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Abstract: This paper concerns the study of the linear threshold model in random networks, specifi-
cally in Erdös-Rényi networks. In our approach, we consider an activation threshold defined by the
expected value for the node degree and the associated influence activation mapping. According to
these assumptions, we present a theoretical procedure for the linear threshold model, under fairly
general conditions, regarding the topological structure of the networks and the activation threshold.
Aiming at the dynamics of the influence maximization process, we analyze and discuss different
choices for the seed set based on several centrality measures along with the state conditions for
the procedure to trigger. The topological entropy established for Erdös-Rényi networks defines a
topological order for this type of random networks. Sufficient conditions are presented for this
topological entropy to be characterized by the spectral radius of the associated adjacency matrices.
Consequently, a number of properties are proved. The threshold dynamics are analyzed through the
relationship between the activation threshold and the topological entropy. Numerical studies are
included to illustrate the theoretical results.

Keywords: linear threshold model; spread dynamics; Erdös-Rényi networks; topological entropy;
activation threshold

MSC: 37N40; 91D30; 37B40; 05C90; 05C82

1. Introduction and Motivation

The study of complex networks is an interdisciplinary topic that covers several areas
of knowledge, such as computer science, mathematics, physics, biology, and sociology;
see [1–4] and references therein. Concerning the emergence and importance of social net-
works in recent times, networks play a central role in representing the way ideas and
information spread in modern society. A considerable part of our opinions and decisions are
directly or indirectly determined by our social contacts. Social influence is a critical factor
when we adopt a certain behavior, make a decision, adopt an innovation, or formalize our
cultural, political, and religious ideologies; see [5].

The study of dynamic networks seeks to explain the evolution of propagation phe-
nomena that are influenced by peers, such as the spread of epidemics, dissemination of
information, and popularization of ideas and choices. The networks used to represent these
connections can be created from real data or by using previously defined networks from
the literature, such as classical random networks, small-world networks, and scale-free
networks, among others; see [6]. Thus, it is possible to apply dynamic diffusion models
to the chosen networks in order to understand these phenomena. These propagation
processes are referred to as social contagion, as they are reminiscent of how a disease
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is transmitted between the individuals in a population. Several authors have presented
different approaches to this theme over the past decades; see [7] for a complete and updated
compilation of references in this field.

Influence maximization was first proposed in [8], which was later interpreted as a
discrete optimization problem. This typification was a landmark in the research on influence
maximization, and was soon considered an NP-hard problem (nondeterministic polynomial
time hardness, which is a class of problems that have at least exponential complexity; see [9])
for the case when the given information propagation model is an independent cascade or a
linear threshold model. On the one hand, a large number of publications on this topic have
been presented, including two categories of classical influence maximization algorithms,
namely, greedy algorithms and heuristic algorithms. While the greedy algorithm has high
accuracy, it is computationally time-consuming; on the other hand, the heuristic algorithm
is more efficient at the cost of accuracy. Most of the existing studies are based on static
networks, although a few researchers have devoted themselves to the study of influence
maximization in dynamic networks. Several of these works consider the dynamics in the
information dissemination process, such as the dynamic activation probability, dynamic
threshold, and dynamic perception, while others consider the dynamics of the network
topology as links are added or removed over time. On this subject, see [7,10–12].

In the present work we study the linear threshold model in random networks, specifi-
cally in Erdös-Rényi networks; see [13,14]. The linear threshold model explains how an
individual can be influenced depending on a previously established threshold value. This
means that a node is only activated if the influence applied on it by its neighbours exceeds
a certain value. Generally, the threshold value is randomly chosen by taking into account a
certain range of values; see [15,16] and references therein. In our case, the threshold value
is estimated taking into account the underlying network parameters, particularly from the
expected value for the network nodes degree.

The rest of this work is organized as follows. In Section 2, the definitions of the
activation threshold and influence activation mapping for Erdös-Rényi random networks
are presented. The activation threshold expresses the network topology and its global
dynamics. On the other hand, the influence activation mapping is defined by relying
on the local dynamics of each node of the network under analysis. As a consequence
of the previous definitions, the seed set for implementation of the diffusion process on
Erdös-Rényi networks is characterized.

Section 3 elaborates on the establishment of the theoretical procedure for the linear
threshold model over the Erdös-Rényi networks. This procedure mathematically formalizes
the diffusion process of the linear threshold model for this type of random network; in this
section, we highlight the generality of the conditions required for its implementation.

In Section 4, we analyze the influence maximization dynamics for the linear threshold
model, i.e., we intend to state the conditions that will trigger this diffusion process. In
particular, our focus is on the activation of the diffusion process considering the local and
global dynamics of the networks (population dynamics). From these results, analytical
properties for the probability of activating the influence diffusion process can be obtained
for a randomly chosen seed, and these properties are related to the nodes with greater
centrality degree in the Erdös-Rényi networks. The results revealed in this section highlight
the complexity of the chosen approach as well as the richness and usefulness of the centrality
measures.

Section 5 is devoted to the study of a topological order for the Erdös-Rényi networks,
which is established at the expense of the definition of topological entropy for this type
of random network. In this context, asymptotic behaviour of the spectral radius of the
adjacency matrix of the Erdös-Rényi networks is used. This approach to the topological
entropy, provided through the spectral radius of the corresponding adjacency matrices,
characterizes the topological dynamics of Erdös-Rényi networks. Sufficient conditions are
presented for this definition of topological entropy to be characterized by the expected value
of the node degree of the considered random networks. Consequently, several properties
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are proved and a relation between the activation threshold and the topological entropy
is established.

