
Citation: Šprogar, M.; Verber, D.

Accuracy Is Not Enough: Optimizing

for a Fault Detection Delay.

Mathematics 2023, 11, 3369.

https://doi.org/10.3390/

math11153369

Academic Editors: Heung Soo Kim,

Salman Khalid, Ananda Shankar and

Prashant Kumar

Received: 29 June 2023

Revised: 25 July 2023

Accepted: 31 July 2023

Published: 1 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Accuracy Is Not Enough: Optimizing for a Fault Detection Delay
Matej Šprogar * and Domen Verber

Faculty of Electrical Engineering and Computer Science, University of Maribor, 2000 Maribor, Slovenia;
domen.verber@um.si
* Correspondence: matej.sprogar@um.si

Abstract: This paper assesses the fault-detection capabilities of modern deep-learning models. It
highlights that a naive deep-learning approach optimized for accuracy is unsuitable for learning
fault-detection models from time-series data. Consequently, out-of-the-box deep-learning strategies
may yield impressive accuracy results but are ill-equipped for real-world applications. The paper
introduces a methodology for estimating fault-detection delays when no oracle information on
fault occurrence time is available. Moreover, the paper presents a straightforward approach to
implicitly achieve the objective of minimizing fault-detection delays. This approach involves using
pseudo-multi-objective deep optimization with data windowing, which enables the utilization of
standard deep-learning methods for fault detection and expanding their applicability. However,
it does introduce an additional hyperparameter that needs careful tuning. The paper employs the
Tennessee Eastman Process dataset as a case study to demonstrate its findings. The results effectively
highlight the limitations of standard loss functions and emphasize the importance of incorporating
fault-detection delays in evaluating and reporting performance. In our study, the pseudo-multi-
objective optimization could reach a fault-detection accuracy of 95% in just a fifth of the time it takes
the best naive approach to do so.

Keywords: artificial neural networks; deep learning; fault detection; accuracy; multi-objective
optimization

MSC: 68T07

1. Introduction

Modern industrial systems are increasingly more complex and prone to failure, which
can lead to significant dangers or high costs. Detecting faults is crucial in these systems [1],
but it is challenging due to the vast amount and complex nature of data the systems handle
and produce. Once a fault is detected, further analysis and decision-making processes are
necessary to identify the specific fault type and prevent it from spreading.

In recent years, deep learning (machine learning using neural networks with many
hidden layers) has showcased its remarkable ability to learn complex data representations,
revolutionizing various learning tasks. Deep learning was also successfully applied to fault
detection, which must handle a broad range of multivariate data [2,3]. Multivariate data
are a sequence of chronologically recorded observations of interrelated and interacting
multidimensional variables.

Although deep learning has shown success in fault detection, it is important to ac-
knowledge that researchers using deep fault-detecting models sometimes overlook the
crucial temporal aspect of fault detection. Specifically, they fail to leverage the existing
temporal dependencies among variables using only a single data sample in one time step
or, conversely, too much data in too many time steps [4]. Consequently, they fail to op-
timize for the time it takes to detect a fault. In many applications, the fault-detection
delay—the time gap between the actual occurrence of a fault and its recognition by the

Mathematics 2023, 11, 3369. https://doi.org/10.3390/math11153369 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11153369
https://doi.org/10.3390/math11153369
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-1869-8286
https://doi.org/10.3390/math11153369
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11153369?type=check_update&version=1

Mathematics 2023, 11, 3369 2 of 18

fault-detecting component—can be quite dangerous and therefore this delay should be as
small as possible [5].

If attainable, fault prediction is better than fault detection as it allows us to prevent
potentially expensive faults from occurring. We can consider fault prediction as a negative
fault-detection delay. However, if predictions are unattainable, a low fault-detection delay
is just as important as high sensitivity and a low false alarm rate.

Quick detection of faults while minimizing false alarms is paramount in fault-tolerant
systems. A functional fault-detection system raises alarms with acceptable delays. Our
objective is to demonstrate the inadequacy of approaches that ignore fault-detection delays
when evaluating fault-detection (and prediction) performance. We experimented on a large
and renowned synthetic dataset [6] and tried to identify the main factor influencing the
accuracy and delay of the fault-detection process.

The main contributions of this paper are as follows:

(1) Emphasizing the significance of fault-detection delays when considering deep-learning
fault-detection models. By disregarding the temporal aspect of the solution, standard
loss functions produce solutions with little practical value.

(2) Introducing a methodology for estimating deep fault delays. In cases where the
timestamps of faults are unknown, it is only possible to estimate the fault-detection
delay to a certain extent.

(3) Proposing a pseudo-multi-objective approach to fault detection with any deep-learning
model, although we have only validated it with Long Short-Term Memory on a single
dataset. Deep models should only have access to short training sequences, or they
will not learn short-term relations needed for short fault-detection delays.

(4) Providing a clear integration of machine learning concepts with fault detection. Bridg-
ing these two domains facilitates better knowledge exchange and helps prevent
experimental errors.

This paper delves into the temporal aspect of deep fault detection. Additionally, we
examined the influence of data windowing on fault-detection accuracy and delay. Section 2
introduces the concept of a monitoring component and provides an overview of artificial
neural networks. Section 3 introduces a uniform notation for describing the context and
data windows in sequential data and estimating fault-detection delays for any model.
Section 4 presents a pseudo-multi-objective optimization approach that surpasses certain
naive approaches observed in the literature. Finally, Section 5 illustrates the application of
the proposed concepts using the widely used Tennessee Eastman Process (TEP) dataset [7].

2. Background

Fault handling commonly includes fault detection, fault identification, and fault
diagnosis [8]. In general, fault detection evaluates the system’s operational status to
determine its normal functionality; fault identification determines the specific type of fault
that has occurred; and fault diagnosis identifies the root cause of the fault and traces its
potential propagation path. Sometimes it is possible to identify a fault during the fault-
detection step. Regardless of the chosen approach, it is crucial to incorporate a component
that monitors the entire system.

2.1. The Monitoring Component

To effectively address the system’s complexity and safety concerns, we must design,
evaluate, and implement the safety-related aspects independently and in parallel with the
functional components. It is also essential to acknowledge the susceptibility to faults of the
control process itself. An independent monitoring component (MC) is a general approach
to overseeing the control function and assisting in fault handling.

The component actively monitors the inputs of the main system (a), the control
system’s response (b = F(a)), and, if available, the internal state variables (c) of the control
system (refer to Figure 1). It is important to note that while the MC possesses the same
information as the control function F, it does not perform the controlling task. The primary

Mathematics 2023, 11, 3369 3 of 18

role of the component is to confirm the validity of its inputs X = (a, b, c). Consequently,
the MC reports the operational diagnosis d = f (X) to a higher fault management layer
with the necessary expertise to handle a fault. Although a binary diagnosis indicates the
presence or absence of a fault, a more intricate output may even identify a specific fault.

Control system
F

ca b

d
Monitoringcomponent

f

Main system

X

Figure 1. Data flows and the positioning of the monitoring component above the control system.

To ensure minimal interference with the control environment, the monitoring com-
ponent should strive to employ physically separate and dedicated hardware exclusively
for its operation. Furthermore, the monitoring component needs to operate at a speed that
matches or surpasses the monitored system.

