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Abstract: Chaotic systems are widely used in many scientific fields for their dynamic characteristics.
This study proposes a new delayed coupling method, which not only disturbs the control coefficient
in chaotic maps but also affects their function structure, such that using this improved method will
produce chaotic maps with better effect. The numerical simulation results prove that the delayed
coupling method can greatly improve the chaotic characteristics of chaotic maps. Furthermore,
an image encryption algorithm based on the delayed coupling Logistic map is proposed. Several
numerical simulations indicate that the image encryption algorithm has a high level of security, and
can compete with other encryption algorithms.
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1. Introduction

Chaos is a complex physical phenomenon. Chaotic maps are highly sensitive to
initial conditions; control coefficients; and long-term unpredictable, aperiodic, and complex
dynamics. All these characteristics make chaotic maps popular in many natural and social
scientific fields, including computer communication, biomedical engineering, experimental
physics, electronic information, economics, and cryptography.

Since the first chaotic system, namely, the Lorenz system, many different types of
chaotic systems have been proposed and studied. One-dimensional (1D) chaotic maps have
the simplest structure among chaotic systems. Such chaotic systems are always easy to
realize; however, their dynamical complexity is generally relatively lower than that of other
chaotic systems. Representative 1D chaotic systems include Logistic maps [1], Chebyshev
maps [2], and Tent maps [3]. Supposing that the Euclidean dimensions of a chaotic system
are greater than 2, in such a case, it constitutes a high-dimensional (HD) chaotic system,
examples of which include the Lorenz system [4], Henon maps [5], Cat maps [6], and the
Chen system [7]. Generally, these chaotic systems will always have a higher dynamical
complexity; however, their implementation efficiency is relatively lower. In addition,
hyperchaotic systems, with at least two positive Lyapunov exponents, causes these types
of systems exhibit rich, dynamic behaviors. Hyperchaotic systems are always constructed
by coupling multiple chaotic systems, and examples include fractional-order hyperchaotic
systems [8], Lorenz hyperchaotic systems [9], and Qi hyperchaotic systems [10].

When using chaotic systems in cryptography, dynamical complexity and implementa-
tion efficiency should be considered. Thus, HD (i.e., more than three dimensions) chaotic
systems are not recommended due to their low implementation efficiency. Furthermore,
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existing low-dimensional chaotic systems have the disadvantages of a small parameter
space, simple structure, and low complexity, causing them to not be secure enough for
cryptographic uses. Therefore, an ideal method is to enhance the dynamical complexity of
low-dimensional chaotic systems.

To date, many methods have been developed to improve the chaotic properties of
low-dimensional chaotic maps [11–18]. Among them, Tang, J. et al. [11] constructed a new
one-dimensional cosine and Logistic composite chaotic map with complex chaotic behavior.
Xiang, H.Y. et al. [12] proposed a method for enhancing chaotic dynamics by destroying the
state space using sinusoidal functions as feedback functions. Liu, L.F. et al. [13] proposed
a simple perturbation method to reduce the dynamic degradation of numerical chaotic
maps. Liu, B.C. et al. [14] designed an improved method, which was made up of feedback
control with linear function and parameter disturbance, and state variables were applied to
control the next state and system parameters. Most of these methods enhanced the chaotic
properties by introducing external sources of chaos. Still, all of them were limited in that
the dynamics of the external chaotic sources directly affected the properties of the improved
chaotic system. Therefore, in recent years, a feasible new method has been proposed by
researchers, namely the delayed coupling method, which can be applied to all chaotic
systems. Liu, L.F. et al. [15] first introduced the properties of delayed states and redesigned
the control parameters of chaotic systems in combination with linear functions, eventually
leading to improved dynamics of chaotic systems. Liu, L.F. et al. [16] used a bi-coupled
method to ameliorate the dynamic characteristics of chaotic maps. Li, S. et al. [17] used
the delayed and linear coupling of a one-dimensional Logistic map to achieve enhanced
chaotic dynamical properties. Tang, J.Y. et al. [18] employed the delayed and linear coupling
method to a 1D Logistic map, which exhibited improved chaotic performance. However.
the delayed states were only used to perturb the control coefficient of chaotic maps, which
would not affect the nonlinear function of the chaotic map. In the present study, the delayed
states are used to affect the structure of the chaotic function, which will have a better effect
on chaotification. The advantages of this method can be described as follows.

(1) The delayed coupling method can greatly enhance the chaotic characteristics.
(2) This method is universal and can be applied to different chaotic maps.
(3) The delayed coupling method is simple and low cost.

The rest of this paper is organized as follows. The basic framework of the chaotic
coupling model is introduced in Section 2. In Section 3, a delay-coupled Logistic model is
initially proposed and analyzed. Section 4 advances a novel image encryption algorithm for
the delay-coupled logistic model. Several experiments are presented to prove the security
of this encryption algorithm. Finally, Section 5 summarizes this research.

2. Novel Delayed Coupled Chaotic Models

Consider the following chaotic maps:

xi+1 = f (xi, p) (1)

where xi denotes the state variable, p is the control coefficient, and f is the nonlinear function.
Generally, when the coefficient p is taken to be in a specific range, map f becomes chaotic.

For these reasons, the structures of 1D chaotic maps are relatively simple, and the
complexity is low. Therefore, their characteristics need to be improved. A novel coupling
method is proposed in this study. The following are the coupling subsystems:

yi+1 = g(yi, q) (2)

Similarly, yi denotes the state variable, q is the control coefficient, and g is the nonlinear
function. Thus, the delay-coupled chaotic model can be described as follows:{

xi+1 = f (h1(yi), p(xi−1))
yi+1 = g(h2(xi), q(yi−1))

(3)
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In this model, h1 and h2 are the state control functions, and p and q are the coefficient
control functions. From Equation (3), it can be seen that state xi+1 is controlled by yi, and yi+1
is controlled by xi. This method introduces delayed states, and also couples the two one-
dimensional maps into a new two-dimensional model. Meanwhile, the coefficient control
function is used to generate coefficient variables controlled by their delayed states. As a
result, the coefficient variables change during the iterative process, causing the obtained
sequences to be unstable, and thus increasing the complexity of the chaotic sequences. To
ensure that the coupled model is chaotic, two conditions should be satisfied.

(1) Given that chaotic functions f and g can be different, the value range of the variables
x and y will be different. Thus, the state control functions h1 and h2 should cause
the coupled states yi and xi to fall into the value ranges of the chaotic functions
f and g, respectively.

(2) Functions f and g will be chaotic when the coefficients are in the region of the chaotic
parameters. Thus, the range of coefficient control functions p and q should be in the
region of chaotic parameters to ensure that the functions are chaotic.

