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Abstract: Image processing plays a crucial role in improving the performance of models in various
fields such as autonomous driving, surveillance cameras, and multimedia. However, capturing ideal
images under favorable lighting conditions is not always feasible, particularly in challenging weather
conditions such as rain, fog, or snow, which can impede object recognition. This study aims to
address this issue by focusing on generating clean images by restoring raindrop-deteriorated images.
Our proposed model comprises a raindrop-mask network and a raindrop-removal network. The
raindrop-mask network is based on U-Net architecture, which learns the location, shape, and bright-
ness of raindrops. The rain-removal network is a generative adversarial network based on U-Net and
comprises two attention modules: the raindrop-mask module and the residual convolution block
module. These modules are employed to locate raindrop areas and restore the affected regions. Multi-
ple loss functions are utilized to enhance model performance. The image-quality assessment metrics
of proposed method, such as SSIM, PSNR, CEIQ, NIQE, FID, and LPIPS scores, are 0.832, 26.165,
3.351, 2.224, 20.837, and 0.059, respectively. Comparative evaluations against state-of-the-art models
demonstrate the superiority of our proposed model based on qualitative and quantitative results.

Keywords: raindrop removal; U-Net; attention mechanism; generative adversarial network
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1. Introduction

Image processing is used in various fields such as autonomous driving, surveillance
cameras, and multimedia. In particular, it is widely used in preprocessing algorithms to
improve the performance of models. To obtain good images for recognition and analysis,
favorable lighting conditions and a suitable image-capturing environment are crucial.
However, selecting an ideal place and time for capturing images is not always feasible. For
instance, for images obtained in poor weather conditions such as fog, snow, or rain, it can be
challenging for algorithms to differentiate between objects and the background. Research is
required to enhance object-recognition performance by restoring images captured in poor
weather conditions. The objective of this study is to restore raindrop-deteriorated images
and generate clean images.

Image-to-image translation using deep learning can be categorized into models based
on convolutional neural networks (CNNs) and those based on generative adversarial
networks (GANs) [1]. Image-to-image translation using CNNs involves extracting features
from an image and generating a transformed image based on these features. CNNs typically
comprise convolutional and pooling layers, which extract low- and high-level features from
input images. These features are then used to perform various image transformations using
various layers. GANs comprise a generator and a discriminator. The generator is trained
to generate images with the desired characteristics, while the discriminator is trained to
distinguish between real and generated images. The generator and discriminator compete
with each other during training to generate more realistic images.
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The representative image-to-image translation models are Pix2Pix [2] and Cycle-
GAN [3]. Pix2Pix is based on GAN, which comprises a generator and discriminator, and
combines L1 loss and adversarial loss to enhance image-conversion performance. Cycle-
GAN was developed to overcome the limitations of Pix2Pix, which requires a paired dataset
of input and target images for training and has difficulty in obtaining a large dataset. Cy-
cleGAN is designed to perform bidirectional image transformation between two different
domains. CycleGAN comprises two generators and two discriminators. The first generator
transforms an image from one domain into another domain, while the second generator
transforms the image back into an image from the original domain. The first discriminator
discriminates the difference between the original domain and generated domain image,
while the second discriminator discriminates the difference between the reconverted image
and original image. Pix2Pix and CycleGAN can be used for raindrop removal in images. In
addition, various other models are available for raindrop removal.

Qian et al. [4] proposed an attentive generative adversarial network (ATTGAN) that
utilizes adversarial training to address the issues of raindrops overlapping with the back-
ground and the resulting loss of background information. ATTGAN employs an LSTM
model to identify raindrop regions in an image. The generated raindrop area is utilized as
a visual attention mechanism in the generator to focus on the raindrops and their surround-
ing structures. In the discriminator, the attention map is incorporated into the network to
assess the local consistency of the restored image.

Alletto et al. [5] proposed a spatiotemporal architecture for removing raindrops in
images and utilized computer graphics to insert realistic virtual raindrop images to sup-
plement the limited raindrop data; moreover, they proposed a competitive single-image
deraining baseline to gather information about the raindrop region. Optical flow and
image-synthesis techniques were then applied to enhance the performance of the raindrop-
removal model.

Quan et al. [6] proposed a joint shape-channel attention mechanism based on CNN
for raindrop removal. This attention mechanism leverages the physical characteristics of
raindrops to enhance model performance.

Shao et al. [7] proposed a selective skip connection GAN (SSCGAN) for restoring
raindrop-degraded images. SSCGAN utilizes gated recurrent units to capture raindrop
information. A selective connection model is employed to extract a raindrop binary mask.
Self-attention blocks are then utilized to focus on the global structure of raindrops. The
generator focuses on the global structure of raindrops and enhances the performance of the
raindrop binary mask.

