
Citation: Li, L.; Huang, R. Multi-Key

Homomorphic Encryption Scheme

with Multi-Output Programmable

Bootstrapping. Mathematics 2023, 11,

3239. https://doi.org/10.3390/

math11143239

Academic Editor: Cheng-Chi Lee

Received: 19 June 2023

Revised: 14 July 2023

Accepted: 18 July 2023

Published: 24 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Multi-Key Homomorphic Encryption Scheme with
Multi-Output Programmable Bootstrapping
Lingwu Li and Ruwei Huang *

School of Computer and Electronic Information, Guangxi University, Nanning 530004, China
* Correspondence: ruweih@126.com

Abstract: Multi-key Homomorphic Encryption (MKHE) scheme can homomorphically evaluate
ciphertexts encrypted by different keys, which can effectively protect the privacy information of data
holders in the joint computing of cloud services. Since the first full Homomorphic encryption scheme
was proposed, bootstrapping is the only way to realize the arbitrary depth homomorphic compu-
tation of MKHE schemes. But bootstrap operation is quite expensive. In order to implement fast
bootstrapping in MKHE schemes, previous works proposed multi-key TFHE schemes to implement
low-latency bootstrapping and output a univariate function of messages after bootstrapping, called
Programmable Bootstrapping (PBS). However, these schemes can only encrypt single-bit messages.
PBS only outputs a function. And after a homomorphic operation, a bootstrap is required, which
undoubtedly results in an increase in the cost of the whole multi-key homomorphic encryption oper-
ation. In this paper, we propose a MKHE scheme for multi-output PBS. For this purpose, we study
the encryption method and homomorphic operation steps of MKHE, and add BFV homomorphic
encryption multiplication and multi-key ciphertext relinearization. We separate the homomorphic
operation from bootstrapping. We homomorphically evaluate test polynomials for multiple functions.
In contrast to previous MKHE schemes, we support the output of multiple message-related func-
tions with a single bootstrapping operation on the ciphertext. It is no longer limited to encrypting
single-bit plaintext, and an effective ciphertext packaging technology is added. According to the
analysis given in this paper, it is known that in the scenario of multi-party joint computation, the
proposed scheme can be implemented with less bootstrapping when the same number of functions
are homomorphically operated. This will effectively reduce the computational overhead.

Keywords: multi-key homomorphic encryption; packaged ciphertext; TFHE; programmable
bootstrapping

MSC: 68W99

1. Introduction

With the development of cloud computing technology, more and more individuals and
enterprises choose to submit their data to cloud servers for computing, thereby reducing
expenses. However, data sent to cloud servers face the risk of data leakage. If the user
does not want to disclose private data to the third party, encrypting the data before trans-
mission is an option, but traditional encryption technology does not support computation
on ciphertext.

Homomorphic encryption (HE) is an effective solution to the above problems. It allows
for the computation of the ciphertext without knowing the plaintext and the keys, and
the calculation result of the ciphertext is homomorphic to the calculation result of the
corresponding plaintext. While the third party only holds the encrypted data, it is difficult
to obtain the plaintext information.

The idea of homomorphic encryption has been proposed for a long time, but because
of the complexity of the construction, the ciphertext calculation algorithm and times are

Mathematics 2023, 11, 3239. https://doi.org/10.3390/math11143239 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11143239
https://doi.org/10.3390/math11143239
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0009-0005-3861-3480
https://doi.org/10.3390/math11143239
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11143239?type=check_update&version=1

Mathematics 2023, 11, 3239 2 of 19

very limited. Not until 2009 did Gentry [1] propose the first fully homomorphic encryption
(FHE). This breakthrough has made homomorphic encryption more practical. After that,
many branches of homomorphic encryption appeared, such as BGV [2], BFV [3,4], GSW [5],
TFHE [6], CKKS [7], et al. However, these basic HE schemes are single key schemes, that
is, ciphertexts participating in homomorphic computing are generated under one key.
Actually, different parties cannot share a key to encrypt data, otherwise it is no different
from directly sending plaintext. Therefore, each party should hold different keys in theory,
and the cloud server can complete the homomorphic calculation of data encrypted with
different keys, which is called multi-key homomorphic encryption (MKHE).

Lopez-Alt et al. [8] first proposed a multi-key homomorphic encryption scheme
based on NTRU in 2012, and subsequently conducted a lot of research on MKHE in various
homomorphic encryption branches. Among them, the earlier and most MKHE schemes [9–12]
are implemented based on the GSW scheme. Then, in 2017, Chen et al. proposed the BGV
type MKHE scheme [13] by combining the methods of BGV and GSW. In 2019, Chen et al.
proposed the MKHE scheme [14] based on TFHE. However, the computational efficiency
of these MKHE schemes is not ideal, which is the problem of MKHE schemes to be solved.
And this is also a major reason why homomorphic encryption methods cannot be widely
used in real scenarios.