This delayed coupling method is suitable for all chaotic maps, whether they are
identical or different. In the next sections, two Logistic maps will be coupled in order to
demonstrate the effectiveness of the method. Naturally, this method could be extended to
the coupling of multiple chaotic systems. The delay coupling model can be extended to
N models, as follows:

x(1)i+1 = f1

(
h1

(
x(2)i , x(3)i , · · · , x(N)

i

)
, p1

(
x(1)i−1

))
x(2)i+1 = f2

(
h2

(
x(1)i , x(3)i , · · · , x(N)

i

)
, p2

(
x(2)i−1

))
· · ·

x(N)
i+1 = fN

(
hN

(
x(1)i , x(2)i , · · · , x(N−1)

i

)
, pN

(
x(N)

i−1

)) (4)

where f 1, f 2, . . ., fN are the chaotic maps; h1, h2, . . ., hN are the state control functions;
and p1, p2, . . ., pN are the coefficient control functions. It is also necessary for the state
control functions and coefficient control functions to satisfy Conditions 1 and 2. The
implementation costs of the delayed coupled chaotic model will increase with increasing
value of N. Therefore, in this study, we only set N = 2 with comprehensive consideration.

3. The Delayed Coupled Logistic Chaotic Model and Its Characteristics
3.1. The Delayed Coupled Logistic Chaotic Model

The Logistic map may be the most widely used 1D chaotic map in a number of different
scientific fields. The Logistic map can be expressed with the following formula:

xi+1 = F(xi, a) = axi(1− xi) (5)

where a is a control parameter. Generally, the range of a is (3.5699, 4), this map is chaotic.
Next, the delayed coupling states can be selected, and the coefficient control functions can
be described as follows: {

h1(yi) = yi·(1− yi)
h2(xi) = xi·(1− xi)

(6)

{
p1(xi−1) = a + (4− a)·min(xi−1, xi)
p2(yi−1) = a + (4− a)·min(yi−1, yi)

(7)

Here, h1 and h2 are the state control functions, and p1 and p2 are the coefficient control
functions. Finally, the new delayed coupling model can be described as follows:{

xi+1 = (a + (4− a)·min(xi−1, xi)·(yi)·(1− yi))
yi+1 = (a + (4− a)·min(yi−1, yi)·(xi)·(1− xi))

(8)
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In this model, we know that the following state is controlled by the current state of
another subsystem, that is, state xi+1 is controlled by the function yi, and yi+1 is controlled by
the function xi. The coefficient control functions are used to define the coefficient variable,
which is controlled by its delayed state. In the next section, the common approach of
analyzing the efficiency of this will be discussed.

3.2. Characteristic Analysis

In this section, several numerical simulations are presented to show the effectiveness
of the delayed coupling method. The parameters are selected as a = 3.99, x1 = 0.32 for
Equation (5), a = 3.99, x1 = 0.32, x2 = 0.36, y1 = 0.423, and y2 = 0.436 for Equation (8).

3.2.1. Trajectories and Phase Diagrams

An ideal chaotic system will have a random trajectory without any regular structural
characteristics, and will also possess a good ergodicity in the phase space. The trajectories
of the improved map and the primitive map are depicted in Figure 1. Figure 1 shows
that after 800 iterations, the trajectory of the improved chaotic map still remains unstruc-
tured and irregular. Figure 2a,b present the phase diagrams of Equation (8) in the x- and
y-dimensions, respectively. Figure 2c presents the phase diagram produced by Equation (5).
From Figure 2, it can be seen that the delayed coupling method can completely disrupt the
phase space of the original Logistic map. Both trajectories and phase diagrams illustrate
that the delayed coupled Logistic map has better randomness and ergodicity.
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3.2.2. Bifurcation Diagram Analysis

The bifurcation diagram intuitively reflects the values of the control parameters, which
causes the system to be chaotic. Figure 3 plots the bifurcation diagrams of the results of
Equations (5) and (8). When varying the value of a, the value of the sequence traverses
the interval (0, 1), indicating that the system is bounded. Figure 3a implies that when the
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control parameter is in the interval (3.5699, 4), the initial Logistic system becomes chaotic.
Meanwhile, from Figure 3b,c, it can be observed that Equation (8) will become chaotic,
since the control parameter is greater than 3, which indicates that Equation (8) has a larger
chaotic parameter space. Furthermore, Equations (5) and (8) will not be chaotic for some
specific parameters, although the parameters are located in the chaotic area. These can be
referred to as period windows, which is a common phenomenon in chaos theory.
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3.2.3. Approximate Entropy Analysis

Approximate entropy (ApEn) is often used to characterize chaotic maps, with larger
values indicating that the system expresses more complex dynamic behavior. Figure 4
shows the ApEn value curves produced by the x-dimensional variables of Equation (5)
and Equation (8), respectively. The ApEn values generated by the y-dimensional chaotic
sequence are similar to that of the x-dimensional variable, which is omitted here to avoid
redundancy. From Figure 4, it can be seen that for almost all parameters, Equation (8) will
always generate greater ApEn values than Equation (5), which proves that the improved
chaotic map is characterized by greater complexity in this case. Furthermore, when the
parameter a is in the interval (3.8, 3.84), the ApEn curve of Equation (8) will exhibit a rapid
decrease due to the period window. Similar results can be found in the ApEn curve of
Equation (5), as well.
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3.2.4. Permutation Entropy Analysis

Permutation entropy (PE) introduces the idea of permutation to evaluate the complex-
ity of reconstructed sub-sequences. Similar to ApEn, it is an important index for expressing
the complexity of time series. As in the case of the ApEn analysis, the PE values of
Equations (5) and (8) were calculated, and the results are provided in Figure 5. From
Figure 5, it can be found that the PE values of Equation (8) are always greater than those
of Equation (5), except when the control parameter a falls into the period window, which
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indicates that the delayed coupling Logistic map successfully enhanced the complexity of
original Logistic map in this case.
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3.2.5. Lyapunov Exponent Analysis

The motion characteristics of a nonlinear system can be reflected by the Lyapunov
exponent (LE). A system is regarded as chaotic if it has at least one positive LE. In this test,
we compared the LE values generated using Equations (5) and (8) to judge whether the
delayed coupling method can enhance the chaotic properties. The results of the LE curves
are shown in Figure 6. Figure 6 shows that the improved Logistic map is chaotic (LE > 0),
since parameter a is greater than 3, meaning that it can access chaos faster. Furthermore,
except for the parameters in the period window of Equation (8), the LE of Equation (8) will
be greater than that of Equation (5) for all other parameters, thus proving that the delayed
coupling method can effectively improve chaotic behavior.
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3.2.6. Auto-Correlation Analysis

