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Abstract: This paper aims to study a class of neutral differential equations of higher-order in canonical
form. By using the comparison technique, we obtain sufficient conditions to ensure that the studied
differential equations are oscillatory. The criteria that we obtained are to improve and extend some of
the results in previous literature. In addition, an example is given that shows the applicability of the
results we obtained.
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1. Introduction

Consider the even-order DE with the neutral term(
ψ(t)

(
υ(n−1)(t)

)`)′
+ φ(t)xi(δ(t)) = 0, (1)

where t ≥ t0 > 0,
υ(t) = x(t) + g(t)x(σ(t)), (2)

and n ≥ 4 is an even positive integer. We also suppose the following:

(M1) ` and i are quotients of odd positive integers;

(M2) ψ ∈ C([t0, ∞), (0, ∞)), ψ′(t) ≥ 0 and under the canonical form, that is∫ t

t0

1
ψ1/`(ζ)

dζ → ∞ as t→ ∞; (3)

(M3) δ, σ ∈ C([t0, ∞),R), δ(t) ≤ t, σ(t) ≤ t, σ′(t) > 0, and limt→∞ σ(t) = limt→∞ δ(t) =
∞;

(M4) φ, g ∈ C([t0, ∞), (0, ∞));

(M5)

lim
t→∞

(
t

σ(t)

)(n−1)/ε 1
g(t)

= 0, (4)

for some ε ∈ (0, 1).
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Under the solution of (1), we mean a non-trivial function x ∈ C([tx, ∞),R), tx ≥ t0,

which has the properties υ(t) ∈ Cn−1([tx, ∞),R), ψ(t)
(

υ(n−1)(t)
)`
∈ C1([tx, ∞),R), and x

satisfies (1) on [tx, ∞). Our attention is restricted to those solutions x(t) of (1) satisfying
sup{|x(t)| : t ≥ ta} > 0 for all ta ≥ tx, and we assume that (1) possesses such solutions.

A solution x to (1) is referred to as oscillatory or non-oscillatory depending on whether
it is essentially positive or negative. If all the solutions to an equation oscillate, the equation
is said to be oscillator.

Differential equations have played a critical role in different sciences for a long time,
and they are expected to continue being indispensable for future investigations. However,
they often provide only an initial estimate of the systems being studied. To create more
realistic models, the past states of these systems must be taken into account, necessitating
the use of differential equations (DEs) with time delays.

In recent times, there has been a growing interest in the theory of oscillation in func-
tional differential equations (FDEs) due to their numerous applications in various fields
of science. As a result, we recommend that readers refer to [1–11] to learn about the var-
ious contributions to the study of oscillatory and non-oscillatory behaviour of DEs with
different orders.

It is known that the neutral differential equation (NDE) has many applications in
various sciences, but as a general rule, we find that they have specific properties, thus
studying them is difficult in both aspects of ideas and techniques. These difficulties explain
the relatively small number of works devoted to the investigation of the oscillatory properties
of solutions to this type of equation.

Several researchers have investigated the oscillatory behaviour of even-order DEs
under various conditions. For more information, see [12–20]. We mention in some detail:

Dzurina et al. [13] investigated the oscillatory properties of the DE

x(4)(t) + w(t)x′(t) + φ(t)xi(δ(t)) = 0, (5)

where w ∈ C([t0, ∞)) and w(t) is positive.
For DEs of the form(

ψ(t)
(
(x(t) + g(t)x(σ(t)))(n−1)

)`)′
+ φ(t)x`(δ(t)) = 0

some oscillation criteria were established by Bazighifan et al. [14], where 0 ≤ g(t) < g0 < ∞
and (3) hold.

The oscillatory behaviour of NDEs

(x(t) + g(t)x(σ(t)))(n) + φ(t)x(δ(t)) = 0 (6)

was the focus of research by Agarwal et al. [15]. They introduced some new conditions
that ensure that (6) is oscillatory. For the convenience of the reader, we mention one of
the theorems.