At present, the key method for effective fully homomorphic computation is still the
bootstrap method proposed by Gentry [1], which is used to refresh the noise of the cipher-
text, so that the ciphertext can continue to participate in the next homomorphic evaluation.
Specifically, the ciphertext of the homomorphic encryption scheme is added with noise,
and the noise of the ciphertext will expand rapidly when the homomorphic evaluation is
performed. When the noise increases beyond the specified range, the decryption of the
ciphertext will fail, and the expected calculation result will not be achieved. The bootstrap
method is to encrypt the ciphertext into another ciphertext when the noise of the ciphertext
reaches the critical stage but does not exceed the limit, and the inner ciphertext is restored
to the code of the plaintext by using the homomorphic evaluation decryption function to
reduce the noise, so as to meet the homomorphic evaluation again. Then, by performing a
bootstrapping every time the ciphertext noise reaches the upper limit, the circuit of any
depth can be homomorphic, or “pure” fully homomorphic. But bootstrapping is also
very expensive. Therefore, how to improve the efficiency of bootstrapping and make the
multi-key fully homomorphic schemes more practical is an open problem.

Chillotti et al. proposed the fast bootstrapping HE schemes [6,15,16], which are called
TFHE because their ciphertexts are mapped to torus. They are all based on the hardness
assumptions of Learning with Errors (LWE) [17] and Ring-LWE (RLWE) [18]. Their schemes
introduce external products, look-up tables and other methods in bootstrapping, so that the
bootstrapping method has low latency and is better than other homomorphic encryption
schemes in time and availability. Scheme [14] is a multi-key variant of TFHE, which
adopts the advantages of TFHE to realize the MKHE scheme of fast bootstrapping. The
scheme designs a method of a hybrid product, which is used for blind rotation in the
calculation of multi-key ciphertexts, so that the bootstrapping is faster and the noise
control is better. However, their scheme is only a basic MKHE scheme, the function of
bootstrapping is relatively single, and every execution of the NAND gate circuit must run a
bootstrapping operation. The efficiency is low in practice. After that, Chillotti et al. [19,20]
improved TFHE, so that the plaintext message space was no longer limited to binary, and
introduced the multiplication operation of BFV-type to improve the precision number
of plaintext space. At the same time, the scheme satisfied the packing of ciphertexts
and expanded the function of bootstrapping. It realizes multi-functional programmable
bootstrapping (evaluates the function of the ciphertext while refreshing the ciphertext
noise) and does not need to pad zero on the most significant bit of the ciphertext space.
And a bootstrapping operation can homomorphically evaluate multiple functions, which
makes the homomorphic computation more time-efficient. But these schemes are single-

Mathematics 2023, 11, 3239 3 of 19

key schemes. Therefore, how to construct bootstrapping methods that homomorphically
evaluate multiple decryption functions in the MKHE schemes is an interesting question.

1.1. Contributions

In this paper, based on the single-key scheme of [19,20], we improve the MKHE scheme
of scheme [14] and construct a new multi-key variant of TFHE. The advantages of fast
bootstrapping of TFHE schemes are maintained, and more functions are added.

• Ciphertext packing. In our scheme, the space of encryptable plaintext messages has
multiple bits. Each party encrypts the messages with its own key to generate the
RLWE ciphertext. In contrast, scheme [14] can only perform encrypted computation
on binary messages. According to the characteristics of the ciphertext slot, the number
of messages that each party can encrypt is not limited to one, so as to realize the
ciphertext packing of the scheme.

• Bootstrapping is not required for every homomorphic operation. In this paper, we
separate the homomorphic operation of multi-key ciphertexts from bootstrapping.
Consequently, it is not necessary to perform a bootstrapping to refresh the ciphertext
noise after one multi-key ciphertext homomorphic computation, while the known
multi-key TFHE schemes require a bootstrapping operation after each gate run.

• Programmable bootstrapping with multiple outputs. Since each party can encrypt the
plaintext message space to achieve high accuracy, the Look-up table (LUT) of multiple
functions can be set according to the plaintext space when performing multi-party joint
computation. By doing this, you can homomorphically evaluate multiple functions
while performing a single bootstrapping operation.

Finally, we provide the analysis of the operation of our scheme. Compared with
the existing methods, our method maintains the same time complexity and realizes more
functions of bootstrap operation. As we all know, bootstrapping is currently the only way
to achieve fully homomorphic encryption, and it is also the most expensive method. As a
result, our scheme can evaluate more functions with fewer bootstrapping times, which will
greatly reduce the computational overhead. This is also the first attempt of programmable
bootstrapping of multi-output functions in multi-key homomorphic encryption schemes.

1.2. Methodology Overview

The multi-key homomorphic encryption scheme in this paper is based on the standard
LWE and RLWE hardness assumptions. Z is the set of integers, B is the set of {0, 1} and
R = Z[X]/(XN + 1) is the cyclotomic polynomial. The lowercase bold letters denote
vectors (More notations are described in Section 2.1). The encrypted message is placed in
the most significant bits of the ciphertext coefficient. Let the size of the ciphertext space be q.
Due to the fact that bootstrapping refreshes the noise of LWE ciphertext, multi-key cipher-
text computation operates on RLWE ciphertext. Therefore, each participant independently
generates one LWE key and one RLWE key. Assuming there are k participants, the LWE
key and RLWE key of the ith party are si ∈ Bn and ti ∈ B[X]/(XN + 1), respectively. The
ith participant generates LWE ciphertext based on si, and then packages it into RLWE
ciphertext under ti to send it out. The receiver expands a ciphertext into a multi-key ci-
phertext ct = (b, a1, . . . , ak) ∈ Rk+1

q based on the number of participants, and decrypts it
using a joint key t = (1, t1, . . . , tk) ∈ Rk+1

2 , namely µ ≈ b〈ct, t〉eq where µ is the encoding
associated with the plaintext message.

