a(3u2 + uxx)xx + (15u3 + 15uuxx + uxxxx)xx + α1uyy + α2uzz
+β1uxy + β2uyz + β3uxz = 0.

(3)

The nonlinear integrable equations have been thoroughly investigated aiming to
achieve more new results. Researchers were interested to derive many scientific solutions,
such as multiple-soliton solutions, breather solutions, kink solutions, lump solutions, rogue
wave (RW) solutions, and many others. Numerous helpful discoveries were made that
aided in the investigation of certain fresh physical characteristics of various applications.
The essential characteristics of lump solutions (LSs), which are sometimes called rational
function (RF) solutions, in physics and many other nonlinear disciplines have attracted
the attention of several scholars in recent years. Lumps differ from solitons because of
their locality with higher amplitude and rapididity [3–19]. The lump solution (LS), a form
of RF solution, has received a lot of interest in the domains of mathematical physics and
science [3–16]. Lumps are a type of RF solution and are localized in all space directions,
whereas solitons are exponentially localized in particular directions [3–16]. However, rogue
waves (RWs) are localized in both space-time, emerge out of nowhere, and vanish without
leaving any trace. Lump waves appear in many nonlinear systems, such as oceanography,
shallow water waves, nonlinear optical fibers, and biophysics. Studying the extended
integrable equations significantly improves SW theory and sheds more light on the physical
significance of the obtained solutions. To find multiple-soliton solutions and LSs, the Hirota
bilinear form is an effective technique to achieve this purpose.
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The SW solutions for several nonlinear models have been obtained using some effective
analytical techniques, including the inverse scattering method, the Hirota method, Darboux
transformation technique, and Painlevé expansion method. One of the best methods for
creating soliton solutions using the dependent variable transformation and conventional
parameter stretching is Hirota’s bilinear method.

In this article, we will first demonstrate that the new constructed (3+1)-dimensional Lax
integrable KP–SK–R model (3) fails the complete Painlevé integrability. After that we will
derive multiple-soliton solutions that play an important role in revealing qualitative and
quantitative features of nonlinear scientific via using the simplified Hirota’s scheme [3–12].
Additionally, a class of LSs for this novel equation can be established using various values
of the utilized parameters.

2. Formulation of a New (3+1)-Dimensional KP–SK–R Equation

Based on the literature works, the following new extended KP–SK–R equation
is constructed

uxt + (3u2 + uxx)xx + (15u3 + 15uuxx + uxxxx)xx + α1uyy + α2uzz
+β1uxy + β2uyz + β3uxz = 0,

(4)

where αi, i = 1, 2, and β j; j = 1, 2, 3 are non-zero arbitrary parameters; and u ≡ u(x, y, z, t).
Moreover, the extended KP–SK–R Equation (4) includes four additional terms, namely
α2uzz, β1uxy, β2uyz,, and β3uxz when compared with Equation (2). Following [4], the newly
extended Equation (4) is Lax integrable.

3. Painlevé Analysis to a Related Equation

Numerous important characteristics, including the Hamiltonian structure, the Lax
pair, an infinite number of conservation laws, and an infinite number of symmetries, can
describe the integrability of different nonlinear evolution equations. In this investigation,
we aim to study the Painlevé integrability of Equation (4). To do this, we adhere to the
Painlevé analysis described in Refs. [3–10] and some references therein.

Painlevé Analysis

Painlevé integrability of nonlinear PDEs can be examined using Painlevé analysis.
It is important to know that the meaning of Painlevé integrability of nonlinear PDEs is
that the solution is single-valued in the vicinity of a movable singularity manifold. Weiss,
Tabor, and Carnevale (WTC) [7] developed an algorithm ( WTC method) to study the
compatibility criteria for Painlevé integrability.

It is assumed that the solution to Equation (4) is a Laurent expansion about a singular
manifold ψ ≡ ψ(x, y, z, t) as

u =
∞

∑
k=0

uk ψk−γ. (5)

For applying the Painlevé test, you must first (i) compute the leading order and
coefficients, (ii) identify the resonant points, and then (iii) check the compatibility conditions.
We shall investigate each idea in the sections that follow [6–19].