Theorem 1. Let n ≥ 4 be even, (M3) and (M4) hold, and

δ(t) ≤ σ(t), 1− Υn−1(t)
g(σ−1(σ−1(t)))

≥ 0.

Assume that ρ, ς ∈ C1([t0, ∞), (0, ∞)) such that, for some λ0 ∈ (0, 1),

∫ ∞
(

g∗(t)φ(t)ρ(t)

(
σ−1(δ(t))

)n−1

tn−1 − (n− 2)!
4λ0

(
(ρ′(t))+

)2

tn−2ρ(t)

)
dt = ∞
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and ∫ ∞
ς(t)

∫ ∞
(ζ − t)n−3φ(ζ)g∗(δ(ζ)) σ−1(δ(ζ))

ζ dζ

(n− 3)!
−
(
(ς′(t))+

)2

4ς(t)

dt = ∞,

where

g∗(t) =
1

g(σ−1(t))

(
1− Υ(t)

g(σ−1(σ−1(t)))

)
,

g∗(t) =
1

g(σ−1(t))

(
1− Υn−1(t)

g(σ−1(σ−1(t)))

)
and

Υ(t) =
σ−1(σ−1(t)

)
σ−1(t)

.

Then (6) is oscillatory.

Muhib et al. [18] took into account the oscillatory behaviour of the NDE(
ψ(t)

((
x(t) + q∗(t)xi∗(σ1(t)) + g(t)xγ(σ(t))

)(n−1)
)`
)′

+ f (t, x(δ(t))) = 0, (7)

where γ and i∗ are ratios of odd positive integers with γ ≥ 1, 0 < i∗ < 1, q∗(t) ∈
C([t0, ∞), (0, ∞)) and f ∈ C([t0, ∞)×R,R), and there exists φ ∈ C([t0, ∞), (0, ∞)) such
that | f (t, x)| ≥ φ(t)|x|i. For the convenience of the reader, we mention one of the theorems.

Theorem 2. Assume that

lim
t→∞

g(t)
(

tn−2
∫ t

t0

1
ψ1/`(ζ)

dζ

)γ−1
= lim

t→∞
q∗(t) = 0 (8)

holds. If there exists ξ ∈ C1([t0, ∞),R+) such that

lim sup
t→∞

∫ t

t0

(
ξ(ζ)φ(ζ)εiΩ(ζ)− 1

(`+ 1)`+1
(ξ ′(ζ))`+1

Θ`(ζ)

)
dζ = ∞, (9)

for all λ ∈ (0, 1), θ > 0 and for some ε ∈ (0, 1), k1, k2 > 0, then (7) is oscillatory, where

Θ(t) := `λθδn−2(t)ψ−1/`(t)δ′(t)

and

Ω(t) =

 ki−`
1 if i ≥ `;

ki−`
2
(
tn−2)i−`(∫ t

t1
1

ψ1/`(ζ)
dζ
)i−`

if i < `.

Based on the literature mentioned earlier, our objective is to establish criteria for
oscillation in (1) by comparing it to first-order delay DEs with known oscillatory properties.
In the final part of the paper, we use an example to show how our conditions improve some
of the relevant findings that have been published in the literature.

2. Preliminary Lemmas

The following lemmas are needed in order to arrive at our result:

Lemma 1 ([21]). Let v ∈ Cn([t0, ∞), (0, ∞)). Assume that the derivative v(n)(t) is of fixed
sign and not identically zero on a sub-ray of [t0, ∞), and there exists a tx ≥ t0 for all t ≥ t1 such
that v(n−1)(t)v(n)(t) ≤ 0. If limt→∞ v(t) 6= 0, then for every λ ∈ (0, 1) there exists tλ ≥ t1
such that
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|v(t)| ≥ λ

(n− 1)!
tn−1

∣∣∣v(n−1)(t)
∣∣∣, (10)

for all t ≥ tλ.

