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Abstract: The control of variable-speed wind turbines that generate electricity from the kinetic
energy of the wind involves subsystems that need to be controlled simultaneously, namely, the blade
pitch angle controllers and the generator torque controllers. The presented study solves the control
problem with multiple inputs and multiple outputs (MIMO), using the method of reinforcement
learning–based Trust Region Policy Optimization, through which the control parameters of both
subsystems are simultaneously optimized. In this case, the robust control problem is transformed
into a constrained optimal control problem with an appropriate choice of value functions for the
nominal system. The study aims to synthesize a robust controller, with the aim of maximizing
the generated energy (power) and minimizing unwanted forces (thrust). The innovative control
architecture uses an extended input space, which allows fine-tuning of parameters for each operating
state. Test calculations carried out in simulation experiments using models of the 5 MW NREL wind
turbine and the 4 MW Enercon E-126 EP3 wind turbine are presented to illustrate the performance
and practicality of the proposed approach.

Keywords: wind turbine; controller; MIMO; reinforcement learning; blade pitch control; generator
torque control; Trust Region Policy Optimization
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1. Introduction

Wind energy has become one of the most competitive renewable alternatives to con-
ventional energy sources based on fossil fuels [1]. Designing an efficient controller for
variable-speed wind turbines (VSWTs) is challenging due to the complex dynamics caused
by wind variability and the large number of variables that need to be controlled simultane-
ously. The actual control problem for a VSWT can be represented as a control problem for
multiple input–multiple output (MIMO) systems where multiple inputs (e.g., blade pitch
angle, rotor speed, etc.) need to be controlled to achieve desired outputs (e.g., power, wind
speed, etc.).

One of the main difficulties encountered when solving the VSWT control problem is the
nonlinearity of the system dynamics. The dynamics of VSWT, in particular, depend on many
factors such as wind speed, angle of attack of the blades, rotor speed, etc. Furthermore, these
factors interact with each other, which leads to complex nonlinear dynamics throughout
the entire system. Another difficulty is the presence of uncertainties in the system, such as
changes in wind speed and other external factors. These uncertainties can lead to system
instability and inefficient control.

Most of the scientific studies addressing VSWT control [2–4] solve this problem in
two ways:

1. Using the reduced dynamic models of VSWT operation, which simplify the derivation
of analytical expressions;

2. Decomposing the control problem into subproblems, where each local control objec-
tive of the subsystem contributes to the achievement of the global goal of control.
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The first approach involves the use of simplified models, which, unfortunately, can
lead to a loss of accuracy and a lack of universality. Reduced models may leave out of
consideration some important factors, such as the influence of wind, changes in the speed
of blade rotation, and others. In addition, these models can only be applied under certain
conditions, which limits their versatility. In the second approach, the decomposition of the
control problem into subproblems can lead to problems with integration and coordination
of control. Each subsystem may have its objectives and constraints, which may conflict with
each other or may not take into account interaction with other subsystems. This can lead
to inefficient control and failure to achieve the global goal of control. As in other systems
with MIMO control, the adverse effect of interactions between control loops on system
performance is one of the most challenging problems in uncertain nonlinear systems.

1.1. Review of MIMO Controller Research for Wind Turbines

The use of MIMO controllers for wind turbines has been a significant area of research
in recent years. These controllers aim to optimize the performance and efficiency of wind
turbines by simultaneously controlling multiple variables. In one study [5], a multivariable
individual pitch control (IPC) rotor active load controller for a large wind turbine was
designed using a mixed sensitivity H∞ optimization approach. The proposed MIMO
controller was optimized to reject periodic load disturbances in an optimal manner. In
another study [6], the authors presented a passive IPC controller that was independent of
fault diagnosis and based on double multivariable adaptive control without modeling.

Several studies have investigated various designs of MIMO controllers for VSWT
based on a doubly-fed induction generator (DFIG), with the goal of improving the perfor-
mance and robustness of such systems. For example, one study [7] introduced a MIMO
power control strategy for a grid-connected DFIG-based wind turbine with slip power
recovery. The control design was based on second-order sliding modes and Lyapunov
methods, which are known for their robustness. Another study [8] proposed a MIMO
controller that partially linearized the original nonlinear DFIG system to achieve fully
decoupled control of the external dynamics, while the stability of the remaining internal
dynamics was analyzed via the Lyapunov stability method.

Several studies have utilized the advantages of a MIMO control approach to compen-
sate for uncertainties in control and mitigate mechanical loads on wind energy systems.
One study addressed the problem of parameter variation in wind turbine systems due
to wind speed fluctuations [9]. The paper proposed a MIMO self-tuning regulator that
used local generator speed to compensate for parametric uncertainty. Another study [10]
proposed a MIMO linear quadratic regulator (LQR) controller for a VSWT, focusing on the
operating range above nominal wind speeds. In [11], the authors confirmed that the MIMO
LQR controller enabled optimal suppression of random disturbances from the load, critical
changes in wind speed, etc. However, it is important to remember that the real proof of
control performance is obtained when controls are implemented and tested in the field.
In [12], multivariable MIMO controls based on an LQR controller were implemented and
tested for active tower damping, with good load alleviation results.