Anwar et al. [8] proposed a single-stage blind real-image-restoration network (R2Net)
for restoring real degraded photographs. R2Net incorporates a residual structure to al-
leviate the flow of low-frequency information and employs feature attention to exploit
channel dependencies.

Yang [9] increased the number of layers in the visual attentive-recurrent network of
ATTGAN to prevent gradient sparsity; such modification allows the network to generate
raindrop removal images more reliably.

Xia et al. [10] proposed a hierarchical supervision network to enhance the balance
between raindrop removal and image inpainting; this model combines dense network
blocks with U-Net architecture and inserts a dense block into the skip connection of
U-Net. By applying a loss function to each layer, the model achieves improved performance
without a substantial increase in the number parameters.

Chen et al. [11] proposed a GAN model based on different learning to remove rain-
drops. The generative network learns the difference between images with raindrops and
clean ones, leveraging the simpler distribution of raindrop scenes. The final raindrop-free
image is obtained by subtracting this learned difference from the original raindrop image.

Xu et al. [12] proposed raindrop removal from transmission lines based on unmanned-
aerial-vehicle inspection. They employed an attention-recurrent network to generate the
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raindrop attention map. Additionally, a generation countermeasure network based on
GAN was used to remove raindrops from the images.

In this study, we propose a model to effectively remove raindrops from images and
restore the areas affected by the raindrops. The proposed model comprises a raindrop-
mask network and raindrop-removal network. The raindrop-mask network is a CNN
model based on U-Net [13] architecture, which learns the location, shape, and brightness
of raindrops. U-Net has also been widely adopted in image translation, super-resolution
imaging, and image enhancement [14–19]. The generated raindrop mask serves as the
attention mechanism for the raindrop-removal network [4,20]. The raindrop-removal
network is a GAN model that combines U-Net and an attention mechanism; it utilizes
two attention modules to identify the raindrop area and restore the degraded regions.
The first attention module is the raindrop mask, which is used as an input along with the
raindrop image. The second attention module is the residual convolution block module
(RCAM) [21], a self-attention mechanism that is inserted before the max-pooling layers of
U-Net. Furthermore, various loss functions are employed to enhance model such as the
adversarial loss [1], perceptual loss [22,23], structural-similarity-index-measure (SSIM) loss,
and multiscale-mean-square-error (MSE) loss [4]. We compared the performance of the
proposed model with the state-of-the-art models [2,4,8,24], utilizing not only quantitative
but also qualitative comparisons through six image quality index metrics [25–29]. The
contributions of our model are as follows:

• The proposed model utilizes two networks to separate the raindrop-mask network
and raindrop-removal network.

• The raindrop-mask network serves as an attention module to accurately represent the
location, size, and brightness of raindrops. The raindrop-mask network is based on
U-Net and learns the raindrop-mask area in the raindrop image by training on the
difference between the raindrop image and clean image.

• The raindrop-removal network is based on GAN, and the attention mechanisms are
applied to the input and the internal layers of the generator. The input attention of the
generator is the raindrop mask, while the internal attention is the residual convolution
block attention module (RCBAM). These two modules contribute to enhancing the
performance of the raindrop-removal network.

2. Related Works
2.1. U-Net

U-Net [13] is a deep-learning model that is widely used in image segmentation, particu-
larly for segmenting various cellular objects in medical images. U-Net has also been widely
adopted in image translation, super-resolution imaging, and image enhancement [14–19].
Moreover, it comprises an encoder, a decoder, and a skip connection. The encoder comprises
convolutional layers and a max-pooling layer; the max-pooling layer is applied after the
convolution layers. This design facilitates hierarchical extraction of features from an image,
converting the high-level abstract features of an image into low-dimensional feature maps.
The decoder uses the feature map obtained from the encoder and generates an output that
matches the size of the original image. The decoder consists of a convolutional layer and
an upconvolutional layer that increases the size of the feature map. The skip connection
is used to concatenate the feature map between the encoder and decoder. Furthermore,
the skip connection effectively restores information that may be lost in the hierarchical
structure when transferring the feature map from the encoder to the decoder. Figure 1
illustrates the structure of U-Net.
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Figure 1. Architecture of U-Net.