The most challenging aspect is developing a reliable decision model within the MC.
This decision model is responsible for recognizing the system’s state as either normal
or abnormal. Deep learning with artificial neural networks has enabled many effective
solutions that address this decision-making challenge [8,9].

2.2. Artificial Neural Networks

Modern machine learning encompasses a broad spectrum of approaches, among
which artificial neural networks have emerged as a successful and widely adopted method.
Artificial Neural Networks (ANNs) are computational models inspired by the complex
network of biological neurons in animal and human brains. These networks are comprised
of interconnected nodes with weighted connections that transmit signals (represented
as real numbers) from one node to another. ANNs are highly suitable for addressing
diverse problem domains. A general and detailed description of artificial neural networks
is available in [10].

Although ANNs are fast to execute and can learn to compute nonlinear and complex
functions, it is important to acknowledge the potential pitfalls associated with their use.
Ref. [11] These pitfalls include:

• Data: ANNs rely on sufficient high-quality data that accurately represent the problem.
Data availability and quality can be a challenge, particularly because obtaining large,
labeled datasets may be impractical or costly [4].

• Learning: The success of the learning phase in ANNs is not guaranteed and can be
influenced by factors such as the chosen network type and topology. Selecting the ap-
propriate architecture and configuring the network hyperparameters can significantly
impact its learning capabilities and overall performance [12].

• Verification and Overfitting: Validating the solutions produced by ANNs can be
challenging. Due to the complexity of their internal workings, it can be difficult to
understand how and why an ANN arrived at a specific output. Additionally, ANNs
are susceptible to overfitting, resulting in reduced generalization of unseen data [11].

Addressing these issues requires careful consideration during the design and imple-
mentation of ANNs. Strategies such as data preprocessing, regularization techniques,

Mathematics 2023, 11, 3369 4 of 18

cross-validation, and model evaluation can help mitigate these challenges and improve the
reliability and generalizability of ANNs in real-world applications.

There are two general ANN architecture types, each with distinct advantages and
disadvantages. The first type is feed-forward networks, which propagate signals directly
from the input to the output layer. Due to their inherent simplicity, these networks can only
extract cross-dimensional correlations from large, external sequence-encompassing contexts
using more complex internal mechanisms, such as convolution [13] or attention [14]. It is
worth noting that feed-forward designs require substantial amounts of data and significant
offline learning efforts, but they are cost-effective to use afterward.

Recurrent neural networks (RNN) can naturally capture autocorrelations by utilizing
recurrent connections that loop the propagated signals. As a result, RNNs are well-suited
for handling sequential data, as they can effectively leverage an internal context that they
build autonomously from the supplied inputs. Chung et al. [15] observed that many
effective recurrent neural networks use advanced, recurrent hidden units. Two widely
used types of these hidden units are the Long Short-Term Memory (LSTM) and the Gated
Recurrent Unit (GRU). These specialized units, created for handling time-series data, have
greatly simplified the development and training of recurrent networks. Recently, however,
transformer-based [14] networks started to prevail also because they are faster to train [16].

One particular application of data-driven deep learning is deep anomaly detection,
which involves using deep neural networks to obtain feature representations or anomaly
scores. Anomaly detection focuses on identifying data instances that deviate significantly
from the norm [2]. In the context of anomaly detection for multivariate time-series, Tian
identifies three major challenges [4]. First, the scarcity of labeled data arising from the
rarity of outlier instances. Second, identifying complex interactions and relationships
among features proves to be a challenging task. Last, detecting hidden and inconspicuous
anomalies in high-dimensional data presents a formidable obstacle. These challenges
severely limit our ability to extract meaningful insights from the available data.

3. Deep Fault-Detection Models for Time-Series Data

Data-based fault detection using machine learning can go two ways. The first approach
involves constructing a classifier using supervised learning techniques. This classifier is
trained on labeled data and learns to classify a given data sample as either normal operating
conditions (NOC) or a potential fault. Predicting faults in the (near) future is even more
advantageous than simply detecting existing faults, and classification models can be trained
accordingly. However, supervised learning relies on high-quality labeled data representing
all possible system states. Obtaining such data in large quantities can be challenging,
especially in many industrial environments where faults are infrequent and come at a
high cost. Nevertheless, supervised deep-learning approaches for fault detection have
been successfully applied in various areas, including chemical production systems [17],
semiconductor manufacturing processes [18], and high-performance computing [19].

On the other hand, unsupervised learning provides a more suitable alternative for
fault detection, particularly in scenarios with few or no faulty samples available for train-
ing. In this approach, autoencoders (AE) are widely used as a technique for deep fault
detection [20,21]. Autoencoders are neural network architectures that encode the input
signal into a latent representation and then attempt to reconstruct the original signal from
this compressed information. A level of successful reconstruction of the input signal is a
measure of similarity between the test signal and the pre-learned normal signals.

By training autoencoders exclusively with normal operating condition data, they learn
the underlying structure or principal components of the signals that describe the normal
operation of a plant. When presented with an anomalous signal, their ability to accurately
recreate the input will be lower than with non-anomalous signals used in training. This
difference in reconstruction performance enables us to distinguish anomalous samples
from the NOC samples based on the reconstruction error alone.

Mathematics 2023, 11, 3369 5 of 18

Consequently, the performance of autoencoders heavily relies on selecting an appro-
priate error threshold, which leads researchers to employ Receiver Operating Characteristic
(ROC) analysis by varying these thresholds. Unlike classifiers that can only distinguish
between normal operating conditions and expected faults, autoencoders can detect even
unanticipated states of operation.

3.1. Performance Metrics

Machine learning (ML) strongly emphasizes accuracy, primarily due to the generaliza-
tion challenges that artificial neural networks face when confronted with unseen data. The
main concern in ML is to mitigate incorrect outputs caused by the unstable propagation
of features through ANNs, rendering them ineffective in the presence of minor input
perturbations [22,23].

Several studies have exclusively concentrated on established machine learning evalua-
tion metrics, such as accuracy, while neglecting the inherent sequential nature of the data
and failing to consider fault-detection delays [24–26].

3.2. The Data

The time-series data are a sequence of data samples denoted by S = [X(1), . . . , X(T)],
where each sample X(t) represents the input signals at time t, and T is the total number
of time ticks. Specifically, the sample X(t) = [x(t)1 ; . . . ; x(t)N], X(t) ∈ RN , represents the
signal values of the N features at time tick t. The fault-detection model takes an input
sample and generates the output y = f (X), y ∈ R. Each input sample corresponds to one
fault-detection case. Finally, a dataset, which consists of d sequences, can be denoted as
D = [S1; S2; . . . ; Sd].

Let us define a sliding window function that selects the last w samples from a sequence
S at time t:

W(t)
w (S) := [X(t−w+1), . . . , X(t−1); X(t)], w ≤ t ≤ T. (1)

This allows us to denote S(t)
w = W(t)

w (S). In a sequence consisting of T samples, the
window WT(S)(T) selects the entire sequence: S = WT(S)(T), and W1(S)(T) selects only the
last sample: X(T) = W(T)

1 (S). The sliding window utilized for sample selection is similar
to, but should not be confused with, the fault-absorbing sliding windows [27].