In Section 6, several numerical case studies are performed according to different
choices for the seed set considering random or chosen seeds within the centrality measures,
namely, degree, closeness, and betweenness. Finally, in Section 7 we discuss the work,
provide our conclusions, and outline future research.

2. Influence Activation Mapping for the Linear Threshold Model

In this section we introduce an influence activation mapping for the linear threshold
model which incorporates an activation threshold θ; see [15]. These characterizations allow
us to present a definition for the seed set of the linear threshold model for the type of
diffusion networks analyzed. Throughout this work, the considered type of diffusion
networks are Erdös-Rényi random networks. An Erdös-Rényi random network consists
of n nodes, where n ∈ N and each pair of nodes is linked by a connection or an edge
with a certain probability p ∈ [0, 1]. The edges between the nodes are independently and
randomly generated with the same probability p; see [13,14]. Erdös-Rényi random networks
are usually represented by G(n,p) = (V, E), where V = {x1, x2, . . . , xn} is the node set and
represents the individuals, |V| = n indicates that there are n ∈ N individuals, and the edge
set E represents the connections between different individuals. Information propagates
through the connections in the network. Throughout this paper, we denote by N(xi) the
neighbourhood of xi, i.e., the nodes of V that are linked to xi, and by δ(xi) = |N(xi)|
the degree of node xi for i = 1, . . . , n. For more details on Erdös-Rényi networks, see for
example [1–4] and references therein.

Concerning the classical models of influence, we consider the linear threshold model,
where every node at each instant has one of two possible states, namely, inactive or active;
see [17,18]. We deem the network as unweighted, i.e., with a constant threshold value for
every node. The choice of the threshold value θ is a very important feature in terms of
linear threshold based influence maximization. This one of two vital points, along with the
degree distribution of the network; see [16]. While there is no specific guideline or property
for the choice of a given threshold, our purpose in this article is to define values that allow
diffusion. These considerations lead us to reintroduce the following definition (for more,
see [19]).

Definition 1. Let G(n,p) be an Erdös-Rényi random network. The activation threshold θ of the
network G(n,p) is defined by

θ =
1

〈δ(xi)〉
=

1
p(n− 1)

, (1)

where 〈δ(xi)〉 is the expected value for the node degree of the network.

Note that this activation threshold is dependent on the network size n and the connection
probability p; thus, this invariant reflects the network topology and its global dynamics.

In the linear threshold model, a node xi becomes active if and only if the ratio between
the active neighbours of xi at time t (denoted by ε(xi(t))) and the degree of that node
(denoted by δ(xi)) is higher than the threshold value θ. Thus, in the following definition
we introduce the concept of influence activation mapping in a network, in particular for
the Erdös-Rényi random network G(n,p).

Definition 2. Let G(n,p) be an Erdös-Rényi random network, with xi(t) ∈ V ×N0 being a node
xi ∈ V at discrete time t ∈ N0 for i = 1, 2, . . . , n and θ the being the activation threshold provided
by Equation (1). The influence activation mapping f : V ×N0 → {0, 1}n, where

f (x1, x2, . . . , xn)(t) = ( f (x1(t)), f (x2(t)), . . . , f (xn(t))),
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is defined as follows:

f (xi(t)) =


1, if ε(xi(t−1))

δ(xi)
≥ θ

0, if ε(xi(t−1))
δ(xi)

< θ

. (2)

We remark here that the influence activation mapping f is defined acoording to the
local dynamics of each node xi ∈ V of the network G(n,p) under analysis. Further, note that
when considering the influence activation mapping f provided by Equation (2) we can
recursively define the mapping of the active neighbours of a node xi, ε : V ×N0 → N0, in
terms of the influence activation mapping f in the following way:

ε(xi(t)) = ∑
xj∈N(xi)

f
(

xj(t)
)

(3)

with xi ∈ V for i = 1, 2, . . . , n and for each discrete time t 6= t0, where t0 represents the
initial instant of the diffusion process. It should be emphasized again that in the approach
explored in this work, the topological structure of the network G(n,p) is considered in the
definitions of the influence activation mapping f and the active neighbours mapping ε
provided by Equations (2) and (3), respectively.

In order to further explain this procedure, we can consider the seed set as the subset
of V that specifies the initial conditions for the recursion mapping of the active neighbours,
as provided by Equation (3). This determines which nodes are activated at the initial
state of the diffusion process. It is our purpose to first choose these nodes according to
different properties, then analyze and compare the diffusion effects of these choices as
concerns the influence maximization problem. The concept of a seed set already exists; see
for example [17,18] and references therein. However, here we present a formal definition
for the seed set characterized according to the influence activation mapping f at the initial
instant t0.

Definition 3. Let G(n,p) be a contact Erdös-Rényi network and let f (xi(t0)) be the node state at
the initial instant t0, with xi ∈ V. The seed setH of the network G(n,p) is defined by

H = {xi ∈ V : f (xi(t0)) = 1},

where ∅ 6= H ⊂ V.

3. Theoretical Procedure for the Linear Threshold Model

In this section, we introduce a theoretical procedure for the linear threshold model
applied to diffusion networks of the Erdös-Rényi random network type. In the linear
threshold model, a node is activated if and only if the influence exerted on it by its neigh-
bours exceeds a certain value. This means that if the value exceeds the threshold θ for a
specific node, the node becomes active. This indicates that it has adopted an idea, obtained
information, changed its behavior, etc.; see [18] and references therein.