Lemma 2 ([22]). Let the function v(t) be as in Lemma 1 for tx ≥ ty, and t∗ ≥ tx be assigned to
v(t) by Lemma 1. Then there exists a t∗∗ ≥ t∗ such that

v(t)
v′(t)

≥ ε
t
κ

for t ≥ t∗∗, (11)

for every ε ∈ (0, 1).

Lemma 3 ([15]). Let x be a positive solution of (1), and that (3) holds. Then,
(

ψ(t)
(

υ(n−1)(t)
)`)′

<

0; furthermore, we find that there are the following two possible cases eventually:

(I) υ(t) > 0, υ′(t) > 0, υ′′(t) > 0, υ(n−1)(t) > 0, υ(n)(t) ≤ 0,

(II) υ(t) > 0, υ(j)(t) > 0, υ(j+1)(t) < 0, for all odd j ∈ {1, 2, ..., n− 3},
υ(n−1)(t) > 0, υ(n)(t) ≤ 0.

3. Main Results

The oscillation criteria for (1) will now be presented.

Theorem 3. Let conditions (M1)–(M5) and i ≥ 1 hold. Assume that there exists µ ∈ C1([t0, ∞), (0, ∞))
such that

µ′(t) > 0, µ(t) < σ(t), µ(t) ≤ δ(t) and lim
t→∞

µ(t) = ∞. (12)

If there are no positive solutions of(
ψ(t)

(
υ(n−1)(t)

)`)′
+ εi

1ci−1φ(t)g−i
(

σ−1(δ(t))
)

υ(q(t)) ≤ 0 (13)

and (
ψ(t)

(
υ(n−1)(t)

)`)′
+ εi

2ci−1φ(t)g−i
(

σ−1(δ(t))
)

υ(q(t)) ≤ 0, (14)

then (1) is oscillatory, where q(t) = σ−1(µ(t)), ε2, ε1 ∈ (0, 1) and c > 0 is constant.

Proof. Assume that (1) possesses an eventually positive solution x(t), say x(t), x(δ(t)),
x(σ(t)) > 0 for t ≥ t1 ≥ t0. From (2), we find

x(t) =
υ
(
σ−1(t)

)
− x
(
σ−1(t)

)
g(σ−1(t))

and so

x(t) ≥
υ
(
σ−1(t)

)
g(σ−1(t))

− υ(h(t))
g(σ−1(t))g(h(t))

, (15)

where h(t) = σ−1(σ−1(t)
)
. Suppose (I) holds. Since (n− 1) ≥ κ ≥ 3, using Lemma 2,

we have
υ(t)
υ′(t)

≥ ε
t
κ
≥ ε

t
(n− 1)

, (16)
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Now, (
υ(t)

t(n−1)/ε

)′
=

εt(n−1)/ευ′(t)− (n− 1)υ(t)t((n−1)/ε)−1

εt2(n−1)/ε

=
εtυ′(t)− (n− 1)υ(t)

εt((n−1)/ε)+1
≤ 0 for t ≥ tε. (17)

Since σ(t) ≤ t and σ′(t) > 0, σ−1 is increasing, and therefore t ≤ σ−1(t). Thus,

σ−1(t) ≤ σ−1
(

σ−1(t)
)

. (18)

By using (17) and (18), we find

(h(t))(n−1)/ευ
(

σ−1(t)
)
≥
(

σ−1(t)
)(n−1)/ε

υ(h(t)). (19)

From (15) and (19), we find

x(t) ≥
υ
(
σ−1(t)

)
g(σ−1(t))

(
1−

(
(h(t))

(σ−1(t))

)(n−1)/ε 1
g(h(t))

)
, for some t3 ≥ tε. (20)

From (M5), there exists an ε1 ∈ (0, 1), such that(
(h(t))

(σ−1(t))

)(n−1)/ε 1
g(h(t))

≤ 1− ε1. (21)

Using (21) in (20) gives

x(t) ≥
υ
(
σ−1(t)