(i) Leading order behavior and coefficients:

To obtain the leading order behavior and coefficients, the following ansatz
is considered

u = u0φα, (6)

in Equation (4) to obtain the following two distinct cases:

(i) α = −2, u0 = −2φx, (ii) α = −2, u0 = −4 φx. (7)
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(ii) Resonant points:

Our goal is to identify the resonant points, or the values of j at which arbitrary
functions can be introduced into the Laurent series

u =
∞

∑
j=0

uj φj+k, (8)

and it is single-valued, close to the singularity manifold φ. To accomplish this goal, we use

u = u0φ−1 + ujφ
j−1, (9)

in Equation (4), following the WTC analysis [5], and balancing the most dominant terms,
we finally obtain:

(i) The principal branch: k = −1, 2, 3, 6, 7, 10;
(ii) The secondary branch: k = −2,−1, 5, 6, 7, 12.

where each branch includes six resonance points due to the sixth-order of the linear structure
of Equation (4).

(iii) Verifying compatibility conditions

We refer to the works in Refs. [3–16] to confirm the compatibility conditions. The
resonance at k = −1 relates to the arbitrariness of singular manifold ψ = 0 for the principal
branch (i). Moreover, the Painlevé compatibility, while working for levels 2, 3, 6, and 7, fails
at level 10.

For the secondary branch, the Painlevé compatibility, while working for levels 6 and 7,
fails for levels 5 and 12. Based on this, we conclude that the KP–SK–R (4) does not pass the
Painlevé test, and presumably, it is not Painlevé integrable.

As stated earlier, the newly extended equation (4) is Lax integrable as confirmed in
Ref. [4]. Using the results in [3–7], we will pursue our work to determine multiple-soliton
solutions and a variety of LSs.

4. Multiple-Soliton Solutions

Here, we plan to obtain the dispersion relation (DR) and multiple-soliton solutions for
the KP–SK–R Equation (4) and hence obtain the phase shifts (Phs) of the soliton interaction.
To achieve that, we insert the following solution into the linear parts of Equation (4)

ui = eθi , (10)

in order to obtain the following DR:

ci =
k6

i + k4
i + α1r2

i + α2s2
i + β1kiri + β2risi + β3kisi

ki
, (11)

with phase variables θi = Ri − cit where Ri = kix + riy + siz, where i = 1, 2, · · · , N.
Accordingly, we obtain

θi = kix + riy + siz−
k6

i + k4
i + α1r2

i + α2s2
i + β1kiri + β2risi + β3kisi

ki
t, (12)

where i = 1, 2, · · · , N. Using the following transformation:

ui = 2(ln fi)xx, (13)

in Equation (4) to obtain multiple-soliton solutions. Here, fi ≡ fi(x, y, z, t) gives the auxiliary
function, where i = 1, 2, 3, . . . corresponding to, one-, two, three-solitons and so on.
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Now, to obtain the one-soliton solution, the following value is considered

f1 = 1 + eθ1 , (14)

where θ1 can be obtained from Equation (12) for i = 1. Accordingly, the following one-
soliton solution is obtained

u1 =
2k1

2ek1x+r1y+s1z−
k6
1+k4

1+α1r2
1+α2s2

1+β1k1r1+β2r1s1+β3k1s1
k1

t

(1 + eθ1)2 . (15)

The profile of one-soliton solution (15) is illustrated in Figure 1 for (k1, r1, s1) = (1, 1, 1)
and (α1, α2, β1, β3, β3) = (2, 2, 0.1, 0.1, 0.1). Here, Figure 1a for (y, z) = (0, 0) and Figure 1b
for (y, z) = (5, 5).

Figure 1. One-soliton solution (15) is plotted in (x, t)-plane for (a) (y, z) = (0, 0) and (b) (y, z) = (5, 5).