2.2. Convolution Block Attention Module

Attention is a method of using the information of each position separately by assigning
different weights to each position in the input image. This improves the localization and
expression of the region of interest in the image. The performance of a CNN model can be
improved by incorporating attention mechanisms. The convolution block attention module
(CBAM) [21] is an attention module applicable to feed-forward CNN. CBAM comprises
channel- and spatial-attention modules. The channel-attention module is used to find areas
with important meaning in the image, while the spatial-attention module is used to find
the position of a meaningful region in the image. The formulas presented below represent
the channel- and spatial-attention modules of CBAM. Figure 2 illustrates the diagrams of
CBAM and RCBAM. RCBAM represents the integration CBAM with the residual block
using a skip connection. RCBAM is a CBAM-enhanced network. The equations for CBAM
are as follows:

CA(F) = sigmoid(MLP(AvgPool(F)) + MLP(MaxPool(F))), (1)

SA(F) = sigmoid (conv7×7([AvgPool(F); MaxPool(F)]) ), (2)

where CA(·) and SA(·) represent the channel- and spatial-attention modules, respectively;
F represents a feature map; sigmoid(·) represents a sigmoid function; MLP(·) represents a
multilayer perceptron; and conv7×7(·) represents a convolution operation with a filter size
of 7 × 7.
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3. Proposed Method

In this study, we propose an image-translation model for effectively removing rain-
drops present in an image. The proposed model has three main components: data pro-
cessing, raindrop-mask-generation network, and raindrop-removal network. Figure 3
illustrates the flow chart of the proposed model. The data-processing component prepro-
cesses the input images, while the raindrop-mask-generation network generates masks
to identify the raindrop regions. Furthermore, the raindrop-removal network utilizes the
generated mask and real raindrop image to remove the raindrops from the image.
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3.1. Data Processing

Data processing is a preprocessing step that transforms the input images into a format
that is useful for training. Deep-learning models require large amounts of data for effective
training. However, obtaining many paired images for raindrop removal is difficult. There-
fore, data-augmentation techniques are required to increase the amount of training data. In
this study, data augmentation is performed using random cropping and random vertical-
and horizontal-flip methods. Random cropping involves randomly selecting a 256 × 256
region of the original resolution image and creating various images from different positions.
The copped images are flipped horizontally and vertically with a 50% probability. Data
augmentation is applied during each batch of training. These methods generate a large
number of datasets from a limited number of the datasets.

3.2. Raindrop-Mask Network

Visual-attention models have proven to be highly effective in localizing specific regions
within an image to capture their distinctive features. This concept has found applications in
visual recognition and classification tasks. Visual attention plays a crucial role in removing
raindrops from images and generating clean versions of images. By incorporating visual
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attention mechanisms into the network, the visual attention models gain the ability to
identify areas that require the removal or restoration of raindrops. This not only enhances
the overall performance of the model but also allows it to focus its efforts where they are
most needed.

The raindrop-mask network serves as the second stage. To generate the raindrop
mask, we made modifications to U-Net architecture. During the training phase, the input
images comprise raindrop images, while the output images correspond to raindrop masks.
These raindrop masks are utilized in the attention map for the raindrop-removal network.
Existing models employ binary masks or absolute difference as the attention maps in the
raindrop-removal process [4,20]. However, binary images often fall short in accurately
representing the brightness and size variations of raindrops. This is because binary images
are generated by applying a threshold to the absolute difference between raindrop and
clean images. Important details regarding the intensity, size, and shape of raindrops
are affected by the choice of the thresholding level. The absolute difference changes the
intensity level of the raindrop region owing to the absolute value of the negative difference,
which can impact the effectiveness of the raindrop removal task. To address this limitation,
we propose using the raindrop mask, which is derived from the difference between the
raindrop and clean images. This approach enables us to accurately represent the size and
intensity levels of each individual raindrop.

Figure 4 shows a comparison between the proposed raindrop mask and the binary
mask for an input raindrop image. The proposed mask is biased to display the negative
intensity level. The red box in the figure indicates the cropped region of the image. In
Figure 4a, the input image displays raindrops with varying intensity levels, including an
intensity region that is darker than the surrounding area. In Figure 4b, the binary mask
fails to capture the dark intensity region present in the input image due to thresholding
and absolute difference representation. In the absolute difference mask of Figure 4c, the
brightness of the dark raindrop region is reversed, resulting in the dark region appearing
bright. However, in Figure 4d, the proposed raindrop mask accurately represents the shape
and intensity variations of the raindrops, including the dark intensity region. The equations
for the raindrop mask are as follows:

f (I) = 0.299× r + 0.587× g + 0.114× b, (3)

M = f (Ir)− f (Ic), (4)

where f (·) represents the conversion function that transforms a color image I into a
grayscale image; r, g, and b represent the red, green, and blue channels of the color image,
respectively; Ir and Ic represent the raindrop image and the clean image, respectively; and
M represents the raindrop mask.
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Figure 5 shows the architecture of the raindrop-mask network. This model comprises
several components: the CBR block, the skip connection, and concatenation as well as the
downsampling, upsampling, and convolution layers. The CBR block comprises the convo-
lution layer, batch normalization, and the ReLU activation function. The downsampling
and upsampling layers use max-pooling and two-dimensional (2D) transposed convolution
layers, respectively. The skip connection connects the previous layers to the upsampled
layers. This connection allows the network to learn the low-level and high-level features
and facilitates the integration of detailed information with abstract representation. The
skip-connected layers concatenate the previous layers and upsampled layer channel-wise.
The convolution layer is applied without the ReLU activation function. All convolution
layers in the rain-mask network use 3 × 3 spatial filters with a stride of 1 and padding of 1.
The max-pooling and transposed convolution layers use a 2 × 2 spatial filter with a stride
of 2. The input raindrop images are a color image with three channels and output raindrop
masks are a grayscale image with a single channel. Each image is normalized from −1 to 1.
The loss is calculated using mean square error:

Lm = E [
(

M−M′
)2
], (5)

where Lm represents the raindrop mask loss and M and M′ represent real raindrop mask
and generated raindrop mask, respectively.
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obtained using Equation (4). Figure 6d shows the generated raindrop mask using the
raindrop-mask network. The result demonstrates that the real mask and generated mask
are almost identical.
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3.3. Raindrop-Removal Network

The raindrop-removal network is based on a GAN, which comprises a generator and
discriminator. The generator is constructed using U-Net and incorporates the self-attention
module. The discriminator adopts the PatchGAN architecture used in Pix2Pix [2]. Figure 7
shows the architecture of the proposed model.
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According to GAN, the proposed adversarial loss can be expressed as follows:

min
G

max
D

V(D, G) = EIc∼pclean [log D(Ic)] +EIr∼praindrop
[log(1− D(G(Ir, M)1)], (6)

where D and G represent the discriminator and generator, respectively; Ic represents the
target clean image; Ir and M represent the input raindrop image and the generated raindrop
mask, respectively; and subscript 1 of G indicates the first output image of the generator.

3.3.1. Generator

The generator generates a clean image from an input raindrop image. Figure 7a shows
the proposed rain-removal generator. The generator of the raindrop-removal network uses
two input images: the raindrop image (color image) and raindrop mask (grayscale image).
These images are concatenated channel-wise, resulting in an input image with four channels.
The output image is the generated clean image. The generator produces multiple output
images, each with a different resolution. The input image scale is 256 × 256 × 3 pixels. The
output image scales are 256 × 256 × 3, 128 × 128 × 3, and 64 × 64 × 3 pixels.

This generator comprises several components including the CBL block, the skip
connection, concatenation, and RCBAM as well as the downsampling, upsampling, and
convolution layers. The CBL block comprises the convolution layer, batch normaliza-
tion, and the LeakyReLU activation function. RCBAM is the self-attention module. The
downsampling and upsampling layers use max-pooling and 2D transposed convolution
layers, respectively. The skip connection connects the previous layers to upsampled layers.
RCBAM is used to improve model performance by effectively restoring the raindrop area
with the input raindrop mask. In Figure 7b, RCBAM incorporates a convolution layer
that matches the size of the input feature map with the size of the output feature map.
The remaining elements of the network are used in the same way as in the raindrop-mask
network. All convolution layers in the generator use 3 × 3 spatial filters with a stride of 1
and padding of 1. The max-pooling and transposed convolution layers use 2 × 2 spatial
filter with a stride of 2. The negative slop of LeakyReLU is 0.2.

The generator uses four loss functions: the adversarial loss, perceptual loss, SSIM loss,
and multiscale MSE loss.

The adversarial loss can be expressed as

Ladv = E[log(1− G(Ir, M)1)], (7)

where G(Ir, M)1 represents the first output of the raindrop-removal generator for the input
raindrop image Ir and the generated raindrop mask M, which can also be expressed as I′c1.

To measure the perceptual similarity between the two images, we used the perceptual
loss, which was proposed in SRGAN [22] and measures the difference between features
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obtained from a well-trained network. In the proposed model, we used the pretrained
VGG19 [23], and it can be expressed as

Lper = E [
(
φ(Ic)− φ

(
I′c1
))2

], (8)

where φ(·) represents the feature map of the pretrained VGG19 network and Ic and I′c1
denote the real clean image and the first generated clean image, respectively.

SSIM loss is a loss function that utilizes the structural similarity of two images. The
structural similarity measured by SSIM includes the luminance, contrast, and structure of
the images and can be expressed as follows:

Lssim = E

1−


(

2µIc µI′c1
+ γ1

)(
2σIc I′c1

+ γ2

)
(

µ2
Ic
+ µ2

I′c1
+ γ1

)(
σ2

Ic
+ σ2

I′c1
+ γ2

)

, (9)

where the right side of the minus term represents the SSIM; µIc and µI′c1
represent the mean

of the real clean image Ic and mean of the first generated clean image I′c1, respectively; σ2
Ic

and σ2
I′c1

represent the variance of the images Ic and I′c1; σIc I′c1
represents the covariance; and

γ1 and γ2 are the constant values, 0.012 and 0.032, respectively. Generally, SSIM has a value
between 0 and 1; moreover, the closer the value is to 1, the better the match between the
two images. The minus term is introduced to utilize SSIM as a loss function.