Another promising direction of the MIMO approach is the development of controllers
aimed at optimizing the performance and efficiency of wind turbines by simultaneously
controlling multiple variables, such as rotor speed, pitch angle, and generator torque. One
study [13] proposed a multivariable model predictive control (MPC) strategy for variable-
speed and variable-pitch wind turbines. The control strategy simultaneously controlled the
blade pitch angle and generator torque to maximize energy capture, reduce transient loads,
and smooth power output. In [14], the authors proposed a fuzzy MPC control concept,
wherein the fuzzy state estimation was used, because, in real cases, measurement noise was
usually present and not all the states were measurable. It has been shown that significant
improvements in terms of control performance can be obtained with a fuzzy MPC strategy.
A similar task can also be successfully addressed using artificial intelligence and machine
learning methods. For example, one study [1] provided a reinforcement learning (RL)
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architecture for optimizing the parameters of the VSWT controller using different sets
of input variables to simultaneously control the blade pitch angle and generator torque.
In [15], a new fuzzy MIMO controller was developed which controlled both machine-side
(MSC) and grid-side (GSC) controllers of DFIG together to extract the maximum power
from varying wind velocity for the grid synchronization (Table 1).

Table 1. MIMO controllers for wind turbines.

Reference Method MIMO Controller
Operation Principle Controlled Parameters

[5] Mixed sensitivity H∞
optimization

MIMO individual pitch
controller

Blade root flap-wise
bending moments

[6]
Dual multivariable
model-free adaptive
control strategy

Passive MIMO
fault-tolerant individual
pitch controller

The components of
each blade

[7]
Second-order sliding
modes and Lyapunov
methods

MIMO second-order
sliding controller

Reactive power and
generator torque

[8]
Partial linearization and
Lyapunov stability
method

MIMO controller that
achieves fully decoupled
control of the external
dynamics of a
DFIG-based wind
turbine

Multiple variables

[9] Self-tuning regulator MIMO pitch + generator
speed

Blade pitch angle and
generator torque

[10–12] Linear quadratic
regulator

MIMO pitch + generator
speed controller

Blade pitch angle and
generator torque

[13,14] Model predictive control
and fuzzy logic

MIMO pitch + generator
speed controller

Blade pitch angle and
generator torque

[1] Reinforcement learning MIMO pitch + generator
speed controller

Blade pitch angle and
generator torque

[15] Fuzzy logic MIMO-Based MSC+GSC
controller

Modulation indexes for
the GSC and MSC
controllers.

The studies presented in this review demonstrate the potential of MIMO controllers
for wind turbines to simultaneously control multiple variables and optimize performance
and efficiency. However, there are some limitations and areas for improvement in the
studies reviewed. Firstly, the studies primarily focus on designing MIMO controllers for
specific wind turbine systems, which may limit the generalizability of the results to other
wind turbine systems. Additionally, some studies do not address the potential increase in
computational complexity associated with MIMO controllers and the impact on real-time
implementation. Secondly, while the studies demonstrate promising results in improving
the performance and robustness of wind turbines, there is limited discussion on the po-
tential trade-offs between performance and robustness when designing MIMO controllers.
Furthermore, there is limited analysis of the scalability of the MIMO controllers proposed
in the studies reviewed. Finally, the studies reviewed primarily focus on traditional control
approaches, with limited exploration of the potential of artificial intelligence and machine
learning methods for MIMO control of wind turbines. While one study suggests the poten-
tial of reinforcement learning, further exploration of these methods could be beneficial in
optimizing MIMO control for wind turbines.
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1.2. The Paper Contribution

Overall, the above studies reviewed demonstrate the potential of MIMO controllers
for wind turbines, but there is room for improvement in generalizability, scalability, consid-
eration of computational complexity, trade-offs between performance and robustness, and
exploration of AI and machine learning methods for MIMO control. This paper presents
the results of a study on the development of the concept of a robust MIMO controller based
on RL for wind turbines of the VSWT type. To synthesize such a controller and implement
the principle of joint control, the presented study uses the Trust Region Policy Optimization
(TRPO) method, which simultaneously optimizes the control parameters of the subsystems
of the blade pitch and generator torque controllers. The experimental results obtained for
the dynamic model of the NREL wind turbine show the high performance of the proposed
controller trained on the basis of the TRPO method.