Homomorphic addition does not require special processing. Homomorphic product
uses a tensor product similar to BFV, where the product of two ciphertexts is
ct ⊗ ct ∈ R(k+1)×(k+1)

q . If the ciphertext is decrypted, the key t ⊗ t ∈ R(k+1)×(k+1)
2 is

required. But the resulting ciphertext cannot be homomorphically evaluated again or
decrypted directly using a joint key. Therefore, it is necessary to convert the ciphertext
term corresponding to the nonlinear term ti · tj of the keys into the ciphertext of key t,

and the returned ciphertext ct
′
∈ Rk+1

q satisfies 〈ct
′
, t〉 ≈ 〈ct⊗ ct, t⊗ t〉. Assume that all

Mathematics 2023, 11, 3239 4 of 19

parties share a Common Reference String (CRS) a ∈ Rd
q and set up a gadget decomposition

tool g ∈ Zd. The ith party generates the public key bi ≈ −a · ti ∈ Rd
q and generates the

ciphertext Fi = (fi,0, fi,1, fi,2) ∈ Rd×3
q with the uni-encryption method. Then, through

the ciphertext Fi, the ciphertext item corresponding to ti · tj can be converted into three
terms, corresponding to the keys 1, ti and tj, respectively. The noise of the ciphertext
increases after homomorphic calculation. In order to decrypt correctly or continue to
do homomorphic calculation, it is necessary to refresh the ciphertext noise by bootstrap-
ping. Bootstrapping is accomplished by homomorphic computation of the decryption
formula. First, set a test polynomial P(X) and initialize the RLWE ciphertext. Because
the dimension of the RLWE ciphertext polynomial is N, according to the reflexivity of
the cyclotomic polynomial, the ciphertext space that can be refreshed most by bootstrap-
ping is 2N. Therefore, the ciphertext to be bootstrapped will undergo module switching,
assuming it is ct

′
= (b, a1,1, . . . , a1,N , . . . , ak,1, . . . , ak,N) ∈ ZkN+1

2N , and the corresponding
decryption key is t

′
= (1, t1,1, . . . , t1,N , . . . , tk,1, . . . , tk,N) ∈ BkN+1, that is, the coefficient

combination of all participants’ RLWE keys. If the coefficients of the test polynomial P(X)

are set as functions related to the exponent and homomorphically calculate P(X) · X−〈ct
′
,t
′ 〉,

then the first term of the polynomial is the function related to the plaintext. To compute
〈ct

′
, t
′〉 ≈ b + a1,1 · t1,1 + · · ·+ ak,N · tk,N , it needs to know the keys; however, the keys are

not publishable, so the keys ti,j are encrypted by uni-encryption to generate ciphertexts
Fi,j = (fi,j,0, fi,j,1, fi,j,2) ∈ Rd×3

q , and then the hybrid product calculation is performed.
The hybrid product homomorphically computes ti,j ·Xai,j , and the keys generated in this pa-
per follow uniform binary sampling, using the CMux gate to compute (1− ti,j) + ti,j ·X−ai,j ,

so X−〈ct
′
,t
′ 〉 = X−b ·∏k

i=1∏N
j=1(1− ti,j + ti,j · X−ai,j). The bootstrapping result is an LWE ci-

phertext, which is finally converted into an RLWE ciphertext using the multi-key switching
keys, waiting for the next decryption or homomorphic computation.

This scheme can calculate multiple functions at the same time, mainly based on
the design of the test polynomial P(X) based on [20], and set the ε bits to zero in the
least significant bits of the ciphertext space 2N. Consequently, the decryption function
〈ct

′
, t
′〉 = 4 ·m + 2ε · e is homomorphically calculated, where4 is the scaling factor. Set

the test polynomial P(X) for the plaintext space p, extracting samples from the ciphertext
of the decrypted function after homomorphic evaluation. This process results in 2ε function
ciphertexts related to m.