The multiscale MSE loss is a method for calculating loss by extracting features from
different layers of the decoder in the generator. Each extracted feature map corresponds
to a different scale. By considering multiple scales, multiscale losses can capture more
contextual information from different scales [4]. They can be expressed as follows:

Lmul =
1
N ∑N

i=1 E [
(
S(Ic)i − I′ci

)2
], (10)

where N represents the number of output images of the rain-removal generator, which is
set to 3, and S(·)i represents the resize function that converts the scale of real clean image
Ic to the scale of the i-th generated clean image I′ci.

The total loss Ltotal is the sum of all the loss functions:

Ltotal = Ladv + Lper + Lssim + Lmul (11)

3.3.2. Discriminator

The discriminator is used to improve the performance of the generator by distinguish-
ing the generated clean image from the real clean image. The proposed model uses a
discriminator in the form of PatchGAN with a 70 × 70 receptive field. Unlike PixelGAN,
where the existing discriminator distinguishes real/fake for a single value, PatchGAN
distinguishes real and fake for local image patches. This is a form of texture/style loss and
can generate more high-frequency components than PixelGAN. The size of the 70 × 70
receptive field results in higher sharpness in both the spatial and color dimensions [2].
Figure 7c shows the discriminator used in the proposed model. The first CL block com-
prises a convolution layer and the LeakyReLU raindrop-removal network. The middle
block CBL includes a convolution layer, batch normalization, and a LeakyReLU activation
function. The last CS block includes a convolution layer and sigmoid activation function.
All convolution layers in the discriminator use 4 × 4 spatial filters with a stride of 2 and a
padding of 1. The negative slope of LeakyReLU is 0.2.

The loss of discriminator LD can be expressed as follows:

LD = E[log D(Ic)] +E[log(1− D(G(Ir, M)1)] (12)
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4. Experimental Results

The computer system used in the experiment has an Intel Core i7-11700KF processor
with 128 GB of RAM and an NVIDIA GeForce 3090 GPU. The proposed model utilized
861 pairs of training data and 307 pairs of testing data from the deraindrop dataset [4]. This
dataset comprises pairs of images that have been degraded by raindrops, along with their
corresponding clean images. The average image resolution of the deraindrop dataset is
720 × 480, and the image format is a combination of Joint Photographic Experts Group
and Portable Network Graphics. In the training phase, the proposed method is optimized
by Adam, the parameters of which are set as β1 = 0.5 and β2 = 0.999, and the learning
rate = 0.0002. The input image size is 256 × 256 pixels and the batch size is 16. The number
of epochs is 1800. Data augmentation was performed using random crop and random flip
(vertical and horizontal). Random crop randomly selects a 256 × 256-pixel area from the
original image size. Images are normalized from −1 to 1. The generator and discriminator
are initialized from a Gaussian distribution with mean 0 and a standard deviation of 0.02.
In the test phase, we used the original image size for testing, and images were normalized
to a range from −1 to 1.

4.1. Qualitative Evaluation

We compared the proposed model with state-of-the-art models, including Pix2Pix [2],
ATTGAN [4], R2Net [8], and TUM [24]. Pix2Pix was retrained using the same training data,
whereas the other models used pretrained models to generate the output clean images.
The parameters for all models were set to their default values. Figures 8–13 depict the
input raindrop image and the generated image of each model. In the figures, the red box
indicates the cropped region.
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4.2. Quantitatiive Evaluation 

To compare the quality of the generated images, we utilize several image-quality-

assessment metrics (IQAMs), including SSIM [25], peak signal-to-noise ratio (PSNR), con-

trast-changed image-quality measure (CEIQ) [26], naturalness image-quality evaluator 

(NIQE) [27], Fréchet inception distance (FID) [28], and learned perceptual image patch 

similarity (LPIPS) [29]. SSIM, PSNR, FID, and LPIPS are full-reference IQAMs that quan-

tify the image quality by evaluating the similarity between reference and generated im-

ages. Conversely, CEIQ and NIQE are no-reference IQAMs that analyze the image quality 

without a reference image. 

SSIM is utilized to evaluate the structural information and perceptual similarity be-

tween reference and distorted images. 