To obtain two-soliton solutions, the following function f2 is introduced

f2 = f1 + eθ2 + a12eθ1+θ2 , (16)

where a12 denotes the Phs. To estimate the value of a12, we insert Equation (16) into
Equation (4) to obtain

a12 =
−k2

1k2
2(k1−k2)

2(5k2
1−5k1k2+5k2

2+3)+α1(k1r2−k2r1)
2+α2(k1s2−k2s1)

2+β2(k1s2−k2s1)(k1r2−k2r1)

−k2
1k2

2(k1+k2)2(5k2
1+5k1k2+5k2

2+3)+α1(k1r2−k2r1)2+α2(k1s2−k2s1)2+β2(k1s2−k2s1)(k1r2−k2r1)
,

(17)

which can be generalized as

aij =
−k2

i k2
j (ki−kj)

2(5k2
i−5kikj+5k2

j +3)+α1(kirj−kjri)
2+α2(kisj−kjsi)

2+β2(kisj−kjs1)(kirj−kjri)

−k2
i k2

j (ki+kj)2(5k2
i +5kikj+5k2

j +3)+α1(kirj−kjri)2+α2(kisj−kjsi)2+β2(kisj−kjsi)(kirj−kjri)
,

(18)

where 1 ≤ i < j ≤ 3.
It is clear that the Phs (18) depends on the parameters α1, α2, β2, kn, rn, and sn, n = 1, 2, 3

but does not depend on β1 and β3. By inserting Equations (17) and (16) into Equation (13),
we obtain the two-soliton solutions.

The profile of the two-soliton solution according to Equations (13) and (16) is illustrated
in Figure 2 for (k1, r1, s1) = (1, 1, 1), (k2, r2, s2) = (0.4, 0.4, 0.4), and (α1, α2, β1, β3, β3) =
(2, 2, 0.1, 0.1, 0.1). Here, Figure 2a for (y, z) = (0, 0) and Figure 2b for (y, z) = (5, 5).
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Figure 2. Two-soliton solution according to Equations (13) and (16) is plotted in (x, t)-plane for
(a) (y, z) = (0, 0) and (b) (y, z) = (5, 5).

To obtain the three-soliton solutions, the following value to f3

f3 = f2 + eθ3 + a13eθ1+θ3 + a23eθ2+θ3 + a12a23a13eθ1+θ2+θ3 . (19)

By inserting Equation (19) into Equation (13), we obtain the three-soliton solutions.
Remember that we can obtain N-soliton solutions for finite N, where N ≥ 1.

5. Lump Solutions (LSs)

When surface tension dominates the shallow water surface, as in plasma and optical
media, LSs are typically created. The generalized positive quadratic function can be used
as the foundation for a symbolic computation method to analyze LSs. Here, for deriving a
class of LSs for arbitrary values of the parameters, we firstly transform Equation (4) to the
bilinear equation in operators form(

DxDt + D6
x + D4

x + α1D2
y + α2D2

z + |β1DxDy + β2DyDz + β3DxDz

)
f · f = 0. (20)

Here, Dt, Dx, Dy, and Dz represent the Hirota’s bilinear derivative operators. To
simplify computational tasks, we consider α1 = α = −1, β1 = β2 = β3 = 1. Accordingly,
Equation (20) transforms to

( f fxt − fx ft) + ( f fxxxxxx − 6 fx fxxxxx + 15 fxxxx fxx − 10( fxxx)2)
+( f fxxxx − 4 fxxx fx + 3( fxx)2)− ( f fyy − ( fy)2)
+( f fyy − fy fy) + ( f fzz − fz fz) + ( f fxy − fx fy) + ( f fyz − fy fz) + ( f fxz − fx fz) = 0,

(21)

obtained upon using
u = 2(ln f )xx. (22)

The following presumptions are made in order to obtain the quadratic soliton solutions
for Equation (4)

G = Ax + By + Cz + Dt + E,
f = g2 + h2 + a11.