1.3. Related Works

MKHE scheme was first proposed by Lopez Alt et al. [8] to implement a dynamic
Multi-Party Computation (MPC) protocol based on the NTRU public key cryptosystem. Sub-
sequently, on the basis of the GSW scheme [5], Clear et al. [9] proposed an MKHE scheme sup-
porting multi-identity, whose security is based on the standard assumption LWE problem [17].
Mukherjee et al. [10] simplified the scheme of [9] and used MKHE to construct MPC.
The schemes of [9,10] need to preprocess the number of users involved in the homomorphic
calculation, and are unable to add new users during the calculation process. This type is
called single-hop. Then Peikert et al. [11] and Brakerski et al. [12] proposed the multi-
hop MKHE scheme, respectively; however, Peikert et al.’s scheme limited the number of
participants, and Brakerski et al.’s scheme extended the ciphertext via the bootstrapping
method. The efficiency of the homomorphic operation is low. Chen et al. [14] constructed a
multi-key variant of TFHE to achieve fast bootstrapping in the MKHE scheme, while also
homomorphically evaluating a function in bootstrapping. However, this scheme can only
encrypt binary numbers and does not support packaging technology, and bootstrapping
is performed after each evaluation of the circuit gate. Chen et al. [13] and Li et al. [21]
designed a multi-key variant of the BGV scheme by generating a linearized key based
on the MK-GSW scheme, so that the plaintext space is not limited to the binary number
set, and ciphertext packaging was achieved. Then Chen et al. [22] expanded their work,
and constructed the MKHE scheme based on the homomorphic encryption scheme of

Mathematics 2023, 11, 3239 5 of 19

BFV and CKKS, which optimized the relinearization technology. This technology was
more efficient in ciphertext computing, but did not achieve programmable bootstrapping.
Bootstrapping is needed to implement any number of homomorphic operations. In the
existing multi-key homomorphic encryption schemes, there are hierarchical homomor-
phic encryption operations, that is, the number of homomorphic operations is limited.
Among the schemes that support bootstrapping, only the scheme of TFHE class supports
programmable bootstrapping. However, the existing MKHE schemes only support homo-
morphic operation of binary gates, and there is only one output function of programmable
bootstrapping. In the work of Chillotti et al. [20], it is proposed to introduce BFV-type
ciphertext multiplication into TFHE and realize multi-output programmable bootstrapping
at the same time. However, this scheme is a single-key scheme, that is, it can only calculate
the ciphertext under the same key, and cannot be applied to the case of multi-party joint
computation. To this end, we will optimize this scheme to implement unique functions
in a multi-key homomorphic encryption scheme. In Table 1, the functional comparison
between the proposed scheme and related MKHE schemes is summarized.

Table 1. Functional comparison of MKHE schemes.

Scheme Hardness
Assumption

Homomorphic
Evaluation

Ciphertext
Packaging

Multi-Output
PBS

CCS19 [14] LWE and RLWE NAND gate No No
CDKS19 [22] RLWE Add and Mult Yes No

Ours LWE and RLWE Add and Mult Yes Yes

1.4. Organization

In Section 2, we define or reference some background knowledge, including the basic
knowledge of sample extraction and look-up tables required by the bootstrapping module
in Section 3. We describe the basic components of multi-key homomorphic encryption
in this paper, including key-switching keys generation, ciphertext relinearization and hy-
brid product. In Section 4, we describe the construction of our multi-key homomorphic
encryption scheme, including encryption and decryption of ciphertext, homomorphic eval-
uation and bootstrapping. In Section 5, we conduct an analysis, including a supplementary
analysis of safety, noise, and performance. Some optimization directions are discussed in
Section 6. The conclusion is provided in Section 7.

2. Background Knowledge

In this subsection, we mainly introduce the low-level construction knowledge of MKFHE.

2.1. Notation

Throughout this paper, we use Z to denote the set of integers, B as the set of {0, 1},
bold lowercase letters to denote vectors, and bold uppercase letters to denote matrices.
R = Z[X]/(XN + 1) denotes the ring of integer polynomials modulo the cyclotomic
polynomial XN + 1, where N is a power of two. For a positive integer q, we denote
Rq = (Z/qZ)[X]/(XN + 1) for the integer polynomial ringR with coefficients modulo q,
that is, the coefficient of the polynomial is reduced to [− q

2 , q
2) ∩Z, and generally Z/qZ is

expressed as Zq. Rn
q denotes the integer polynomial ring Rq with integer dimension n.

Let ψ denote the uniform distribution over the set of integer polynomials, where the
coefficients are value 0 or 1 and modulo the cyclotometric polynomial XN + 1. b·e denotes
rounding to the nearest integer value. 〈a, b〉 denotes the inner product of two vectors
a and b. For a positive integer k, set [k] = {1, 2, . . . , k} is denoted by an index set. If D is a
probability distribution, we use d← D to denote the sampling d according to distributionD.
Let Dα be Gaussian distribution with variance α2 where α is a small standard deviation.
Let ωα denote the random distribution over the set of integer polynomials, where the
coefficient values are sampled over Dα. U(S) denotes the uniform distribution on S, which
is a finite set. For two nonnegative real functions f (n) and g(n), denote f (n) = Õ(g(n)) if

Mathematics 2023, 11, 3239 6 of 19

there exists a positive constant c1, c2, N such that f (n) ≤ c1 · g(n) · logc2 g(n) is satisfied for
any n ≥ N.

2.2. LWE and RLWE

The LWE problem and the RLWE problem were respectively introduced by Regev et al. [17],
Lyubaskevsky et al. [18] and the simplified special-case version [23]. In TFHE, three main
types of ciphertexts are used: LWE, RLWE and RGSW. RGSW is mainly used in the
calculation of the external product of ciphertexts. In this paper, we do not use the external
product, so we mainly use LWE and RLWE.

