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Abstract: Learning novel classes with a few samples per class is a very challenging task in deep
learning. To mitigate this issue, previous studies have utilized an additional dataset with extensively
labeled samples to realize transfer learning. Alternatively, many studies have used unlabeled samples
that originated from the novel dataset to achieve few-shot learning, i.e., semi-supervised few-shot
learning. In this paper, an easy but efficient semi-supervised few-shot learning model is proposed to
address the embeddings mismatch problem that results from inconsistent data distributions between
the novel and base datasets, where samples with the same label approach each other while samples
with different labels separate from each other in the feature space. This model emphasizes pseudo-
labeling guided contrastive learning. We also develop a novel local factor clustering module to
improve the ability to obtain pseudo-labels from unlabeled samples, and this module fuses the local
feature information of labeled and unlabeled samples. We report our experimental results on the mini-
ImageNet and tiered-ImageNet datasets for both five-way one-shot and five-way five-shot settings
and achieve better performance than previous models. In particular, the classification accuracy
of our model is improved by approximately 11.53% and 14.87% compared to the most advanced
semi-supervised few-shot learning model we know in the five-way one-shot scenario. Moreover,
ablation experiments in this paper show that our proposed clustering strategy demonstrates accuracy
improvements of about 4.00% in the five-way one-shot and five-way five-shot scenarios compared to
two popular clustering methods.

Keywords: few-shot learning; clustering; semi-supervised learning; local features; contrastive learning

MSC: 68T07

1. Introduction

Few-shot learning (FSL) has received a lot of attention for two main reasons. First, it is
more in line with human cognitive laws, as it can understand the essence of things only
from a few samples. Second, it is widely used in many scenarios where samples are scarce,
such as in endangered species, medical images, and military images. However, directly
training a network with numerous parameters using a few samples is difficult and very
likely leads to overfitting. Generally, prior knowledge is learned from the base dataset with
large-scale labeled samples and then is transferred to the novel dataset where a few labeled
samples are exploitable [1,2]. The existing studies on FSL fall roughly into two categories.
One category is composed of a series of methods that focus on training models based on
meta-learning [3,4]. These methods emphasize the importance of setting the “episode” [3]
in the base dataset, where an episode consists of very few training samples, i.e., the support
set, and testing samples, i.e., the query set, to simulate the few-shot task. The other category
is composed of a series of methods that use transfer learning, which focuses on learning
good feature embeddings from a pre-trained model. This simple paradigm subdivides the
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FSL process into representation learning and classification, and can outperform established
FSL methods based on meta-learning [5–7], which does not use the setting of the episode in
the base dataset. Our method has a similar motivation as the few-shot learning methods
based on transfer learning, as it aims to exploit the pre-trained embeddings from the base
dataset and additional unlabeled samples from the novel dataset to handle FSL.

The FSL method based on transfer learning is still limited by a problem: the embed-
dings mismatch that occurs in the data distribution between the novel and base datasets is
inconsistent. PTN [8] has used unlabeled samples to alleviate the embeddings mismatch
problem, where unlabeled samples are from the novel dataset. The utilization of additional
samples in the novel dataset is called semi-supervised few-shot learning, abbreviated as SS-
FSL. Nonetheless, PTN has implemented unsupervised contrastive learning (UCL), which
does not complete clustering at the class level. Therefore, we designed a novel contrastive
learning approach using the pseudo-labeling strategy, this approach achieves the goal of
bringing samples with the same label closer to each other and distancing samples with
different labels from each other in the embedding space.