Its difference from the existing approaches lies in the following:

1. To overcome the above difficulties related to using MIMO control, the VSWT robust
control problem in the presented paper was transformed into a class of optimal control
problems by choosing the right cost functions for the nominal system. This means
that such problems can be effectively solved with so-called model-free RL methods;

2. The proposed model-free RL approach on the basis of the TRPO method allows
examination of the parameters of decision-making policy with minimal designer
input and without domain-specific knowledge in the form of marked-up samples,
which makes RL a promising research tool for developing VSWT control systems.
Traditional wind turbine control methods require domain knowledge and labeled
samples for training. However, the proposed model-free RL approach enables learning
without such prior knowledge or sample labeling. This means that the control system
can autonomously learn and optimize its decision-making policy based on observed
data, which is a novel and innovative approach. This makes it a promising tool for
investigating and developing control systems for VSWT;

3. The proposed approach is also not focused on or tailored to a specific wind turbine
system. Due to the fact that an agent can learn from experience gained by interacting
with the environment using a model-free method, the developed controller can be
“tuned” to the required wind turbine system with minimal effort using recognized
aerodynamic programs, such as FAST;

4. The use of the TRPO method in the development of the controller is also a novel
aspect. This method allows for the optimization of the control policy while consid-
ering constraints and safety, which is crucial in the operation of wind turbines. This
is important for wind turbines, where it is necessary to comply with restrictions
on rotor speed, blade loads, and other parameters to prevent damage and ensure
safe operation.

It is important to note that the developed controller is not only applicable to wind
turbines but can also be generalized to other MIMO systems. This broad applicability
further enhances the novelty of the proposed controller.

2. Problem Statement
2.1. General Principles and Objectives of VSWT Control

Wind turbines convert the kinetic energy of the wind into electrical energy. However,
they cannot “collect” 100% of the energy passing through the disk area attracted by the
blades. Only a certain part is converted into electrical power, according to the following
expression [16]:

Pa =
1
2

ρ · π · R3 · v3 · Cp, (1)

where ρ is air density, R is a radius of the disk area covered by the blades, v is wind speed,
and Cp is wind turbine power factor, which is a unimodal function of the relative blade tip
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speed λ. The curve is usually defined as a dependence of Cp on λ, and the real control has
“hard-coded” optimal values.

Each control system has its unique control method, which depends on the operating
region and the purpose of the VSWT control. Figure 1 shows the individual operating
regions for any VSWT system. For most types of VSWT, the wind speed required to start
the generator (cut-in speed) is typically around 3 to 4 m/s, and the wind speed at which
the generator shuts down (cut-out speed) is usually in the range of 20 to 25 m/s. However,
the specific values of cut-in and cut-out speeds may vary depending on the particular
wind turbine model and operating conditions. It is also worth noting that some new wind
turbine technologies may have lower cut-in speed values, which allow for the use of wind
energy even at very low wind speeds.

Figure 1. Operating regions of a typical wind turbine. Adapted from [17].

Generator torque control allows for changing the speed of the turbine rotor, applying
maximum power point tracking (MPPT) strategies to achieve the maximum possible
extraction of wind energy. In the MPPT region, the VSWT can generate electricity in the
wind speed range, but not at the rated power. In this region, the focus is on maximizing
electricity generation. As seen from (1), the energy content of wind energy depends on the
cube of the average wind speed. The rotor speed is varied to ensure that λ is maintained at
the optimum level under changing wind speed to produce maximum power.

Thus, the maximum power can be obtained when the VSWT is operated at the opti-
mum ratio of blade tip speeds λopt to the speeds of rotor blades set at the optimum pitch
angle βopt. In light of this, the generated power is maximized by the controller of the
generator torque Tg, which reaches λopt, and is represented as a function of the rotor speed
expressed as

Tg = Kω2, (2)

where the rotor speed equals ω, and K is determined as the VSWT aerodynamic constant,
defined as

K = 0.5 · ρ · π · R5 ·
Cp.opt

λ3
opt

(3)

where ρ is air density, Cp.opt is optimal power factor, and R stands for the blade radius.
Generator torque can be considered as the force required to move the generator shaft.

If its value is too low for a given wind speed, the blades will spin rapidly, as the generator
does not offer any counter-resistance. If, on the contrary, the value is too high for a given
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wind speed, the blades will hardly move because the wind does not have enough force to
overcome the resistance created by the generator. In both cases, the energy produced will
be very low. The torque of the generator, in this case, acts as a “brake” that regulates the
rotation speed of the blades (rotor speed). Thus, the main question here is, what torque
should be applied to make the blades spin at the optimal speed that generates the most
power under the current wind?

When the VSWT reaches the rated wind speed, it enters the pitch-control region, which
is considered to be a full-load region. In this region, the wind speed lies between rated and
cut-out speed, the tilt regulator controls the rotation of the rotor at rated speed, and the
generator produces rated power, as shown in Figure 1. In contrast to the MPPT region,
where the control aims to maximize energy production, the desired control goal in the
pitch-control region is to limit energy production. This is achieved by limiting both the
torque and the rotor speed of the VSWT generator to ensure that a constant rated power is
obtained from the wind. PID control is commonly used in this region for the purpose of
blade pitch control to adjust the speed of the VSWT under changing wind conditions. In
this case, the increment of ∆ω in the initial VSWT pitch can be calculated as

∆Θ =

(
KP +

KI
s

+
KD

s.τ + 1

)
∆ω (4)

where ∆ω is error in the generator speed and KP, KI , and KD are the gains that are selected
for the desired closed-loop performance of the controller.