Theorem 1 (LWE Sample). For security parameter λ, let n = n(λ) be an integer dimension, let
q = q(λ) ≥ 2 be an integer, χ = χ(λ) be a distribution over Z and α = α(λ) be a discretized
Gaussian parameter. For secret key s sampled uniformly over χn and error e is sampled uniformly
over Dα. An LWE sample is a pair (b, a) ∈ Zn+1

q , where b = −〈a, s〉+ e (mod q) and a is sampled
uniformly over Zn

q .

Theorem 2 (RLWE Sample). For security parameter λ, let N = N(λ) be an integer with a
power of 2, q = q(λ) ≥ 2 be an integer, ψ = ψ(λ) be a distribution over R and α = α(λ) be a
discretized Gaussian parameter. Secret key s is sampled uniformly over ψ. The error e is sampled
uniformly over ωα. An RLWE sample is a pair (b, a) ∈ R2

q, where b = −a · s + e (mod q) and a is
sampled uniformly overRq.

We define the following two problems based on LWE and RLWE samples:

• Search (R)LWE Problem: For a uniform random secret s, given any number of LWE
(or RLWE) independent sampling distribution, find the corresponding LWE secret (or
RLWE secret).

• Decisional (R)LWE Problem: For a fixed LWE secret (or RLWE secret), the LWE
(or RLWE) samples are distinguished from the samples sampled from Zn+1

q (or R2
q)

uniform distribution.

Lemma 1. In LWE and RLWE problems, there is no difference between a random vector and a vector
(b, a) ∈ Zn+1

q or (b, a) ∈ R2
q from our perspective. We cannot obtain any valuable information

here, so we consider the Decisional (R)LWE Problem is hard.

We assume that the message m ∈ Zq. Add the message to b. So, b = −〈a, s〉+ m + e
(mod q), and obtain the LWE ciphertext (b, a) ∈ Zn+1

q of m. For the same assumption
message m ∈ Rq, we add the message to b that b = −a · s + m + e (mod q), resulting in the
RLWE ciphertext (b, a) ∈ R2

q of m. An additional scaling factor is added when encrypting
in this paper to store the plaintext message in the most significant bits.

For one LWE ciphertext c = (b, a) ∈ Zn+1
q and a key s ∈ Bn, we define the phase

function ϕs(c) as ϕs(c) = b + 〈a, s〉 (mod q). When decrypting, we use c and s to calculate
ϕs(c) = 〈c, (1, s)〉, and then approximately solve for the message m ∈ Zq. The same can be
done similarly for RLWE ciphertexts.

2.3. Part of the Components of TFHE
2.3.1. Gadget Decomposition

The gadget decomposition tool can approximate large numbers and effectively control
the growth of noise in homomorphic evaluation. We define the gadget decomposition as a
function fromRq toRd. Let g = (B0, . . . , Bd−1) ∈ Zd be a gadget vector where base B is an
integer and d is degree. Suppose there is a polynomial ring element a = Rq, and a small
polynomial vector g−1(a) = (u0, . . . , ud−1) ∈ Rd is obtained by gadget decomposition,
where ui ∈ [− B

2 , B
2). So, a = g · g−1(a) = ∑d−1

i=0 Bi · ui (mod q).

Mathematics 2023, 11, 3239 7 of 19

2.3.2. Modulus Switching

Modulus switching mainly changes the modulus of the ciphertext into a different
modulus. For two moduli 2N and q, the LWE ciphertext ct ∈ Zn+1

q is input, and the LWE
ciphertext ct′ ∈ Zn+1

2N is output after modulus switching, without changing the size of the
plaintext message and the key.

2.3.3. Sample Extract

The sample extract algorithm, based on an input index i, extracts an LWE ciphertext,
which is an LWE encryption of the constant coefficient of the ith term of the polynomial
∑N−1

i=0 miXi. Specifically, this algorithm is called RLWE-to-LWE. Assuming that t ∈ R2
q is

an RLWE secret and s ∈ ZN+1
q is an LWE secret, where s is the combination of correlation

coefficients extracted from t, the algorithm does not add additional noise. The expression
for this operation is as follows: SampleExtracti(RLWEt(∑N−1

i=0 miXi))→ LWEs(mi).

2.3.4. Look-Up Table

This is used primarily to represent the function f : ZN → Zq. The test polynomial
F = f0 + f1X + . . . + fN−1XN−1 is encoded using Look-Up Table (LUT) and then it is en-
capsulated into an RLWE ciphertext. During the bootstrapping, the ciphertext is evaluated
assuming that F · X−i, where i is the homomorphic decryption function of the ciphertext,
and the LWE ciphertext is extracted at position ‘0’ through sample extract, revealing that
this is the LWE ciphertext with plaintext message fi. By constructing an appropriate LUT, a
function can be evaluated during bootstrapping refresh of ciphertext. This article references
the construction method of [20] to achieve the evaluation of multiple functions f during
one bootstrapping operation of LWE ciphertext in multi-party computations.