)
g(σ−1(t))

ε1 for t ≥ t4. (22)

Using (1) and (22), we obtain(
ψ(t)

(
υ(n−1)(t)

)`)′
+ εi

1φ(t)g−i
(

σ−1(δ(t))
)

υi
(

σ−1(δ(t))
)
≤ 0. (23)

Since µ(t) ≤ δ(t) and υ′(t) > 0, inequality (23) becomes(
ψ(t)

(
υ(n−1)(t)

)`)′
+ εi

1φ(t)g−i
(

σ−1(δ(t))
)

υi
(

σ−1(µ(t))
)
≤ 0, t ≥ t4. (24)

Since υ(t) > 0 and υ′(t) > 0 on [t4, ∞), there exists a t5 ≥ t4 and a constant c > 0
such that

υ(t) ≥ c for t ≥ t5. (25)

From (24), (25) and i ≥ 1, we find(
ψ(t)

(
υ(n−1)(t)

)`)′
+ εi

1ci−1φ(t)g−i
(

σ−1(δ(t))
)

υ(q(t)) ≤ 0, t ≥ t5. (26)

has a positive solution υ. That is, (13) also possesses a solution that is positive, and thus we
arrive at a contradiction.

Next, suppose (II) holds. Since κ = 1, using Lemma 2, we have

υ(t)
υ′(t)

≥ ε
t
1

, t ≥ tε, (27)
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from which we obtain (
υ(t)
t1/ε

)′
=

εt1/ευ′(t)− υ(t)t(1/ε)−1

εt2/ε

=
εtυ′(t)− υ(t)

εt1+(1/ε)
≤ 0 for t ≥ tε. (28)

By (18) and (28), (
σ−1(t)

)1/ε
υ(h(t)) ≤ (h(t))1/ευ

(
σ−1(t)

)
, (29)

for some t3 ≥ tε. Combining (15) and (29), we obtain

x(t) ≥
υ
(
σ−1(t)

)
g(σ−1(t))

(
1−

(
h(t)

σ−1(t)

)1/ε 1
g(h(t))

)
, t ≥ t3. (30)

From (M5), for any ε2 ∈ (0, 1) there exists t5 ≥ t4 such that(
h(t)

σ−1(t)

)1/ε 1
g(h(t))

≤ 1− ε2, t ≥ t5,

and using this in (30) implies

x(t) ≥
ε2υ
(
σ−1(t)

)
g(σ−1(t))

, for t ≥ t5. (31)

Using (31) in (1) yields(
ψ(t)

(
υ(n−1)(t)

)`)′
+ εi

2φ(t)g−i
(

σ−1(δ(t))
)

υi
(

σ−1(δ(t))
)
≤ 0. (32)

Since υ′(t) > 0 and µ(t) ≤ δ(t), (32) takes the form(
ψ(t)

(
υ(n−1)(t)

)`)′
+ εi

2φ(t)g−i
(

σ−1(δ(t))
)

υi
(

σ−1(µ(t))
)
≤ 0. (33)

In view of (25) and i ≥ 1, we find(
ψ(t)

(
υ(n−1)(t)

)`)′
+ εi

2ci−1φ(t)g−i
(

σ−1(δ(t))
)

υ(q(t)) ≤ 0, t ≥ t5. (34)

has a positive solution υ. That is, (14) also possesses a solution that is positive, and thus we
arrive at a contradiction. Here, the proof ends.

Theorem 4. Let conditions (M1)–(M5) and i < 1 hold. Assume that there exists µ ∈ C1([t0, ∞), (0, ∞))
such that (12) holds. If there are no positive solutions of(

ψ(t)
(

υ(n−1)(t)
)`)′

+ εi
1di−1

1

(
q(n−1)/ε(t)

)i−1
φ(t)g−i

(
σ−1(δ(t))

)
υ(q(t)) ≤ 0 (35)

and (
ψ(t)

(
υ(n−1)(t)

)`)′
+ εi

2di−1
2

(
q1/ε(t)

)i−1
φ(t)g−i

(
σ−1(δ(t))

)
υ(q(t)) ≤ 0, (36)

then (1) is oscillatory, where q(t) = σ−1(µ(t)), ε2, ε1 ∈ (0, 1) and d1, d2 > 0 are constant.