The auto-correlation function is used to describe the degree of correlation of the given
sequences at different times, thus further validating their randomness. Figure 7 provides
the auto-correlation function of Equation (8). The results indicate that the auto-correlation
function has a peak value at zero, while with increasing interval value, the auto-correlation
value decreases rapidly to 0. Therefore, the sequence generated by Equation (8) exhibits
little correlation, indicating that good randomness has been achieved in this case.
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3.2.7. Sensitivity Analysis

Chaotic systems are sensitive to both initial conditions and parameters, which means
that small changes in the initial values and the parameters can produce completely different
chaotic sequences. Figure 8 depicts the sensitivity analysis of x-dimensional variables in
Equation (8) for different initial values and parameters, respectively. From Figure 8, it
can be found that with slight changes in the initial values and parameters, the trajectories
separate completely after only 20 iterations, thus demonstrating that Equation (8) is highly
sensitive to the initial values and control parameters.
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4. Image Encryption Algorithm Based on the New Model

To verify the validity of the chaos model, we propose a new encryption algorithm.
This algorithm can not only be used to demonstrate the practicability of a chaotic system, it
can also provide a simple concept for performing image encryption. This method utilizes
the random sequences generated by the new delayed coupling system to scramble the pixel
matrices. The randomness of the chaotic sequence can enhance the encryption effect, while
the numerical analysis also confirms the encryption effect with this novel chaotic system.

4.1. Algorithm in Image Encryption and Decryption
4.1.1. Shuffling Algorithm

A new shuffle algorithm is proposed to sort and transform the pixel matrix so as to
make the pixel matrix disordered and achieve image encryption. In this experiment, only
one column transformation was performed. The simple encryption algorithm obtained
better results because of its ability to improve chaotic mapping. The algorithm can be
summarized as described below.

First, an original plain image L is read, the size of L is assumed to be M× N, and its
gray pixel matrix Jij is obtained.

Jij =


j11 j12 j13 · · · j1N
j21 j22 j23 · · · j2N

j31
...

jM1

j32
...

jM2

j33
...

jM3

· · ·
...
· · ·

j3N
...

jMN

 (9)

Second, the chaotic sequences are scrambled. A matrix Kij of size M×N is transformed
by the chaotic sequence generated by Equation (8) after M× N iterations. The fractional
value a and the maximum value n of the average value of each column i of the matrix Kij
is obtained. 

a = mean(K)
n = ceil(a(i))
n1 = M− n

a = a− f loor(a)

(10)

where mean(·) is used to find the average value of each column of the matrix. ceil(·) is
a logarithmic up integer. f loor(·) rounds the value down. These three functions are all
included in MATLAB 2019 software.

For each column I of the chaotic sequence matrix Kij and the pixel matrix Jij, i ranges
from 1 to M. The following transformation is performed.

If rem(i, 2) = 0

{
circshi f t(J(:, i), n)
circshi f t(K(:, i), i)

(11)

else
{

circshi f t(J(:, i), i + n1)
circshi f t(K(:, i), n)

(12)

where J(:,i) and K(:,i) are the i-th column of Jij and Kij, respectively. rem(·) is a comple-
mentary function to judge odd and even numbers. circshi f t(·) is a circular translation
function that represents the shifting up of the i-th column. These two functions are also
implemented in the MATLAB 2019 software package. For the different columns of matrix
Jij and Kij, after different times of cycling, the matrices J′ij and K1ij will be obtained.

Finally, the chaotic matrix J′ij is transformed into a sequence {J} with the same size as
the chaotic sequence {K}. After that, K1ij is converted into sequence {K1}, and {K1} is sorted
in ascending order to obtain {K1′}. Moreover, the sequence {J} is sorted depending on the
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order of the sequence {K1′}. {J′} is obtained and retransformed into a matrix J1ij, which is
the final shuffle matrix. The main process is carried out as follows:

J′ ij =


j′11 j′12 j′13 · · · j′1N
j′21 j′22 j′23 · · · j′2N
j′31

...
j′M1

j′32
...

j′M2

j′33
...

j′M3

· · ·
...
· · ·

j′3N
...

j′MN

K1ij =


k′11 k′12 k′13 · · · k′1N
k′21 k′22 k′23 · · · k′2N
k′31

...
k′M1

k′32
...

k′M2

k′33
...

k′M3

· · ·
...
· · ·

k′3N
...

k′MN


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4.1.2. Image Encryption and Decryption Algorithm 

The image encryption algorithm can be described by the following steps. 

Step 1: Read the plain image L with size of NM  , and let Jij be its pixel matrix. 

Step 2: Obtain the average values of the matrix Jij and the fractional part b. 

𝑏 = 𝑚𝑒𝑎𝑛(𝐽) − 𝑓𝑙𝑜𝑜𝑟(𝑚𝑒𝑎𝑛(𝐽))  (13) 

Step 3: Set initial parameters and values (a, x1, x2, y1, and y2) for Equation (8), The fractional 

part b of the average value generated in Step 2 is added to the initial values. This 

method causes the final chaos sequence to be affected by the primary image. 

{
 

 
𝑥1
′ = (𝑥1 ∙ 𝑏) ∙ (𝑚𝑜𝑑 1)

𝑥2
′ = (𝑥2 ∙ 𝑏) ∙ (𝑚𝑜𝑑 1)

𝑦1
′ = (𝑦1 ∙ 𝑏) ∙ (𝑚𝑜𝑑 1)

𝑦2
′ = (𝑦2 ∙ 𝑏) ∙ (𝑚𝑜𝑑 1)

 (14) 

Step 4: The chaotic sequence {K} is obtained by iterating the improved system NM   

times. Then, {K} is transformed into Kij with a size of NM  . 

Step 5: By using Jij and Kij matrices, two new matrices J1ij and K1ij are obtained using the 

scrambling algorithm described in Section 4.1.1. 

Step 6: Matrices Kij and K1ij are normalized to (0, 255), then they are turned into matrices 

Gij and Hij, respectively. The normalized chaotic matrix Hij is sorted in descending 

order to form a new matrix H1ij.  

{K1} Ascending 

{J} sorting 

{J} = {j1, j2, j3, · · · , jM×N}(j1 = j′11, j2 = j′12, j3 = j′13, · · · , jM×N = j′MN)
{K1} = {k11, k12, k13, · · · , k1M×N}(k11 = k′11, k12 = k′12, k13 = k′13, · · · , k1M×N = k′MN)
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4.1.2. Image Encryption and Decryption Algorithm

The image encryption algorithm can be described by the following steps.