(23)

where G = [g, h]T and the coefficients A = [a1, a6]
T , B = [a2, a7]

T , C = [a3, a8]
T ,

D = [a4, a9]
T , E = [a5, a10]T , and ”T” represents the matrix transpose. Here, aj, 1 ≤ j ≤ 11

are undermined real parameters. Plugging Equation (23) into Equation (21), we obtain
a polynomial in (x, y, z, t) variables. To obtain the values of aj, we construct a system
with the coefficients of x, y, z, t, xt, yt, zt, xz, xy, yz, x2, y2, z2, t2, and the constant terms. The
following particular sets of restricting equations on the different parameters are generated
by solving the resulting system using Maple; other sets may also be derived.
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Case 1.
Using a new set of parameters, we may determine another LS and find

ai = ai&i = 1, 2, 3, 5, 6, 8,

a4 = − a1(a2
1+a2

6)(a2+a3)−a2(a2
1+a2

6)(a2−a3)−a2
1(a2

3−a2
8)−2a1a3a6a8

a1(a2
1+a2

6)
, a1 6= 0,

a7 = a2a6
a1

, a1 6= 0,

a9 = − a3
1∗a2(a6+a8)−a2

1a6(a2
2]−a2

3)+a2
1∗a6a8(a6−a8)+a3

6a2(a1−a2)+a3
1a8(a1−2a3)+a1a2a2

6a8

a2
1(a2

1+a2
6)

, a1 6= 0,

a10 = a5a6
a1

,

a7 =
−a2

1+a6a8+
√

a4
1−6a2

1a6a8−4a2
1a6a9−3a2

6a2
8

2a6
,

a11 =
3(a2

1+a2
6)

3

(a1a8−a3a6)2 ,
(24)

where a11 > 0, which must fulfill the following determinant condition

∆ =

∣∣∣∣ a1 a3
a6 a8

∣∣∣∣ 6= 0, (25)

to ensure a well-defined function f , its positivity, and the localization of u in all space
directions, respectively. By substituting Equation (24) into Equation (23), the resulting
parameters (24) will generate a class of positive quadratic function (PQF) solutions. Ac-
cording to these values and by using u = 2(ln f )xx, then Equation (4) will yield a first class
of LSs as shown below.

For example, by selecting

ai = i&i = 1, 2, 3, 5, 6, 8, (26)

and using (24), we obtain

a4 = −1
2

, a7 = 2, a9 = −1
2

, a10 = 1, a11 = 24, (27)

which will give the LS

u =
S1

S2
, (28)

with

S1 = −16t2 + (64x + 128y + 96z + 64)t− 64x2 + (−256y− 192z− 128)x
−256y2 + (−384z− 256)y− 128z2 − 192z + 704,

S2 = (t2 + (−4x− 8y− 6z− 4)t + 4x2 + (16y + 12z + 8)x

+16y2 + (24z + 16)y + 10z2 + 12z + 52)2.

Keep in mind that the derived LSs u→ 0 if and only if g2 + h2 → ∞.
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Case 2.
In this case, we use

ai = ai&i = 1, 3, 6, 7, 8, 10,

a2 = a1a7
a6

, a6 6= 0,

a4 = − a2
1(a6+a7)(a1a7+a3a6)+a1a2

6a7(a6+a7)+a2
6a8(a1a8−2a3a6)+a3a3

6(a6+a7)−a1a2
3a2

6
a2

6(a2
1+a2

6)
,

a5 = a1a10
a6

,

a9 = − a2
1(a7+a8)(a6+a7)+a2

6(a2
3+a2

7)+a3
6(a7+a8)+a2

6a8(a7−a8)+2a1a3a6a8

a2
6(a2

1+a2
6)

,

a11 =
3(a2

1+a2
6)

3

(a1a8−a3a6)2 , a11 > 0,

(29)

which must fulfill the following condition

∆ =

∣∣∣∣ a1 a2
a6 a7

∣∣∣∣ 6= 0, (30)

to ensure a well-defined function f , its positivity, and the localization of u in all space
directions, respectively. By substituting Equation (29) into Equation (23), the resulting
parameters (29) will generate a class of PQF solutions. According to these values and by
using u = 2(ln f )xx, then Equation (4) will yield a first class of LSs as shown below.

u =
4(a2

1 + a2
6) f − 8(a1g + a6h)2

f 2 , (31)

where f , g, and h are defined in Equation (23). Keep in mind that the derived LSs u→ 0 if
and only if g2 + h2 → ∞.

