
Citation: Xu, F.; Luo, J.; Ziaur, R.

Cryptanalysis of Two

Privacy-Preserving Authentication

Schemes for Smart Healthcare

Applications. Mathematics 2023, 11,

3314. https://doi.org/

10.3390/math11153314

Academic Editor: Hui Cui

Received: 20 June 2023

Revised: 26 July 2023

Accepted: 27 July 2023

Published: 28 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Cryptanalysis of Two Privacy-Preserving Authentication
Schemes for Smart Healthcare Applications
Feihong Xu 1,*, Junwei Luo 2 and Rahman Ziaur 3

1 School of Artificial Intelligence, Wuchang University of Technology, Wuhan 430223, China
2 School of Computing Technologies, RMIT University, Melbourne, VIC 3083, Australia;

s3616926@student.rmit.edu.au
3 School of Computer Science, Queensland University of Technology, Brisbane, QLD 4000, Australia;

rahman.ziaur@qut.edu.au
* Correspondence: 120160287@wut.edu.cn

Abstract: Ensuring the secure sharing of privacy-sensitive healthcare data is attracting considerable
interest from researchers. Recently, Ogundoyin et al. designed a lightweight privacy-preserving
authentication scheme named PAASH for smart health applications. Benil et al. proposed a public
verification and auditing scheme named ECACS for securing e-health systems. Ogundoyin et al.
and Benil et al. proposed an efficient certificateless aggregate signature (CLAS) scheme as their
respective foundation signature schemes. They declared that their constructions were provably
secure under the hardness assumption of cryptographic problems. In this work, we disprove their
claim by analyzing the correctness and security of their underlying CLAS schemes. We first show that
the batch verification process of n signatures for the CLAS scheme in PAASH is incorrect, and any
public-key replacement attacker can easily break the scheme. We analyze the reasons for our attack
and propose an improved scheme, named PAASH+. We then show that the CLAS scheme in ECACS
fails to achieve correctness, an essential property that a cryptographic scheme should provide. As a
result, it is impractical to deploy the designed PAASH and ECACS constructions in any real smart
health applications.

Keywords: IoT; smart health; electronic health records; privacy-preserving; certificateless signature

MSC: 94A62

1. Introduction

Nowadays, including intelligent transportation, smart industry, and smart healthcare,
Internet of Things (IoT) technologies are widely used in various fields of our life. The
market research company IDC estimates that 41.6 billion IoT devices will be connected by
2025 [1]. Taking the healthcare industry as an example, smart devices (e.g., smartphones,
wearable or implantable sensors) are deployed in applications such as telemedicine, pa-
tient physiological monitoring, and clinical problem identification [2]. They collaborate
with wireless communication technologies to make health data collection increasingly
flexible. Due to the resource limitation of these devices, the collected health data will
typically be outsourced to a remote cloud for storage and sharing. However, because of the
openness of the network, these privacy-sensitive healthcare data are vulnerable to various
security attacks such as eavesdropping and tampering, posing a serious threat to patients’
health. Therefore, it is essential to design effective mechanisms to ensure data security and
privacy [3].

Historically, digital signatures have typically been used to ensure data authenticity
and integrity. However, given the large amount of healthcare data that needs to be re-
ceived from various smart devices, signature verification must be remarkably efficient
to support low-latency emergencies. Consequently, the concept of aggregate signature

Mathematics 2023, 11, 3314. https://doi.org/10.3390/math11153314 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11153314
https://doi.org/10.3390/math11153314
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://doi.org/10.3390/math11153314
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11153314?type=check_update&version=1

Mathematics 2023, 11, 3314 2 of 12

introduced by Boneh et al. [4] is an ideal signature technique for supporting batch veri-
fication. Boneh et al.’s construction is based on the traditional public-key cryptosystem
(PKC), which suffers from the costly key management problem. In view of this, aggregate
signature schemes [5] based on an identity-based cryptosystem (IBC) have been proposed;
nevertheless, Al-Riyami et al. [6] showed that IBC-based construction has the key escrow
problem. To reduce the certificate management cost in traditional PKCs and eliminate
the key escrow problem in IBCs, aggregate signature schemes based on the certificateless
cryptosystem [7–12] have been put forward for smart healthcare applications.

Recently, Zhang et al. [13] integrated the ciphertext-policy attribute-based encryption
(CP-ABE) technique and the certificateless aggregate signature (CLAS) scheme to design a
secure smart health system called SSH. Notably, in a CP-ABE scheme, the data owner can
apply an attribute secret key based on a set of attributes. The ciphertext is produced under
an access policy, and decryption succeeds only when the owner’s attribute list satisfies
the policy. Therefore, Zhang et al.’s SSH construction simultaneously achieves aggregate
authentication, fine-grained access control, and data confidentiality. However, very recently,
Ogundoyin et al. [2] found that Zhang et al.’s SSH scheme is vulnerable to any Type II
attacker who knows the system master-secret key. To this end, Ogundoyin et al. put
forward a new lightweight privacy-preserving authentication scheme named PAASH for
smart health applications, which also consists of a CP-ABE scheme and a CLAS scheme.
Ogundoyin et al. presented a formal security analysis of their design under the standard
cryptographic assumption. To achieve aggregate authentication and data confidentiality,
there are also several certificateless signcryption schemes [14,15] in the literature. However,
they cannot achieve fine-grained access control.