Step 1: Read the plain image L with size of M× N, and let Jij be its pixel matrix.
Step 2: Obtain the average values of the matrix Jij and the fractional part b.

b = mean(J)− f loor(mean(J)) (13)

Step 3: Set initial parameters and values (a, x1, x2, y1, and y2) for Equation (8), The fractional
part b of the average value generated in Step 2 is added to the initial values. This
method causes the final chaos sequence to be affected by the primary image.

x′1 = (x1·b)·(mod 1)
x′2 = (x2·b)·(mod 1)
y′1 = (y1·b)·(mod 1)
y′2 = (y2·b)·(mod 1)

(14)

Step 4: The chaotic sequence {K} is obtained by iterating the improved system M×N times.
Then, {K} is transformed into Kij with a size of M× N.

Step 5: By using Jij and Kij matrices, two new matrices J1ij and K1ij are obtained using the
scrambling algorithm described in Section 4.1.1.

Step 6: Matrices Kij and K1ij are normalized to (0, 255), then they are turned into matrices
Gij and Hij, respectively. The normalized chaotic matrix Hij is sorted in descending
order to form a new matrix H1ij.
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{
Gij =

(
uint8

(
255 ∗ kij

))
Hij =

(
uint8

(
255 ∗ k1ij

))
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4.1.2. Image Encryption and Decryption Algorithm 

The image encryption algorithm can be described by the following steps. 

Step 1: Read the plain image L with size of NM  , and let Jij be its pixel matrix. 

Step 2: Obtain the average values of the matrix Jij and the fractional part b. 

𝑏 = 𝑚𝑒𝑎𝑛(𝐽) − 𝑓𝑙𝑜𝑜𝑟(𝑚𝑒𝑎𝑛(𝐽))  (13) 

Step 3: Set initial parameters and values (a, x1, x2, y1, and y2) for Equation (8), The fractional 

part b of the average value generated in Step 2 is added to the initial values. This 

method causes the final chaos sequence to be affected by the primary image. 

{
 

 
𝑥1
′ = (𝑥1 ∙ 𝑏) ∙ (𝑚𝑜𝑑 1)

𝑥2
′ = (𝑥2 ∙ 𝑏) ∙ (𝑚𝑜𝑑 1)

𝑦1
′ = (𝑦1 ∙ 𝑏) ∙ (𝑚𝑜𝑑 1)

𝑦2
′ = (𝑦2 ∙ 𝑏) ∙ (𝑚𝑜𝑑 1)

 (14) 

Step 4: The chaotic sequence {K} is obtained by iterating the improved system NM   

times. Then, {K} is transformed into Kij with a size of NM  . 

Step 5: By using Jij and Kij matrices, two new matrices J1ij and K1ij are obtained using the 

scrambling algorithm described in Section 4.1.1. 

Step 6: Matrices Kij and K1ij are normalized to (0, 255), then they are turned into matrices 

Gij and Hij, respectively. The normalized chaotic matrix Hij is sorted in descending 

order to form a new matrix H1ij.  

{K1} Ascending 

{J} sorting 

H1ij =


h111 h112 h113 · · · h11N
h121 h122 h123 · · · h12N
h131

...
h1M1

h132
...

h1M2

h133
...

h1M3

· · ·
...
· · ·

h13N
...

h1MN

(h11l > h12l > h13l > · · · > h1Ml)

(l = 1, 2, 3, 4, · · · , N)

Step 7: The ordered matrix H1ij and the scrambled matrix J1ij in Step 5 are used to obtain
the initial encryption matrix E′ij.

E′ = H1
⊕

J1 (15)

Step 8: The final encryption matrix E is obtained using the XOR between the initial en-
cryption matrix E′ obtained in Step 7 and the chaotic matrix G generated in Step 6.

E = E′
⊕

G (16)

Figure 9 shows the procedure of this encryption algorithm. Similarly, the decryption
process can be explained as follows, and the flowchart of the decryption procedure is
presented in Figure 10.

Step 1: Read the encrypted image E, and obtain its gray pixel matrix Eij.
Step 2: Use the initial values (x1

′, x2
′, y1

′, y2
′, and a) to make the improved Logistic map

(Equation (8)) generate new chaotic sequences {K}. Then, the chaotic sequence
matrix Kij is normalized to (0, 255) to obtain the matrix Gij. The specific conversion
method is as follows:

{K} = {k1, k2, k3, · · · , kM×N}
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4.1.2. Image Encryption and Decryption Algorithm 

The image encryption algorithm can be described by the following steps. 

Step 1: Read the plain image L with size of NM  , and let Jij be its pixel matrix. 

Step 2: Obtain the average values of the matrix Jij and the fractional part b. 

𝑏 = 𝑚𝑒𝑎𝑛(𝐽) − 𝑓𝑙𝑜𝑜𝑟(𝑚𝑒𝑎𝑛(𝐽))  (13) 

Step 3: Set initial parameters and values (a, x1, x2, y1, and y2) for Equation (8), The fractional 

part b of the average value generated in Step 2 is added to the initial values. This 

method causes the final chaos sequence to be affected by the primary image. 

{
 

 
𝑥1
′ = (𝑥1 ∙ 𝑏) ∙ (𝑚𝑜𝑑 1)

𝑥2
′ = (𝑥2 ∙ 𝑏) ∙ (𝑚𝑜𝑑 1)

𝑦1
′ = (𝑦1 ∙ 𝑏) ∙ (𝑚𝑜𝑑 1)

𝑦2
′ = (𝑦2 ∙ 𝑏) ∙ (𝑚𝑜𝑑 1)

 (14) 

Step 4: The chaotic sequence {K} is obtained by iterating the improved system NM   

times. Then, {K} is transformed into Kij with a size of NM  . 
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order to form a new matrix H1ij.  

{K1} Ascending 

{J} sorting 

Kij =


k11 k12 k13 · · · k1N
k21 k22 k23 · · · k2N

k31
...

kM1

k32
...

kM2

k33
...

kM3

· · ·
...
· · ·

k3N
...

kMN


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4.1.2. Image Encryption and Decryption Algorithm 

The image encryption algorithm can be described by the following steps. 

Step 1: Read the plain image L with size of NM  , and let Jij be its pixel matrix. 