Procedure 1. Let G(n,p) = (V, E) be an Erdös-Rényi random network, let f be the influence
activation mapping provided by Equation (2), and let H be the seed set provided by Definition 3.
The theoretical procedure of the linear threshold model for the network G(n,p) follows the next steps:

1. At the initial instant t = t0, the nodes in the seed setH ⊂ V are all active, i.e.,

f (xi(t0)) = 1, ∀xi ∈ H;

2. At instant t∗ 6= t0, if node xi ∈ V\H is activated, then node xi remains activated, i.e.,

if ∃ t∗ 6= t0 : f (xi(t∗)) = 1, then f (xi(t)) = 1, ∀t ≥ t∗;
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3. If at instant t∗ 6= t0 a node xi ∈ V\H is not activated, then the influence activation function
is verified as provided in Equation (2);

4. At each instant t 6= t0, processes 2 and 3 are repeated until reaching the following stopping
criteria:

( f (x1(t)), f (x2(t)), . . . , f (xn(t))) = ( f (x1(t− 1)), f (x2(t− 1)), . . . , f (xn(t− 1)))

i.e., at instant t the vector at iteration t is equal to the vector in the previous iteration.

The procedure formalized above corresponds to a finite number of steps, which are
described as follows. In step 1, it is stated that the seed set H corresponds to the active
nodes. Step 2 guarantees that an active node remains active throughout the procedure. Step
3 corresponds to the nodes that are not activated and can change their state. Finally, step 4
provides a stopping condition for the procedure.

Remark 1. Note that if t− 1 = t0 in step 3 this situation corresponds to the case where the nodes
in the seed setH are the only nodes that are active when the procedure ends.

Remark 2. The former theoretical procedure is presented with no restrictions on the values of the
linear threshold model. Moreover, there are no restrictions on the underlying contact networks.
Nevertheless, it is important to emphasize the following features:

1. The connectivity of Erdös-Rényi networks depends on the value of the connection probability
p and the size of the network n. If p < 1

n , then there is no giant component. Consequently,
there will be no diffusion regardless of the propagation model considered.

2. Concerning the linear threshold model, the theoretical procedure applies to every value of the
threshold θ.

4. Influence Activation Dynamics for the Linear Threshold Model

Considering Remark 1 from the previous section, we want to analyze under which
conditions there are active nodes other than the seed setH. In another words, we intend
to state the conditions that trigger the diffusion process for the linear threshold model.
First, however, we need to recall certain features regarding connectivity of the Erdös-Rényi
network G(n,p) according to the values of its parameters n and p. For the extreme values of
p, p = 0, and p = 1 we have a disconnected network and a complete network, respectively,
while for np > 1 we have the emergence of a giant component, which is an example of a
phase transition in Erdös-Rényi networks; see [20]. In this case, this rather abrupt change
characterizes the transition between the most disconnected and most connected networks
for the values of p; see [2].

More specifically, for an Erdös-Rényi random network with n nodes and connection
probability p, the supercritical regime is defined as the range of p values such that the
expected size of the largest connected component scales with n, meaning that there is a
very high probability of there being no nodes outside the giant component. This regime
is characterized by the fact that the probability of there being a giant component goes to
one as the network size increases. In contrast, in the subcritical regime, i.e., np < 1, the
probability of a giant component goes to zero as the network size increases, while in the
critical regime, for np = 1 the probability of a giant component approaches a non-zero
constant as the network size becomes large. For more details on topological and phase
transitions in Erdös-Rényi networks, see for example [1,4].

Throughout this section, we consider a single seed, i.e., |H| = 1, with the value of
the connection probability p satisfying p > 1

n , in order to ensure that the network has a
giant component and that θ is the activation threshold provided by Equation (1). Suppose,
without loss of generality, that H = {xi} with i ∈ {1, 2, . . . , n} and that xi lies in the
giant component of the network G(n,p). Let us further suppose that xi has degree one, i.e.,
δ(xi) = 1. Let xi1 ∈ V be the only node in N(xi). According to the influence activation
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mapping f provided by Equation (2), at instant t0 + 1 node xi1 is active if and only if
1

δ(xi1
)
≥ θ. From Definition 1, we know that θ = 1

p(n−1) , meaning that node xi1 is activated

if and only if,
δ(xi1) ≤ p(n− 1),

where 〈δ(xi)〉 = p(n− 1) is the expected value for the node degree of the network G(n,p).
On the other hand, the degree distribution of the network G(n,p) follows a binomial law
with the same parameters; thus, we can write

P[δ(xi1) ≤ p(n− 1)] = 0.5.

In conclusion, if a seed corresponds to a pendent node on the giant component of the
network G(n,p), then the set of the active nodes through the diffusion procedure is equal to
the seed setH with probability 0.5.

Let us now consider a more general case. Suppose thatH = {xi}with i ∈ {1, 2, . . . , n},
where xi is a node in the giant component of an Erdös-Rényi network G(n,p), and further
suppose that xi has degree d 6= 1, i.e., δ(xi) = d, with N(xi) = {xi1 , xi2 , . . . , xid} ⊂ V.
For each xij ∈ N(xi), to simplify the notation, we denote by δj the degree of node xij for
j ∈ {1, 2, . . . , d}. It is our purpose here to analyze the case where xi can activate other nodes
in its neighbourhood. Using the same arguments as in the previous case, node xi does not
activate any neighbour if and only if the following condition holds,

δ1 ≤ p(n− 1) ∧ δ2 ≤ p(n− 1) ∧ . . . ∧ δd ≤ p(n− 1).