Most commercial VSWTs rely on the collective pitch-control method by implementing
the same control collectively for all wind turbine blades [18]. Each VSWT blade has the
same pitch regardless of the presence of independent servos. The controlled variable in
this case is the total blade pitch angle, and the difference between the given nominal rotor
speed and its actual value is the error:

βc = KP(1 +
KI
s
)(ωre f −ω) (5)

where βc is the total demand for blade pitch angles, ωre f is reference rotor speed, and ω is
actual speed, which is measured on the rotor axis.

Typically, individual control of a VSWT involves two main actions: changing the
generator torque and changing the blade pitch angle. At the same time, the VSWT can
change the rotor speed to operate at maximum over a wide range of wind speeds. The
disadvantage is that the control of the VSWT is more complex, since the controller must set
both the pitch angle of the blades and the torque of the generator for the sole purpose of
control, i.e., to maximize the efficiency of the power take-off. Modern approaches [19,20]
normally solve the VSWT control problem by splitting the overall problem into two separate
control subproblems:

1. Controlling the blade pitch angle β to follow the reference value of the generator
speed ωre f , which depends on v, i.e., the blade pitch controller aims to minimize the

absolute generator speed error eωg =
∣∣∣ωg −ωre f

∣∣∣;
2. Controlling the torque Tg to reduce the absolute power error ep =

∣∣∣Pe − Pre f

∣∣∣, where
Pe is the generated electric power and Pre f is the reference value of the electric power
to be reached (which also depends on the wind speed, v).

These two subproblems are usually solved with a closed-loop PID-controller, which
aims to minimize the error variable e, whose parameters are denoted by ki, i = 1, 2, . . . n.
In traditional approaches, these parameters are usually set by manually tuning (or using
a heuristic method) and kept constant throughout the entire life cycle of the system. The
well-known basic controllers Vidal [20] and Boukhezzar [19] are obtained analytically from
a simplified single-mass dynamic model of VSWT.

Today, the more advanced joint control of torque and pitch angle for VSWT is a
crucial problem in the field of wind turbine control. This problem is solved using a MIMO
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controller, which controls several inputs and outputs of the system simultaneously. In this
case, the torque and the blade pitch angle are the inputs, and the rotor speed and generator
power are the outputs. At the same time, such a MIMO controller can be built on the basis
of a system model that describes the VSWT dynamics. In the traditional approach, the
dynamic model of the system can be represented as a matrix of transfer functions that
relates the input and output signals of the system. The control usually aims to maximize
energy production with minimum fuel consumption.

2.2. General Applications of AI Methods to VSWT Control

It is important to emphasize that the joint control of the torque and pitch angle of
a VSWT is a complex control problem that requires advanced control and optimization
methods and technologies, such as adaptive control methods, artificial intelligence (AI),
and heuristic optimization [21,22]. The most popular modern AI methods are fuzzy logic
systems and machine learning (primarily reinforcement learning). The fuzzy logic-based
VSWT blade-turning control attracts much attention due to its adaptability and simplicity.
A unique characteristic of fuzzy logic controllers is the possibility of quickly changing their
parameters to rapidly respond to changes in system dynamics without prior evaluation of
the parameters. At the same time, the performance of such a controller largely depends on
the knowledge of the user, and the requirement of fuzzy methods to allocate memory is the
main disadvantage of this VSWT control method [22]. In [23], the authors used fuzzy logic
to analyze various operating regions of a low-speed wind system by generating reference
power from a VSWT and evaluating the difference between the reference power and the
actual generator power. A certain downside of the proposed technology is its high cost.
In [24], a pitch angle controller was proposed to smooth out wind turbine power output
fluctuations that occur at sub-rated wind speeds. This approach showed a sufficiently high
efficiency with a significantly small drop in power output.

According to [25], methods based on fuzzy logic and neural networks have their
“weaknesses”, primarily, because their implementation requires accurate measurements of
wind speed and some system parameters during the training phase, to ensure the correct
direction to the MPPT strategy. Heuristic optimization algorithms can be a solution to these
problems. For example, in [25], a new particle swarm-based MPPT technique was proposed,
which required only the generated power from the VSWT as the input to the controller.
Additionally, similar optimization algorithms were successfully used for optimal tuning of
traditional PID-controllers. In [26], the particle swarm optimization algorithm was used to
calculate the optimal PID-controller parameters in the VSWT blade pitch control problem.

The most promising methods for solving the VSWT optimal control problem, how-
ever, can be reinforcement learning methods, a specialized branch of AI methods, since
they factor in uncertainty, adapt to changes in wind speed, and independently find the
optimal control strategy based on the reinforcement signals received from the system.
These methods make it possible to create autonomous decision-making systems that can
implement wind turbine control with a high degree of adaptability and minimal dispatcher
involvement. In [1], for example, a trained RL model was proposed for the synthesis of
a MIMO controller to implement such a form of wind turbine control. In [27], the use of
deep RL methods to control the turn of a wind turbine demonstrated that this approach
was significantly superior to traditional RL algorithms, due to the combination of RL with
learning capabilities through neural networks.