Pseudo-labeling is a highly effective way to make use of unlabeled samples. Figure 1
illustrates the pseudo-labeling-based semi-supervised learning process in combination with
a fully connected layer and a softmax function. Typically, a model is initially updated by su-
pervised loss on a few labeled samples, and then the model is used to assign pseudo-labels
to unlabeled samples. Finally, the model is updated again using the original with a few
labeled samples and unlabeled samples with pseudo-labels until it converges. Obviously,
the performance of the model is highly influenced by the quality of pseudo-labeled samples,
as poor-quality pseudo-labels can lead to model drift. Recent SSFSL approaches [9–12] have
therefore paid more attention to improving the accuracy of pseudo-labels for unlabeled
samples. For example, ref. [11] has offered a more flexible pseudo-loss distribution by the
multi-step training strategy. Furthermore, refs. [9,12] have proposed clustering methods
based on prototypical networks [13] considering information at the sample distribution
level. More importantly, ref. [12] has also embedded the feature distribution of labeled
samples in the same class into the model. However, these conventional clustering methods
only consider the global feature information of samples and ignore the effectiveness of the
local feature information.

Figure 1. Semi-supervised learning based on pseudo-labeling. The most common way to obtain
pseudo-labels is to use a fully connected layer and a softmax function. In this paper, the LFC strategy
has been proposed to replace this classifier.

To solve the above-mentioned challenges, we propose a semi-supervised few-shot
model with the local factor clustering module (LFC). The overall framework is divided
into two steps: pre-training and fine-tuning. In the pre-training phase, the pre-trained
embeddings that are migrated to the novel dataset are trained using the cross-entropy (CE)
loss in the base dataset. At the fine-tuning stage, the LFC strategy is developed to guide
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the acquisition of pseudo-labels in the novel dataset, and then a few labeled samples are
fed together with extensive pseudo-labeled samples to accomplish supervised contrastive
learning. We present the specific meanings of the acronyms required in this paper in Table 1.
In this paper, our main contributions are summarized as follows:

• We propose an easy but effective few-shot classification model with pseudo-labeling
guided contrastive learning, which alleviates the embeddings mismatch problem and
also narrows the distance between samples of the same class. And the PLCL module
is more in line with the class-level classification objective.

• We further propose a local factor clustering module to better acquire accurate pseudo-
labels, which combines the local feature information of labeled and unlabeled samples.

• A series of experiments and analyses are conducted to demonstrate the progressive-
ness and robustness of our approach on two datasets.

Table 1. This paper presents explanations of abbreviations to better understand the paper description.

Number Acronyms Descriptions

1 FSL few-shot learning
2 SSFSL semi-supervised few-shot learning
3 UCL the unsupervised contrastive learning module
4 PLCL the pseudo-labeling guided contrastive learning module
5 LFC the local factor clustering strategy
6 MFC the multi-factor clustering strategy from [12]
7 KC the kmeans clustering strategy from [9]
8 CE loss cross-entropy loss
9 GAP global average pooling operation

2. Related Work

This section first briefly introduces the background of FSL and SSFSL, and then
explores contrastive learning research.

2.1. Few-Shot Learning and Semi-Supervised Few-Shot Learning

In FSL, meta-learning-based methods and transfer learning-based methods are two
broad categories of existing research. There are two main types of meta-learning-based
studies: metrics-based [3,14] and optimization-based [4,15,16]. The former aims to learn
good feature embeddings using the episodic training, where good feature embeddings
mean that samples of the same class are close to each other, while samples of different
classes are far from each other. While the latter tends to learn good and potential parameters
to quickly adapt the model to the novel dataset. Most recently, the FSL method based
on transfer learning achieves better performance compared to the FSL method based on
meta-learning [6,8], and usually uses unlabeled samples from the novel dataset to learn the
novel dataset’s embeddings rather than base dataset’s embeddings. To leverage unlabeled
samples from the novel dataset is called semi-supervised few-shot learning, numerous
methods [6,8,9,12,17–19] regarding SSFSL have emerged. Ref. [9] has proposed a new
clustering method using the prototypical networks. Ref. [20] and PTN [21] have leveraged
graph-based methods to improve the ability to predict labels. Cluster-FSL [12] has proposed
a new clustering method: the multi-factor clustering to cluster.

Although these methods effectively improve the ability to obtain pseudo-labels, they
ignore the impact of the local feature information. Therefore, in this paper, we propose the
local factor clustering module to improve the promoting effect of contrastive learning on
our model.