Let us now compute the probability of the previous event,

P[δ1 ≤ p(n− 1) ∧ δ2 ≤ p(n− 1) ∧ . . . ∧ δd ≤ p(n− 1)] =

P[δ1 ≤ p(n− 1)]× P[δ2 ≤ p(n− 1)]× . . .× P[δd ≤ p(n− 1)] = (0.5)d.

The first equality results from the fact that the degree distribution of each node is
independent. Considering the above explanations, we are now in a condition to state the
following result.

Proposition 1. Let G(n,p) = (V, E) be an Erdös-Rényi random network, f the activation mapping
provided by Equation (2), t0 the initial instant, andH = {xi} the seed set provided by Definition 3,
where xi ∈ V and i ∈ {1, 2, . . . , n}. If δ(xi) = d with d ∈ {1, 2, . . . , n− 1}, then

P[∃ j : f (xij(t0 + 1)) = 1 | xij ∈ N(xi)] = 1− (0.5)d

for j ∈ {1, 2, . . . , d}.

In Proposition 1, we obtained the probability of initiating the diffusion process for a
randomly chosen seed for the linear threshold model over Erdös-Rényi networks.

Now, let us considerH = {xi}, where xi is the node with a greater degree of centrality
in the network G(n,p). Under these conditions, we need to introduce the following definition.

Definition 4. Let G(n,p) = (V, E) be an Erdös-Rényi random network, f the activation mapping
provided by Equation (2), t0 the initial instant, andH = {xi} the seed set provided by Definition 3,
where xi ∈ V and i ∈ {1, 2, . . . , n}. The influence activation probability mapping g : V −→ [0, 1]
is defined as follows:

g(v) = P[∃ j : f (xij(t0 + 1)) = 1 | xij ∈ N(xi)] (4)

for j ∈ {1, 2, . . . , d}.
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We are now in a position to establish the corollary that is a consequence of the previous
proposition and definition.

Corollary 1. Under the assumption in Proposition 1 and Definition 4, the influence activation
probability mapping g attains its maximum if and only if v is the node with greater centrality degree
in the Erdös-Rényi network G(n,p).

These remarks lead us to a very important and well-known topic, namely, the influence
maximization problem, which asks for the best seed set to provide the maximum number of
activated nodes at the final stage (see [9,18]). In this particular case, we can ask whether the
best choice of a seed to initiate the diffusion process is also the best choice for having more
active nodes at the final stage. In other words, is the best trigger also the best spreader? If
not, what happens if we choose a seed considering other centrality measures for detecting
influential nodes, such as the closeness or betweenness centrality, or even other measures?

5. Topological Order in Erdös-Rényi Random Networks and Activation Threshold

Spectral techniques have a very important role in recent graph theory, in particular
concerning random graphs; see for example [1–4] and references therein. The results
obtained from spectral graph theory, along with bounds or specific values for graph
eigenvalues, provide tools for several graph algorithms. Erdös-Rényi networks, or random
graphs G(n,p) have an adjacency matrix A that can be analyzed as a random symmetric
matrix with a diagonal equal to zero and the remaining entries being ones with probability
p and zeroes with probability 1− p. This allow us to relate the behaviour of these matrices
using the well-known behaviour of symmetric matrices and their spectra.

Within this framework, we can study a topological invariant associated with the
dynamics between the nodes of the Erdös-Rényi networks G(n,p), which we refer to as the
network topological entropy. Usually, the network entropy is the entropy of a stochastic
matrix associated with the adjacency matrix A; see [21] and references therein. Considering
A = [aij], n× n as the adjacency matrix of the Erdös-Rényi network G(n,p), where λ denotes
the spectral radius of A, let (vi) be the corresponding leading eigenvector. It has been
shown that ln(λ) satisfies a variational principle and that the supremum over all possible
stochastic matrices is attained for the unique stochastic matrix P = [pij], n× n, defined by

pij =
aij vj

λ vi
,

with stationary distribution π = πP; see [21–25] and references therein. Under these
conditions, the network entropy of this dynamical process is characterized as follows:

ln(λ) = −
n

∑
i,j=1

πi pij ln(pij) +
n

∑
i,j=1

πi pij ln(aij). (5)

From the previous results, we establish the definition of network entropy for the
networks G(n,p).