3.3. The Context

All deep-learning models rely on a context that serves as the reference frame for the
inputs they process. Samples preceding the most recent sample X(T) form the simplest context.
Specifically, the context includes the w samples visible through the window W(T−1)

w .
In the case of feed-forward (FF) models, the context is external and must be provided

at each time step. One way to incorporate it is by introducing it as a second parameter to the
fault-detection function, such as y = f (S(T)

1 , S(T−1)
w). However, for simpler implementation,

machine learning flattens the context and appends it to the current sample, resulting in
y = f (S(T)

w+1), or even more simply y = f (S(T)
w). It is important to note that flattening the

external context removes the temporal axis from the data.
In contrast, recurrent models utilize a hidden state H, eliminating the need for an exter-

nal context. The operation of recurrent models can be represented as
(y(T), H(T)) = f (S(T)

1 , H(T−1)). As H is an internal state, we can omit it from the nota-

tion, resulting in f (S(T)
1) = f (S(T)

1 , H(T−1)). Although recurrent models process time-series
data and update their state by considering one sample X(T) at a time, they still require the
processing of several consecutive samples to detect a fault because the state H(t) depends
on H(t−1). Considering that all the previous states influence the internal state, we can
express the entire history of processing as y = y(T) = f (S(1)

1) ◦ . . . ◦ f (S(T)
1). Random

initialization of H(0) makes H(T−w) a possible starting point for sequentially processing

Mathematics 2023, 11, 3369 6 of 18

the sequence S(T)
w , leading (again) to y ≈ f (S(T)

w). Unlike feed-forward networks, which
require flattening consecutive samples into one wide input, recurrent models retain the
temporal organization of the data.

The ‘context data’ size, determined by the hyperparameter w, limits the model’s ability
to capture long relationships. Feed-forward models have a limitation in that they can only
capture correlations within the constrained context (w << T) and are unable to detect
correlations that extend beyond it. It is important to note that the implementation of the
model may impose restrictions on the context size. The context size limitation is observed
in popular models like ChatGPT as well [28].

3.4. Fault-Detection Delay

Artificial neural networks are extremely quick at generating output. Unless a highly
responsive system is being monitored, the time required for this transformation can be
ignored, if we compare it to the duration of a single time step.

To quantify the fault-detection delay δ, which refers to the time elapsed between the
actual onset of a fault and its detection [5], it is necessary to possess accurate information
regarding the fault’s exact occurrence time τ within the system. Unless an external source
or an oracle provides this temporal data, determining the exact fault occurrence time
becomes extremely challenging. Faults typically require a certain amount of time to be
propagated through the system and are seldom detectable immediately upon initiation.
Furthermore, there are instances when the process control system actively masks the fault
by compensating for its adverse effects before the system enters a visibly anomalous state
that can be detected.

In machine learning, there is a common assumption that the associations within a
system can be acquired by recording its features and that the comprehensive data captures
all relevant relationships. Consequently, utilizing all available data to make informed
decisions through the execution of f (S(T)

T) establishes the performance baseline for fault
detection, with the fault-detection delay δ = T − τ. It is important to note that the baseline
model exhibits the maximum delay when applied to pre-recorded data. The true fault-
detection delay occurs only when the model is employed live on a data stream.

To determine the model’s fault-detection delay when the fault time is unknown, we
must identify the minimum number of samples required to provide sufficient information
for accurate enough fault detection at any time step:

f (S(t)
δ) = f (S(t)

δ+i), ∀(t, i) ∈ [δ, T]× [0, T − δ] (2)

Unfortunately, the brute force approach to determine δ using Equation (2) is very slow,
because we must determine δ for all possible training inputs:

δ = max
K

δ(D), (3)

where K is the set of all possible inputs of size w obtainable from the T time steps of long
sequences from D. Using the sampling stride of 1 gives |K| = |D| · (T − w + 1) possible
inputs. However, if one has knowledge of τ, one can determine δ much simpler, because
the model requires δ time steps to detect a fault:

f (S(τ+i)
δ) = NOC ∀i ∈ [0, δ[

f (S(τ+δ)
δ) 6= NOC

(4)

If we do not have τ, we should try to put a lower bound on δ by measuring the delay
at time step T. This is carried out by finding the smallest input that still produces the same
output as the baseline decision f (S(T)

T); we shall denote this statistic as λ:

f (S(T)
λ) = f (S(T)

λ+i), ∀i ∈ [0, T − λ]

6= f (S(T)
λ−1).

(5)

Mathematics 2023, 11, 3369 7 of 18

High λ suggests that the model is unstable, while a lower λ value is a sign of a simple
problem. λ is not δ(T)—the fault-detection delay at time T—but a lower bound (If the
model performs fault identification, the lower bound corresponds to the highest λ of all
faults) for fault-detection delay at time T. Although the delays for other inputs are probably
different, the worst-case fault-detection delay will be at least λ:

λ ≤ δ. (6)

Because no (deep) model is perfect, the decision regarding a fault can change with
additional input(s). Raising premature alarms is bad but can only be mitigated by waiting
for more data that would confirm the alarm but delay the decision. We need a measure of
how fast the model’s output stabilizes. A simple boundary can be determined by testing
the model using inputs S(t)

t , t ∈ [1, T], which include the first t samples. Let us denote with
µ the time step when the output becomes stable–subsequent samples do not change the
outcome of the fault-detection process:

f (S(µ)
µ) = f (S(µ+i)

µ+i), ∀i ∈ [0, T − µ]

6= f (S(µ−1)
µ−1).

(7)

In contrast to λ, µ retains older samples and discards more recent ones from the input.
When the precise time of fault initiation τ is known (e.g., provided by an oracle), the
fault-detection delay can be calculated by straightforward subtraction:

δ = µ− τ. (8)

The delay estimation strategy applies when the fault occurrence time is unknown
(Figure 2a). After determining the λ and µ statistics, we need λ ≤ µ to interpret the results.
Because λ and µ represent the delay’s lower and upper bound (λ ≤ δ ≤ µ), a situation with
λ > µ indicates problems with fault detection in the underlying model. These problems
could be due to overfitting [29], instability [23], generalization problems [30], or other
issues we must address. When we know the fault time τ, we can measure the detection
time and directly compute the delay (Figure 2b).

Fault time τ known
Determine detection time t

Fault time τ unknown

Compute delayδ = t − τ

Model problems

Interpret results

Determine λ,µ Interpret results
λ > µ

λ ≤ µ

(a)

(b)

Figure 2. The approach to fault-detection delay analysis depends on the availability of the fault
occurrence time. (a) Strategy if fault time is unknown; (b) procedure when the fault time is known.

4. Pseudo-Multi-Objective Optimization

In multi-objective optimization, a single model cannot simultaneously achieve the
best performance in all dimensions [31]. Optimizing for accuracy and low delay in fault
detection involves a trade-off, as these objectives are inherently conflicting. Consequently,
exploring multiple Pareto optimal solutions that offer a balanced trade-off between accuracy
and delay becomes crucial.

Various universal techniques for tackling multi-objective optimization exist. One com-
mon approach involves using weighting methods, such as adaptive weighting techniques
proposed by Xie et al. [32], or using multi-objective instance weights as discussed by

Mathematics 2023, 11, 3369 8 of 18

Lee et al. [33]. By incorporating such techniques, solutions that balance competing objec-
tives form the Pareto front of candidate solutions to the optimization problem. Figure 3
positions various models according to their accuracy and fault-detection delay performance.
If the trivial model solution, which never signals a fault, has no fault-detection delay, the
ideal model would detect all faults instantly. Learning increases the models’ accuracy
because explicit ML loss optimization pushes models horizontally toward higher accuracy.
Only an orthogonal incentive (explicit or implicit) would push the models towards short
fault-detection delays.

accuracy

dela
y

100%

Paretofront

explicit lossoptimization

0

T

0
implicit del ay
opti miz atio n

ideal solutiontrivial solution

Figure 3. Pareto front connects non-dominating models on the accuracy and fault-detection delay plane.