Some studies can also use RL techniques to improve the performance of basic VSWT
controllers. For example, [1] provided an Actor–Critic RL architecture for optimizing
the parameters of two base VSWT controllers (Vidal and Boukhezzar) using different
sets of input variables for the RL agent and base controller. The proposed architecture
optimized the parameters of each subsystem controller to minimize the overall electric
power error. In [28], the authors noted that the convergence of RL methods in the VSWT
optimal control problem was still limited due to the slowness of the learning process, and,
therefore, suggested a solution based on hybrid control, relying on RL and a traditional
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PID-controller. The latter was used during the first training instances, since RL-based
control did not yet have any experience to learn from. As a result, the hybrid controller
reduced the output power error by about 41% compared to the PID-controller.

It is worthwhile to note that most studies on the application of RL to VSWT control
refer to the model-based methods. Certain disadvantages of such approaches are the need
for an accurate dynamic model and high computational complexity. In addition, model-
based methods can be unstable if the environment model contains errors or does not take
into account all the factors that affect the operation of the wind turbine. This can lead to
incorrect action choices and performance degradation. In contrast to model-based methods,
model-free RL methods do not require an exact model for training, are easier to implement,
and afford greater robustness to errors in the input data.

3. Robust Model-Free RL-Based MIMO Controller
3.1. Reinforcement Learning

The interaction of an agent with its environment by trial and error is modeled in the
framework of RL as a Markov decision process (MDP) 〈S, A, T, R〉, where S is the set of
observable variables that determine the space of system states, A is the set of actions that
the agent can take, T : S× A× S→ [0, 1] is the stochastic transition function that gives the
probability of observing the state s′ after execution of the action a in the state s, and R is the
reward function that evaluates the value of the transition result (Figure 2).

Figure 2. Agent–environment interaction loop.

In applications to control problems, the goal of an agent is to learn a deterministic
policy π(s) that maximizes the value function V(s), defined as the expected cumulative
discounted reward if the agent follows the deterministic policy π(s):

Vπ = E

{
∞

∑
k=0

rt+k+1 · γt
∣∣∣∣st = s

}
(6)

where γt is the discount factor weighting immediate and future rewards.
RL differs significantly from typical approximate dynamic programming methods

in that it does not offer a prescribed behavior or learning model. Therefore, RL is often
applied to adaptive optimal controller designs [29–31]. Following the conceptual basis
of RL methods for the problem of robust control of a nonlinear system with continuous
time, it is required to find a robust controller that ensures the stability of the system in the
sense of uniform finite boundedness. This problem can be successfully transformed into an
optimal control problem with the right choice of value functions for the nominal system.

Let a nonlinear system with continuous time be given and defined by the equation

ṡ(t) = f (s(t), a(t)) (7)

where s(t) ∈ Rn is the system state vector, a(t) ∈ Rm is the vector of control actions, and
f : Rn ×Rm → Rn is a vector function describing the system dynamics.

It is required to find a robust controller a(t) that ensures the stability of the system in
the sense of uniform finite boundedness. To this end, the robust control problem can be
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successfully transformed into an optimal control problem with the right choice of value
functions for the nominal system.

Let s∗(t) be the nominal trajectory of the system that satisfies the equation

ṡ∗(t) = f (s∗(t), a∗t)) (8)

where a∗(t) is optimal control action that minimizes the quality functional

J(u) =
∫ ∞

0
L(s(t), a(t))dt (9)

where L(s(t), a(t)) is a cost function that determines the cost of transition from state s(t) to
state s(t + dt) under control action a(t) .

Then, solving the constrained optimal control problem, we can obtain a robust con-
troller (in our case, for VSWT) that guarantees the stability of a nonlinear system with
continuous time in the sense of uniform finite boundedness.

3.2. Trust Region Policy Optimization

The Trust Region Policy Optimization (TRPO) method belongs to the class of model-
free optimization methods used in reinforcement learning problems that do not require
explicit modeling of the dynamics of the system that the agent is trying to control. Instead,
these methods use the observational data obtained during the interaction of the agent with
the environment to find the optimal control strategy. It does not require explicit modeling of
system dynamics, but instead uses constraints on change in the strategy between iterations
to ensure that the new strategy does not differ too much from the previous one and does
not lead to a worse reward.

A more rigorous mathematical formulation implies that, during the learning process,
the TRPO agent interleaves the sample data through interaction with the environment
and updates the policy parameters, solving the constrained optimization problem. The
Kullback–Leibler (KL) divergence between the old and new policies is used as a constraint
during optimization. As a result, this algorithm prevents a significant decrease in per-
formance compared to standard policy gradient methods by keeping the updated policy
within a trust region close to the current policy [32].

Let πθ denote a policy with θ parameters. The theoretical updating of TRPO in this
case can be determined as follows:

θk+1 = arg max
θ
L(θk, θ)

s.t. D̄KL(θ||θk) ≤ δ
(10)

where L(θk, θ) is the surrogate advantage, a measure of how policy πθ performs relative to
the old policy πθk using data from the old policy:

L(θk, θ) = s, a ∼ πθk

πθ(a|s)
πθk (a|s) Aπθk (s, a), (11)

and D̄KL(θ||θk) is an average KL divergence between policies across states visited by the
old policy:

D̄KL(θ||θk) = s ∼ πθk DKL
(
πθ(·|s)||πθk (·|s)

)
. (12)

We can visualize this in the manner presented in Figure 3.
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Figure 3. Visualization of the TRPO algorithm concept.