Mathematics 2023, 11, 3300 7 of 13

Proof. Assume that (1) possesses an eventually positive solution x(t), say x(t), x(δ(t)),
x(σ(t)) > 0 for t ≥ t1 ≥ t0.

Suppose (I) holds. By applying the same processes used in the proof of Theorem 3, we
obtain (17) and (24). By (17), there exists t3 ≥ tε and a constant d1 > 0 such that

υ(t)
t(n−1)/ε

≤ d1

and so
υ(t) ≤ d1t(n−1)/ε for t ≥ t3. (37)

Using (37) in (24), we have(
ψ(t)

(
υ(n−1)(t)

)`)′
+ εi

1di−1
1

(
q(n−1)/ε(t)

)i−1
φ(t)g−i

(
σ−1(δ(t))

)
υ(q(t)) ≤ 0, for some t4 ≥ t3. (38)

That is, (35) possesses a solution that is positive, and thus we arrive at a contradiction.
Next, suppose (II) holds. By applying the same processes used in the proof of Theorem 3,

we obtain (28) and (33). By (28), there exists t3 ≥ tε and a constant d2 > 0 such that

υ(t)
t1/ε
≤ d2

and so
υ(t) ≤ d2t1/ε for t ≥ t3. (39)

Using (39) in (33), we have(
ψ(t)

(
υ(n−1)(t)

)`)′
+ εi

2di−1
2

(
q1/ε(t)

)i−1
φ(t)g−i

(
σ−1(δ(t))

)
υ(q(t)) ≤ 0, for t ≥ t5. (40)

That is, (36) possesses a solution that is positive, and thus we arrive at a contradiction.
Here, the proof ends.

Theorem 5. Let conditions (M1)–(M5) and i ≥ 1 hold. Assume that there exists µ ∈ C1([t0, ∞), (0, ∞))
such that (12) holds. If

y′(t) + εi
1ci−1 λ1

(n− 1)!
qn−1(t)

ψ1/`(q(t))
φ(t)g−i

(
σ−1(δ(t))

)
y1/`(q(t)) = 0 (41)

and
ω′(t) + εi/`

2 c(i−1)/`ε1/`
1 q1/`(t)Rn−3(t)ω1/`(q(t)) = 0 (42)

are oscillatory, for some constants λ1, ε1 ∈ (0, 1), then (1) is oscillatory, where

R0(t) =
(

1
ψ(t)

∫ ∞

t
φ(ζ)g−i

(
σ−1(δ(ζ))

)
dζ

)1/`
,

Rm(t) =
∫ ∞

t
Rm−1(ζ)dζ, for m = 1, 2, ...n− 3,

ε2, ε1 ∈ (0, 1) and c > 0 is constant.

Proof. Assume that (1) possesses an eventually positive solution x(t), say x(t), x(δ(t)),
x(σ(t)) > 0 for t ≥ t1 ≥ t0.

Suppose (I) holds. By applying the same processes used in the proof of Theorem 3, we
obtain (26). Now, by Lemma 1, we have

υ(t) ≥ λ

(n− 1)!
tn−1υ(n−1)(t) for t ≥ th̄ and th̄ ≥ t5, (43)
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and so
υ(q(t)) ≥ λ

(n− 1)!
qn−1(t)υ(n−1)(q(t)) for t ≥ t6, (44)

for some t6 ≥ tλ. From (44), (26), we obtain(
ψ(t)

(
υ(n−1)(t)

)`)′
+ εi

1ci−1 λ

(n− 1)!
qn−1(t)φ(t)g−i

(
σ−1(δ(t))

)
υ(n−1)(q(t)) ≤ 0.