Definition 5. Let G(n,p) be an Erdös-Rényi network and let A be the adjacency matrix associated
with the spectral radius λ. The topological entropy of G(n,p) is defined by

htop

(
G(n,p)

)
= ln(λ). (6)

Note that the approach taken in this work is the network topological entropy concept
used in [25–28]. In this context, the topological entropy of the Erdös-Rényi network G(n,p)
characterizes the topological dynamics of this type of network through the spectral radius
λ of the corresponding adjacency matrices A. The topological entropy established in
Definition 5 defines a topological order on the Erdös-Rényi random network G(n,p).
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We can say that a graph property holds almost surely (or a.s.) in G(n,p) if the probability
that G(n,p) has p → 1 is n → ∞. In this section, we use the asymptotic behaviour of the
spectral radius λ of the adjacency matrix A of G(n,p). Let us denote by ∆ the maximum
degree in G(n,p). There is a general result stating that the spectral radius of G(n,p) satisfies

λ = (1 + o(1)) max{
√

∆, np},

where o(1) → 0, as max{
√

∆, np} → ∞. For more details on this subject, see [29] and
references therein. This result was improved in [30], where several values were considered
for the probability p. Suppose that we have c0 > 0 and that the probability p satisfies the
following condition:

c0(log n/n) ≤ p ≤ (log n)5/3 n−2/3 (7)

for a sufficiently large network size n; then, the spectral radius of the Erdös-Rényi network
G(n,p) is almost certain to be provided by

λ = np + O(
√

np). (8)

Considering the results established in Definition 5 and Equation (8), we are now in a
position to establish the following result.

Proposition 2. Let G(n,p) be an Erdös-Rényi network and let A be the adjacency matrix associated
with spectral radius λ. If p satisfies Equation (7) and the network size n is sufficiently large, then
the topological entropy of G(n,p) is provided by

htop

(
G(n,p)

)
= ln(np + O(

√
np)). (9)

Clearly, the topological entropy of the Erdös-Rényi network G(n,p) is characterized
by the expected value of the node degree 〈δ(xi)〉 ∼= np, with p satisfying Equation (7)
and n being sufficiently large. Therefore, this topological invariant is dependent on the
network size n and the connection probability p, which reflects the topology of the Erdös-
Rényi networks under analysis. In the following results, several properties concerning the
topological entropy of G(n,p) are established.

Proposition 3. Let G(n,p) be an Erdös-Rényi network and let htop

(
G(n,p)

)
be the topological

entropy of G(n,p) provided by Equation (9). The following properties hold true:

(P1) If the network size n is fixed and sufficiently large and if p satisfies Equation (7) with

c0 = 1± ε > 0 and ε > 0, then the topological entropy htop

(
G(n,p)

)
increases with the

increase of p and is verified:

log(c0 log n + O(
√

np)) ≤ htop

(
G(n,p)

)
≤ log

(
(log n)5/3 n1/3 + O(

√
np)

)
. (10)

(P2) If the network size n→ ∞ and if p satisfies Equation (7), then htop

(
G(n,p)

)
→ ∞.

Proof. Considering the characterization of the topological entropy of G(n,p) provided
by Equation (9), and attending to the monotony of logarithmic function, we are able to
conclude that htop

(
G(n,p)

)
increases with the growth of p, with p satisfying Equation (7) and

the network size n being fixed and sufficiently large. On the other hand, again following
the hypothesis that p satisfies Equation (7), the inequalities of Equation (14) are established
using the equality provided by Equation (9). Thus, item (P1) is proved.
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The proof of the result of item (P2) follows from Equation (9) and the behaviour of the
logarithmic function when n→ ∞ and p satisfies Equation (7). This completes the proof of
the proposition.

The above results provide properties of the topological entropy of the Erdös-Rényi
network G(n,p), which are typified as a dependence of the network parameters n and p, i.e.,
they reflect the topological structure of the network under study. Figure 1a illustrates the
results of Proposition 3.

Because the expression for the topological entropy htop

(
G(n,p)

)
only holds when the

values of p lie in the interval [c0(log n/n), (log n)5/3 n−2/3] for c0 > 1, it is our purpose to
perform a deeper analysis concerning the possible variation in the values of the probability
p as n becomes larger. Consider the following real functions defined in the positive real
numbers:

g1(x) = (log x)/x and g2(x) = (log x)5/3x−2/3.

Computing the derivatives of each function g1 and g2, we obtain the following expressions:

g′1(x) = (1− log x)/x2 and g′2(x) =
5
3
((log x)2/3 − 2

3
(log x)5/3)x−1.

Through analysis of each derivative function g′1 and g′2, we can find that for x = n > 13,
considering the natural numbers n ∈ N, both sequences g1 and g2 decrease and both
sequences tend to zero as n→ +∞. In particular, we can establish the following relationship
between the variation intervals of the connection probability p provided by Equation (7)
between the network sizes n and n + 1.

(a) Topological entropy (b) Activation threshold

Figure 1. (a) Topological entropy of G(n,p) with n = 200 and p satisfying Equation (7), exemplifying
the results of Proposition 3; (b) comparison between Definition 1 and Definition 6 of the activation
threshold θ of the network G(n,p), with n = 200 and p satisfying Equation (7). The green line plots
θ = 1

〈δ(xi)〉 =
1

p(n−1) and the red line plots θ = 1
np+O(

√
np)

= 1
λ .

Property 1. Let p ∈ [0, 1] be a probability and n ∈ N a natural number such that n > 13. Under
the assumption in Proposition 2, the following inequalities hold true:

c0(log(n + 1)/(n + 1)) < c0(log n/n) ≤ p ≤ (log(n + 1))5/3 (n + 1)−2/3 ≤ (log n)5/3 n−2/3. (11)

Moreover, (log n)5/3 n−2/3 ≤ 25
6 e−

5
3 for every n ∈ N such that n > 13, which corresponds

to the maximum value for the probability p.
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Activation Threshold Dynamics and Topological Entropy

The definition of the activation threshold θ in the Erdös-Rényi network G(n,p) provided
in Definition 1 has no restrictions on the network topology, i.e., on the n and p parameters,
and as such can be improved by taking into account Equation (8). However, as set out in
Section 5, the parameters n and p have restrictions: p must satisfy Equation (7), and the
network size n must be sufficiently large. With these considerations, the definition of the
activation threshold θ can be rewritten.