In practice, it is quite difficult to implement the theoretical updating of TRPO. There-
fore, the TRPO algorithm makes some approximations to obtain the answer sufficiently
quickly. To this end, a Taylor expansion can be used to extend the objective and constraint
to a leading order around θk, which leads to an approximate optimization problem:

θk+1 = arg max
θ

gT(θ − θk)

s.t.
1
2
(θ − θk)

T H(θ − θk) ≤ δ.
(13)

This approximate problem can be analytically solved by the methods of Lagrangian
duality, yielding the solution:

θk+1 = θk +

√
2δ

gT H−1g
H−1g. (14)

TRPO adds a modification to this update rule—a backtracking line search:

θk+1 = θk + αj

√
2δ

gT H−1g
H−1g, (15)

where α ∈ (0, 1) is the backtracking coefficient, and j is the smallest nonnegative integer
such that πθk+1

satisfies the KL constraint and produces a positive surrogate advantage.
Based on the above general mathematical description of TRPO, it was adapted in the

VSWT control problem as follows:

1. At each step, the agent chooses an action at based on the current state st using the
control strategy a(s);

2. The agent interacts with the environment and receives a reward rt for the action
performed;

3. The control strategy is updated based on the optimization of the value function V(s)
and the control policy function a(s) using the TRPO method;

4. The value function V(s) estimates the expected total reward from the current state at
to the end of episode T;

5. The control policy function a(s) determines the probability of choosing each action at
based on the current state st.
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The functions V(s) and u(s) were optimized given the constraints on the change in
the control strategy, which were specified in the form of a TRPO. The control strategy was
updated according to the expression (15) until the optimal strategy was reached.

3.3. MIMO Controller Synthesis

This subsection presents a proposed architecture that uses a TRPO-based method to
simultaneously learn the parameters of the blade pitch controller β and generator torque
controller Tg. The general control diagram is shown in Figure 4.

Figure 4. Diagram of the proposed architecture for optimizing the parameters of a robust RL-based
MIMO controller.

A single reward signal combines the responses of both subsystems in search of optimal
performance for the entire VSWT:

rt = wpPrate − wFFrate − wca2
tsum, (16)

where Prate = (Pe,t − Pe,t−1)/Pe,t−1 and Frate = (FT,t − FT,t−1)/FT,t−1 are coefficients of
change in generated electricity and trust, respectively; wp, wF and wc are weight coefficients;
and atsum is sum of control actions.

Solving the above problem using RL, we determined the key components of the
considered MDP as follows:

• Action space: Since the control is responsible for the generator torque Tgrate [kNm/s]
and the total pitch βrate [deg/s], the allowed actions are their speed changes;

• State space: The state of the wind turbine is selected as st = (Pe, wt, Tg, β, FT , v) to
characterize the operating parameters of the wind turbine, where Pe is electric power
produced [kW]; Ft is trust [kN]; wt is the rotor speed [rpm]; Tg is generator torque
[kNm]; and β is total pitch [deg];

• Observation space: Each observation of the environment consists of six dimensions of
the state vector ot = st;

• Transition probabilities: The transition probability T(s0|s, a) is a characteristic of wind
turbine dynamics. In this study, an OpenAI Gym environment was created using
a model that realistically reproduced the behavior of a wind turbine by interacting
with the open source CCBlade to calculate aerodynamic forces using Blade Element
Momentum (BEM) theory. This theory is based on the assumption that a blade can
be divided into small elements, called “blade elements”, each of which has its own
aerodynamic characteristics. To calculate the aerodynamic characteristics of a blade
using the BEM approach, the blade is broken down into small elements, each with its
characteristics such as angle of attack, lift coefficient, and drag coefficient. Then, using
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the BEM equations, the thrust and moment generated by each element of the blade
are calculated. The approach used reduces the BEM equations to a one-dimensional
residual function—function φ:

R(φ) =
sin φ

1− a(φ)
− cos φ

λr(1 + a′(φ))
= 0 (17)

Reducing the BEM equations to a one-dimensional residual function means that the
BEM equations can be represented as a single equation that depends on one variable
only, i.e., the blade pitch. This allows for solving the BEM equations with optimization
methods, in this case, those based on RL, to find the optimal blade pitch. The study
presented in [33] demonstrated, through mathematical proof, that the methodology
always finds a bracket to a zero of R(φ) without any singularities in the interior. This
proof, along with existing proofs for root-finding methods such as Brent’s method [34],
implies that the solution is guaranteed. The CCBlade code model factors in both hub
and tip losses using the Prandtl method and high induction factor correction [35]. The
resistance is included in the calculation of the inductance factors.

Thus, the TRPO agent learns both the weight vector θk+1 according to (15), which
corresponds to the current policy πθk+1

, and the weight vector of parameters which corre-
spond to each base controller. Figure 4 shows these parameter vectors, grouped into the
following two sets of weights:

• ~θβ is the parameter vector of the linear-functional approximation of the blade pitch
controller β;

• ~θTg is the parameter vector of the linear-functional approximation of the generator
torque controller Tg.