In this context, we adopt the implicit approach. We prioritize utilizing established
deep optimization techniques to maximize fault-detection accuracy while aiming for a
short delay as an implicit objective. This implicit optimization for short delays aligns
harmoniously with the accuracy-optimizing objectives of existing ML libraries without
necessitating any modifications to the existing ML code.

When training a fault-detection model with recordings of historical data that stretch
over many time steps, the conventional ML approach poses the question, “Do these his-
torical data contain any faults?” However, in real-time fault detection, it is important to
rephrase the question: “Do these historical data indicate an imminent or a recently occurred
fault?” This shift in emphasis redirects the focus from analyzing the distant past to the near
future or present.

When training the model with historical data with the fault introduced relatively early
compared to the overall length of the sequence (τ << T), we effectively ask the first question.
To ask the second question, we would ideally need training data with the fault occurring in
the last time step (τ = T) or, even better, in the future (τ > T). The acquisition of such data,
especially in sufficient quantities for deep learning, can be very challenging, however.

However, when working with a large volume of historical data, it is important to
exercise caution in its utilization. Instead of treating a single sequence as a single learning
case, where the input S = S(T)

T includes all T samples, one can reorganize data into multiple
smaller inputs [34]. Figure 4 shows a sliding window that samples at every time step and
produces T − w + 1 distinct yet overlapping training cases S(t)

w of size w, where t ∈ [w, T].
We denote models trained on inputs of size w as Mw.

Strictly speaking, utilizing shorter inputs only partially falls under the umbrella of multi-
objective optimization. Nevertheless, training with shorter inputs implicitly encourages machine
learning algorithms to uncover short correlations for rapid fault detection.

Mathematics 2023, 11, 3369 9 of 18

X(+1),..., X()

X(1),..., X()s Ww
(j)

X(1),..., X(+1),..., X(),..., X()−w

−w

w

...
T

T T

j j

Figure 4. Sliding a window of size w over a long sequence with T samples produces T−w+ 1 sequences.

5. Case Study

The data used in our study are obtained from the Tennessee Eastman Process, origi-
nally introduced by Downs and Vogel [7] and extensively described by Chiang [35]. TEP is a
widely recognized benchmark for researching process monitoring and control. It replicates
natural processes by incorporating modified components, kinetics, and operating condi-
tions. TEP is a synthetic dataset where all dynamic behavior arises from software-based
simulations. Since its inception, the simulation code has undergone several enhancements,
solidifying TEP as one of the most frequently employed benchmarks for studying highly
nonlinear and strongly coupled data.

Our decision to utilize the Tennessee Eastman Process dataset in our study is based on
several factors. First, TEP has been widely adopted by many researchers, as evident from
the works of Heo et al. [36,37], Sun et al. [38], and Park et al. [39]. Second, the published
papers we reviewed did not adequately address or fulfill the specific objectives of our
research. Lastly, acquiring high-quality datasets is often a challenging endeavor. To ensure
repeatability and facilitate transparency, we opted to employ an extensive recording of TEP
simulation data provided by Dataverse [40]. Notably, this dataset is also employed in the
MATLAB Help Center as an illustrative example for demonstrating the application of deep
learning with time series and sequences using the Deep-Learning Toolbox [24].

The TEP dataset represents a chemical plant, where the overarching control strategy,
as outlined in Downs and Vogel [7], aims to optimize overall performance. The plant’s
control system diligently monitors and logs 52 distinct features, comprised of 41 sensor
measurements and 11 manipulated variables at 3-minute intervals. Within the TEP envi-
ronment, the plant can operate under normal operating conditions, denoted as fault 0, or
encounter any of the 20 preprogrammed faults (faults 1–20). Upon the occurrence of a fault,
the control system attempts to mitigate the disturbance, by either successfully restoring the
system to the NOC state or allowing the fault to escalate beyond the NOC boundaries.

The dataset includes a substantial amount of training and test data. Specifically,
the training phase consists of 500 simulated plant runs for each combination of normal
operating conditions and 20 fault scenarios, resulting in a total of 10,500 simulation runs.
Each run spans 25 h, providing 500 samples per training sequence. In the case of a faulty
run, the fault is intentionally triggered at τ = 20 time steps into the normal plant operation.

The test data follow a similar structure, with 500 independent simulations conducted
for each NOC/fault scenario. However, these simulations have a longer duration, consisting
of 960 samples, and faults are introduced at a later stage, precisely after τ = 160 time steps
of normal operation.

The training data were divided into 400 training samples and 100 validation samples
for effective model development and evaluation. Each simulation run was an individual
classification case throughout all study phases, including training, validation, and testing.

The Tennessee Eastman Process has been the subject of extensive study by numerous
researchers. Several authors excluded faults 3, 9, and 15 from their research [24,39]. The
rationale behind this decision stems from the observation that the plant’s control system can
effectively handle the disturbances caused by these faults. Consequently, distinguishing
these faults from the plant’s normal operation proves to be a challenging task. We also
removed faults 3, 9, and 15 from our dataset in light of these findings. Consequently, the
training and test dataset consisted of 18 distinct plant states, resulting in 9000 recorded
sequences for each dataset. Since the TEP data includes information about the faults and

Mathematics 2023, 11, 3369 10 of 18

their occurrence times, the task goes beyond simple fault detection and involves fault
identification through classification.

5.1. Setup

In developing and training our deep fault-detection models, we strictly adhered to
the setup and procedure outlined in the tutorial [24], except that we employed Python in
conjunction with the Keras/TensorFlow framework. The code snippet below illustrates the
model creation process, faithfully reflecting the prescribed methodology. Each model had
three layers of LSTM cells and 43,788 trainable parameters.

model = t f .keras.Sequential([
LSTM(units = 52, return_sequences = True),
Dropout(rate = 0.2),
LSTM(units = 40, return_sequences = True),
Dropout(rate = 0.2),
LSTM(units = 25, return_sequences = False),
Dropout(rate = 0.2),
Dense(units = 18, activation = t f .nn.so f tmax),

])

During the training phase, the simulation records were processed in batches of 32.
Like in tutorial [24], we employed the mean squared error loss function and the Adam
optimizer to optimize the model’s parameters.

5.2. Fault-Detection Performance

The results presented in Table 1 are the average values obtained from 30 trained
networks. At first glance, the selected model exhibited remarkable learning capabilities on
the TEP data, yielding outstanding accuracy. This was confirmed by Matthew’s Correlation
Coefficient (MCC) score, which is known to be more effective in describing performance on
multiclass and unbalanced datasets compared to traditional metrics like the F1 score [41].

The limitation of training the model within 30 epochs was sufficient in discovering a
solution that appears to be close to the global optimum. The model achieved a validation
loss of 2× 10−5 and a training loss of 0.00027. The test results for this model are summarized
in Table 2. We will designate this specific model as Model #1, representing the baseline
M500 family, where all members are trained on cases of 500 samples.