SSIM =
(2𝜇𝑥𝜇𝑦+𝛾1)(2𝜎𝑥𝑦+𝛾2)

(𝜇𝑥
2+𝜇𝑦

2+𝛾1)(𝜎𝑥
2+𝜎𝑦

2+𝛾2)
, (13) 

where 𝜇𝑥 and 𝜇𝑦 represent the pixel sample mean of the images 𝑥 and 𝑦, respectively; 

𝜎𝑥
2  and 𝜎𝑦

2  represent the pixel variance of the images 𝑥  and 𝑦, respectively ; and 𝜎𝑥𝑦 

represents their covariance. 𝛾1 = (𝑘1𝐿)
2  and 𝛾2 = (𝑘2𝐿)

2 , where 𝐿  represents the dy-
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Figure 13. Rendering results of each model for Scene #6: (a) input, (b) ground truth, (c) Pix2Pix,
(d) ATTGAN, (e) R2Net, (f) TUM, and (g) proposed model.

In Figure 8, small transparent circular raindrops are visible throughout the image.
The raindrops within the red box, seen on the structure’s ceiling, appear dark against the
white color of the ceiling. In addition, several small gray raindrops are distributed within
the red boxes on the pillars of the building. In Figure 8c (Pix2Pix), the raindrops are still
visible, and noise is noticeable around the ceiling. In Figure 8d (ATTGAN), the raindrop
shapes are replaced by black stains. In Figure 8e (R2Net), the raindrop shapes remain and
appear as black spots. In Figure 8f (TUM), compared with the other models, a considerable
number of raindrop shapes are erased, but noise is apparent in the image. Furthermore,
unlike the other models, the raindrops present in the pillar area could not be removed. In
the proposed model shown in Figure 8g, all raindrops in the ceiling and column area have
been successfully removed.

In Figure 9, large raindrops are visible on the tree in the background and on the
statue pedestal. These raindrops have low transparency, making it impossible to accurately
identify objects behind them. Figure 9c (Pix2Pix) shows that the two raindrop regions are
not successfully removed, while Figure 9d (ATTGAN) shows that two raindrop regions are
removed. However, the restoration of the area behind the raindrops on the statue pedestal
is unsuccessful, resulting in a dark-gray blur. In Figure 9e (R2Net), some raindrops are
removed, but they appear as white blurred regions. In Figure 9f (TUM), raindrops are
better removed overall compared with those in cases of other algorithms. However, the
generated image is blurry, and the level of detail is low. In Figure 9g (proposed model), the
two raindrop regions are better restored than in cases of other models.

In Figure 10, small raindrops are evenly distributed throughout the image. Each model
is compared with respect to the areas of buildings and road signs in the background. In
Figure 10c (Pix2Pix), the details of the windows of the building appear blurred, and the
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numbers and red circular parts on the road sign appear blurry. In Figure 10d (ATTGAN),
the details of the window area of the building are clear, but the restored area has a gray
color. Additionally, the saturation of the road signs is low. In Figure 7e (R2Net), the details
of the window area of the building are not clear. In Figure 10f (TUM), the restoration of the
window area of the building is excellent, but traces of raindrops can still be observed on
the road sign. In Figure 10g (proposed model), a clearer image is produced compared with
the other models, with excellent restoration of the window areas of the building and road
signs; moreover, the saturation of the road sign is high.

Figure 11 shows the distribution of raindrops throughout the image, and it can be
seen that there are large raindrops present in the trashcan. In Figure 11c (Pix2Pix), the
large raindrops are removed from the trashcan, but a light-green color distortion and noise
could be observed. In Figure 11d (ATTGAN) and 11e (R2Net), the restored areas appear as
brown stains. In Figure 11f (TUM) and the proposed model in Figure 11g, the raindrops are
effectively removed, and the shape of the trashcan is clearly displayed.

Figure 12 shows that small raindrops with bright or dark brightness are distributed
over the entire image. The restored roof area in Figure 12c (Pix2Pix) exhibits a significant
amount of noise, and traces of raindrops in the fire hydrants are still visible. In Figure 12d–f,
the shape of the raindrops remains in the roof area, and the inside of the raindrop regions
appears blurred, resulting in a lack of detail in the roof. In Figure 12g (proposed model),
although there is some noise in the roof area, the overall restoration is good. Additionally,
the fire hydrant has been well restored, resulting in high color saturation and a clear image.

Figure 13 shows that the raindrops within the image are opaque. There are large
raindrops on the bench. In the models shown in Figure 13c–f, the restoration of the bench
area is not successful. As a result, the raindrop area remains and the color appears distorted.
In Figure 13g (proposed model), the raindrop area is effectively removed and the color is
restored to be similar to the surrounding color.

4.2. Quantitatiive Evaluation

To compare the quality of the generated images, we utilize several image-quality-
assessment metrics (IQAMs), including SSIM [25], peak signal-to-noise ratio (PSNR),
contrast-changed image-quality measure (CEIQ) [26], naturalness image-quality evaluator
(NIQE) [27], Fréchet inception distance (FID) [28], and learned perceptual image patch sim-
ilarity (LPIPS) [29]. SSIM, PSNR, FID, and LPIPS are full-reference IQAMs that quantify the
image quality by evaluating the similarity between reference and generated images. Con-
versely, CEIQ and NIQE are no-reference IQAMs that analyze the image quality without a
reference image.