2.4. Multi-Key Homomorphic Encryption

A multi-key homomorphic encryption system allows the computation of ciphertexts
encrypted with different keys. Let M be the message space with arithmetic structure.
A multi-key homomorphic encryption scheme MKHE consists of five PPT algorithms
(Setup, KeyGen, Enc, Dec, Eval). Assume that an index id is set to each party.

• Setup: pp← MKHE.Setup(1λ). Takes the security parameter λ as an input, returns
the public parameter pp.

• Key Generation: (sk, pk) ← MKHE.KeyGen(pp). Generates a pair of private keys
and public keys. We assume that the private keys and public keys set the index id
corresponding to each party.

• Encryption: ctid ← MKHE.Enc(µid, pkid). Encrypts a message µid ∈ M and returns
a ciphertext ctid ∈ {0, 1}∗. Similarly, we assume that the index id of each ciphertext
corresponds to the ciphertext under the corresponding key.

• Decryption: µ ← MKHE.Dec(ct, {skid}id∈[k]) . Given a ciphertext ct with the cor-
responding sequence of secret keys {skid}id∈[k]. Decrypts the ciphertext into a mes-
sage µ ∈ M.

• Homomorphic Evaluation: ct ← MKHE.Eval(C, {ctid}id∈[k], {pkid}id∈[k]). Given a
circuit C and multi-key ciphertexts ct1, . . . , ctk with the corresponding set of public
keys pk1, . . . , pkk , it returns a ciphertext ct. We assume that the output ciphertext
contains information about the relevant parties involved.

Correctness. For 1 ≤ id ≤ k, according to ctid ← MKHE.Enc(µid, pkid), the cipher-
texts of k parties are generated. If the ciphertext of any party is decrypted directly, the
µid ← MKHE.Dec(ctid, {skid}id∈[k]) can be obtained. Let C : Mk → M be a circuit,
the ct is obtained by ciphertext computation MKHE.Eval(C, {ctid}id∈[k], {pkid}id∈[k]) on
the ciphertext of the k party according to the circuit C. Then, the computed ciphertext
is decrypted MKHE.Dec(ctid, {skid}id∈[k]) to obtain C(m1, . . . , mk) with an overwhelming
probability; we call this MKHE scheme correct.

Mathematics 2023, 11, 3239 8 of 19

Semantic Security. Assuming we have any two messages, µ1, µ2 ∈ M. As parameters
MKHE.Setup(1λ) and keys MKHE.KeyGen(pp) are generated, distributions between two
ciphertexts {MKHE.Enc(µid∈{1,2}), pkid∈{1,2}} should be computationally indistinguishable.

3. The Building Blocks of Basic Scheme

This section describes the basic building blocks for building MKHE in LWE and RLWE,
including key switching, relinearization, and hybrid product.

3.1. Basic Modules for LWE Ciphertext and RLWE Ciphertext

This section first describes the parameter settings, basic encryption methods, and key
switching for the generation of LWE ciphertext and RLWE ciphertext.

• Setup(1λ): Given λ as the input security parameter, generate the dimension n of the
LWE, the uniform distribution χ, Gaussian distribution parameter α, the ciphertext
modulus q, and set the variable ε. Generate the dimension N of RLWE, the key
distribution ψ, Gaussian distribution parameter α and the ciphertext modulus q. Set a
CRS a← U(Rd

q), let the LWE public parameter pp = (n, χ, q, α, ε) and RLWE public

parameter pp
′
= (N, ψ, α, q, a), returns parameter pp′′ = (pp, pp′).

In this paper, the bootstrapping algorithm is performed on the LWE ciphertext to
refresh the ciphertext noise. The variable ε selects the refreshed bits during module
switching, and 2ε represents the number of functions that can be output in batch during
bootstrapping. Our basic scheme is to build on the CRS model and obtain the vector a ∈ Rd

q
by sampling according to the generated public parameters pp′. We assume that any party
generates keys and ciphertexts based on common parameters as input, so as to support
arithmetic operations between ciphertexts under different keys.

• KeyGen(pp′′): Sample the LWE secret s← χn, set the LWE secret key s′ = (1, s) ∈ Zn+1
q .

Sample the RLWE secret t ← ψ, set the RLWE secret key t′ = (1, t) ∈ R2
q. Sample

e ← ωd
α as an error vector and set the b = −t · a + e (mod q) ∈ Rd

q as a public key.
Returns the triple (s, t, b).

The coefficients of the MKHE basic keys can be sampled from uniform distribution
or Gaussian distribution, and the keys used in this paper mainly follow uniform binary
distribution sampling. If different sampling methods are used to generate this scheme,
replace the appropriate parameters and modify the CMux gate described in the next section.

• Enc(m, s): To encrypt a message m ∈ Zp. This is the standard LWE encryption.
Generate samples a ← U(Zn

q) and e ← Dα. Let b = −〈a, s〉+ e +4 ·m (mod q) and
returns the ciphertext ct = (b, a) ∈ Zn+1

q .