2.2. Contrastive Learning

Contrastive learning has received strong attention in recent years. InstDisc [22]
has used a memory bank to reserve the embeddings of samples. Following this work,
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MoCo [21] has employed the queue to store the embeddings of samples and uses the mo-
mentum encoder to update the negative samples. SimCLR [23] has used a larger batch
size to ensure sufficient negative samples and designed various data augmentations to
complete unsupervised contrastive learning. However, the above methods are benefit
instance discrimination [22], which does not conform to the classification at the class level.
Therefore, inspired by [24], we focus on using pseudo-labeling to guide contrastive learning
and obtain embeddings that are more suitable for the novel dataset in this paper.

3. Methodology

In this section, a problem definition on SSFSL is given, and then how to learn the base
dataset’s embeddings is presented. Finally, the effect of the contrastive model with the local
factor clustering strategy is emphasized. We present the important symbols used in the
paper and their specific descriptions in Table 2.

Table 2. This paper presents main symbols and descriptions to better understand the paper.

Number Symbols Descriptions

1 Dbase, Dnovel the base dataset and the novel dataset
2 S ,Q,U the original support set, the query set and the unlabeled dataset
3 N the number of categories in Dnovel
4 K, Q, R the number of labeled, tested, and unlabeled samples per category
5 xi

m, cj
m, xi

a, cj
t the local feature descriptors for samples xi and class cj

6 Ŝ the expanded support set with unlabeled samples
7 agu1, aug2 two different data augmentations
8 z1

i , z2
i , zw, zb, zi feature embeddings after convolutional neural network

9 B, W the number of positive and negative sample pairs
10 fθ(·) convolutional neural network with parameter θ

11 θ
′

network parameters obtained after training on the base dataset
12 θ∗ network parameters obtained after training with the PLCL module

3.1. Problem Formulation

For N-way K-shot image classification, we randomly sample N classes and randomly
sample K samples under each class as labeled samples. And a FSL task contains the support
set and the query set. The support set is defined as S = {(xi, yi)}N×K

i=1 that has a few
labeled samples, where xi is an image, yi is the label of xi, and the query set is defined as
Q = {(xi)}N×Q

i=1 , where Q is the number of images in each class, so the query set contains
N×Q unlabeled samples for testing. Finally, the novel dataset is denoted as Dnovel = S ∪Q.
Most studies have introduced an auxiliary dataset Dbase to assist few-shot learning. Note
that the classes in Dbase and Dnovel are different, formalized as Cbase ∩ Cnovel = ∅. For
SSFSL, we also have an extra unlabeled dataset U = {(xi)}N×R

i=1 in the novel dataset, where
R is the number of unlabeled samples for each class. Therefore, the novel dataset is defined
as Dnovel = S ∪Q∪ U . With the help of a few samples from S and unlabeled samples from
U , we aim to correctly classify the samples from the query set.

The overall framework of our model with the LFC strategy and the PLCL module is
shown in Figure 2, which mainly consists of two steps: (1) pre-training feature embeddings
using the CE loss in Dbase, and migrating the pre-trained embeddings to Dnovel ; (2) fine-
tuning the pre-trained embeddings using the PLCL and LFC modules.
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Figure 2. Overall framework. We first pre-train feature embeddings in the base dataset using the
standard CE loss. The pre-trained embeddings are then fine-tuned with unlabeled samples from the
novel dataset by adopting the LFC and PLCL modules. For calculating contrastive loss, the same
color blocks represent the same class of samples. Our goal is to make samples of the same class
approach each other in the feature space, while samples of different labels stay away from each other.

3.2. Pre-Training Feature Embeddings

The pre-training stage is shown on the left part of Figure 2, a deep network fθ(·) is
pre-trained in the base dataset and then transferred to the novel dataset. The use of prior
knowledge for learning is very in line with human cognitive laws. Concretely, we start by
pre-training fθ(·) in the base dataset using Lce:

θ
′
= arg min

θ

Lce(Dbase; θ), (1)

where Lce is the standard CE loss between the predicted labels and real labels as well as θ
′

is the most appropriate network parameter for the base dataset, but it may not necessarily
be applicable to the novel dataset because the data distribution between the novel dataset
and the base dataset is different. Therefore, we use the LFC strategy and the PLCL module
to adjust this parameter next.