In addition, as another important smart healthcare application, an electronic health
record (EHR) is a record in an electronic version containing personal health-related data,
which is stored and retrieved by different healthcare providers for healthcare-related pur-
poses. Compared to the traditional paper-based health record, the EHR has many benefits,
such as lowering costs, improving health care quality, promoting evidence-based medicine
usage, helping in record-keeping, and ensuring the records’ mobility. To secure the storage
and sharing of privacy-sensitive EHR data over the potentially untrusted cloud, many cryp-
tographic schemes have been proposed in the literature [16–18]. Zhu et al. [16] proposed
an authentication scheme with privacy protection and designated verification for XML-
based healthcare records. Domadiya et al. [17] put forward a privacy-preserving scheme
for distributed healthcare data collection and mining for EHR systems, which provides
a healthcare data mining platform to medical researchers and physicians. Guo et al. [18]
presented a hybrid blockchain-edge architecture for managing EHR with attribute-based
cryptographic mechanisms. However, these designs require expensive pairing operations.
Recently, Benil et al. [19] proposed a new public verification and auditing scheme called
ECACS to secure EHRs. ECACS combines a certificateless public verification (CPV) scheme
and a certificateless public auditing (CPA) scheme. Designed based on a CLAS scheme, the
CPV scheme is used to guarantee the authenticity of the shared EHR data. Moreover, in
combination with blockchain technology, the CPA scheme allows a cloud server to generate
proof of possession of the EHR data and an auditor to check the correctness of the proof
(please refer to [19] for the detailed application model).

Contributions. In this work, we observe that Ogundoyin et al.’s PAASH in [2] cannot
satisfy correctness and unforgeability. More specifically, we find that the batch verification
process of n signatures for the CLAS scheme in PAASH is incorrect, and any Type I
attacker (public-key replacement attacker) can easily break the scheme. Namely, the
attacker can impersonate a data owner (i.e., a patient) to forge a valid signature on his
false healthcare information. This may lead healthcare professionals to make incorrect
diagnoses of a patient’s health condition, even with catastrophic consequences. Therefore,
the designed PAASH cannot be deployed in practical smart health applications. Based
on our cryptanalysis, we discuss the related reason. Moreover, we suggest an improved
PAASH+ scheme to fill this gap.

Mathematics 2023, 11, 3314 3 of 12

In addition, we show that the CLAS scheme in Benil et al.’s ECACS [19] fails to achieve
correctness, the essential property that a cryptographic scheme should provide. Without
correctness, other properties such as security and privacy become unattainable. As a result,
we demonstrate that their scheme is incorrect/insecure for practical applications.

Organization. The remaining paper is organized as follows: We review some prelimi-
naries in Section 2. In Section 3, we show our cryptanalysis to Ogundoyin et al.’s PAASH
scheme. More concretely, we review their scheme in Section 3.1, provide the scheme analy-
sis in Section 3.2, and present our discussion and improvement in Section 3.3. In Section 4,
we show our cryptanalysis of Benil et al.’s ECACS Scheme, including a scheme review in
Section 4.1 and a scheme analysis in Section 4.2. Conclusions are drawn in Section 5.

2. Preliminaries

We here introduce some preliminaries.
Notations. We use N = {1, 2, . . .} and || to represent the set of positive integers and

the concatenation of two strings, respectively. Denote by x ∈R X the element x chosen
uniformly and randomly from the set X.

Elliptic curve discrete logarithm problem (ECDLP) [20]. Given an elliptic curve E defined
over a finite field Fp, an additive cyclic subgroup G on E/Fp with generator P and prime
order q, and a point Q ∈ G, the ECDLP is to find α ∈ Z∗q such that Q = αP.

Correspondingly, the ECDLP assumption refers to any probabilistic polynomial time
(p.p.t) adversary A with negligible probability in solving the ECDLP.

3. Cryptanalysis of the PAASH Scheme in [2]
3.1. Review of the PAASH Scheme

The PAASH scheme is as follows; some notations for the scheme are shown in Table 1.

Table 1. Notations and descriptions.

Notations Descriptions

` System security parameter
paABE Attribute-based parameter
xABE Attribute-based master secret key

pparam System public parameter
Hi Hash function, i = 1, 2, 3

(IDi, Li
att) Patient Pi’s identity and attribute list

SKi
att Pi’s attribute-based secret key

PSKi Pi’s partial secret key
(SKi, PKi) (Full) secret key and public key of Pi

mi Pi’s healthcare data
cpoi Ciphertext of mi under SKi

att

σi Signature of cpoi
σ Aggregate signature

• System Setup Phase
Taking a security parameter ` as an input, the registration authority (RA) runs
the underlying CP-ABE scheme in [21], which consists of the ABE.MasterKeyGen,
ABE.AttributeKeyGen, ABE.Encrypt, and ABE.Decrypt algorithms. More concretely, it
runs ABE.MasterKeyGen to obtain an attribute-based parameter paABE and an attribute-
based master secret key xABE. Then it executes the following algorithm MasterKenGen
to output a public parameter param and a master secret key s.
MasterKenGen: the RA performs the following:

1. Choose a non-singular elliptic curve E : y2 = x3 + ax + b mod p and a q-order
additive group G = 〈P〉, where p, q are large primes.

Mathematics 2023, 11, 3314 4 of 12

2. Pick s ∈R Z∗q as the master secret key and compute the corresponding public key
Ppub = sP.

3. Select three hash functions H1 : {0, 1}∗ → Z∗q , H2 : {0, 1}∗ ×G → Z∗q , H3 :
{0, 1}∗ ×G×G→ Z∗q .

4. Store s secretly and broadcast public parameters pparam = {E,G, p, q, P, Ppub,
H1, H2, H3}.

• Registration Phase
Let a patient Pi be the smart health client with identity IDi and an attribute list Li

att.
When Pi wants to join the system, Pi does the following:

1. Choose di ∈R Z∗q and a timestamp ti
1.

2. Compute Di = diP, Yi = diPpub, and Ωi = IDi||Li
att ⊕ H1(Yi||ti

1).
3. Send (Ωi, Di, ti

1) to the RA as its registration request.

Upon receiving (Ωi, Di, ti
1) from Pi, the RA operates as follows:

1. Accept the request if ti
1 is fresh and reject it otherwise.

2. Recover IDi and Li
att by computing IDi||Li

att = Ωi
⊕

H1(sDi||ti
1).