Thus, the TRPO agent generates two vector policies corresponding to the parameters
of each subsystem controller: ~πβ and ~πTg .

4. Experiments

Testing the proposed approach involved a series of simulation experiments conducted
using the NREL 5 MW baseline turbine and Enercon E-126 EP3 4.0 MW. The NREL 5 MW
was developed by the National Renewable Energy Laboratory (NREL) for testing and
evaluating wind turbine technology and is one of the most widely used prototype wind
turbines in the world. The NREL 5 MW baseline turbine has a tower height of about 80 m
and a rotor diameter of 126 m (Figure 5). It is equipped with a three-bladed rotor that
can rotate at a speed of 6 to 20 revolutions per minute. The generator has a capacity of
5 MW and generates enough energy to power more than 1400 homes. In the context of our
problem, it is important to note that this wind turbine model is well suited for use in the
OpenAI Gym environment.

The Enercon E-126 EP3 4.0 MW is a newer version of the E-126 wind turbine model
manufactured by Enercon GmbH, a German wind turbine manufacturer. It has a rotor
diameter of 127 m and a hub height of up to 135 m. The rotor blades are made of a hybrid
fiberglass–carbon material and have a variable-pitch mechanism, which allows the angle of
attack of the blades to be adjusted to optimize energy capture at different wind speeds.
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Figure 5. Rotor–nacelle assembly of the NREL 5 MW baseline turbine.

4.1. Dynamic Model

The experiments relied on a specially designed Gym-wind turbine environment, which
is a balance between a simple and a realistic environment, so that the results obtained can
be an approximation of the results expected from more extensive aeroelastic programs
such as FAST (Fatigue, Aerodynamics, Structures, and Turbulence). The Gym-wind turbine
environment interacts with an aeroelastic code, called CCBlade, to calculate aerodynamic
forces. CCBlade is a code developed by NASA to model the aeroelastic properties of wind
turbine blades. It employs a panel method for calculating the aerodynamic characteristics
of the blades and modeling the dynamic behavior of the blades under wind conditions.
CCBlade takes into account the effects of aerodynamic and geometric blade warping and
the effects of aerodynamic interaction between the blades. A simplified transmission model
was then added so that the driver can be implemented. The specific models used were
the reference 5MW VSWT presented in [36] and Enercon WSWT operated in the Valentia
offshore wind farm (Ireland). The dimensionless power curve (λ vs. Cp) for this reference
model NREL 5 MW is shown in Figure 6.

Figure 6. Power coefficient as a function of tip–speed ratio.

The parameters of the environment used in all experiments are shown in Tables 2 and 3.
Wind turbine specifications determine the maximum rate of change per second. However,
since the simulation ran every 1/20 of a second, the maximum range allowed at decision
time was also 1/20 of the maximum value (dt = 0.05).
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Table 2. The environment parameter values.

Index Name and Units Min Max

1 Wind speed [m/s] 3 25
2 Power generated [kW] 0 7000
3 Thrust [kN] 0 1000
4 Rotor speed [rpm] 0 15
5 Generator torque [kNm] 0.606 47.403
6 Collective pitch [deg] 0 90

Table 3. The control actions values.

Index of Actions at Name and Units Min Max

0 Generator torque rate [kN·m/s] −15.0 · dt 15.0 · dt
1 Collective pitch rate [deg/s] −8.0 · dt 8.0 · dt

4.2. Case Study of the NREL 5 MW

In this experiment, the TRPO agent reward function (16) was a linear combination
of power (80%) and thrust (20%) generated in the range [−200, 5600]. This means that
the assumed weight variables were wp = 0.8 and wF = 0.2. At the same time, there is an
optimal rotor speed at which the wind generator produces maximum power at various
wind speeds. For example, for this reference model, the optimum number of rotations
per minute was 10 with a wind speed of approximately 8 m/s; this could be achieved by
setting the generator torque to 10.147 kNm with a total blade pitch angle of 5 degrees. In
fact, this was what the TRPO algorithm had to find, by setting different rates of change at
each time step.

Each instance of the training experiment of the TRPO agent consisted of 100 training
episodes. If the limits were not reached, the environment terminated after 60 s of simulation
time (2400 time steps). As a result, the TRPO agent learned about 8× 103 of the total
simulation time. Figure 7 shows the change in average reward depending on the episode
of training. This graph demonstrates a stable trend of increasing agent reward, indicating
the effectiveness of the trained controller design.

Figure 7. Mean reward over episodes.

Two simulation scenarios of the dynamic environment model were considered to test
the trained MIMO controller: (1) with a sequential increase in wind speed, and (2) with
random changes in wind speed. It is evident that the second scenario was closer to the real
operating conditions of the wind turbine.