3.3. Fine-Tuning Feature Embeddings Using LFC and PLCL

To the best of our knowledge, the local feature information is considered in the
following two scenarios [25–27]. (1) The known global information is extremely scarce.
Few-shot learning usually pools the final feature map to obtain global representations,
which ignores a lot of irretrievable local feature information. (2) Overemphasizing the
feature information of the image background. The research related to the local feature
information in FSL is as follows: DN4 [26] has proposed an image-to-class module that
emphasizes that local information can greatly improve the FSL classification. InfoPatch [27]
has learned that the stronger base dataset’s embeddings can eliminate data bias. Motivated
by DN4 [26], we assume that local features can reflect more information during clustering
compared to global features.

3.3.1. The Local Factor Clustering Module

Taking ResNet-12 as example, ResNet-12 is composed of four residual blocks, and
the output dimensions of each residual block is [64,42,42], [128,21,21], [256,10,10] and
[512,5,5]. And global feature representations with 512-dimension are obtained through
the final global average pooling (GAP). Given an unlabeled sample xi, the local feature set
fθ(xi) = [xi

1, xi
2, ..., xi

m] ∈ Rd×m can be expressed, where fθ(·) is ResNet-12 that removes
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the last global average pooling layer and m = 5× 5 = 25 and d = 512. For the support set,
we can obtain N clustering centers as follows:

cj =
1
K

K

∑
i=1

fθ(xi), j = 1, 2, ..., N, (2)

where similar to xi, the local feature set in each center cj = [cj
1, cj

2, ..., cj
m] ∈ Rd×m. For

each local feature xi
a ∈ fθ(xi), its k-nearest neighbors cj

t in each center cj are found, where
t = 1, 2, ..., k. Then, the similarity between xi and the clustering center cj is attained by

calculating the similarity between xi
a and each cj

t. This process is represented as follows:

ϕ(xi, cj) =
m

∑
a=1

k

∑
t=1

cos(xi
a, cj

t), (3)

where cos(, ) indicates the cosine similarity. The pseudo-label of xi is yj
i = arg max{ϕ(xi, cj)}

and clustering center cj is updated with xi. Finally, the clustering center set is represented
as [ĉ1, ĉ2, ..., ĉN ]. The final clustering result is regarded as obtaining pseudo-labels for un-
labeled samples like this ŷi = arg max{ϕ(xi, ĉj)}. Thus, a dataset with pseudo-labeled
samples is generated Ŝ = S ∪ U .

3.3.2. The Pseudo-Labeling Guided Contrastive Learning Module

In this section, we use the dataset Ŝ to implement the PLCL module. For conventional
contrastive learning, the main approach is to construct supervised signals by performing
different data augmentations on a sample to implicitly learn feature embeddings. Formally
speaking, for a sample xi ∈ Ŝ , we can first apply two types of data augmentation oper-
ations to generate new samples aug1(xi) and aug2(xi) and then obtain its corresponding
representations z1

i = GAP( fθ(aug1(xi))) ∈ Rd and z2
i = GAP( fθ(aug2(xi))) ∈ Rd, where

d = 512. Usually, we use InfoNCE loss to represent contrastive learning by:

Lucl = − log
exp(cos(z1

i , z2
i )γ)

exp(cos(z1
i , z2

i )γ) + ∑W
w=1 exp(cos(z1

i , zw)γ)
, (4)

where γ denotes the temperature parameter as well as cos(, ) is the cosine similarity. W
is the number of negative samples. Differentiating from Lucl , there are two differences
in pseudo-labeling guided contrastive learning. First, the designed loss requires us to
complete clustering at the class level in the feature space. Second, LogSumExp loss instead
of InfoNCE loss is used under multiple positive sample pairs. Here, we first use InfoNCE
loss to express our loss function by

Lplcl = − log
∑B

b=1 exp(cos(zi, zb)γ)

∑B
b=1 exp(cos(zi, zb)γ) + ∑W

w=1 exp(cos(zi, zw)γ)
, (5)

where zi and zb have the same label, while zi and zw are not of the same class. B and W
refer to the amount of positive and negative samples, respectively.