Although the MATLAB tutorial [24] focuses exclusively on classification accuracy
by employing all samples per sequence for a single fault classification, it ignores the
fault-detection delay. The important question to answer is when deep models begin
detecting faults.

Table 1. Training, validation, and test results.

Metric Min Max Avg Median StDev

Training: 7200 simulations, 500 time steps each
MCC: 0.7248 0.9999 0.9446 0.9569 0.0581
Acc: 0.7324 0.9999 0.9464 0.9590 0.0565

Validation: 1800 simulations, 500 time steps each
MCC: 0.7257 1.0000 0.9416 0.9575 0.0575
Acc: 0.7333 1.0000 0.9435 0.9597 0.0559

Test: 9000 simulations, 960 time steps each
MCC: 0.7214 0.9979 0.9395 0.9503 0.0594
Acc: 0.7289 0.9980 0.9415 0.9529 0.0578

Mathematics 2023, 11, 3369 11 of 18

Table 2. The confusion matrix of the reference Model #1 on the test data; 99.733% accuracy, MCC
0.99718, asterisk denotes NOC and fault categories 1, 2, 4, 5, 7, 8, 11, 14, 17, 19, and 20.

ACTUAL

Fault 6 10 12 13 16 18 *

PR
ED

IC
T

ED

6 498 0 0 0 0 0 0

10 0 500 0 0 1 0 0

12 0 0 496 0 0 0 0

13 2 0 0 483 0 0 0

16 0 0 0 0 499 0 0

18 0 0 4 17 0 500 0

* 0 0 0 0 0 0 6000

5.3. Fault-Detection Delay Analysis

During the training and validation phase, faults were introduced in the TEP dataset at
time step τ = 20. However, detecting these faults was delayed until step 500, when the
last training record became accessible. We conducted the λ and µ analyses on the training,
validation, and test data to investigate the behavior of the taught Model #1.

To demonstrate the λ score, Figure 5 depicts the performance of the reference classifier
on a single test sequence labeled as ‘fault 1’. The sequence was divided into 960 sub-
sequences, denoted as S(960)

960−t, t ∈ [1, 960], and subsequently classified using the reference
Model #1. Inputs with λ = 16 or more samples accurately supported the baseline ‘fault 1’
classification.

 0

 5

 10

 15

 20

 900 910 920 930 940 950 960

 10 20 30 40 50 60

λ = 16

fa
ul

t

timestep t

history h

f(ST-t
(T))

Figure 5. Fault detection using S(T)
T−t with windows of size h = T − t; fault 1 test case, λ = 16.

Table 3 presents the λ scores of the reference model for different faults on the validation
data, which was otherwise perfectly classified. Surprisingly, the maximum λ score of 500
was observed for ‘fault 12’, indicating that the network required at least 500 steps to correctly
classify a sample belonging to the ‘fault 12’ category. This finding is unexpected because
the training/validation data encompass 20 steps of NOC data at the beginning of every
500-step sample. These initial 20 steps should not have influenced fault categorization,
meaning that the network is overfitting the training data.

For completeness, Table 4 displays the λ values for the reference model on the test
data, including a few incorrect baseline predictions.

Figure 6 shows our reference classifier’s µ performance on the ‘fault 1’ test sample.
Slices with less than 425 records were insufficient to recognize ‘fault 1’; however, if at least
µ = 425 or more time steps were available, the network could predict ‘fault 1’ correctly.

Mathematics 2023, 11, 3369 12 of 18

Table 3. Reference classifier’s λ results on the validation data with 100 sequences per fault.

Fault # Min Max Avg Median StDev

NOC 100 11 392 135.0 127.0 83.3
1 100 1 25 3.0 2.0 5.3
2 100 1 1 1.0 1.0 0.0
4 100 1 23 2.0 2.0 3.1
5 100 1 73 8.0 4.0 11.7
6 100 1 467 102.0 3.0 148.2
7 100 2 17 2.0 2.5 1.8
8 100 1 279 59.0 42.0 63.0

10 100 33 471 190.0 148.5 123.0
11 100 12 307 84.0 75.5 47.8
12 100 178 500 406.0 412.0 51.9
13 100 1 291 38.0 26.0 46.2
14 100 2 35 4.0 3.0 4.5
16 100 41 471 210.0 195.5 107.8
17 100 26 453 131.0 83.5 109.6
18 100 1 275 58.0 2.0 77.6
19 100 12 385 116.0 94.5 84.4
20 100 14 140 53.0 49.5 26.2

Table 4. Reference classifier’s λ results on the test data with 500 samples per fault.

Fault # Min Max Avg Median StDev

NOC 500 11 570 157.0 137.0 97.7
1 500 1 53 3.0 2.0 6.8
2 500 1 1 1.0 1.0 0.0
4 500 1 89 3.0 2.0 8.0
5 500 1 131 9.0 4.0 14.4
6 498 1 835 246.0 3.5 298.8
7 500 2 19 2.0 2.0 1.3
8 500 1 367 65.0 47.0 67.0

10 501 7 783 194.0 140.0 152.0
11 500 2 261 91.0 83.5 52.0
12 496 88 857 724.0 749.0 93.8
13 485 1 476 46.0 24.0 64.7
14 500 2 41 4.0 3.0 4.2
16 499 16 810 228.0 178.0 161.2
17 500 17 750 141.0 90.0 140.1
18 521 1 650 51.0 2.0 128.1
19 500 5 663 159.0 124.5 127.0
20 500 2 237 55.0 50.0 31.2

 0

 5

 10

 15

 20

 100 200 300 400 500 600 700 800 900

µ = 425

fa
ul

t

timestep t

f(St
(t))

Figure 6. Reference classifier’s decisions for inputs S(t)
t ; fault 1 test case, µ = 425.

Mathematics 2023, 11, 3369 13 of 18

Table 5 presents the µ results obtained from the test data. It is important to note that
the µ metric does not assess classification accuracy but focuses on its consistency over time.
Similar to the observations with λ, we can again identify unexpected behavior. Despite
training the network on 500 time step sequences, the average stability of classification can
only be achieved well beyond 500 steps, as indicated by the value of Avg(Max(µ)) = 636.7.
This counterintuitive behavior further suggests that the network is not aligning with our
initial expectations.

Given that we are aware of the fault introduction time of τ = 160 in the TEP test data,
we can calculate the average fault-detection delay for each fault by subtracting 160 from
the highest µ score achieved by the classifier, as shown in Equation (8). On average, our
best classifier would require Avg(Max(µ)− 160) = 476.7 time steps to detect a fault. It is
worth noting that only the NOC data slices were detectable before the 160th time step, with
an average detection occurring after just 15 samples. One NOC sample, however, required
at least 939 records to be correctly classified.

Table 5. Reference classifier’s µ results on the test set.