Case 3.
We use a fresh set of parameters to find another LS, which we have as

ai = ai&i = 1, 6, 8, 9, 10,

a2 = −−a2
1+a6a8+

√
a4

1−6a2
1a6a8−4a2

1a6a9−3a2
6a2

8
2a1

, a1 6= 0,

a3 = − a6a8
a1

,

a4 = −
(a2

1+a2
6)
√

a4
1−6(a8+

2
3 a9)a6a2

1−3a2
6a2

8−a4
1−a6(a6−3a8−2a9)a2

1+3a3
6a8

2a1a2
6

, a6 6= 0,

a5 = a1a10
a6

,

a7 =
−a2

1+a6a8+
√

a4
1−6a2

1a6a8−4a2
1a6a9−3a2

6a2
8

2a6
,

a11 =
6a2

6(a2
1+a2

6)

−a2
1+3a6a8+a6a9+

√
a4

1−6a2
1a6a8−4a2

1a6a9−3a2
6a2

8
,

(32)

where a11 > 0 upon proper selections of the parameters, which needs to satisfy the
determinant condition. Following the same methodology that was used in the upper part,
and by using u = 2(ln f )xx, then Equation (4) will yield a first class of LSs as shown below

For example, by selecting

a1 = 1, a6 = −1, a8 = 2, a9 = 6, a10 = 2, (33)

and using (32), we obtain

a2 = −2, a2 = 2, a4 = −8, a5 = −2, a7 = −1, a11 =
6
7

, (34)
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which will give the LS

u =
W1

W2
, (35)

with
W1 = −9408t2 + (2744x + 392y− 784z− 5488)t
−196x2 + 196y2 − 784yz + 784z2 + 784x− 700,

W2 = (350t2 − 98tx + 14ty− 28tz + 7x2 + 7y2

−28yz + 28z2 + 196t− 28x + 31)2.

The profile of lump solution (35) is illustrated in Figure 3a and Figure 3b for
(t, z) = (0, 0) and (t, z) = (1, 1), respectively.

-10 -5 0 5 10

-10

-5

0

5

10

x
a

y

u

-10 -5 0 5 10 15 20

-10

-5

0

5

10

x
b

y

u

Figure 3. Lump solution (35) is plotted in (x, y)-plane for (a) (t, z) = (0, 0) and (b) (t, z) = (1, 1).

6. Conclusions

This work aims to explore novel multiple-soliton solutions as well as lump solutions
by first developing a new (3+1)-dimensional KP-SK-R equation to portray more dispersion
effects in nonlinear science. The newly developed model is obtained by adding four more
linear terms to the model proposed in [2]. The Painlevé analysis technique was utilized
to prove that this new model fails the Painlevé integrability, but it is Lax integrable, as
confirmed in Ref. [2]. In order to display various soliton solutions for the evaluation of
phase shifts and dispersion relations, the Hirota approach was used. Using Hirota’s bilinear
operator with the help of Maple software, we obtained a class of lump solutions for the
bilinear form of the proposed model. Other cases of lump solutions can be provided in
a similar fashion. This confirms the criteria that integrability falls in distinct senses such
as Liouville integrable sense, Painlevé integrable sense, Lax integrable sense, and infinite
symmetry integrable sense. In recent years, fractional calculus has played an important role
in a deep understanding of many natural phenomena [30–33]. Therefore, many methods in
the literature used in analyzing fractional differential equations can be applied to analyze
the current model in its fractional form.
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