Step 2: Obtain the average values of the matrix Jij and the fractional part b. 
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{
 

 
𝑥1
′ = (𝑥1 ∙ 𝑏) ∙ (𝑚𝑜𝑑 1)

𝑥2
′ = (𝑥2 ∙ 𝑏) ∙ (𝑚𝑜𝑑 1)

𝑦1
′ = (𝑦1 ∙ 𝑏) ∙ (𝑚𝑜𝑑 1)

𝑦2
′ = (𝑦2 ∙ 𝑏) ∙ (𝑚𝑜𝑑 1)

 (14) 

Step 4: The chaotic sequence {K} is obtained by iterating the improved system NM   

times. Then, {K} is transformed into Kij with a size of NM  . 

Step 5: By using Jij and Kij matrices, two new matrices J1ij and K1ij are obtained using the 

scrambling algorithm described in Section 4.1.1. 

Step 6: Matrices Kij and K1ij are normalized to (0, 255), then they are turned into matrices 

Gij and Hij, respectively. The normalized chaotic matrix Hij is sorted in descending 

order to form a new matrix H1ij.  

{K1} Ascending 

{J} sorting 
gij = unit8

(
255 ∗ kij

)

Gij =


g11 g12 g13 · · · g1N
g21 g22 g23 · · · g2N
g31

...
gM1

g32
...

gM2

g33
...

gM3

· · ·
...
· · ·

g3N
...

gMN


Step 3: Kij employs a shuffling algorithm to obtain chaotic matrix K1ij. Then, matrix K1ij

is normalized to (0, 255) to become matrix Hij. Finally, matrix Hij is arranged in
descending order to obtain a new matrix H1ij.
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K1ij =


k111 k112 k113 · · · k11N
k121 k122 k123 · · · k12N

k131
...

k1M1

k132
...

k1M2

k133
...

k1M3

· · ·
...
· · ·

k13N
...

k1MN


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𝑗132
⋮

𝑗1𝑀2

𝑗133
⋮

𝑗1𝑀3

⋯
⋮
⋯

𝑗13𝑁
⋮

𝑗1𝑀𝑁)

 
 
(𝑗111=𝑗′1, 𝑗112=𝑗′2, 𝑗113=𝑗′3, ⋯ , 𝑗1𝑀𝑁 = 𝑗′𝑀×𝑁) 

 

4.1.2. Image Encryption and Decryption Algorithm 

The image encryption algorithm can be described by the following steps. 

Step 1: Read the plain image L with size of NM  , and let Jij be its pixel matrix. 

Step 2: Obtain the average values of the matrix Jij and the fractional part b. 

𝑏 = 𝑚𝑒𝑎𝑛(𝐽) − 𝑓𝑙𝑜𝑜𝑟(𝑚𝑒𝑎𝑛(𝐽))  (13) 

Step 3: Set initial parameters and values (a, x1, x2, y1, and y2) for Equation (8), The fractional 

part b of the average value generated in Step 2 is added to the initial values. This 

method causes the final chaos sequence to be affected by the primary image. 

{
 

 
𝑥1
′ = (𝑥1 ∙ 𝑏) ∙ (𝑚𝑜𝑑 1)

𝑥2
′ = (𝑥2 ∙ 𝑏) ∙ (𝑚𝑜𝑑 1)

𝑦1
′ = (𝑦1 ∙ 𝑏) ∙ (𝑚𝑜𝑑 1)

𝑦2
′ = (𝑦2 ∙ 𝑏) ∙ (𝑚𝑜𝑑 1)

 (14) 

Step 4: The chaotic sequence {K} is obtained by iterating the improved system NM   

times. Then, {K} is transformed into Kij with a size of NM  . 

Step 5: By using Jij and Kij matrices, two new matrices J1ij and K1ij are obtained using the 

scrambling algorithm described in Section 4.1.1. 

Step 6: Matrices Kij and K1ij are normalized to (0, 255), then they are turned into matrices 

Gij and Hij, respectively. The normalized chaotic matrix Hij is sorted in descending 

order to form a new matrix H1ij.  

{K1} Ascending 

{J} sorting 
hij = unit8

(
255 ∗ k1ij

)

Hij =


h11 h12 h13 · · · h1N
h21 h22 h23 · · · h2N

h31
...

hM1

h32
...

hM2

h33
...

hM3

· · ·
...
· · ·

h3N
...

hMN


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(𝑗111=𝑗′1, 𝑗112=𝑗′2, 𝑗113=𝑗′3, ⋯ , 𝑗1𝑀𝑁 = 𝑗′𝑀×𝑁) 

 

4.1.2. Image Encryption and Decryption Algorithm 

The image encryption algorithm can be described by the following steps. 

Step 1: Read the plain image L with size of NM  , and let Jij be its pixel matrix. 

Step 2: Obtain the average values of the matrix Jij and the fractional part b. 

𝑏 = 𝑚𝑒𝑎𝑛(𝐽) − 𝑓𝑙𝑜𝑜𝑟(𝑚𝑒𝑎𝑛(𝐽))  (13) 

Step 3: Set initial parameters and values (a, x1, x2, y1, and y2) for Equation (8), The fractional 

part b of the average value generated in Step 2 is added to the initial values. This 

method causes the final chaos sequence to be affected by the primary image. 

{
 

 
𝑥1
′ = (𝑥1 ∙ 𝑏) ∙ (𝑚𝑜𝑑 1)

𝑥2
′ = (𝑥2 ∙ 𝑏) ∙ (𝑚𝑜𝑑 1)

𝑦1
′ = (𝑦1 ∙ 𝑏) ∙ (𝑚𝑜𝑑 1)

𝑦2
′ = (𝑦2 ∙ 𝑏) ∙ (𝑚𝑜𝑑 1)

 (14) 

Step 4: The chaotic sequence {K} is obtained by iterating the improved system NM   

times. Then, {K} is transformed into Kij with a size of NM  . 

Step 5: By using Jij and Kij matrices, two new matrices J1ij and K1ij are obtained using the 

scrambling algorithm described in Section 4.1.1. 

Step 6: Matrices Kij and K1ij are normalized to (0, 255), then they are turned into matrices 

Gij and Hij, respectively. The normalized chaotic matrix Hij is sorted in descending 

order to form a new matrix H1ij.  

{K1} Ascending 

{J} sorting 
Hij descending

H1ij =


h111 h112 h113 · · · h11N
h121 h122 h123 · · · h12N
h131

...
h1M1

h132
...

h1M2

h133
...

h1M3

· · ·
...
· · ·

h13N
...

h1MN

(h11l > h12l > h13l > · · · > h1Ml)

(l = 1, 2, 3, 4, · · · , N)

Step 4: Matrix E′ is obtained using the XOR operation of matrices G and H1, and pertur-
bation matrix J1 is then obtained using the XOR operation of E′ and encrypted
matrix E.