Suppose q is a ciphertext space, p is a plaintext space, and p < q. Load the plaintext
message into the most significant bits of the ciphertext space, and then add noise to the least
significant bits. Therefore, the scaling factor is4 = q

p , as long as the noise in the ciphertext

does not change the plaintext message, it can be decrypted normally, namely |e| < 4
2 .

• SwitchKeyGen(s1, s2): Generate LWE-to-RLWE key-switching keys. Enter the LWE
key s1 = (s1,1, . . . , s1,n) ∈ Zn

q and the RLWE key s2 ∈ Rq. For i ∈ [n], generate
sample Ai ← U(Rd

q) and ei ← ωd
α, let bi = −Ais2 + s1,i · g + ei (mod q), makes

KSi = [bi|Ai] ∈ Rd×2
q , and return the key-switching keys KSK = {KSi}i∈[n] ∈

(Rd×2
q)n.

Security. The ith term KSi of the key-switching keys adds the value related to the ith term
of the LWE key s1 ∈ Zn

q to the product of the uniform distribution Ai∈ Rd
q and the RLWE

key s2 ∈ Rq in the first column, and adds noise ei. This is similar to encrypting the ith
term of the LWE key s1 under the RLWE key s2 to form a RLWE ciphertext. Assuming
that the key-switching keys items are sampled according to the RLWE parameter (N, ψ, α),
the RLWE decision problem shows that the advantage of distinguishing the key-switching

Mathematics 2023, 11, 3239 9 of 19

keys KSi = [bi|Ai] ∈ Rd×2
q from the independent uniform distribution U(Rd×2

q) is almost
negligible. It is difficult to extract the information of the LWE key s1,i from KSi.

• PKSwitch({cti}
p
i=1, {idi}

p
i=1, KSK): Given the LWE-to-RLWE packing key KSK, p LWE

ciphertexts {cti}
p
i=1 = {(bi, ai)}

p
i=1 ∈ (Zn+1

q)p and p corresponding index idi for
i ∈ [p], packing the LWE ciphertexts into a RLWE ciphertext. Compute
(b
′
i , a
′
i) = ∑n

j=1 g−1(ai,j)·KSj · Xidi (mod q), let b = ∑
p
i=1 bi · Xidi + ∑

p
i=1 b

′
i (mod q),

a = ∑
p
i=1 a

′
i (mod q). Return the packaged RLWE ciphertext ct = (b, a) ∈ R2

q.

Proof. Assuming cti = (bi, ai) ∈ Zn+1
q is a ciphertext about the same LWE key s ∈ Zn

q , set
the index to idi, where i ∈ [p]. KSK = {KSi}i∈[n] ∈ (Rd×2

q)n are the key-switching keys
from s to t ∈ Rq. The following will list the correctness of the packing of the ciphertext
calculation:

p

∑
i=1
〈cti, (1, s)〉·Xidi =

p

∑
i=1

(bi +
n

∑
j=1

ai,j · sj) · Xidi

=
p

∑
i=1

bi · Xidi +
p

∑
i=1

n

∑
j=1

ai,j · sj · Xidi

≈
p

∑
i=1

bi · Xidi +
p

∑
i=1

n

∑
j=1
〈g−1(ai,j), sj · g〉 · Xidi

≈
p

∑
i=1

bi · Xidi +
p

∑
i=1

n

∑
j=1
〈g−1(ai,j) ·KSj, (1, t)〉 · Xidi

=
p

∑
i=1

bi · Xidi +
p

∑
i=1

b
′
i +

p

∑
i=1

a
′
i · t

≈〈ct, (1, t)〉 (mod q).

• MKSwitch(ct, {KSKi}i∈[k]): Given the LWE ciphertext ct = (b, a1, . . . , ak) ∈ ZkN+1
q

under the concatenated key and a sequence of key-switching keys {KSKi}i∈[k], let

(b
′
i , a
′
i) = ∑N

j=1 g−1(ai,j)·KSi,j (mod q) for i ∈ [k] and b
′′
= b + ∑k

i=1 b
′
i (mod q),

a
′ ′
i = ∑k

i=1 a
′
i (mod q). Returns the RLWE ciphertext ct

′
= (b

′′
, a
′ ′
1 , . . . , a

′ ′
k) ∈ R

k+1
q after

the key-switching.

Proof. Suppose that the LWE ciphertext under the concatenated key s = (s1, . . . , sk) is
ct = (b, a1, . . . , ak) ∈ ZkN+1

q , where ai = (ai,1, . . . , ai,N) ∈ ZN
q for i ∈ [k], {KSKi}i∈[k] are

the key-switching keys generated by k participants respectively, and the key of the LWE
ciphertext is transformed from s ∈ ZkN

q to t = (t1, . . . , tk) ∈ Rk
q without changing the

plaintext message. The correctness of the multi-key-switching calculation is listed below:

〈ct, (1, s)〉 =b +
k

∑
i=1

N

∑
j=1

ai,j · si,j ≈ b +
k

∑
i=1

N

∑
j=1
〈g−1(ai,j), si,j · g〉

≈b +
k

∑
i=1

N

∑
j=1
〈g−1(ai,j) ·KSi,j, (1, ti)〉 = b +

k

∑
i=1

b
′
i +

k

∑
i=1

N

∑
j=1

ai,j·ti

=b +
k

∑
i=1

b
′
i +

k

∑
i=1

a
′
iti ≈ 〈ct

′
, (1, t)〉 (mod q).