3. Confirm the validity of IDi and compute PIDi = H1(s||IDi||Ti) as the pseudonym
of Pi, where Ti is the valid time period.

Now, the RA runs ABE.AttributeKeyGen (i.e., using xABE) to generate Pi’s attribute-
based secret key SKi

att and executes the following PartialSecKeyGen to generate Pi’s
partial secret key PSKi. Notably, Pi will use SKi

att and PSKi to encrypt the healthcare
data and sign the corresponding ciphertext, respectively.
PartialSecKeyGen: the RA performs the following:

1. Choose a timestamp tR
1.

2. Compute αi = H2(IDi||s||Ppub||Ti), βi = H2(IDi||Li
att||pparam), θi = αiβi + s,

and Ai = αiP.
3. Set PSKi = (Ai, θi) as the partial secret key.
4. Compute a masking parameter Θi = H1(sDi||tR

1)
⊕
(SKi

att||PSKi).
5. Send (PIDi, Θi, tR

1) to Pi.

Upon receiving (PIDi, Θi, tR
1), Pi operates as follows:

1. Check the freshness of tR
1.

2. Compute SKi
att||PSKi = Θi

⊕
H1(sDi||tR

1) to recover SKi
att and PSKi. The valid-

ity of these keys can be verified by θiP = βi Ai + Ppub, where βi = H2(IDi||Li
att||

pparam).

• Data Outsourcing Phase
Pi with pseudonym PIDi outsources its healthcare data mi to a medical cloud server
(MCS) where authorized data requesters (e.g., healthcare providers or researchers) can
access it. To do this, Pi firstly defines a ciphertext policy poi and executes ABE.Encrypt
to obtain the ciphertext cpoi corresponding to mi. Then, Pi executes the following
algorithms SecretKeyGen and Sign:
SecretKeyGen: Pi picks xi, yi ∈R Z∗q and computes PKi = yiP. Now, Pi sets SKi =
(xi, yi, θi) as the secret key and PKi as the public key.
Sign: Pi does the following:

1. Select ri ∈R Z∗q and compute Vi = rixiP, Ri = Vi + βi Ai, hi = H3(cpoi ||PIDi||Ri||
PKi||ti

2), and δi = rixi + hiyi + θi, where ti
2 is a timestamp and βi = H2(IDi||

Li
att||pparam).

2. Set σi = (Ri, δi) as a signature on cpoi ||ti
2.

Pi now uploads the tuple (cpoi , PIDi, σi, PKi, ti
2) to the MCS.

Suppose that the MCS receives a set of (cpoi , PIDi, σi, PKi, ti
2) from Pi for i = 1, 2, . . . , n.

It executes the algorithms Aggregate and AggregateVerify:
Aggregate: the MCS performs the following:

Mathematics 2023, 11, 3314 5 of 12

1. Check the freshness of ti
2 and recover hi = H3(cpoi ||PIDi||Ri||PKi||ti

2) for i =
1, 2, . . . , n.

2. Calculate ∆ = Σn
i=1δi, R = Σn

i=1Ri, and PK = Σn
i=1hiPKi.

3. Return σ = (R, ∆) as the aggregate signature on cpoi ||ti
2, i = 1, 2, . . . , n.

AggregateVerify: The MCS accepts the message cpoi ||ti
2, i = 1, 2, . . . , n if ∆P = R +

PK + Ppub holds and rejects otherwise.
• Data Access Phase

A data requester (e.g., a healthcare provider or a researcher) is allowed to download
Pi’s healthcare information (cpoi , PIDi, σi = (Ri, δi), PKi, ti

2) from the MCS. More
concretely, it firstly executes the following Verify algorithm:
Verify: the data requester checks the freshness of ti

2, recovers hi = H3(cpoi ||PIDi||Ri||
PKi||ti

2), and verifies whether δiP = Ri + hiPKi + Ppub. Note that the data requester
can also check a set of messages simultaneously as in AggregateVerify to improve
verification efficiency.
At last, if the data requester’s attributes match with the access policy poi, it can run
the ABE.Decrypt to obtain the healthcare data mi.

3.2. Scheme Analysis

The above PAASH scheme proposed by Ogundoyin et al. can be seen as a combination
of two cryptographic schemes, i.e., the underlying lightweight CP-ABE scheme proposed by
Gafif et al. in [21] and a new CLAS scheme designed by Ogundoyin et al. Here, the CLAS
scheme is constructed by algorithms MasterKenGen, PartialSecretKeyGen, SecretKeyGen,
Sign, Verify, Aggregate, and AggregateVerify. Meanwhile, the first five algorithms in CLAS
naturally form a basic CLS scheme. Since the security of the CP-ABE scheme has been
analyzed by Gafif et al., we only focus on the correctness and security analysis of Ogundoyin
et al.’s CLAS scheme.

3.2.1. Correctness Analysis

In Ogundoyin et al.’s CLS scheme, upon obtaining Pi’s healthcare information (cpoi , PIDi,
σi = (Ri, δi), PKi, ti

2), the verifier can use Verify to check the single signature σi by checking
whether the equation δiP = Ri + hiPKi + Ppub holds (we hereafter omit the hash operation
in correctness analysis). This is true since the verification equation can easily verify a single
valid signature. However, their aggregate signature on n signatures produced by Aggregate
cannot be validated by AggregateVerify.

For example, when n = 2, the MCS in Aggregate computes ∆ = δ1 + δ2, R = R1 + R2,
and PK = h1PK1 + h2PK2. It then sets σ = (R, ∆) as the aggregate signature on cpo1 ||t1

2

and cpo2 ||t2
2. To accept the signature σ, in AggregateVerify, one needs to check whether

∆P = R + PK + Ppub holds. However, it is obvious that the equation does not hold since

∆P =(δ1 + δ2)P

=R1 + h1PK1 + 2Ppub + R2 + h2PK2

=R + PK + 2Ppub

6=R + PK + Ppub.