Analysis of Loss Function: To better illustrate that our loss function is feasible, we
take the number of negative samples as the starting point for in-depth analysis of it.
Unsupervised contrastive loss is implemented on the CE loss in deep learning platforms
such as Tensorflow and PyTorch, UCL benefits from the quality of positive samples and the
number of negative samples. Why do we need a large number of negative samples support
in UCL? A conclusion drawn in FlatNCE [28] is that a small number of negative samples
can lead to low-precision floating-point arithmetic. By using logarithmic operation rule:
− log( x

x+y ) = log(1 + y
x ), Lucl is rewritten as

Lucl = log(1 +
∑W

w=1 exp(cos(z1
i , zw)γ)

exp(cos(z1
i , z2

i )γ)
), (6)
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where, if W is very low, ε = ∑W
w=1[exp(cos(z1

i , zw)γ− cos(z1
i , z2

i )γ)]→ 0 because z1
i and z2

i
are obtained through different data augmentations on the same sample, i.e., cos(z1

i , z2
i )�

cos(z1
i , zw). The calculation of ε inherently has floating-point errors, which result in the

model not being able to provide effective gradients. Furthermore, the most direct way
to alleviate this problem is to magnify ε using a constant C = εno_gradient, thus we can
reconstruct Lucl based on approximate Equation (7).

log(1 + x) ≈ x

∇ x
xno_gradient

=
∇x

xno_gradient
=

1
xno_gradient

∇ log x =
1

xno_gradient

(7)

Lucl→lse = log
W

∑
w=1

exp(cos(z1
i , zw)γ)− log exp(cos(z1

i , z2
i )γ) (8)

By Equation (8), the gradient of it is

∇Lucl→lse =

{
exp(cos(zi ,zw)γ)

∑W
w=1 exp(cos(zi ,zw)γ)

i f i 6= w

−1 otherwise
. (9)

By Equation (9), we can see that the network parameters can be updated normally in
the case of a pair of positive samples. Similar to Equation (8), pplcl is rewritten as

Lplcl→lse = log
W

∑
w=1

exp(cos(zi, zw)γ)− log
B

∑
b=1

exp(cos(zi, zb)γ). (10)

By Equation (10), the gradient of it is

∇Lplcl→lse =


− exp(cos(zi ,zb)γ)

∑B
b=1 exp(cos(zi ,zb)γ)

i f i = b

exp(cos(zi ,zw)γ)

∑W
k=1 exp(cos(zi ,zw)γ)

otherwise
. (11)

By Equation (11), we can see that the network parameters can be updated normally in
the case of multiple pair of positive samples.

3.4. Testing Using LFC and Feature Embeddings

In the PLCL module, we update the network parameters using Lplcl→lse and ultimately
obtain the parameter θ∗ from θ

′
to predict the labels of the samples from Q by prototypical

networks. Each class prototypes is calculated by the mean embedding of samples with the
same label:

pj = ∑
Ii=j

GAP( fθ∗(xi)), (12)

where I is a conditional indicator function, representing whether xi belongs to the class
prototype pj, then the class prototype is updated with fθ∗(xi). The classes of samples in
query set Q are obtained by yi = arg max{cos(qi, pj)}, where cos(, ) indicates the cosine
similarity and qi is an image from Q.

4. Experiment

In the experimental section, we perform our experiments on two datasets: mini-
ImageNet [3] and tiered-ImageNet [9]. Also, we further conduct other experiments to
demonstrate the progressiveness and robustness of our model. In the evaluation, we
sample N = 5, K = 1 or 5 and Q = 15 to test the performance of FSL. We repeat the test
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experiments 600 times and report the mean accuracy together with a corresponding 95%
confidence interval.

4.1. Datasets

The number of categories and samples for the training, validation, and testing sets in
the mini-ImageNet and tiered-ImageNet datasets are summarized in Table 3.