Fault # Min Max Avg Median StDev

NOC 500 1 939 15.0 6.0 67.6
1 500 337 535 411.0 409.0 29.9
2 500 262 342 303.0 304.0 7.2
4 500 238 335 284.0 284.0 17.2
5 500 356 511 411.0 412.0 16.0
6 498 213 437 250.0 236.0 36.7
7 500 359 542 437.0 442.0 30.7
8 500 200 944 291.0 278.5 76.7

10 501 206 942 305.0 284.0 80.3
11 500 244 579 295.0 288.0 35.9
12 496 311 916 659.0 651.0 106.9
13 485 218 900 279.0 268.0 54.2
14 500 204 308 225.0 225.0 8.7
16 499 203 954 312.0 284.0 96.3
17 500 217 416 273.0 269.5 28.2
18 521 315 924 437.0 424.0 82.6
19 500 221 509 272.0 266.0 34.3
20 500 258 427 342.0 340.5 31.2

Tables 1–5 and Figures 5 and 6 are © 2021 Matej Šprogar, Matjaž Colnarič, Domen
Verber, and reproduced with permission from “On Data Windows for Fault Detection with
Neural Networks.” IFAC-PapersOnLine, 54/04 (2021), pp. 38–43.

5.4. Comparison with Other Studies

There is a need for more directly comparable studies on fault-detection delay. For
instance, the study by Heo et al. [37] mentions that linear PCA and p-NLPCA detected
fault 5 as early as at time step 162, which corresponds to only two samples (equivalent to
6 min) after its introduction into the system. In contrast, our reference Model #1 needed
196 additional samples to detect the fault correctly.

Providing more insightful results are the findings from Park et al. [39], where a
combined autoencoder and LSTM network was employed. According to their report, the
average detection delay for faults 01, 02, 05, 06, 07, 12, and 14 was less than 30 min, show-
casing superior performance compared to our baseline. However, it is worth noting that
their model exhibited lower accuracy at 91.9%, which likely accounts for the disparities in
the achieved detection delays. Our network, on the other hand, required more information
to ensure higher classification accuracy. The question is, would shorter training cases make
a difference?

Mathematics 2023, 11, 3369 14 of 18

5.5. Using Smaller Windows

The baseline Model #1 exhibited a notable fault-detection delay, highlighting the
inadequacy of training on long sequences with faults embedded early in the process.
Conversely, training on an individual sample per case fails to capture autocorrelations.

Given that our objective is not to find the optimal model but to illustrate the impact
of shorter training cases, we chose to utilize the W5 window to create models in the M5
category. In the TEP dataset, a training case spanning 5 time steps represents 15 min of
plant operation.

Generating training cases from a single sequence allowed us to augment the training
dataset to include 3,571,200 cases. Similarly, the validation and test sets increased to 892,800
and 8,604,000 cases, respectively, resulting in a dataset with over 13 million fault-describing
sequences. To create a representative Model #2 for the M5 category of models, we followed
the same procedure as when generating the baseline models of the M500 family. The final
representative Model #2 models achieved a training loss of 0.00294 and a validation loss of
0.00293. With an accuracy of 97.88% and an MCC score of 0.8955, the test performance of
Model #2 was lower than that of the reference Model #1.

To facilitate a more thorough comparison between the two models, we must assess
their usability for fault detection. This evaluation should consider accuracy and delay
based on the consecutive input samples that describe the operation of the plant.

In Figure 7, we can observe the variations in accuracy over time for the models.
Figure 7a illustrates the models’ performance on 500 steps of the training and validation
data, while Figure 7b depicts the corresponding analysis for the test data, encompassing
960 steps. The accuracy at each time step is calculated based on 7200, 1800, and 9000 sample
recordings from the training, validation, and test datasets, respectively.

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400 450 500
τ = 20

ac
cu

ra
cy

 [
%

]

timestep i

(a) Training and validation accuracy: M5 vs. M500

M5 training
M5 validation
M500 training

M500 validation
 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600 700 800 900 1000
τ = 160

ac
cu

ra
cy

 [
%

]

timestep i

(b) Test accuracy: M5 vs. M500

M5 test
M500 test

Figure 7. Running overall accuracy scores for the models #1 and #2 representing the respective M500

and M5 category at each time step. (a) Results on training and validation data; (b) test data results.

The training and validation datasets were structured to include an initial period of
20 steps representing a faultless operation. For the baseline Model #1, the accuracy in
identifying normal operating conditions started at 20% for the first time step and improved
to 86% after 20 time steps. In contrast, Model #2 achieved 92% accuracy at the first time
step and reached 100% accuracy after three samples. On the test data, it took the baseline
Model #1 58 time steps to achieve a perfect (100%) accuracy score, while the accuracy of
Model #2 had already started to decline by then.

The introduction of faults (indicated by arrows in Figure 7) resulted in a significant
decrease in the accuracy of both models. Model #1 kept classifying all inputs as NOC
for a while, whereas Model #2 started to improve immediately. On the validation data,
it re-reached the 95% accuracy level with a delay of 55 time steps, whereas the baseline
model’s delay was 298 steps to reach the same level of performance.

Mathematics 2023, 11, 3369 15 of 18

5.6. Discussion

The subpar performance of the baseline model during the initial time steps can be
caused by the inability of the S500 window to specify the first X(i<τ) samples as belonging to
the NOC category when the whole sequence was faulty. Per design, all samples, including
the normal ones, were categorized as faulty. This combination of data could have caused the
model to mistakenly associate the NOC state with a faulty condition, resulting in inferior
start-up performance.

In all three datasets, there was a point where the baseline model started outperforming
the M5 representing model, reaching its peak accuracy at the final time step. This outcome
aligns with the primary objective of machine learning, which aims to achieve high overall
accuracy based on all available data. However, these graphs clearly illustrate that the
standard ML loss criterion is inadequate for effective fault detection. If a model is not
penalized for delays, it will prioritize marginal accuracy increases over significant delay
improvements.

Recognizing faults becomes progressively easier the longer they persist in the system.
However, training machine learning models to identify long-standing faults tends to result
in slower detection. To address the detrimental effects of long-standing faults, we can
employ data windowing and restrict the model’s access to information during training
and operation. Windowing creates multiple smaller fault-detection cases with reduced
information, which may not capture long autocorrelations but encourage the model to
focus on learning and leveraging short-term correlations. The “less means more” principle
holds, as less data can lead to shorter fault-detection delays.

All models in this study utilize LSTMs with recurrent architecture, allowing them
to generate outputs starting from the first sample. However, it is important to note that
their internal contexts still require a warm-up period. Interestingly, the warm-up periods
for both models differ significantly. The baseline model exhibits a much slower warm-up
process, requiring a larger number of samples to achieve comparable levels of accuracy.

A pseudo-multi-objective optimization can improve delay and accuracy simultane-
ously. It uses the data window size as a hyperparameter that significantly influences the
temporal behavior of the model. Tweaking other deep-learning hyperparameters, such as
the number of training epochs or the size of the neural network, can improve accuracy [36]
but can also negatively affect the delay. However, as our objective did not involve finding
the optimal TEP fault-detection model, we refrained from conducting an extensive analysis
of various window settings.

6. Conclusions

Although a control system can handle various disturbances, developing a dedicated
monitoring system specifically designed for fault detection and identification is crucial.
When applying deep-learning approaches to solve fault-detection problems, it is important
to consider an additional objective other than accuracy. Standard metrics are inadequate
and, as a result, misleading. They primarily focus on the correctness of results but ne-
glect the importance of delays in fault detection. Furthermore, it is unreasonable to expect
machine learning toolkits to excel in all domains universally; their effectiveness can vary sig-
nificantly.