To fix the problem, the verification equation in AggregateVerify needs to be changed to
∆P = R + PK + nPpub.

In the following section, we show that the fixed CLAS scheme is insecure.

3.2.2. Security Analysis

In [2], Ogundoyin et al. proved that their scheme can resist two types of security
attacks. Namely, the Type I adversary is regarded as a public key replacement attacker.
It knows the secret value of a target user but does not know the user’s partial secret key.
Meanwhile, the Type II adversary is regarded as a malicious-but-passive KGC who is able to

Mathematics 2023, 11, 3314 6 of 12

know the master secret key but does not obtain the secret value of the target user. We refer
the readers to [22,23] for the detailed security model. Here, we disprove Ogundoyin et al.’s
claim by presenting a concrete Type I attack.

We suppose that A1 is a Type I adversary, as shown in Figure 1. A1’s goal is to
forge a signature σi

∗ = (Ri
∗, δi

∗) on a message cpoi
∗||ti

2 for a target participant Pi with the
pseudonym PIDi, where ti

2 is a random timestamp. Now, A1 will be provided with the
system parameter pparam = {E,G, p, q, P, Ppub, H1, H2, H3} and Pi’s public information
(PIDi, PKi).

A1 picks yi
∗ ∈R Z∗q , computes PKi

∗ = yi
∗P, and sets PKi

∗ as the replaced public key.
A1 now executes as follows:

1. Select z ∈R Z∗q and set Ri
∗ = zP− Ppub.

2. Compute hi
∗ = H3(cpoi

∗||PIDi||Ri
∗||PKi

∗||ti
2) and δi

∗ = z + hi
∗yi
∗.

3. Set σi
∗ = (Ri

∗, δi
∗) as its forgery.

A1 now sends the tuple (cpoi
∗, PIDi, σi

∗, PKi
∗, ti

2) to a potential verifier (i.e., the MCS
or the data requester). The correctness of σi

∗ = (Ri
∗, δi

∗) is verified as:

δi
∗P =(z + hi

∗yi
∗)P = zP + hi

∗yi
∗P

=Ri
∗ + Ppub + hi

∗PKi
∗

=Ri
∗ + H3(cpoi

∗||PIDi||Ri
∗||PKi

∗||ti
2)PKi

∗ + Ppub.

Figure 1. An example of the Type I attack.

Apparently, A1 is successful in forging the signature on cpoi
∗||ti

2. Since any single
signature can be forged, the designed CLAS cannot provide its claimed security assurance.

Recall that in Ogundoyin et al.’s scheme, Pi encrypts its healthcare data mi by running
ABE.Encrypt. One may argue that the described adversary A1 cannot arbitrarily forge
ciphertext cpoi since it does not know the attribute-based secret key SKi

att of Pi. However,
even with this, A1 is still able to accomplish its forgery by freely selecting the cpoi

∗ from
the historical encrypted data sent by Pi. Note that data requesters need to provide medical
services such as diagnosis and treatment to the patient Pi based on the received cpoi

∗. How-
ever, incorrect or untimely cpoi

∗ may lead to misdiagnosis of a patient’s health condition
and, in severe cases, may even pose a significant health risk to the patient. Therefore, the
proposed PAASH scheme cannot be deployed to real applications.

3.3. Discussion and Improvement

In Ogundoyin et al.’s scheme, Ri and Ppub are independent of each other in the verifi-
cation equation δiP = Ri + hiPKi + Ppub. This allows A1 to use the algebraic relationship

Mathematics 2023, 11, 3314 7 of 12

between them to generate an intermediate value that can be used to bypass the master
secret key s and thus forge the signature on cpoi .

In view of this, we suggested an improved PAASH+ scheme as below. Note that our
improvement mainly focuses on their proposed CLAS scheme.

Recall that in the System Setup Phase, the RA in MasterKeyGen selects three hash
functions. Here, we let RA choose four hash functions Hi : {0, 1}∗ → Z∗q , i = 1, 2, 3, 4. The
remaining part of the algorithm is the same as the original algorithm.

In the Registration Phase, the RA sets Ai = αiβiP. As a result, the partial secret
key PSKi = (Ai, θi) can be checked by θiP = Ai + Ppub. The remaining part of the
PartialSecretKeyGen algorithm is the same as the original algorithm.

In the Data Outsourcing Phase, four algorithms—SecretKeyGen, Sign, Aggregate, and
AggregateVerify—are changed as follows:

SecretKeyGen: Pi picks xi ∈R Z∗q and computes Xi = xiP. Now, Pi sets SKi = (xi, θi) as
the secret key and PKi = (Ai, Xi) as the public key.

Sign: Pi works as follows:

1. Pick ri ∈R Z∗q and compute Ri = riP, h3i = H3(PIDi||PKi||Ppub), h4i = H4(cpoi ||PIDi||
Ri||PKi||ti

2), and δi = θi + rih4i + xih3i, where ti
2 is a timestamp.

2. Set σi = (Ri, δi) as a signature on cpoi ||ti
2.

Pi now uploads the tuple (cpoi , PIDi, σi, PKi, ti
2) to the MCS.

Suppose that the MCS receives a set of (cpoi , PIDi, σi, PKi, ti
2) from Pi for i = 1, 2, . . . , n.

It executes the algorithms Aggregate and AggregateVerify:
Aggregate: the MCS performs the following:

1. Check the freshness of ti
2 and calculate ∆ = Σn

i=1δi.
2. Return σ = (∆, R1, R2, . . . , Rn) as the aggregate signature on cpoi ||ti

2, i = 1, 2, . . . , n.