E′ = G
⊕

H1 (17)

J1 = E′
⊕

E (18)

Step 5: Chaos matrix K1ij and pixel matrix J1ij are reordered according to the shuffle
algorithm, and a new pixel matrix J’ij is obtained.

J1ij =


j111 j112 j113 · · · j11N
j121 j122 j123 · · · j12N

j131
...

j1M1

j132
...

j1M2

j133
...

j1M3

· · ·
...
· · ·

j13N
...

j1MN

 K1ij =


k111 k112 k113 · · · k11N
k121 k122 k123 · · · k12N

k131
...

k1M1

k132
...

k1M2

k133
...

k1M3

· · ·
...
· · ·

k13N
...

k1MN


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(𝑗111=𝑗′1, 𝑗112=𝑗′2, 𝑗113=𝑗′3, ⋯ , 𝑗1𝑀𝑁 = 𝑗′𝑀×𝑁) 

 

4.1.2. Image Encryption and Decryption Algorithm 

The image encryption algorithm can be described by the following steps. 

Step 1: Read the plain image L with size of NM  , and let Jij be its pixel matrix. 

Step 2: Obtain the average values of the matrix Jij and the fractional part b. 

𝑏 = 𝑚𝑒𝑎𝑛(𝐽) − 𝑓𝑙𝑜𝑜𝑟(𝑚𝑒𝑎𝑛(𝐽))  (13) 

Step 3: Set initial parameters and values (a, x1, x2, y1, and y2) for Equation (8), The fractional 

part b of the average value generated in Step 2 is added to the initial values. This 

method causes the final chaos sequence to be affected by the primary image. 

{
 

 
𝑥1
′ = (𝑥1 ∙ 𝑏) ∙ (𝑚𝑜𝑑 1)

𝑥2
′ = (𝑥2 ∙ 𝑏) ∙ (𝑚𝑜𝑑 1)

𝑦1
′ = (𝑦1 ∙ 𝑏) ∙ (𝑚𝑜𝑑 1)

𝑦2
′ = (𝑦2 ∙ 𝑏) ∙ (𝑚𝑜𝑑 1)

 (14) 

Step 4: The chaotic sequence {K} is obtained by iterating the improved system NM   

times. Then, {K} is transformed into Kij with a size of NM  . 

Step 5: By using Jij and Kij matrices, two new matrices J1ij and K1ij are obtained using the 

scrambling algorithm described in Section 4.1.1. 

Step 6: Matrices Kij and K1ij are normalized to (0, 255), then they are turned into matrices 

Gij and Hij, respectively. The normalized chaotic matrix Hij is sorted in descending 

order to form a new matrix H1ij.  

{K1} Ascending 

{J} sorting 

{J} = {j1, j2, j3, · · · , jM×N}(j1 = j111, j2 = j112, j3 = j113, · · · , jM×N = j1MN)
{K1} = {k11, k12, k13, · · · , k1M×N}(k11 = k111, k12 = k112, k13 = k113, · · · , k1M×N = k1MN)
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(𝑗111=𝑗′1, 𝑗112=𝑗′2, 𝑗113=𝑗′3, ⋯ , 𝑗1𝑀𝑁 = 𝑗′𝑀×𝑁) 

 

4.1.2. Image Encryption and Decryption Algorithm 

The image encryption algorithm can be described by the following steps. 

Step 1: Read the plain image L with size of NM  , and let Jij be its pixel matrix. 

Step 2: Obtain the average values of the matrix Jij and the fractional part b. 

𝑏 = 𝑚𝑒𝑎𝑛(𝐽) − 𝑓𝑙𝑜𝑜𝑟(𝑚𝑒𝑎𝑛(𝐽))  (13) 

Step 3: Set initial parameters and values (a, x1, x2, y1, and y2) for Equation (8), The fractional 

part b of the average value generated in Step 2 is added to the initial values. This 

method causes the final chaos sequence to be affected by the primary image. 

{
 

 
𝑥1
′ = (𝑥1 ∙ 𝑏) ∙ (𝑚𝑜𝑑 1)

𝑥2
′ = (𝑥2 ∙ 𝑏) ∙ (𝑚𝑜𝑑 1)

𝑦1
′ = (𝑦1 ∙ 𝑏) ∙ (𝑚𝑜𝑑 1)

𝑦2
′ = (𝑦2 ∙ 𝑏) ∙ (𝑚𝑜𝑑 1)

 (14) 

Step 4: The chaotic sequence {K} is obtained by iterating the improved system NM   

times. Then, {K} is transformed into Kij with a size of NM  . 

Step 5: By using Jij and Kij matrices, two new matrices J1ij and K1ij are obtained using the 

scrambling algorithm described in Section 4.1.1. 

Step 6: Matrices Kij and K1ij are normalized to (0, 255), then they are turned into matrices 

Gij and Hij, respectively. The normalized chaotic matrix Hij is sorted in descending 

order to form a new matrix H1ij.  

{K1} Ascending 

{J} sorting {Kl} Ascending
{J} sorting

{K1′} = {k1′ l1, k1′ l2, k1′ l3, · · · , k1′ lM×N}(k1′ l1 < k1′ l2 < k1′ l3 < · · ·< k1′ lM×N)
{J′} =

{
j′1, j′2, j′3, · · · , j′M×N

}(
j′ l1 = j1, j′ l2 = j2, j′ l3 = j3, · · · , j′ lM×N = jM×N

)
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′
𝑙2, 𝑘1
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′
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⋮
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⋯
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⋯
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4.1.2. Image Encryption and Decryption Algorithm 

The image encryption algorithm can be described by the following steps. 

Step 1: Read the plain image L with size of NM  , and let Jij be its pixel matrix. 

Step 2: Obtain the average values of the matrix Jij and the fractional part b. 

𝑏 = 𝑚𝑒𝑎𝑛(𝐽) − 𝑓𝑙𝑜𝑜𝑟(𝑚𝑒𝑎𝑛(𝐽))  (13) 

Step 3: Set initial parameters and values (a, x1, x2, y1, and y2) for Equation (8), The fractional 

part b of the average value generated in Step 2 is added to the initial values. This 

method causes the final chaos sequence to be affected by the primary image. 

{
 

 
𝑥1
′ = (𝑥1 ∙ 𝑏) ∙ (𝑚𝑜𝑑 1)

𝑥2
′ = (𝑥2 ∙ 𝑏) ∙ (𝑚𝑜𝑑 1)

𝑦1
′ = (𝑦1 ∙ 𝑏) ∙ (𝑚𝑜𝑑 1)

𝑦2
′ = (𝑦2 ∙ 𝑏) ∙ (𝑚𝑜𝑑 1)

 (14) 

Step 4: The chaotic sequence {K} is obtained by iterating the improved system NM   

times. Then, {K} is transformed into Kij with a size of NM  . 