4.1.1. Mini-ImageNet

The mini-ImageNet dataset is a frequently-used dataset for FSL classification and is
the subset of ImageNet, containing 60,000 samples from 100 classes. In general, we divided
this dataset into 64 classes as training set, 16 classes as validation set, and 20 classes as test
set. All images are of size 84 × 84.

4.1.2. Tiered-ImageNet

The tiered-ImageNet dataset contains 608 classes that is composed of 34 super-classes.
Overall, 34 super-classes are split into 20 super-classes (351 sub-classes) containing 448,695
samples as training set, 6 super-classes (97 sub-classes) containing 124,261 samples as
validation set and 8 super-classes (160 sub-classes) containing 206,209 samples as test set.
This dataset aims to minimize the semantic similarity between the splits. And it is a larger
subset of ImageNet than mini-ImageNet. All images are of size 84 × 84.

Table 3. The training set, validation set, and test set for mini-ImageNet and tiered-ImageNet datasets,
including number of categories and images.

Train Val Test

mini-ImageNet Classes 64 16 20
Images 38,400 9600 12,000

tiered-ImageNet Classes 351 97 160
Images 448,695 124,261 206,209

4.2. Implementation Details

At the pre-training stage, we use the ResNet-12 as the backbone. For optimization, the
model uses SGD with a momentum of 0.9, a weight decay of 0.0005, the learning rate is
initially set to 1, and then changed to 0.1, 0.01, and 0.001 at epochs 60, 80 and 90, respectively.
The batch size is set to 128 and the base model is trained for 100 epochs. Note that in the
base dataset, we only used 64 classes for training instead of 80 classes. At the fine-tuning
stage, the base model is transferred to the novel dataset and then is fine-tuned on both a
few labeled samples and substantial unlabeled samples. We set weight decay to 0.0005,
learning rate to 0.001, and use the SGD optimizer with a momentum of 0.9. In addition, we
also set the hyper-parameters as follows, the temperature parameter λ = 1 in the PLCL
module, the quantity of unlabeled samples per category R = [0, 30, 50, 100] and the number
of nearest neighbors k = [1, 3, 5, 7] to calculate the similarity between the samples and the
clustering centers in the LFC strategy. In the following experiments, we check the optimal
settings of these hyper-parameters in detail.

4.3. Experimental Results

This section mainly reports our experimental results compared to the advanced meth-
ods and conducts experiments under different settings.

4.3.1. Comparison with Advanced Methods

We report our experimental results from two aspects: (1) in terms of FSL approaches,
and (2) in terms of SSFSL approaches. Here, to ensure fairness in comparison, we use two
settings, namely 30/50 and 100/100, where the first number (30 or 100) refers to one-shot
and the second (50 or 100) to five-shot. For mini-ImageNet, from Table 4, it can be concluded
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that our method has improved by 6.14% and 0.38% for one-shot and five-shot (SetFeat,
FRN). Under the 100/100 setting, our method has improved by 11.53% and 2.02% for
one-shot and five-shot (TransMatch). Under the 30/50 setting, our method has improved
by 0.67% and 1.51% for one-shot and five-shot (iLPC). For tiered-ImageNet, our method has
also achieved very competitive results. All the above results demonstrate the significance
of our method.

Table 4. Classification accuracy (%) comparison with the state-of-the-art methods for five-way
classification on mini-ImageNet and tiered-ImageNet. † represents the used semi-supervised setting
is (30/50). The best-performing result is bold.