AggregateVerify: the MCS accepts the message cpoi ||ti
2, i = 1, 2, . . . , n if ∆P = ∑n

i=1 Ai +
nPpub + ∑n

i=1 h3iXi + ∑n
i=1 h4iRi holds and rejects otherwise, where

h3i = H3(PIDi||PKi||Ppub) and h4i = H4(cpoi ||PIDi||Ri||PKi||ti
2) for i = 1, 2, . . . , n.

Accordingly, Verify in the Data Access Phase is modified as below:
Verify: the data requester checks the freshness of ti

2, recovers h3i = H3(PIDi||PKi||Ppub)

and h4i = H4(cpoi ||PIDi||Ri||PKi||ti
2). Then the requester verifies whether δiP = Ai +

Ppub + h3iXi + h4iRi. The data requester can also check a set of messages simultaneously as in
AggregateVerify to improve verification efficiency.

Security Analysis to PAASH+

In the above improved CLAS scheme, a Type I adversaryA1 can forge a valid signature
in two ways, i.e., by computing the partial secret key PSKi = (Ai, θi) generated by the
RA or bypassing it. Although A1 can obtain the public key corresponding to PSKi, the
computation of the partial secret key θi can be viewed as solving ECDLP. The second
method is to bypass θi. Namely, A1 can use some algebraic relation that may exist in the
verification equation (i.e., δiP = Ai + Ppub + h3iXi + h4iRi) to eliminate Ppub. To do this, A1
can only change the value of Xi (or Ri) because Ai and Ppub are generated by the RA. Note
that h3i = H3(PIDi||PKi||Ppub) and h4i = H4(cpoi ||PIDi||Ri||PKi||ti

2). Xi and h3i (or Ri
and h4i) are bound together, any modification to Xi (or Ri) will make the equation invalid.

A Type II adversary A2 also has two methods to forge a signature. The first method
is to obtain the secret value xi generated by the target user Pi. Although A2 can obtain
the partial public key Xi corresponding to xi, the computation of xi can also be stated as
solving ECDLP. The second approach is to bypass xi. That is, A2 may use some algebraic
relation in the above verification equation to eliminate Xi. To do this, it needs to change Ai,
Ri, or Ppub. However, Ai has been made public as part of the user’s public key; Ri and h4i
as well as Ppub and h3iXi are bound together, respectively. Therefore, A2 cannot execute the
modification.

Mathematics 2023, 11, 3314 8 of 12

By eliminating the algebraic relation between the public parameters in the verifi-
cation equation, the suggested scheme can be proved secure through the theorem in
Ogundoyin et al.’s security model:

Theorem 1. If the ECDLP problem is hard, then the improved CLAS is unforgeable against Type I
and Type II adversaries as defined by Ogundoyin et al. in [2] in the random oracle model.

However, we omit the concrete proof here to avoid duplication of work.
By adopting the improved CLAS scheme, a secure PAASH+ scheme is achieved.

Table 2 makes a simple comparison between SSH in [13], PAASH in [2], and the suggested
PAASH+ in terms of features.

Table 2. Comparison of features with several related schemes.

Scheme Correctness Resist Type I Attack Resist Type II Attack Authentication Access Control Confidentiality

[13] X X × × X X

[2] × × X × X X

PAASH+ X X X X X X

4. Cryptanalysis of the ECACS Scheme in [19]
4.1. Review of the ECACS Scheme

In [19], Benil et al. proposed a public verification and auditing scheme called ECACS
to ensure EHRs security. Their design includes sixteen algorithms: Setup, Partial-Private-
Key-Generation, Set-Secret-Value, Set-Private-Key, Set-Public-Key, Sign, Verify, Aggregate,
Aggregate-Verify, Store, Audit, Challenge, Proof-Generation, Proof-Verify, Log-Generation, and
Check-Log-and-Verify. The first nine algorithms constitute a certificateless public verification
(CPV) scheme. The remaining algorithms form a certificateless public auditing (CPA)
scheme, in which the cloud server is allowed to generate proof of possession of data, and
an auditor can check the correctness of the proof. The CPA scheme is built on top of the
CPV scheme. In this section, we simply review the CPV scheme.

Five entities are involved in their construction:

• Key generation center (KGC): the KGC is the trusted entity that generates the system
parameters and partial public/private key pairs to all other four entities according to
their registration.

• Data owner: a data owner represents the patient who collects his/her healthcare data
and uploads the EHR data to the cloud server for storage.

• User: a user could be a doctor or a medical researcher who wants to query the patient’s
EHR data.

• Medical cloud server (MCS): the MCS is managed by the cloud service provider. It
stores a large amount of EHR data sent by the users.

• Third-party auditor (TPA): assigned by the data owner, a TPA is responsible for
auditing the integrity of the stored EHR data. This is achieved by sending the audit
challenge message to the server, and then the server replays back with a proof message.

We now describe Benil et al.’s CPV scheme, which consists of nine algorithms. Note
that, in essence, the CPV scheme is a CLAS scheme. We use the same symbols as in their
construction:

• Setup:

1. Choose a composite-order bilinear group [24] and a mapping e : G×G→ GT .
Let q and P be the order and a generator of G, respectively.

2. Select x ∈ Z∗q as the system master private key and compute the corresponding
master public key PPub = xP.

3. Let H1 : {0, 1}∗ ×G×G→ Z∗q , H2 : {0, 1}∗ ×G×G→ Z∗q , and H3 : {0, 1}∗ ×
G×G→ Z∗q be three cryptographic hash functions.

Mathematics 2023, 11, 3314 9 of 12

4. Keep x as private and publish the system parameters as Spara = {e, q, P, PPub, H1,
H2, H3}.

• Partial-Private-Key Generation:

1. Server partial private-key generation: it takes Spara, the identity of cloud server
ids and x as input. The KGC randomly selects rids ∈ Z∗q and computes Rids =
ridsP, hids = H1(Rids||ids||Pids), and dids = rids + hidsx. It then outputs and sends
dids, Rids to the cloud server.