Step 5: By using Jij and Kij matrices, two new matrices J1ij and K1ij are obtained using the 

scrambling algorithm described in Section 4.1.1. 

Step 6: Matrices Kij and K1ij are normalized to (0, 255), then they are turned into matrices 

Gij and Hij, respectively. The normalized chaotic matrix Hij is sorted in descending 

order to form a new matrix H1ij.  

{K1} Ascending 

{J} sorting 

J′ ij =


j′11 j′12 j′13 · · · j′1N
j′21 j′22 j′23 · · · j′2N
j′31

...
j′M1

j′32
...

j′M2

j′33
...

j′M3

· · ·
...
· · ·

j′3N
...

j′MN


(

j′11 = j′1, j′12 = j′2, j′13 = j′3, · · · , j′MN = j′M×N
)

Step 6: When moving the matrix inversely, the moving times are different. The number of
moves is as follows:

If rem(i, 2) = 0



Mathematics 2023, 11, 3295 12 of 20

{
circshi f t(J′(:, i), n1)

circshi f t(K(:, i), M− i)
(19)

else
{

circshi f t(J′(:, i), M− i− n1)
circshi f t(K(:, i), n1)

(20)

The column of K1ij and J′ij circularly moves up at the corresponding times, re-
spectively, which can invert the encrypted pixel matrices. K is the chaotic matrix
transformed from the chaotic sequence {K}, and J′ is a pixel matrix sorted inversely.

Step 7: From Step 6, an inverse disturbance matrix Jij is obtained, which is the decrypted
gray pixel matrix.
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4.2. Security Performances Tests

In this section, various analyses are performed to prove the effectiveness of the en-
cryption algorithm. In these tests, we set a = 3.999, x1 = 0.58432, x2 = 0.54752, y1 = 0.35421,
and y2 = 964,326.

4.2.1. Encryption and Decryption Experiments

In this section, we take the grayscale images ‘Horse’ and ‘Baboon’ as examples and
perform operations including encryption, correct decryption, and incorrect decryption, the
results of which are shown in Figure 11. Among them, incorrect decryption consists of
changing the initial value slightly, by 10−10, and subsequently verifying the decryption
effect. It can be clearly seen from Figure 11 that the encryption algorithm proposed in this
paper is able to effectively encrypt and decrypt the image. When the key is wrong, the
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decrypted image is still full of noise and cannot be recognized, proving that this scheme
is secure.
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4.2.2. Histogram Analysis

Histograms are an intuitive method for observing the intensity distribution of image
pixels, through which the gray distribution can be obtained. The histograms from two
images (i.e., the original ‘Horse’ and the encrypted ‘Horse’) are shown in Figure 12. As
can be seen from Figure 12a, the histogram obtained from the original image possesses an
uneven distribution. Meanwhile, it can be seen in Figure 12b that the histogram from the
encrypted image possesses an almost consistent distribution. This result proves that the
proposed algorithm can cause the pixel distribution of the encrypted image to be uniform,
showing that the encrypted image possesses effective resistance against statistical attacks.
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4.2.3. Correlation Analysis

Ideal encryption images will have a lower correlation of neighbor pixels, which is
reflected in the relevant coefficient. The measurement formula for the correlation coefficient
ρxy is as follows:

ρxy =
∑Q

i=1

(
xi − 1

Q ∑Q
i=1 xi

)(
yi − 1

Q ∑Q
i=1 yi

)
√

∑Q
i=1

(
xi − 1

Q ∑Q
i=1 xi

)2
×∑Q

i=1

(
yi − 1

Q ∑Q
i=1 yi

)2
(21)
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where xi and yi are the data sequences composed of adjacent pixels, and Q is the length of
the sample sequence. Figure 13a–f display the adjacent pixel distribution of the original
‘Horse’ and the encrypted ‘Horse’ image in different directions (i.e., horizontal, vertical,
and diagonal). From Figure 13a–c, it can be seen that the distribution points are clustered
near the diagonal line, indicating that neighboring pixels with strong correlations appear
in the original image. According to Figure 13d–f, points are distributed with no special
appearance, indicating that there is no correlation between neighboring pixels in the
encrypted image. Observing the correlation coefficients in Table 1, the absolute values of
our correlation coefficient in three directions are all close to 0, which is also better than the
results obtained for some other encryption algorithms. Thus, our encryption algorithm can
reduce the pixel correlation of plain images and has strong resistance to correlation attacks.
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Figure 13. Distribution of adjacent pixels: horizontal direction: (a) Horse; (d) encrypted; vertical
direction: (b) Horse; (e) encrypted; diagonal direction: (c) Horse; (f) encrypted.

Table 1. Correlation coefficients.

Images Horizontal Vertical Diagonal

Plain Horse image 0.6425 0.6682 0.5179
Encrypted Horse image −0.0037 0.0076 0.0016

Xiang, H. et al. [12] −0.0084 −0.0003 −0.0089
Liu, L.F. et al. [15] 0.0042 −0.0021 −0.0043
Ouannas et al. [19] −0.0055 0.0045 −0.0055
Zhang, S. et al. [20] −0.0033 0.0094 0.0021

Wu, J. et al. [21] 0.0056 0.0037 0.0032

4.2.4. Key Sensitivity

Key sensitivity means that the image encryption and decryption will undergo a notable
change if the secret key is altered slightly. At the same time, keys are provided that add
the average value of the plain-text image, so that the key will have plain-text correlation
and should be resistant to known plain-text attacks. Here, we performed a visualization
experiment with minor modifications to the initial values (a, x1, x2, y1, and y2), and the
decrypted images are shown in Figure 14b–f. From the resulting figure, it can be seen that
when the initial values and parameters are changed by 10−10 separately, the decrypted
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images cannot be restored to the initial image. Furthermore, the following equation was
used to calculate the mean square error (MSE) to carry out the numerical experiments.