SSIM is utilized to evaluate the structural information and perceptual similarity be-
tween reference and distorted images.

SSIM =

(
2µxµy + γ1

)(
2σxy + γ2

)(
µ2

x + µ2
y + γ1

)(
σ2

x + σ2
y + γ2

) , (13)

where µx and µy represent the pixel sample mean of the images x and y, respectively; σ2
x

and σ2
y represent the pixel variance of the images x and y, respectively; and σxy represents

their covariance. γ1 = (k1L)2 and γ2 = (k2L)2, where L represents the dynamic range of
the pixel value and k1 and k2 represent the constant values, set to 0.01 and 0.03, respectively.

PSNR calculates the difference between a reference image and a distorted image by
comparing their pixel values. It calculates the mean squared error between the correspond-
ing pixels and converts it to a logarithmic scale.

PSNR = 20 log10

(
MAXI√

MSE

)
, (14)
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where MAXI represents the maximum pixel value. MSE is the mean square error that
quantifies the average squared difference between the corresponding pixels of a reference
image and a distorted image.

FID is used to evaluate the quality and diversity of generated images in image-
synthesis tasks such as GAN. It measures the distance between the feature representations
of real and generated images using a pretrained deep neural network.

FID =‖ µ− µw ‖2
2 +Tr(ρ + ρw − 2

√
ρρw), (15)

where µ and ρ represent the mean and covariance matrix of the distribution of model
samples and µw and ρw represent the distribution of the samples from the real world.

LPIPS is a perceptual-similarity metric that quantifies the perceptual difference be-
tween two images. It measures the similarity between image patches based on learned
features from deep neural networks.

LPIPS(x, x0) = ∑l
1

HlWl
∑h,w ‖ ωl�

(
ŷl

hw − ŷl
0hw

)
‖2

2 , (16)

where x and x0 represent reference and distorted patches with networks; H and W represent
the height and width of the layer l, respectively; ŷl and ŷl

0 represent the feature stack
extracted from layer l and unit-normalized in the channel dimension of the reference and
distorted patches, respectively; and ωl represents the scale factor of the layer l.

CEIQ is employed to measure the quality of contrast-altered images. It utilizes
histogram-based entropy and cross-entropy between the original image and the histogram-
equalized image to assess the quality of the image. The measurements are performed using
a support-vector-machine regressor model.

E = −
b

∑
i=0

h(i) log h(i) (17)

Ege = −
b

∑
i=0

hg(i) log he(i) (18)

Eeg = −
b

∑
i=0

he(i) log hg(i) (19)

CEIQ = SVM
(
SSIMge, Eg, Ee, Ege, Eeg

)
, (20)

where h(·) represents the histogram function and b represents the number of bins in the
histogram. Subscripts g and e denote the gray image and histogram-equalized image,
respectively. SSIMge represents the SSIM for the gray image and histogram-equalized
image. Ex, Ey and Exy, Eyx denote the histogram-based entropy and histogram cross-
entropy. SVM(·) represents the support vector regression.

NIQE utilizes a “quality aware” collection of statistical features. These features are
constructed based on a successful space-domain natural-scene statistic model and derived
from a dataset of natural, undistorted images.

NIQE =

√
(µ1 − µ2)

T
(

ρ1 + ρ2

2

)−1

(µ1 − µ2), (21)

where µ1, µ2 and ρ1, ρ2, are the mean vectors and covariance matrices of the natural
multivariate Gaussian model and the multivariate Gaussian model of the distorted image.
The NIQE model was retrained to assess the naturalness of the generated clean images.
The training dataset of NIQE comprised all the ground-truth images available in the
deraindrop dataset.

Table 1 and Figure 14 show the results of each model for the IQAMs. The best-
performing model is indicated in bold, while the second-best model is underlined. The
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proposed model demonstrates superior performance, achieving the highest scores in CEIQ,
NIQE, FID, and LPIPS, as well as the second-highest scores in SSIM and PSNR. These
results confirm the superiority of the proposed model over other models. FID and LPIPS
scores show a significant improvement of 19.84% and 4.84%, respectively, compared to
ATTGAN. This indicates that the perceptual similarity between the generated images and
real images is higher in the proposed model compared to other models.

Table 1. Comparisons of image-quality-assessment metrics.