If we set y(t) = ψ(t)
(

υ(n−1)(t)
)`

, then y(t) is a positive solution of

y′(t) + εi
1ci−1 λ

(n− 1)!
qn−1(t)

ψ1/`(q(t))
φ(t)g−i

(
σ−1(δ(t))

)
y1/`(q(t)) ≤ 0, t ≥ t6. (45)

It follows from [23] that (41) also possesses a solution that is positive, and thus we
arrive at a contradiction with (41).

Next, suppose (II) holds. By applying the same processes used in the proof of Theorem 3,
we obtain (27) and (34). Integrating (34) from t ≥ t5 to ∞ gives(

υ(n−1)(t)
)`
≥ εi

2ci−1 υ(q(t))
ψ(t)

∫ ∞

t
φ(ζ)g−i

(
σ−1(δ(ζ))

)
dζ

and so
υ(n−1)(t) ≥ εi/`

2 c(i−1)/`R0(t)υ1/`(q(t)). (46)

Integrating (46) from t to ∞ a total of n− 3 times, we have

−υ′′(t) ≥ εi/`
2 c(i−1)/`Rn−3(t)υ1/`(q(t))

and so
υ′′(t) + εi/`

2 c(i−1)/`Rn−3(t)υ1/`(q(t)) ≤ 0. (47)

Using (27) in (47) yields

υ′′(t) + εi/`
2 c(i−1)/`ε1/`q1/`(t)Rn−3(t)

(
υ′(q(t))

)1/` ≤ 0. (48)

If we set ω(t) = υ′(t), then ω(t) is a positive solution of

ω′(t) + εi/`
2 c(i−1)/`ε1/`q1/`(t)Rn−3(t)ω1/`(q(t)) ≤ 0, (49)

for every ε ∈ (0, 1). We complete the proof in the same way as in case (I). Here, the
proof ends.

Corollary 1. Let conditions (M1)–(M5), ` = 1 and i ≥ 1 hold. Assume that there exists µ ∈
C1([t0, ∞), (0, ∞)) such that (12) holds. If

lim
t→∞

∫ t

q(t)

qn−1(ζ)

ψ(q(ζ))
φ(ζ)g−i

(
σ−1(δ(ζ))

)
dζ = ∞ (50)

and

lim
t→∞

∫ t

q(t)
q(ζ)Rn−3(ζ)dζ = ∞, (51)

then Equation (1) is oscillatory.

Proof. Suppose (I) holds. By applying the same processes used in the proof of Theorem 5,
we obtain (45). Integrating (45) from q(t) to t and using ` = 1 and the fact that y′ < 0,
we obtain
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∫ t

q(t)
y′(ζ)dζ ≤ −εi

1ci−1 λ

(n− 1)!
y(q(t))

∫ t

q(t)

qn−1(ζ)

ψ(q(ζ))
φ(ζ)g−i

(
σ−1(δ(ζ))

)
dζ

and so

−y(q(t)) ≤ −εi
1ci−1 λ

(n− 1)!
y(q(t))

∫ t

q(t)

qn−1(ζ)

ψ(q(ζ))
φ(ζ)g−i

(
σ−1(δ(ζ))

)
dζ,

and this can be expressed as follows

(n− 1)!
εi

1ci−1λ
≥
∫ t

q(t)

qn−1(ζ)

ψ(q(ζ))
φ(ζ)g−i

(
σ−1(δ(ζ))

)
dζ,

which contradicts (50).
Next, suppose (II) holds. By applying the same processes used in the proof of Theorem 5,

we obtain (49). Integrating (49) from q(t) to t and using ` = 1 and the fact that ω′ < 0, we
obtain ∫ t

q(t)
ω′(ζ)dζ ≤ −εi

2ci−1εω(q(t))
∫ t

q(t)
q(ζ)Rn−3(ζ)dζ

and so

−ω(q(t)) ≤ −εi
2ci−1εω(q(t))

∫ t

q(t)
q(ζ)Rn−3(ζ)dζ,

and this can be expressed as follows

1
εi

2ci−1ε
≥
∫ t

q(t)
q(ζ)Rn−3(ζ)dζ,

which contradicts (51). Here, the proof ends.