Methods Backbone
mini-ImageNet tiered-ImageNet

5-Way 1-Shot 5-Way 5-Shot 5-Way 1-Shot 5-Way 5-Shot

MatchingNet [3] ConvNet-64 43.56 ± 0.84 55.31 ± 0.73 - -
ProtoNet [13] ConvNet-64 49.42 ± 0.78 68.20 ± 0.66 53.31 ± 0.89 72.69 ± 0.74
MAML [4] ConvNet-64 48.70 ± 1.84 63.11 ± 0.92 51.67 ± 1.81 70.30 ± 1.75
DN4 [26] ConvNet-64 51.24 ± 0.74 71.02 ± 0.64 - -
RFS [29] ResNet-12 64.80 ± 0.60 82.14 ± 0.43 71.52 ± 0.69 86.03 ± 0.49
TADAM [30] ResNet-12 58.50 ± 0.30 76.70 ± 0.30 - -
RENet [31] ResNet-12 67.60 ± 0.44 82.58 ± 0.30 71.61 ± 0.51 85.28 ± 0.35
SetFeat [32] ResNet-12 68.32 ± 0.62 82.71 ± 0.41 68.32 ± 0.62 82.71 ± 0.41
FRN [33] ResNet-12 66.45 ± 0.19 82.83 ± 0.13 71.16 ± 0.22 86.01 ± 0.15
infoPatch [27] ResNet-12 67.67 ± 0.45 82.44 ± 0.31 71.51 ± 0.52 85.44 ± 0.35
MetaOptNet [16] ResNet-12 64.09 ± 0.62 80.00 ± 0.45 65.99 ± 0.72 81.56 ± 0.53

TPN-semi [20] ConvNet-64 52.78 ± 0.27 66.42 ± 0.21 55.74 ± 0.29 71.01 ± 0.23
Mask soft k-means [9] WRN-28-10 52.35 ± 0.89 67.67 ± 0.65 52.39 ± 0.44 69.88 ± 0.20
TransMatch [6] WRN-28-10 62.93 ± 1.11 81.19 ± 0.59 72.19 ± 1.27 82.12 ± 0.92
LST † [10] ResNet-12 70.10 ± 1.90 78.70 ± 0.80 77.70 ± 1.60 85.20 ± 0.80
LR + ICI † [34] ResNet-12 67.57 ± 0.97 79.07 ± 0.56 83.32 ± 0.87 89.06 ± 0.51
iLPC † [35] ResNet-12 70.99 ± 0.91 81.06 ± 0.49 85.04 ± 0.79 89.63 ± 0.47

Ours † (k = 3) ResNet-12 71.66 ± 1.04 82.57 ± 0.56 86.07 ± 0.69 89.07 ± 0.01
Ours (k = 3) ResNet-12 74.46 ± 1.21 83.21 ± 0.57 87.06 ± 0.91 90.21 ± 0.57

4.3.2. The Impact of Unlabeled Samples

Table 5 shows the experimental results under different numbers of unlabeled samples.
In our method, the use of unlabeled samples is crucial, especially as the initial labeled sam-
ples are very few. We found that more unlabeled samples have a very significant effect on
improving performance under the setting of unlabeled samples R = [0, 30, 50, 100], which
also inspires us to strengthen the additional information brought by mining unlabeled
samples, especially in few-shot learning, where only a few samples are available.

Table 5. Classification accuracy (%) with different quantities of unlabeled samples per class on
mini-ImageNet. The best performance is bold.

R= 5-Way 1-Shot 5-Way 5-Shot

0 52.24 ± 0.81 72.32 ± 0.65
30 71.66 ± 1.04 81.20 ± 0.55
50 72.80 ± 1.09 82.57 ± 0.56

100 74.46 ± 1.21 83.21 ± 0.57

4.3.3. The Impact of Nearest Neighbors

When conducting the LFC strategy, we use the k-nearest neighbor to measure the
similarities between samples and clustering centers. Table 6 shows the changes in the
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performance of our method under different quantities of nearest neighbors. The number of
k does indeed effect the overall performance of our model, but the overall difference is not
significant.

Table 6. Classification accuracy (%) with different quantities of nearest neighbors k on mini-ImageNet.
The best performance is bold.

k= 5-Way 1-Shot 5-Way 5-Shot

1 74.50 ± 1.20 83.26 ± 0.59
3 74.46 ± 1.21 83.21 ± 0.57
5 74.43 ± 1.21 83.30 ± 0.56
7 74.35 ± 1.19 83.18 ± 0.57

4.4. Ablation Study

We conducted ablation studies on our method to illustrate the influence of the PLCL
module and the LFC strategy on the model performance.