Figure 8 shows the input and output variables of the trained MIMO controller with
sequentially increasing wind speed and the change in the reward function for testing
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simulation. This figure shows that the TRPO agent found the next optimal policy πθ .
At low wind speeds (approximately up to 10 m/s), the generator torque Tgrate increased
gradually (action 0). With a further increase in wind speed, the total blade pitch angle
βrate (action 1) was additionally changed, to stabilize the rotor speed wt and thrust Ft.
Thus, the trained controller successfully solved the problem of stabilizing the rotor speed
and thrust when the wind speed changed. At low wind speeds, the controller increased
the generator torque and, with a further rise in wind speed, it changed the overall blade
pitch angle to stabilize the rotor speed and thrust. Figure 8a also shows that the average
values of the agent’s reward changed rapidly at the beginning. By the end of training, the
controller did not reach a stable point, but the optimal reward values (close to zero) were
reached repeatedly. This indicates that the controller reached a stable point and successfully
solved the wind turbine control problem. Figure 8b shows the results of testing the trained
controller for a more “stressful” yet more realistic scenario with random changes in wind
speed. It can be seen that, in this case, the agent followed the strategy described above,
attempting to adapt the available actions to sudden changes in external wind conditions.

Figure 8. The simulation plots for the RL-based MIMO controller for the NREL 5 MW: (a) sequentially
increasing wind speed, (b) random variation of wind speed.

Thus, the figures demonstrate the stable trend of increasing agent reward during
training and the successful adaptation of the controller to changing wind conditions.
Overall, the results suggest that the TRPO-based MIMO controller is effective in solving
the wind turbine control problem.

4.3. Case Study of the Enercon E-126 EP3 4.0 MW

The Valentia offshore wind farm is a wind farm located on Valentia Island in County
Kerry, on the west coast of Ireland. It was commissioned in 2018 and has an installed
capacity of 10 MW. The wind farm consists of three Enercon E-70 wind turbines, each with
a height of 64 m and a rotor diameter of 70 m. The turbines generate electricity, which is
fed into the grid and supplied to consumers. Valentia Island Wind Park is one of the first
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wind farms in Ireland to be based on wind energy. It contributes to the development of
renewable energy in the region and helps to reduce greenhouse gas emissions, which is an
important step in the fight against climate change.

Although Enercon E-70 wind turbines are currently installed in this location, the E-126
EP3 model was considered in this example because this wind turbine features a new control
system, which is intended to improve the efficiency and performance of the turbine [37].
The control system uses advanced algorithms to optimize the rotor speed and blade pitch
in real time, based on data from sensors that measure wind speed and other factors. This
model is better adapted for use with the proposed controller. To model wind conditions in
the Valentia offshore wind farm area, the NREL Turbsim software Version 1.50 was used.
This program utilizes wind field observations data and models atmospheric turbulence
using mathematical equations. As a result of the modeling, parameters characterizing the
wind field at a given point, including wind speed, were obtained (Figure 9). The reward
function settings for the TRPO agent and its training parameters were adopted similarly to
the previous case study.

Figure 9. The variation in wind speed over the course of a year obtained in NREL TurbSim for the
Valentia offshore wind farm.

In the presented test simulation of the Enercon E-126 EP3 (Figure 10), which was
controlled by the proposed controller, it is evident tha, at low wind speeds of less than or
equal to 4–5 m/s, the VSWT was in the parking region and the generator did not output
power. As the wind speed increased to 10–12 m/s, the controller increased the generator
torque Tgrate to achieve the maximum power output conditions according to the MPPT
strategy and obtained the optimal policy πθ . In the tested case, there were no higher speeds
of 18–25 m/s, where a more significant change in blade pitch angle βrate would be required,
i.e., when the generator torque is not able to “deal” with it.

Figure 10. Cont.
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Figure 10. The simulation plots for the RL-based MIMO controller for the Enercon E-126 EP3 4.0 MW.

5. Conclusions

This paper describes the RL architecture for optimizing the parameters of a wind
turbine MIMO controller using a TRPO-based agent and a base controller. Additional state
variables that are independent of the base controller parameters were used to characterize
the operating state of the system, allowing the TRPO agent to configure the controller
parameters for each operating state. The proposed architecture optimizes the parameters
of each subsystem controller in a coordinated manner to maximize power generation and
minimize unwanted forces. This is different from traditional VSWT control approaches
that separate the control problems into two separate control subproblems.

The proposed approach was tested using realistic simulations that reproduced the
behavior of a wind turbine using CCBlade to simulate the aerodynamic performance of an
NREL 5 MW wind turbine reference model and an E-126 EP3 real model. Computational ex-
periments showed that the proposed architecture can improve the base controllers through
learning the parameters that maximize the global performance of the VSWT as a function
of input variables that were left out of consideration by the original base controllers.
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Abbreviations
The following abbreviations are used in this manuscript:

MIMO Multiple inputs and multiple outputs
VSWT Variable-speed wind turbine
RL Reinforcement learning
MPC Model Predictive Control
AI Artificial Intelligence
TRPO Trust Region Policy Optimization
MPPT Maximum power point tracking
MDP Markov decision process
BEM Blade Element Momentum
LQR Linear quadratic regulator
DFIG Doubly-Fed Induction Generator
FAST Fatigue, Aerodynamics, Structures, and Turbulence
NREL National Renewable Energy Laboratory

KL
Kullback–Leibler
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