Definition 6. Let G(n,p) be an Erdös-Rényi network and let A be the adjacency matrix associated
with the spectral radius λ. Considering a value of p that satisfies Equation (7) and sufficiently large
network size n, the activation threshold θ of the network G(n,p) is defined by

θ =
1

np + O
(√

np
) =

1
λ

. (12)

Figure 1b illustrates the comparison between Definition 1 and Definition 6 of the
activation threshold θ.

The characterization of the activation threshold of G(n,p) provided by Equation (12)
allows us to reinterpret the results set out in Proposition 3. Considering the definition
of topological entropy provided by Proposition 2 and attending to the definition of the
activation threshold θ for the network G(n,p) provided by Equation (12), we are able to
conclude that

θ = e−htop(G(n,p)). (13)

Therefore, the activation threshold θ in the linear threshold model for G(n,p) under the
conditions in Definition 6 can be defined through the topological entropy of the network,
as proven above.

Proposition 4. Let G(n,p) be an Erdös-Rényi network, θ the activation threshold of G(n,p) provided

by Equation (6), and htop

(
G(n,p)

)
the topological entropy of G(n,p) provided by Equation (9). Then,

the following properties hold true:

(P1) If the network size n is fixed and sufficiently large and if p satisfies Equation (7) with

c0 = 1± ε > 0 and ε > 0, then the activation threshold θ = e−htop(G(n,p)) decreases with the
increase of p and is verified:

1
(log n)5/3 n1/3 + O

(√
np
) ≤ θ ≤ 1

c0 log n + O
(√

np
) . (14)

(P2) If the network size n→ ∞ and if p satisfies Equation (7), then the activation threshold θ → 0.

The proof of the above results follows from Equation (13) and from arguments analo-
gous to the proof of Proposition 3. Figure 1b illustrates the results of Proposition 4.

Remark 3. The results proved in this section allow us to redefine the influence activation mapping
f provided by Equation (2) in Definition 2 using the relationship between the local dynamics of the
nodes (measured through the active neighbours of a node at time t along with the degree of the node)
and the global dynamics of the network (measured by the topological entropy of G(n,p)), i.e.,

f (xi(t)) =


1, if ε(xi(t−1))

δ(xi)
≥ e−htop(G(n,p))

0, if ε(xi(t−1))
δ(xi)

< e−htop(G(n,p))
. (15)
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6. Numerical Studies

In this section, it is our purpose to present numerical simulations concerning a number
of different goals. On one hand, we intend to illustrate the results proved in the previous
sections. On the other, we wish to analyze the results of our simulations, where it is not
possible to state theoretical results, with the aim of addressing the influence maximization
problem. We present four case studies that have the same parameters for the underlying
network G(n,p) = (V, E) and the linear threshold model, while differing in the choice of the
seed between random, degree, closeness, and betweenness centrality measures. First, let us
recall a few definitions.

Definition 7. Let G(n,p) = (V, E) be an Erdös-Rényi random network and let xk ∈ V with
k ∈ {1, 2, . . . , n}:
1. The degree centrality is cD(xk) = δ(xk), where δ(xk) is the degree of the node xk

2. The closeness centrality is cC(xk) =
1

∑u∈V d(u, xk)
, where d(u, xk) represents the distance

from u ∈ V to xk
3. The betweenness centrality is cB(xk) = ∑i<j k 6=i,j bij(xk), where

bij(xk) =

0, no path between xi and xj
gij(xk)

gij
, otherwise

,

gij is the number of paths between xi and xj, and gij(xk) is the number of paths between xi
and xj that contain xk.

The choice of the seed setH ⊂ V is related to the detection of influential nodes on a
contact network. On one hand, the degree centrality concerns the network’s local dynamics,
while on the other different centrality measures such as closeness and betweenness take
into account the network’s global dynamics; see [31].

For each study case presented in the following sections, we intend to compare the
effect of the seed choice on the dynamics of influence maximization. We want to illustrate
two different scenarios from Proposition 1: first when the process is activated, and second
when the theoretical procedure reaches step 4 at t = t0 + 1. Because activation is a necessary
condition that is not sufficient for diffusion, we simulate two different situations concerning
the diffusion process.

Because the influence maximization problem is NP-hard (see [9]), numerical simu-
lations are essential to comparing and discussing this phenomenon. In this section we
present results for the linear threshold model by comparing the simulations in a family
of forty Erdös-Rényi networks G(n,p) = (V, E) for n = 200. Among other features, the
diffusion relies on the network connectivity and the threshold value. Concerning the con-
nectivity, we perform numerical studies considering the two most connected regimes in the
Erdös-Rényi networks, i.e., where a giant connected component is present. These regimes
are the supercritical regime for 1

n < p < ln n
n and the connected regime for ln n

n < p < 1.
Recall that in the supercritical regime the giant component may have cycles and the other
connected components are mainly trees, while in the connected regime the order of the
giant component is almost n. All the simulations presented were generated in python.