4.4.1. The Influence of PLCL

The following conclusions can be drawn from Figure 3. (1) Regardless of the method
used to obtain pseudo-labels, the PLCL module is essential and can significantly improve
model performance; (2) the higher the accuracy of obtaining pseudo-labels, coupled with
the higher model performance of the PLCL module. Table 7 shows the changes in model
performance under both UCL and PLCL. Although the PLCL module can raise the accuracy
of FSL, it does not change much. However, we can know that the more correct the pseudo-
labels are, the more effective our method is compared with UCL.

Figure 3. The influence of pseudo-labeling guided contrastive learning. We report the experimental
results of with (w/) PLCL and without (w/o) PLCL.

Table 7. Classification accuracy (%) with UCL or PLCL on mini-ImageNet. The best performance is
bold. ↑ is an increase in classification accuracy.

Method 5-Way 1-Shot 5-Way 5-Shot

MFC + UCL 73.55 ± 1.19 81.64 ± 0.61
MFC + PLCL 73.65 ± 1.19 (↑ 0.10) 81.77 ± 0.61 (↑ 0.13)

LFC + UCL 74.33 ± 1.21 83.00 ± 0.57
LFC + PLCL 74.46 ± 1.21 (↑ 0.13) 83.21 ± 0.57 (↑ 0.21)

4.4.2. The Influence of LFC

Compared to conventional clustering methods [9,12], our method prefers the local
feature information. Table 8 and Figure 3 summarize the performance impact of LFC on
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the model with PLCL and without PLCL. Without PLCL, LFC has improved by 3.63% and
3.56% for one-shot and five-shot compared to MFC. With PLCL, LFC has improved by
0.81% and 1.44% for one-shot and five-shot compared to MFC. These results indicate that
LFC can obtain more accurate pseudo-labeled samples, and play a promoting role in the
PLCL module, which inspires us to focus more research on how to obtain higher quality
pseudo-labels.

Table 8. The impact of different methods of obtaining pseudo-labels. The best performance is bold.

Method 5-Way 1-Shot 5-Way 5-Shot

KC [9] 62.79 ± 1.25% 73.04 ± 0.74%
MFC [12] 64.62 ± 1.18% 74.62 ± 0.73%
LFC 68.25 ± 1.18% 78.18 ± 0.67%

KC + PLCL 72.72 ± 1.21% 80.87 ± 0.63%
MFC + PLCL 73.65 ± 1.19% 81.77 ± 0.61%
LFC + PLCL (Ours) 74.46 ± 1.21% 83.21 ± 0.57%

4.5. Visualization

The availability of our method is evident. In this section, we explore the mechanisms
for improvement through visualization. The t-SNE is used to visualize the embeddings.
Specifically, we sample an episode from the novel dataset of mini-ImageNet, and an episode
contains 75 test samples which are input into the model to obtain embeddings as shown in
Figure 4, whose result states that our method generate more compact clusters than baseline,
where baseline refers to directly using the base dataset’s embeddings in the novel dataset
without any other operations. That is to say, the network parameters used on the left are θ

′
,

while the network parameters used on the right are θ∗, which are obtained by the PLCL
module.

Figure 4. We visualize some samples from novel dataset by t-SNE. Dots of the same color represent
that they belong to the same class.

5. Conclusions

We propose a contrastive model with the local factor clustering strategy for SSFSL to
effectively alleviate the embeddings mismatch problem due to the objective discrepancy
that the underlying base dataset’s class distribution is different from novel dataset’s class
distribution. Specifically, we first pre-train feature embeddings in the base dataset, and
then transfer the pre-trained embeddings to the novel dataset for training. During the
fine-tuning process, we first use the local factor clustering strategy to enhance the accuracy
of pseudo-labels, and then pseudo-labeling guided contrastive learning is achieved on
these unlabeled samples. Finally, LFC and a prototypical classifier are utilized to test, where
LFC is a novel clustering method that reflects on the local feature information of labeled
and unlabeled samples. On the two benchmark datasets, our method exceeds many FSL
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and SSFSL methods. Ablation experiments and visualization have also been performed to
further validate the progressiveness of our approach.
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