The monitoring component must recognize a fault from data samples collected during
the fault-detection delay. The MC receives less information in the short period of time after
a recently occurred fault than in the longer period of time after an old fault. Moreover,
recent faults manifest less detectable anomalous traits than the older ones. Consequently,
long delays support better detection of older faults. Fault detection is inherently a bicriteria
optimization problem, where the fault-detection delay objective conflicts with the fault-
detection accuracy objective.

The comparison of two deep neural network models, which were trained differently in
some and identically in other aspects, highlights the need to understand the fundamental
limitations of the machine learning approach for optimization. In this context, we described

Mathematics 2023, 11, 3369 16 of 18

a simple alternative to a more complex multi-objective methodology that would have
been required otherwise. Use of shorter training cases implicitly encourages deep-learning
models to detect and leverage shorter correlations. Additionally, this approach aligns well
with readily available machine learning frameworks.

Although we were able to replicate the high-accuracy results on the TEP dataset
reported elsewhere, it is important to acknowledge that the baseline solution is not suitable
for real-life applications. This becomes evident when observing the accuracy scores over
time. The case study illustrates the flaw of the baseline deep fault-detection concept. We
can produce better models only by circumventing the issue or applying multi-objective
optimization. Following the No Free Lunch theorem [42], however, it is important to
recognize that there is no universally best approach. We aim to highlight why fault
detection and identification warrant special attention.

Author Contributions: Conceptualization, M.Š.; methodology, M.Š.; software, M.Š.; validation,
M.Š. and D.V.; formal analysis, M.Š.; investigation, M.Š. and D.V.; resources, M.Š. and D.V.; data
curation, M.Š.; writing—original draft preparation, M.Š.; writing—review and editing, M.Š. and D.V.;
visualization, M.Š.; supervision, D.V. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the Slovenian Research Agency (research core funding
No. P2-0057).

Data Availability Statement: The data presented in this study are openly available in Dataverse at
https://doi.org/10.7910/DVN/6C3JR1, reference number [40].

Acknowledgments: The authors acknowledge the financial support from the Slovenian Research Agency.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

AE Autoencoder
ANN Artificial Neural Network
FF Feed-Forward
GRU Gated Recurrent Unit
LSTM Long Short-Term Memory
MC Monitoring Component
MCC Matthew’s Correlation Coefficient
ML Machine Learning
NOC Normal Operating Conditions
ROC Receiver Operating Characteristic
RNN Recurrent Neural Network
TEP Tennessee Eastman Process

References
1. Abid, A.; Khan, M.T.; Iqbal, J. A Review on Fault Detection and Diagnosis Techniques: Basics and Beyond. Artif. Intell. Rev. 2021,

54, 3639–3664. [CrossRef]
2. Pang, G.; Shen, C.; Cao, L.; Hengel, A.V.D. Deep learning for anomaly detection: A review. Acm Comput. Surv. (CSUR) 2021,

54, 1–38. [CrossRef]
3. Qiu, S.; Cui, X.; Ping, Z.; Shan, N.; Li, Z.; Bao, X.; Xu, X. Deep Learning Techniques in Intelligent Fault Diagnosis and Prognosis

for Industrial Systems: A Review. Sensors 2023, 23, 1305. [CrossRef]
4. Tian, Z.; Zhuo, M.; Liu, L.; Chen, J.; Zhou, S. Anomaly detection using spatial and temporal information in multivariate time

series. Sci. Rep. 2023, 13, 4400. [CrossRef]
5. Stoorvogel, A.; Niemann, H.; Saberi, A. Delays in fault detection and isolation. In Proceedings of the 2001 American Control

Conference, (Cat. No.01CH37148), Arlington, VA, USA, 25–27 June 2001; Volume 1, pp. 459–463. [CrossRef]
6. Yin, S.; Ding, S.X.; Haghani, A.; Hao, H.; Zhang, P. A comparison study of basic data-driven fault diagnosis and process

monitoring methods on the benchmark Tennessee Eastman process. J. Process. Control 2012, 22, 1567–1581. [CrossRef]
7. Downs, J.J.; Vogel, E.F. A plant-wide industrial process control problem. Comput. Chem. Eng. 1993, 17, 245–255. [CrossRef]

https://doi.org/10.7910/DVN/6C3JR1
http://doi.org/10.1007/s10462-020-09934-2
http://dx.doi.org/10.1145/3439950
http://dx.doi.org/10.3390/s23031305
http://dx.doi.org/10.1038/s41598-023-31193-8
http://dx.doi.org/10.1109/ACC.2001.945587
http://dx.doi.org/10.1016/j.jprocont.2012.06.009
http://dx.doi.org/10.1016/0098-1354(93)80018-I

Mathematics 2023, 11, 3369 17 of 18

8. Ge, Z. Review on data-driven modeling and monitoring for plant-wide industrial processes. Chemom. Intell. Lab. Syst. 2017,
171, 16–25. [CrossRef]

9. Webert, H.; Döß, T.; Kaupp, L.; Simons, S. Fault Handling in Industry 4.0: Definition, Process and Applications. Sensors 2022, 22,
2205. [CrossRef] [PubMed]

10. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. Available online: https:
//www.deeplearningbook.org/ (accessed on 12 July 2023).

11. Saufi, S.R.; Ahmad, Z.A.B.; Leong, M.S.; Lim, M.H. Challenges and Opportunities of Deep Learning Models for Machinery Fault
Detection and Diagnosis: A Review. IEEE Access 2019, 7, 122644–122662. [CrossRef]

12. Ganaie, M.; Hu, M.; Malik, A.; Tanveer, M.; Suganthan, P. Ensemble deep learning: A review. Eng. Appl. Artif. Intell. 2022,
115, 105151. [CrossRef]

13. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Commun. ACM
2017, 60, 84–90. [CrossRef]

14. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you
need. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017;
pp. 5998–6008.

15. Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Empirical evaluation of gated recurrent neural networks on sequence modeling. In
Proceedings of the NIPS 2014 Workshop on Deep Learning, Montreal, QC, Canada, 8–13 December 2014.

16. Zeyer, A.; Bahar, P.; Irie, K.; Schlüter, R.; Ney, H. A comparison of transformer and lstm encoder decoder models for asr. In
Proceedings of the 2019 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU), Singapore, 14–18 December
2019; pp. 8–15. [CrossRef]

17. Lv, F.; Wen, C.; Bao, Z.; Liu, M. Fault diagnosis based on deep learning. In Proceedings of the 2016 American Control Conference
(ACC), Boston, MA, USA, 6–8 July 2016; pp. 6851–6856.