2. Data owner partial private-key generation: it takes Spara, the identity of data
owner ido, and x as input. The KGC randomly selects rido ∈ Z∗q and computes
Rido = ridoP, hido = H1(Rido||ido||Pido), and dido = rido + hidox. It then outputs
and sends dido, Rido to the data owner.

3. User partial private-key generation: it takes Spara, the identity of user idu and
x as input. The KGC randomly selects ridu ∈ Z∗q and computes Ridu = riduP,
hidu = H1(Ridu||idu||Pidu), and didu = ridu + hidux. It then outputs and sends
didu, Ridu to the user.

• Set-Secret-Value:

1. Set the secret value of the server: the server randomly chooses its secret value
Yids ∈ Z∗q .

2. Set the secret value of the data owner: the data owner randomly chooses its
secret value Yido ∈ Z∗q .

3. Set the secret value of the user: the user randomly chooses its secret value
Yidu ∈ Z∗q .

• Set-Private-Key:

1. Set the private key of the server: the server takes Spara, dids, and Yids as input.
Then its private key is dkids = (ids, xids).

2. Set the private key of the data owner: the data owner takes Spara, dido, and Yido
as input. Then its private key is dkido = (ids, xido).

3. Set the private key of the user: the user takes Spara, didu, and Yidu as input. Then
its private key is dkidu = (idu, xidu).

• Set-Public-Key:

1. Set the public key of the server: taking as input Spara and Yids, the server computes
Pids = YidsP. The public key of the server is PKids = (Pids, Yids).

2. Set the public key of the data owner: taking as input Spara and Yido, the data
owner computes Pido = YidoP. The public key of the server is PKido = (Pido, Yido).

3. Set the public key of the user: taking as input Spara and Yidu, the data owner
computes Pidu = YiduP. The public key of the server is PKidu = (Pidu, Yidu).

• Sign: the user with identity idu takes Spara, Yidu, and the state information ∆, and dKidu
as input. To sign a message M, it performs the following:

1. Choose ri ∈ Z∗q and compute Rid = ridP.
2. Compute B = H2(∆) and hi = H3(idui||Mi||PKidu,i||Ri).
3. Compute Vi = didu + riBM + hiYiduPPub.
4. Output the signature σ = (Ri, Vi).

Then the user uploads the message-signature pair to the cloud server. The server then
verifies its validity via Verify.

• Verify: it takes as input Spara, σ = (Ri, Vi), and (Mi, ∆, PKid, T) as input. The server
first computes (hidu, B, hi) as the same as in Sign. Then it check whether e(Vi, P) =
e(hiduRidu + hiPPubPidu)e(riP, BMi) holds. It accepts the signature if the verification
equation holds and rejects otherwise.

• Aggregate: it takes as input Spara, ∆, and n distinct signatures σi, i = 1, . . . , n on differ-
ent messages Mi from different users with corresponding identities idui and public

Mathematics 2023, 11, 3314 10 of 12

keys PKidu,i. The aggregator computes V = ∑n
i=1 Vi and outputs ({Yid, Mi, Pidu, Ri}n

i=1,
∆, V) as the aggregate signature for n messages.

• Aggregate-Verify: taking as input Spara, ({Yid, Mi, Pidu, Ri}n
i=1, ∆, V), and tuples (idui,

PKidui) for i = 1, 2, . . . , n, it operates as follows:

1. Compute hidu = H1(Ridu||idu||Pidu), B = H2(∆), and hi = H3(idui||Mi||PKidu,i||
Ri).

2. Check whether e(V, P) = e(∑n
i=1(hiduRidu + hiPPubPidu)) · e(∑n

i=1(riPBMi)) holds.
3. Return true if the above equation holds and return false otherwise.

4.2. Scheme Analysis

We show some drawbacks of Benil et al.’s CPV scheme, which will break its correctness.

1. According to the role definition, Sign should be executed by the data owner (i.e., the
patient) rather than the user (e.g., the doctor).

2. The calculation of partial private-key generation for the server, the data owner, and the
user may be wrong. In Partial-Private-Key-Generation (i.e., the second algorithm in the
scheme), to generate a partial private key for the server, the KGC randomly selects
rids ∈ Z∗q and computes Rids = ridsP, hids = H1(Rids||ids||Pids). It then computes and
sets dids = rids + hidsx as the server’s partial private key. In this process, the KGC
needs to use Pids for obtaining hids; however, the value Pids is not defined before. The
same problem occurs when generating the partial private keys for the data owner and
the user.

3. The setting when generating private keys for the server, the data owner, and the user may
be wrong. To generate its private key, the server takes the system parameters Spara,
the partial private-key dids, and the secret value Yids as input and sets its private
key as dkids = (ids, xids). However, xids is not defined before. Moreover, the partial
private-key dids does not seem to be used for constructing the full private key. The
same problem occurs when setting the partial private keys for the data owner and
the user.

4. The setting when generating public keys for the server, the data owner, and the user may
be wrong. To set the public key of the server, the algorithm Set-Public-Key takes as
input the system public parameters Spara and a secret value Yids chosen by the server
in Set-Secret-Value. It computes Pids = YidsP, and the public key of the server is
PKids = (Pids, Yids). In this setting, the secret value is a part of the public key, which
may affect the security of the scheme.

5. There are some undefined definitions in the signing process. In Sign, a piece of state
information ∆ and a value T are bound to the signature. One may infer that T is
the timestamp; however, one cannot guess what state information ∆ is used to store.
Additionally, the signer needs to compute Rid = ridP. However, neither Rid nor rid
has been defined. According to the description of Sign and Verify, the equation should
be Ri = riP.