6.1. Case Study 1: Random Seeds

In this section, we present the numerical simulations of two case studies with the
seed set H random and |H| = 1. For the implementation of Procedure 1, the theoretical
procedure for the linear threshold model which is mathematically formalized in this work,
we use an Erdös-Rényi network G(n,p) with n = 100 nodes, connection probability p = 0.05,
and activation threshold θ = 0.20.
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In Figure 2a, the Erdös-Rényi network G(n,p) is plotted at the initial instant t = t0; node
x76 is the active node or seed, which was chosen randomly. In this case, the theoretical
procedure is not activated, i.e., for every instant t 6= t0 the procedure verifies step 4 (the
stopping condition); see Figure 2b.

(a) Initial instant t = t0 (b) Instant t 6= t0

Figure 2. Implementation of Procedure 1: (a) Erdös-Rényi network G(n,p) with n = 100 and p = 0.05 at
instant t = t0, where θ = 0.20 is the activation threshold and the active node x76 is a random seed;
(b) for every instant t 6= t0, the procedure verifies step 4., i.e., the stopping condition, meaning that
the activation process in network G(n,p) does not start.

In Figure 3a, the same network is activated by node x70, which again was randomly
selected. There remains no diffusion of influence, and step 4 in the theoretical procedure is
verified at instant t = t0 + 2 with only two active nodes; see Figure 3b. In conclusion, in
Figure 2 the theoretical procedure is not activated according to Proposition 1, while Figure 3
the procedure is activated. Neither simulation case involves diffusion of influence.

(a) Initial instant t = t0 (b) Instant t = t0 + 2

Figure 3. Implementation of Procedure 1: (a) Erdös-Rényi network G(n,p) with n = 100 and p = 0.05
at instant t = t0, where θ = 0.20 is the activation threshold and the active node x70 is a random seed;
(b) at instant t = t0 + 2, the procedure verifies step 4, i.e., the stopping condition, and the diffusion
process in the network G(n,p) ends after two iterations.

When considering the numerical simulations of the 40 Erdös-Rényi networks, we
chose a larger value for the network size at n = 200. In the supercritical regime, represented
by Figure 4a, we have p = 0.02 and θ = 0.251, while in the connected regime in Figure 4b
we have p = 0.03 and θ = 0.168. Note that we consider these values throughout all the
subsequent subsections. In the first regime, most of the cases are not activated, and for
those that are there is no diffusion. Conversely, in the connected regime, when activated we
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obtain influence maximization. In this case, the growth curve of the activated or influenced
individuals is of the sigmoid type (the red graphics in Figure 4a), while the curve of
nonactivated individuals is an inverse sigmoid function (the green graphics in Figure 4a).

(a) Supercritical regime (b) Connected regime

Figure 4. Representation of individuals activated, influenced, and not influenced for the linear
threshold model over 40 Erdös-Rényi networks G(n,p) with n = 200 and seed nodes randomly chosen:
(a) supercritical regime with p = 0.02 and θ = 0.251; (b) connected regime with p = 0.03 and
θ = 0.168.

6.2. Case Study 2: Seeds With Higher Degree Centrality

In order to compare the different choices for the only seed, throughout the cases
studies we preserve the network topology and the activation threshold θ = 0.20 established
in case study 1. Figure 5a plots the Erdös-Rényi network G(n,p) at the initial instant t = t0,
where node x17 is the node with higher degree. As can be observed in Figure 5b, not
only is the theoretical procedure activated, the total maximum influence is obtained after
nine iterations. Note that the only inactive node x19 is outside the giant component of the
network.

For the degree centrality, it can be observed that a great many networks are activated
in Figure 6a, even though the maximum of active nodes is approximately 25. In Figure 6b,
when a network is activated maximum influence is obtained with the activation of almost
all of the 200 nodes.

(a) Initial instant t = t0 (b) Instant t = t0 + 9

Figure 5. Implementation of Procedure 1: (a) Erdös-Rényi network G(n,p) with n = 100 and p = 0.05
at instant t = t0, where θ = 0.20 is the activation threshold and the active node x17 is a seed with
higher degree centrality; (b) at instant t = t0 + 9, the procedure verifies step 4, i.e., the stopping
condition; the diffusion process in network G(n,p) ends after nine iterations.
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(a) Supercritical regime (b) Connected regime

Figure 6. Representation of individuals activated, influenced, and not influenced for the linear
threshold model over 40 Erdös-Rényi networks G(n,p) with n = 200 and seed nodes with higher
degree centrality: (a) supercritical regime with p = 0.02 and θ = 0.251; (b) connected regime with
p = 0.03 and θ = 0.168.

6.3. Case Study 3: Seeds With Higher Closeness Centrality

Figure 7a plots the Erdös-Rényi network G(n,p) at the initial instant t = t0, where
node x47 is the node with higher closeness centrality. As in the previous case study, it
can be verified that the theoretical procedure is activated in Figure 7b and that influence
maximization is fulfilled. The only inactive node, x19, is outside the giant component of the
network. The stopping condition is achieved rather quickly at instant t = t0 + 12. Under
these conditions, influence maximization is achieved over the entire connected component
of the network G(n,p), to which the seed node belongs.

(a) Initial instant t = t0 (b) Instant t = t0 + 12

Figure 7. Implementation of Procedure 1: (a) Erdös-Rényi network G(n,p) with n = 100 and p = 0.05
at instant t = t0, where θ = 0.20 is the activation threshold and active node x47 is the seed with
higher closeness centrality; (b) at instant t = t0 + 12, the procedure verifies step 4, i.e., the stopping
condition; the diffusion process in the network G(n,p) ends after twelve iterations.