MSE =
∑M

i ∑N
i (wi − oi)

2

M× N
(22)

where M× N is the size of the image, oi is the modified image pixel, and wi is the original
pixel. Figures 15 and 16 display a comparison of the MSE for displaying encrypted images
and decrypted images when using our original key and the changed key, respectively.
As can be seen from Figures 15 and 16, the MSE changes significantly when the secret
key deviates slightly, which indicates that the scheme in this paper has outstanding key
sensitivity for both encryption and decryption algorithms.
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Figure 14. (a) Original image; (b) decrypted image with a – 10−10; (c) decrypted image with
x1 − 10−10; (d) decrypted image with x2 − 10−10; (e) decrypted image with y1 − 10−10; (f) de-
crypted image with y2 − 10−10.
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4.2.5. Key Space Analysis

In an ideal cryptographic system, the key space should be large enough (no less than
2128) to resist brute force attacks. In this image encryption algorithm, the initial values
x1, x2, y1, y2, and the control parameter a are used as the secret keys. Assuming that the
highest computer accuracy is 10−14, the key space can be approximately estimated as
1014 × 1014 × 1014 × 1014 × 1014 = 1070 ≈ 2233. Table 2 compares the key spaces of various
encryption algorithms. From Table 2, it can be seen that the key spaces are all greater than
2128, which demonstrates that the existing algorithms have sufficient key space to resist
brute force attacks. Furthermore, the key space in our encryption algorithm is greater than
the others, indicating that our algorithm is more competitive in this regard.

Table 2. Key space.

Algorithms Space

Proposed scheme 2233

Tang, J. et al. [18] 2231

Zhang, Y. et al. [22] 2160

Chen, C. et al. [23] 2152

Zhang, Y.Q. et al. [24] 2186

4.2.6. Robustness Analysis

Robustness testing aims to detect whether the proposed method can restore the orig-
inal image when the image pixels have been partially destroyed. In a secure encryption
algorithm, the original image will be able to be recovered even if some pixel data are lost or
filled with some noise. In this test, we added varying degrees of ‘salt and pepper’ noise to
the encrypted “Horse” image and performed a data loss attack, as shown in Figure 17a1–d1.
As can be seen from Figure 17a2–d2, when using our decryption algorithm, the four ci-
phertext images subjected to different attacks could all be restored to a state in which their
original images are recognizable. These results prove that the encryption scheme proposed
in this paper is robust against noise and data loss attacks.
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4.2.7. Anti-Differential Attack Analysis

The differential attack is a frequent type of attack in cryptographic algorithms. Thus,
the ability to resist differential attack must be considered in encryption algorithms. Both
NPCR and UACI can be utilized to testify to the ability of the encryption algorithm to stand
up to some attacks. For the same gray image, one of the grayscale values is changed in
order to obtain two encrypted images. By calculating the percentage and change degree of
pixels with different gray values at the same position in the total number of original pixels
in two encrypted images, the pixel change rate NPCR and the unified average changing
intensity UACI are obtained. For an algorithm with an ideal encryption effect, the ideal
value of NPCR is about 0.9961, and the UACI value is near 0.3346. The NPCR and UACI
can be calculated as follows.

NPCR =
∑M

i ∑N
j H(i, j)

M× N
× 100% (23)

UACI =
1

M× N

(
∑M

i ∑N
j

I(i, j)− I′(i, j)
255

)
× 100% (24)

where I and I′ are two encrypted images with a size M × N.
We randomly modified the pixel of the plain-text image by 1 bit to calculate the values

of NPCR and UACI, and the results are shown in Table 3. Table 3 displays the calculated
UACI values and NPCR values for the different encryption algorithms. From this table, it
can be seen that our encryption algorithm yields UACI values and NPCR values that are
extremely close to the desired values, which means that this algorithm is able to effectively
resist differential attack, and is competitive with other algorithms in this respect.

Table 3. NPCR and UACI values.

Images NPCR UACI

Horse image 0.9959 0.3332
Liu, L.et al. [15] 0.9969 0.3351

Tang, J. et al. [18] 0.9956 0.3328
Zhang. S. et al. [20] 0.9960 0.3265

Wu, J. et al. [21] 0.9962 0.3341
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4.2.8. Information Entropy Analysis

By calculating the information entropy, the pixel randomness of the encrypted image
can be evaluated. Information entropy G(x) can be described as follows:

G(x) = ∑n
i m(xi)log2

1
m(xi)

(25)

where n is the total number of symbols, and m(xi) is the probability of symbol xi. Generally,
the G(x) of an ideal encrypted image will approach a value of 8. The G(x) values of our
encryption algorithm and some other methods are shown in Table 4. From Table 4, it can
be seen that the information entropy of the encrypted Horse image is 7.9970, which is close
to the ideal value of 8, and is not much different from the other algorithms. This result
implies that our encryption algorithm can effectively make the original image random-like.

Table 4. Information entropy in various algorithm.

Images Information Entropy

Plain Horse image 6.5645
Encrypted Horse image 7.9970

Xiang, H. et al. [12] 7.9963
Tang, J. et al. [18] 7.9971
Wu, J. et al. [21] 7.9976
Yu, J. et al. [25] 7.9973

Zhang, X. et al. [26] 7.7841

4.2.9. Speed Analysis

In an effective encryption scheme, the encryption speed, which is related to the real-
time applicability of the algorithm, needs to be considered. The test environment used
in this paper was MATLAB 2019, installed on a computer with a 2.80 GHz CPU and
16 GB RAM. The execution speed of the algorithm proposed in this paper for encryption
operations on grayscale images of 256 × 256 sizes is shown in Table 5. As can be seen
from Table 5, our image encryption algorithm has a faster execution speed than the other
schemes. This also shows that the scheme proposed in this paper has superior performance
in terms of both security and practicality.

Table 5. Speed tests.

Algorithms Images Time (/s) Speed (Mb/s)

Proposed Horse 0.0225 22.222
Proposed Baboon 0.0236 21.186

Wang, J. et al. [27] Horse 0.6033 0.8287
Li, B. et al. [28] Lena 0.3263 1.5323

Mondal, B. et al. [29] Baboon 1.5069 1.3272
Yousif, S.F. et al. [30] Baboon 1.634973 1.2232

5. Conclusions

In this paper, a method of introducing delayed state and coupling was proposed with
the aim of improving the chaotic characteristics of chaotic maps. By using the structure of a
chaotic function perturbed by a delayed state, two chaotic maps are coupled and caused
to interact with each other. The results of numerical simulations demonstrate that the
complexity and security of the chaotic system can be improved effectively using the delay
coupling method. Furthermore, in order to demonstrate the practicability of this method, a
novel image encryption algorithm was proposed based on the delayed coupled Logistic
map. Chaotic sequences with high pseudo-randomness were used to perform the shuffling-
diffusing operation on a plain-text image, and finally the image was effectively encrypted
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and protected. Meanwhile, the algorithm proposed in this paper can be implemented using
electronic devices, and has excellent applicability.
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