18. Lee, K.; Cheon, S.; Kim, C. A convolutional neural network for fault classification and diagnosis in semiconductor manufacturing
processes. IEEE Trans. Semicond. Manuf. 2017, 30, 135–142. [CrossRef]

19. Borghesi, A.; Bartolini, A.; Lombardi, M.; Milano, M.; Benini, L. Anomaly Detection Using Autoencoders in High Performance
Computing Systems. Proc. AAAI Conf. Artif. Intell. 2019, 33, 9428–9433. [CrossRef]

20. Qian, J.; Song, Z.; Yao, Y.; Zhu, Z.; Zhang, X. A review on autoencoder based representation learning for fault detection and
diagnosis in industrial processes. Chemom. Intell. Lab. Syst. 2022, 231, 104711. [CrossRef]

21. Han, P.; Ellefsen, A.L.; Li, G.; Holmeset, F.T.; Zhang, H. Fault Detection With LSTM-Based Variational Autoencoder for Maritime
Components. IEEE Sens. J. 2021, 21, 21903–21912. [CrossRef]

22. Colbrook, M.J.; Antun, V.; Hansen, A.C. The difficulty of computing stable and accurate neural networks: On the barriers of deep
learning and Smale’s 18th problem. Proc. Natl. Acad. Sci. USA 2022, 119, e2107151119. [CrossRef]

23. Akai, N.; Hirayama, T.; Murase, H. Experimental stability analysis of neural networks in classification problems with confidence
sets for persistence diagrams. Neural Netw. 2021, 143, 42–51. [CrossRef]

24. MathWorks. Chemical Process Fault Detection Using Deep Learning. 2023. Available online: https://www.mathworks.com/
help/deeplearning/ug/chemical-process-fault-detection-using-deep-learning.html (accessed on 12 July 2023).

25. Yan, W.; Guo, P.; Gong, L.; Li, Z. Nonlinear and robust statistical process monitoring based on variant autoencoders. Chemom.
Intell. Lab. Syst. 2016, 158, 31–40. [CrossRef]

26. Torabi, H.; Mirtaheri, S.L.; Greco, S. Practical autoencoder based anomaly detection by using vector reconstruction error.
Cybersecurity 2023, 6, 1. [CrossRef]

27. Barrera, J.M.; Reina, A.R.; Maté, A.; Trujillo, J.C. Fault detection and diagnosis for industrial processes based on clustering and
autoencoders: A case of gas turbines. Int. J. Mach. Learn. Cybern. 2022, 13, 3113–3129. [CrossRef]

28. Bulatov, A.; Kuratov, Y.; Burtsev, M.S. Scaling Transformer to 1M tokens and beyond with RMT. arXiv 2023, arXiv:2304.11062.
29. Rice, L.; Wong, E.; Kolter, Z. Overfitting in adversarially robust deep learning. In Proceedings of the International Conference on

Machine Learning, Virtual Event, 13–18 July 2020; pp. 8093–8104.
30. Kawaguchi, K.; Bengio, Y.; Kaelbling, L. Generalization in Deep Learning. In Mathematical Aspects of Deep Learning; Grohs, P.,

Kutyniok, G., Eds.; Cambridge University Press: Cambridge, UK, 2022; pp. 112–148. [CrossRef]
31. Deb, K. Multi-Objective Optimization Using Evolutionary Algorithms; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2001.
32. Xie, Z.; Chen, J.; Feng, Y.; Zhang, K.; Zhou, Z. End to end multi-task learning with attention for multi-objective fault diagnosis

under small sample. J. Manuf. Syst. 2022, 62, 301–316. [CrossRef]
33. Lee, K.; Han, S.; Pham, V.H.; Cho, S.; Choi, H.J.; Lee, J.; Noh, I.; Lee, S.W. Multi-Objective Instance Weighting-Based Deep Transfer

Learning Network for Intelligent Fault Diagnosis. Appl. Sci. 2021, 11, 2370. [CrossRef]
34. TensorFlow. timeseries_dataset_from_array. 2022. Available online: https://www.tensorflow.org/api_docs/python/tf/keras/

utils/timeseries_dataset_from_array (accessed on 12 July 2023).
35. Chiang, L.; Russell, E.; Braatz, R. Fault Detection and Diagnosis in Industrial Systems; Springer: London, UK, 2001.
36. Heo, S.; Lee, J.H. Fault detection and classification using artificial neural networks. IFAC-PapersOnLine 2018, 51, 470–475.

[CrossRef]
37. Heo, S.; Lee, J. Statistical process monitoring of the Tennessee Eastman Process using parallel autoassociative neural networks

and a large dataset. Processes 2019, 7, 411. [CrossRef]

http://dx.doi.org/10.1016/j.chemolab.2017.09.021
http://dx.doi.org/10.3390/s22062205
http://www.ncbi.nlm.nih.gov/pubmed/35336376
https://www.deeplearningbook.org/
https://www.deeplearningbook.org/
http://dx.doi.org/10.1109/ACCESS.2019.2938227
http://dx.doi.org/10.1016/j.engappai.2022.105151
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.1109/ASRU46091.2019.9004025
http://dx.doi.org/10.1109/TSM.2017.2676245
http://dx.doi.org/10.1609/aaai.v33i01.33019428
http://dx.doi.org/10.1016/j.chemolab.2022.104711
http://dx.doi.org/10.1109/JSEN.2021.3105226
http://dx.doi.org/10.1073/pnas.2107151119
http://dx.doi.org/10.1016/j.neunet.2021.05.007
https://www.mathworks.com/help/deeplearning/ug/chemical-process-fault-detection-using-deep-learning.html
https://www.mathworks.com/help/deeplearning/ug/chemical-process-fault-detection-using-deep-learning.html
http://dx.doi.org/10.1016/j.chemolab.2016.08.007
http://dx.doi.org/10.1186/s42400-022-00134-9
http://dx.doi.org/10.1007/s13042-022-01583-x
http://dx.doi.org/10.1017/9781009025096.003
http://dx.doi.org/10.1016/j.jmsy.2021.12.003
http://dx.doi.org/10.3390/app11052370
https://www.tensorflow.org/api_docs/python/tf/keras/utils/timeseries_dataset_from_array
https://www.tensorflow.org/api_docs/python/tf/keras/utils/timeseries_dataset_from_array
http://dx.doi.org/10.1016/j.ifacol.2018.09.380
http://dx.doi.org/10.3390/pr7070411

Mathematics 2023, 11, 3369 18 of 18

38. Sun, W.; Paiva, A.R.; Xu, P.; Sundaram, A.; Braatz, R.D. Fault detection and identification using Bayesian recurrent neural
networks. Comput. Chem. Eng. 2020, 141, 106991. [CrossRef]

39. Park, P.; Marco, P.; Shin, H.; Bang, J. Fault Detection and Diagnosis Using Combined Autoencoder and Long Short-Term Memory
Network. Sensors 2019, 19, 4612. [CrossRef]

40. Rieth, C.; Amsel, B.; Tran, R.; Cook, M. Additional Tennessee Eastman Process Simulation Data for Anomaly Detection Evaluation,
Harvard Dataverse, 2017. Available online: https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/6C3
JR1 (accessed on 12 July 2023).

41. Jurman, G.; Riccadonna, S.; Furlanello, C. A Comparison of MCC and CEN error measures in multi-class prediction. PLoS ONE
2012, 7, e41882. [CrossRef]

42. Wolpert, D.; Macready, W. No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1997, 1, 67–82. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.compchemeng.2020.106991
http://dx.doi.org/10.3390/s19214612
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/6C3JR1
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/6C3JR1
http://dx.doi.org/10.1371/journal.pone.0041882
http://dx.doi.org/10.1109/4235.585893

	Introduction
	Background
	The Monitoring Component
	Artificial Neural Networks

	Deep Fault-Detection Models for Time-Series Data
	Performance Metrics
	The Data
	The Context
	Fault-Detection Delay

	Pseudo-Multi-Objective Optimization
	Case Study
	Setup
	Fault-Detection Performance
	Fault-Detection Delay Analysis
	Comparison with Other Studies
	Using Smaller Windows
	Discussion

	Conclusions
	References