6. The verification equation in Verify does not hold. In the CPV scheme, a single signature for a
message is valid if the verification equation e(Vi, P) = e(hiduRidu + hiPPubPidu)e(riP, BMi)
holds. The authors in [19] claimed its correctness as follows:

e(Vi, P) = e(didu + riBMi + hiYiduPPub, P)

= e(didu, P) · e(riBMi, P) · e(hiYiduPPub, P)

= e(ridu + hidux, P) · e(riBMi, P) · e(hiYidPPub, P)

= e(hidux, riduP) · e(xP) · e(riP, BMi) · e(hiYidP, PPub)

= e(hidu, Ridu) · e(PPub) · e(riP, BMi) · e(hiPidu, PPub)

= e(hiduRiduPPub) · e(riP, BMi) · e(hiPPub, Pidu)

= e(hiduRidu + hiPPubPidu)e(riP, BMi).

Mathematics 2023, 11, 3314 11 of 12

However, the equation does not hold from the fourth line according to the computation
rule of bilinear pairing [25], which disproves their claim. The same error exists in
Aggregate-Verify.

Obviously, the above analysis shows the proposed CPV scheme is incorrect. It is
also for this reason that we do not offer any suggestions for the scheme’s improvement.
Moreover, since the CPA scheme is built on top of the CPV scheme, its correctness also
cannot be guaranteed.

Real-world dangers. Our analysis shows that the proposed protocol fails to achieve
correctness. This means that it cannot achieve the security and privacy properties claimed
by Benil et al. If the scheme in [19] is adopted in reality, the patient’s privacy-sensitive
EHR data will be exposed to unprotected environments. For example, because the CPV
scheme loses its function, the authenticity and integrity of the shared EHR data cannot be
assured. In this situation, malicious entities may tamper with the real data. Moreover, this
may mislead doctors to make an incorrect diagnosis, which is extremely dangerous for the
patient’s life.

5. Conclusions

In this work, we analyzed two recent privacy-preserving authentication schemes for
smart healthcare applications, i.e., Ogundoyin et al.’s PAASH in [2] and Benil et al.’s ECACS
scheme in [19]. More concretely, we observed that the underlying CLAS scheme in PAASH
construction cannot achieve correctness and unforgeability. We found that the batch verifi-
cation process in their CLAS scheme was incorrect because the verification equation cannot
be validated. In addition, our attack showed that any Type I attacker can impersonate
a patient to forge a valid signature on his false healthcare information, which may lead
healthcare professionals to make incorrect diagnoses of a patient’s health condition. We
discussed the reason for our attack and suggested an improved PAASH+ scheme, which
overcomes the design flaws of PAASH and simultaneously achieves aggregate authentica-
tion, fine-grained access control, and data confidentiality. In addition, we demonstrated
that Benil et al.’s ECACS scheme had many drawbacks and was incorrect. Our analysis
showed that both the above two recent schemes are not suitable to be deployed in practical
smart health applications. We hope our analysis will improve the design of such schemes
in future work.

Author Contributions: Conceptualization, F.X.; Methodology, F.X.; Writing—original draft, F.X.;
Writing—review and editing, J.L. and R.Z. All authors have read and agreed to the published version
of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: No data was used for the research described in the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Estopace, E. IDC Forecasts Connected IoT Devices to Generate 79.4 ZB of Data in 2025. 2019. Available online: https:

//futureiot.tech/idc-forecasts-connected-iot-devices-to-generate-79-4zb-of-data-in-2025/ (accessed on 19 June 2023).
2. Ogundoyin, S.O.; Kamil, I.A. PAASH: A privacy-preserving authentication and fine-grained access control of outsourced data for

secure smart health in smart cities. J. Parallel Distrib. Comput. 2021, 155, 101–119. [CrossRef]
3. Zhu, F.; Yi, X.; Abuadbba, A.; Khalil, I.; Nepal, S.; Huang, X. Authenticated Data Sharing With Privacy Protection and Batch

Verification for Healthcare IoT. IEEE Trans. Sustain. Comput. 2023, 8, 32–42. [CrossRef]
4. Boneh, D.; Gentry, C.; Lynn, B.; Shacham, H. Aggregate and Verifiably Encrypted Signatures from Bilinear Maps. In Proceedings

of the EUROCRYPT 2003, Warsaw, Poland, 4–8 May 2003; Springer: Berlin/Heidelberg, Germany, 2003; Volume 2656, pp. 416–432.
5. Shen, L.; Ma, J.; Liu, X.; Wei, F.; Miao, M. A Secure and Efficient ID-Based Aggregate Signature Scheme for Wireless Sensor

Networks. IEEE Internet Things J. 2017, 4, 546–554. [CrossRef]
6. Al-Riyami, S.S.; Paterson, K.G. Certificateless Public Key Cryptography. In Proceedings of the ASIACRYPT 2003, Taipei, Taiwan,

30 November–4 December 2003; Lecture Notes in Computer Science; Laih, C., Ed.; Springer: Berlin/Heidelberg, Germany, 2003;
Volume 2894, pp. 452–473.

https://futureiot.tech/idc-forecasts-connected-iot-devices-to-generate-79-4zb-of-data-in-2025/
https://futureiot.tech/idc-forecasts-connected-iot-devices-to-generate-79-4zb-of-data-in-2025/
http://doi.org/10.1016/j.jpdc.2021.05.001
http://dx.doi.org/10.1109/TSUSC.2022.3211298
http://dx.doi.org/10.1109/JIOT.2016.2557487

Mathematics 2023, 11, 3314 12 of 12

7. Gayathri, N.B.; Gowri, T.; Kumar, P.R.; Rahman, M.Z.U.; Reddy, P.V.; Lay-Ekuakille, A. Efficient and Secure Pairing-Free
Certificateless Aggregate Signature Scheme for Healthcare Wireless Medical Sensor Networks. IEEE Internet Things J. 2019,
6, 9064–9075. [CrossRef]