Theorem 6. Let conditions (M1)–(M5) and i < 1 hold. Assume that there exists µ ∈ C1([t0, ∞), (0, ∞))
such that (12) holds. If

y′(t) +
εi

1di−1
1 λ1

(n− 1)!

(
q(n−1)/ε(t)

)i−1
qn−1(t)φ(t)g−i(σ−1(δ(t))

)
ψ1/`(q(t))

y1/`(q(t)) = 0 (52)

and
ω′(t) + εi/`

2 d(i−1)/`
2 ε1/`

1 q1/`(t)Fn−3(t)ω1/`(q(t)) = 0 (53)

are oscillatory, for some constants λ1, ε1 ∈ (0, 1), then (1) is oscillatory, where

F0(t) =
(

1
ψ(t)

∫ ∞

t

(
q1/ε(ζ)

)i−1
φ(ζ)g−i

(
σ−1(δ(ζ))

)
dζ

)1/`
,

Fm(t) =
∫ ∞

t
Fm−1(ζ)dζ for m = 1, 2, ..., n− 3,

ε2, ε1 ∈ (0, 1) and d1, d2 > 0 are constant.

Proof. Assume that (1) possesses an eventually positive solution x(t), say x(t), x(δ(t)),
x(σ(t)) > 0 for t ≥ t1 ≥ t0.

Suppose (I) holds. By applying the same processes used in the proof of Theorem 4, we
obtain (38). Now, by Lemma 1, we see that (43) holds. Using (43) in (38) we have(

ψ(t)
(

υ(n−1)(t)
)`)′

+
εi

1di−1
1 λ

(n− 1)!

(
q(n−1)/ε(t)

)i−1
qn−1(t)φ(t)g−i

(
σ−1(δ(t))

)
υ(n−1)(q(t)) ≤ 0,
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for t ≥ t4. If we set y(t) = ψ(t)
(

υ(n−1)(t)
)`

, then y(t) is a positive solution of

y′(t) +
εi

1di−1
1 λ

(n− 1)!

(
q(n−1)/ε(t)

)i−1
qn−1(t)φ(t)g−i(σ−1(δ(t))

)
ψ1/`(q(t))

y1/`(q(t)) ≤ 0. (54)

It follows from [23] that (52) also possesses a solution that is positive, thus arriving at
a contradiction with (52).

Next, suppose (II) holds. Then again (27) holds. By applying the same processes used
in the proof of Theorem 4, we obtain (40). Integrating (40) from t ≥ t5 to ∞, we obtain

−ψ(t)
(

υ(n−1)(t)
)`

+ εi
2di−1

2 υ(q(t))
∫ ∞

t

(
q1/ε(ζ)

)i−1
φ(ζ)g−i

(
σ−1(δ(ζ))

)
dζ ≤ 0

and so
υ(n−1)(t) ≥ εi/`

2 d(i−1)/`
2 F0(t)υ1/`(q(t)). (55)

Integrating (55) from t to ∞ a total of n− 3 times, we have

−υ′′(t) ≥ εi/`
2 d(i−1)/`

2 Fn−3(t)υ1/`(q(t))

and so
υ′′(t) + εi/`

2 d(i−1)/`
2 Fn−3(t)υ1/`(q(t)) ≤ 0, t ≥ t5. (56)

Now, with ω(t) = υ′(t) and from (27), we find that (56) becomes

ω′(t) + εi/`
2 d(i−1)/`

2 ε1/`q1/`(t)Fn−3(t)ω1/`(q(t)) ≤ 0, (57)

with ω as a positive solution of (57). We complete the proof in the same way as in case (I).
Here, the proof ends.