Model SSIM↑ PSNR↑ CEIQ↑ NIQE↓ FID↓ LPIPS↓
Pix2Pix 0.770 23.621 3.332 2.499 47.490 0.114

ATTGAN 0.830 26.266 3.344 2.442 25.994 0.062
R2Net 0.835 26.160 3.338 3.015 26.319 0.071
TUM 0.663 23.757 3.269 2.908 26.995 0.136

Proposed 0.832 26.165 3.351 2.224 20.837 0.059
Up arrow represents that a higher score is better, while down arrow represents that a lower score is better. The
best-performing model is indicated in bold, while the second-best model is underlined.
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Figure 14. Image-quality-assessment scores for each model. Up arrow represents that a higher score
is better, while down arrow represents that a lower score is better.

LPIPS is a distance metric used to evaluate visual similarity between images, learned
from deep-learning models. FID is a metric used to measure the difference between gener-
ated and real images, assessing how similar the generated images are to real ones. Both
metrics are widely used for evaluating deep-learning-model performance and quantifying
image quality.

To assess whether the raindrop-removal model enhances object-detection performance,
we conducted tests using YOLOv7 [30]. The results in Figure 15 show that the proposed
model achieved higher object-detection rates compared to the object-detection rates from
the raindrop images. Furthermore, in Figure 15b on the right image, it is evident that the
proposed model successfully detected the car behind the truck, which was not detected
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in the raindrop image. These results validate the effectiveness of the proposed raindrop-
removal method in improving object-detection performance.
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Figure 15. The results of the object detection (YOLOv7) for the raindrop and raindrop-removal
images. (a) raindrop images; (b) proposed raindrop-removal images.

Table 2 shows the average processing speeds for each model. The test images had an
average size of 720 × 480, and a total of 307 images were used to evaluate the processing
speeds. Based on the results, it is evident that ATTGAN demonstrated the fastest processing
speed, while the proposed algorithm exhibited relatively slower performance. At present,
the proposed model may not be suitable for real-time processing, but with future code
optimization, it has the potential to achieve real-time processing capabilities.

Table 2. Processing speeds of each model.

Image Resolution Pix2Pix ATTGAN TUM Proposed

720 × 480 0.0473 s 0.0391 s 0.0466 s 0.1169 s

4.3. Ablation Study

We compare the proposed model against ablations of RCAM, raindrop-mask network
(MASK), perceptual loss Lper, and SSIM loss Lssim, while multiscale loss Lmul and adver-
sarial loss Ladv are commonly applied. Table 3 shows the results of the ablation study. The
best-performing model is indicated in bold, while the second-best model is underlined. In
Table 3, we can observe a gradual increase in IQAM scores as the proposed modules or
loss functions are added. Comparing Case 1 and Case 2, we can see that the Mask module
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contributes to the improvement of SSIM, PSNR, CEIQ, and NIQE performance. In particu-
lar, in Case 3, the addition of the perceptual loss significantly enhances the performance
of all IQAMs, except for CEIQ. By comparing Case 4 with the proposed model, it can be
confirmed that RCBAM also contributes to improving model performance.

Table 3. Ablation study of the proposed model.

Model Module Loss Metric

RCBAM MASK Lper Lssim Lmul Ladv SSIM↑ PSNR↑ CEIQ↑ NIQE↓ FID↓ LPIPS↓
Case 1 X X X 0.822 25.768 3.334 2.476 25.592 0.070
Case 2 X X X X 0.824 25.794 3.358 2.426 27.857 0.073
Case 3 X X X X X 0.829 25.948 3.354 2.355 22.110 0.061
Case 4 X X X X X 0.828 25.796 3.361 2.288 23.102 0.063
Proposed X X X X X X 0.832 26.165 3.351 2.224 20.837 0.059

Up arrow represents that a higher score is better, while down arrow represents that a lower score is better. The
best-performing model is indicated in bold, while the second-best model is underlined.

5. Conclusions

In this study, we proposed a deep-learning model for the removal of raindrops in
images; this model incorporates an attention mechanism based on the GAN framework and
comprises two networks designed to effectively remove the raindrops. The first network is
the raindrop-mask-generation network. This network accurately identifies the raindrop
regions in the input image based on information such as location, size, and brightness.
Unlike conventional binary or absolute difference masks, this approach uses the difference
image between the raindrop image and the corresponding clean image to generate precise
raindrop masks. The second network is the raindrop-removal network, which is based on
the GAN model. The raindrop-removal generator combines U-Net architecture with the
RCBAM and produces multiscale outputs. The input to the raindrop-removal generator
comprises four channels: the raindrop image and raindrop-mask image. The raindrop
mask image and RCBAM effectively guide the removal of raindrops. The discriminator
structure in the GAN framework is designed to distinguish between real and fake images at
the local patch using PatchGAN. To further enhance model performance, we incorporated
perceptual loss, SSIM loss, multiscale loss, and adversarial loss. Based on qualitative and
quantitative evaluations, our proposed model exhibits superior performance in terms of
the raindrop removal and enhancing details compared to existing models.
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