Again, similar to the previous subsection, there is no influence maximization for
the network topology defined by Figure 8a, while either almost complete activation or
no activation is obtained in the connected regime in Figure 8b. The influence spreads
somewhat slower than in the previous case.
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(a) Supercritical regime (b) Connected regime

Figure 8. Representation of individuals activated, influenced, and not influenced for the linear
threshold model over 40 Erdös-Rényi networks G(n,p) with n = 200 and seed nodes with higher
closeness centrality: (a) supercritical regime with p = 0.02 and θ = 0.251; (b) connected regime with
p = 0.03 and θ = 0.168.

6.4. Case Study 4: Seeds with Higher Betweenness Centrality

In our last case study, the seed is chosen according to the betweenness centrality
attained in node x82. In Figure 9a, the Erdös-Rényi network G(n,p) is plotted at the initial in-
stant t = t0, while in Figure 9b the theoretical procedure leads to the situation of maximum
influence. Again, regarding the network topology, the only remaining inactive node x19 is
disconnected from all of the other nodes. In this case, the influence maximization is faster
than in case study 3.

(a) Initial instant t = t0 (b) Instant t = t0 + 10

Figure 9. Implementation of Procedure 1: (a) Erdös-Rényi network G(n,p) with n = 100 and p = 0.05
at instant t = t0, where θ = 0.20 is the activation threshold and the active node x82 is the seed
with higher betweenness centrality; (b) at instant t = t0 + 10, the procedure verifies step 4, i.e., the
stopping condition; the diffusion process in the network G(n,p) ends after ten iterations.

The differences between the two regimes are very deep. In these simulations, when
the seed is chosen considering the betweenness centrality, as in Figure 10a, we obtain the
highest number of active nodes in the supercritical regime. In Figure 10b it is possible to
identify two limit situations: the procedure stops at instant t = t0 + 1, or the number of
active nodes is almost n = 200.
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(a) Supercritical Regime (b) Connected Regime

Figure 10. Representation of individuals activated, influenced, and not influenced for the linear
threshold model over 40 Erdös-Rényi networks G(n,p) with n = 200 and seed nodes with higher
betweenness centrality: (a) supercritical regime with p = 0.02 and θ = 0.251; (b) connected regime
with p = 0.03 and θ = 0.168.

In conclusion, as referred to previously, in general the influence maximization problem
has no theoretical solution even when numerical approaches are considered. In this section
we have investigated different choices of seeds, which provide very similar simulation
results; however, the network topology is preserved, and it may be the case that this
situation leads to the obtained results.

7. Discussion and Conclusions

In this work, we have considered the linear threshold model over the family of Erdös-
Rényi random networks G(n,p), where n is the network size and p is the probability of two
nodes being connected. Throughout this paper, it has been our intention to analyze and
discuss the influence, activation, and maximization dynamics in a specific population, as
well as to identify and characterize certain properties of the underlying network. Our
starting point was the mathematical formalization of the linear threshold diffusion model
by reference to the definition of the influence activation mapping in Definition 2. This
formalization led us to the establishment of a theoretical procedure for the linear threshold
model, provided by Procedure 1. In particular, we have highlighted the general conditions
under which this procedure is established, as explained in Remark 2. As a consequence,
an expression for the activation probability can be obtained under this model considering
the case of a unique seed, as provided Proposition 1. At this point, it is possible to discuss
the maximum value of the influence activation probability mapping depending on the
centrality degree of the network, raising the question of whether other centrality measures
can be used as the criterion of choice for seed or activation nodes.

Regarding the topology of Erdös-Rényi random networks, by using the spectral ra-
dius of the asymptotically defined associated adjacency matrices, we obtained an explicit
expression for the topological entropy for this type of random network by considering
different values of p provided by Definition 5. In particular, this definition allowed us
to characterize the topological entropy through the expected value of the network node
degree. This result, provided by Proposition 2, determines the topological invariant under
study via the behaviour of the global dynamics of the network. According to this definition,
a topological order can be presented for Erdös-Rényi random networks. By taking a dynam-
ical systems point of view, the approach to the topic of influence maximization discussed
in this paper allowed us to prove topological entropy properties in Erdös-Rényi random
networks as provided by Proposition 3. Furthermore, a relation between the activation
threshold and the topological entropy was derived considering Definition 6. Consequently,
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it was possible for us to redefine the influence activation mapping in Equation (2) provided
by Definition 2 through the relation between the local dynamics of the nodes (measured
through the active neighbours of a node at time t and the degree of the node) and the global
dynamics of the network (measured by the topological entropy of G(n,p)). The culmination
of this result is certainly the most original contribution of the present work, relating discrete
dynamical systems theory and influence maximization in Erdös-Rényi networks via the
linear threshold model.

In general, the influence maximization problem is theoretically difficult. Moreover,
it is known that the spread of influence is computationally complex under any diffusion
model for a given seed set. In particular, the linear threshold model is in fact an NP-hard
problem; see [9]. Because there are no analytical results that provide a good seed set,
we have performed numerical case studies in order to analyze different choices for the
activation nodes, which are exhibited and discussed in Section 6.

In fact, the subject under discussion is highly complex and interdisciplinary, and the
approaches and topics to be analyzed can be very diverse. As a future perspective, network
stability analysis is very important in many practical applications; for an example, see the
approach presented in [32].
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