Corollary 2. Let conditions (M1)–(M5), ` = 1 and i < 1 hold. Assume that there exists µ ∈
C1([t0, ∞), (0, ∞)) such that (12) holds. If

lim
t→∞

∫ t

q(t)

(
q(n−1)/ε(ζ)

)i−1
qn−1(ζ)φ(ζ)g−i(σ−1(δ(ζ))

)
ψ(q(ζ))

dζ = ∞ (58)

and

lim
t→∞

∫ t

q(t)
q(ζ)Fn−3(ζ)dζ = ∞, (59)

then Equation (1) is oscillatory.

Proof. The proof is similar to Corollary 1, and therefore the details are omitted.

We use the example below to illustrate our results.

Example 1. Let us consider the NDE(
x(t) + etx

(
t

A1

))(4)
+

φ0

t3e−A1t/A2
x
(

t
A2

)
= 0, t ≥ 1. (60)

It is easy to verify that ∫ ∞

t0

1
ψ1/`(ζ)

dζ = ∞.
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Choosing µ(t) = t/A3, where A3 > A1 and A3 ≥ A2, then (12) holds. We also find that

σ−1(t) = A1t, q(t) =
A1

A3
t, and σ−1(δ(t)) =

A1

A2
t.

By choosing ε = 1/4, we find that (4) holds.
Now, we note that Condition (50) is satisfied, where

lim
t→∞

∫ t

q(t)

qn−1(ζ)

ψ(q(ζ))
φ(ζ)g−i

(
σ−1(δ(ζ))

)
dζ = lim

t→∞

∫ t

A1t/A3

(
A1

A3
ζ

)3 φ0

ζ3e−A1ζ/A2

1
eA1ζ/A2

dζ

= lim
t→∞

∫ t

A1t/A3

(
A1

A3

)3
φ0dζ = ∞.

Moreover, by a simple computation, we have that

R0(t) =

(
1

ψ(t)

∫ ∞

t
φ(ζ)g−i

(
σ−1(δ(ζ))

)
dζ

)1/`
=
∫ ∞

t

φ0

ζ3e−A1ζ/A2

1
eA1ζ/A2

dζ

=
φ0

2
1
t2

and
R1(t) =

∫ ∞

t
R0(ζ)dζ =

∫ ∞

t

φ0

2
1
ζ2 dζ =

φ0

2
1
ζ

.

Thus, we note that Condition (51) is satisfied, where

lim
t→∞

∫ t

q(t)
q(ζ)Rn−3(ζ)dζ = lim

t→∞

∫ t

A1t/A3

A1

A3
ζ

φ0

2
1
ζ

dζ

= lim
t→∞

∫ t

A1t/A3

A1

A3

φ0

2
dζ = ∞.

Thus, using Corollary 1, we find that (60) is oscillatory.

Remark 1. In Equation (7), if q∗(t) = 0 and γ = 1, we find that Equation (7) is identical to
Equation (1). In this case, if we apply Theorem 2 to Equation (60), we find that it fails in the oscillation
test for Equation (60), while when using the results we obtained we find that Equation (60) is oscillatory.

Remark 2. If we set A1 = 5 and A2 = 4 in (60), we note that in this case Theorem 1 cannot be
applied to (60), while when using the results we obtained we find that Equation (60) is oscillatory.

Remark 3. It is easy to see that Equation (60) in Example 1 oscillates at any value of φ0 > 0.
Furthermore, through this paper, we were able to extend previous results in the literature, which can
be applied more widely compared to [14,15,19].

4. Conclusions

The focus of this paper was to investigate the oscillatory behaviour of NDEs of even-
order under the Condition (3). By using comparison principles with the first-order DEs,
we offer some new sufficient conditions which ensure that any solution to (1) oscillates.
Further, the results in [15,18] cannot apply to the example. In future studies, we aim to
establish further criteria for the oscillation of Equation (1) when∫ ∞

t0

1
ψ1/`(ζ)

dζ < ∞.
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