8. Liu, J.; Wang, L.; Yu, Y. Improved Security of a Pairing-Free Certificateless Aggregate Signature in Healthcare Wireless Medical
Sensor Networks. IEEE Internet Things J. 2020, 7, 5256–5266. [CrossRef]

9. Zhan, Y.; Wang, B.; Lu, R. Cryptanalysis and Improvement of a Pairing-Free Certificateless Aggregate Signature in Healthcare
Wireless Medical Sensor Networks. IEEE Internet Things J. 2021, 8, 5973–5984. [CrossRef]

10. Yang, W.; Wang, S.; Mu, Y. An Enhanced Certificateless Aggregate Signature Without Pairings for E-Healthcare System. IEEE
Internet Things J. 2021, 8, 5000–5008. [CrossRef]

11. Qiao, Z.; Yang, Q.; Zhou, Y.; Yang, B.; Zhang, M. A Novel Construction Of Certificateless Aggregate Signature Scheme For
Healthcare Wireless Medical Sensor Networks. Comput. J. 2022. [CrossRef]

12. Yang, X.; Wen, H.; Diao, R.; Du, X.; Wang, C. Improved Security of a Pairing-Free Certificateless Aggregate Signature in Healthcare
Wireless Medical Sensor Networks. IEEE Internet Things J. 2023, 10, 10881–10892. [CrossRef]

13. Zhang, Y.; Deng, R.H.; Han, G.; Zheng, D. Secure smart health with privacy-aware aggregate authentication and access control in
Internet of Things. J. Netw. Comput. Appl. 2018, 123, 89–100. [CrossRef]

14. Chen, X.; He, D.; Khan, M.K.; Luo, M.; Peng, C. A Secure Certificateless Signcryption Scheme Without Pairing for Internet of
Medical Things. IEEE Internet Things J. 2023, 10, 9136–9147. [CrossRef]

15. Ren, R.; Su, J. A Security-Enhanced and Privacy-Preserving Certificateless Aggregate Signcryption Scheme-Based Artificial
Neural Network in Wireless Medical Sensor Network. IEEE Sens. J. 2023, 23, 7440–7450. [CrossRef]

16. Zhu, F.; Yi, X.; Abuadbba, S.; Khalil, I.; Yang, X.; Nepal, S.; Huang, X. Privacy-Preserving Authentication for Tree-Structured
Data with Designated Verification in Outsourced Environments. In Proceedings of the ProvSec 2020, Singapore, 29 November–1
December 2020; Springer: Berlin/Heidelberg, Germany, 2020; Volume 12505, pp. 145–165.

17. Domadiya, N.; Rao, U.P. Improving healthcare services using source anonymous scheme with privacy preserving distributed
healthcare data collection and mining. Computing 2021, 103, 155–177. [CrossRef]

18. Guo, H.; Li, W.; Nejad, M.M.; Shen, C. A Hybrid Blockchain-Edge Architecture for Electronic Health Record Management with
Attribute-Based Cryptographic Mechanisms. IEEE Trans. Netw. Serv. Manag. 2023, 20, 1759–1774. [CrossRef]

19. Benil, T.; Jasper, J. Cloud based security on outsourcing using blockchain in E-health systems. Comput. Netw. 2020, 178, 107344.
[CrossRef]

20. Galbraith, S.D.; Gaudry, P. Recent progress on the elliptic curve discrete logarithm problem. Des. Codes Cryptogr. 2016, 78, 51–72.
[CrossRef]

21. Gafif, H.E.; Meddah, N.; Toumanari, A. A Lightweight Ciphertext-Policy Attribute-Based Encryption for Fine-Grained Access
Control. In Proceedings of the International Conference on Advanced Intelligent Systems for Sustainable Development; Springer:
Berlin/Heidelberg, Germany, 2018; pp. 13–23.

22. Shim, K. Security models for certificateless signature schemes revisited. Inf. Sci. 2015, 296, 315–321. [CrossRef]
23. Wu, G.; Zhang, F.; Shen, L.; Guo, F.; Susilo, W. Certificateless aggregate signature scheme secure against fully chosen-key attacks.

Inf. Sci. 2020, 514, 288–301. [CrossRef]
24. Lewko, A.B. Tools for Simulating Features of Composite Order Bilinear Groups in the Prime Order Setting. In Proceedings of the

Advances in Cryptology-EUROCRYPT 2012, Cambridge, UK, 15–19 April 2012; Springer: Berlin/Heidelberg, Germany, 2012;
Volume 7237, pp. 318–335.

25. Paterson, K.G. Cryptography from pairings. Lond. Math. Soc. Lect. Note Ser. 2006, 317, 215.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/JIOT.2019.2927089
http://dx.doi.org/10.1109/JIOT.2020.2979613
http://dx.doi.org/10.1109/JIOT.2020.3033337
http://dx.doi.org/10.1109/JIOT.2020.3034307
http://dx.doi.org/10.1093/comjnl/bxac123
http://dx.doi.org/10.1109/JIOT.2023.3240426
http://dx.doi.org/10.1016/j.jnca.2018.09.005
http://dx.doi.org/10.1109/JIOT.2022.3233180
http://dx.doi.org/10.1109/JSEN.2023.3247581
http://dx.doi.org/10.1007/s00607-020-00847-0
http://dx.doi.org/10.1109/TNSM.2022.3186006
http://dx.doi.org/10.1016/j.comnet.2020.107344
http://dx.doi.org/10.1007/s10623-015-0146-7
http://dx.doi.org/10.1016/j.ins.2014.10.055
http://dx.doi.org/10.1016/j.ins.2019.11.037

	Introduction
	Preliminaries
	Cryptanalysis of the PAASH Scheme in OK21
	Review of the PAASH Scheme
	Scheme Analysis
	Correctness Analysis
	Security Analysis

	Discussion and Improvement

	Cryptanalysis of the ECACS Scheme in BJ20
	Review of the ECACS Scheme
	Scheme Analysis

	Conclusions
	References