• UniEnc(m, t): Given a RLWE key t ∈ Rq, enter a plaintext message m ∈ Rq. Generate
the ciphertext F = [f0|f1|f2] ∈ Rd×3

q as follows:

Mathematics 2023, 11, 3239 10 of 19

1. Sample r ← ψ, f1 ← U(Rd
q) and error e1 ← ωd

α. Set f0 = −t · f1 + r · g + e1

(mod q) ∈ Rd
q ;

2. Sample error e2 ← ωd
α, set f2 = r · a + m · g + e2 (mod q) ∈ Rd

q .

This algorithm is a symmetric encryption, which can encrypt a ring element, and the
generated ciphertext consists of three polynomial vectors. Compared with the general
RGSW ciphertext in R2d×2

q , its ciphertext size is about a quarter smaller. The first two
columns of the ciphertext can be viewed as encrypting r with the key t, and the third column
can be viewed as encrypting the message m with r, where r follows the ψ distribution. We
will use uni-encryption to perform tensor products of multiple keys and hybrid products
for bootstrapping.
Security. First, given a plaintext message m ∈ Rq, let RLWE parameters be (N, ψ, α, q)
and declare a distribution D0 = {(a, b, f0, f1, f2) : pp

′ ← Setup(1λ), a ← U(Rd
q),

(t, b) ← KeyGen(pp
′′
), [f0|f1|f2] ← UniEnc(m, t)} over Rd×5

q , denote by CRS, public
key, and uni-encryption of m. Because the first four items are related to the RLWE key
t, and f2 is independent of the RLWE key t. According to the hardness of the RLWE
problem, we can change the definition of the first four items and reveal that D0 is compu-
tationally indistinguishable from distribution D1 = {(a, b, f0, f1, f2) : a, b, f0, f1 ← U(Rd

q),
f2 = r · a + m · g + e2 (mod q)} over Rd×5

q . Then, because r ← ψ follows the same distri-
bution as the RLWE key t, we also change the definition of f2 according to the hardness of
the RLWE problem and get that D1 is computationally indistinguishable from distribution
D2 = {(a, b, f0, f1, f2) : a, b, f0, f1, f2 ← U(Rd

q)} over Rd×5
q . Observe that the uniform

distribution D2 is independent of the given plaintext message m, so it can be considered
that the uni-encryption scheme is semantically secure.

3.2. Relinearization and Hybrid Product

This paper proposes to use uni-encryption to calculate the product of multiple parties’
extended ciphertexts and the key part of bootstrapping. In the case of calculating these
ciphertexts with different keys, a uni-encryption scheme can be effectively homomorphic,
so that each party’s keys meet the semantic security standards. This section will introduce
the two-part components proposed in this paper.

• RLKeyGen(t): Given a key t ∈ Rq. Calculate and return RLK← UniEnc(t, t).

• ReLin(ct, {(RLKi, bi)}i∈[k]): Input a multi-key RLWE ciphertext ct ∈ R(k+1)×(k+1)
q ,

and the relinearization keys and public keys {RLKi = [fi,0|fi,1|fi,2], bi}i∈[k] of the
k participants. Assuming ciphertext ct = (cti,j)0≤i,j≤k, let b0 = −a. The calculation of
the multiplicity of ciphertext associated with the kth party concatenated key follows
the following method:
Let vi,j = 〈g−1(cti,j), bj〉 (mod q), ct

′
0 ← ct0,0, ct

′
i ← cti,0 + ct0,i for i ∈ [k]. And then for

i, j ∈ [k], iterative computations ct
′
0 = ct

′
0 + 〈g−1(vi,j

)
, fi,0〉 (mod q),

ct
′
i = ct

′
i + 〈g−1(vi,j

)
, fi,1〉 (mod q) and ct

′
j = ct

′
j + 〈g−1(cti,j

)
, fi,2〉 (mod q). Returns

the ciphertext ct
′
= (ct

′
0, ct

′
1, . . . , ct

′
k) ∈ R

k+1
q after the multiplicative re-linear product.

Proof. Assuming that the participants have a total of k parties, the concatenated key is
t = (t1, . . . , tk) ∈ Rk

q, given two concatenated ciphertexts, ct1 = (c1,0, . . . , c1,k) ∈ Rk+1
q and

ct2 = (c2,0, . . . , c2,k) ∈ Rk+1
q under the concatenated key, where c1,1 and c2,1 are plaintext

message items b1 and b2 of RLWE ciphertext, respectively. {(RLKi = [fi,0|fi,1|fi,2], bi)}i∈[k]
are the relinearization keys and public keys published by k parties. Let cti,j = c1,i · c2,j

(mod q) ∈ Rq, so ct1 ⊗ ct2 = (cti,j)0≤i,j≤k ∈ R
(k+1)×(k+1)
q . According to the compo-

nent, ct
′
∈ R(k+1)

q is initialized first. And then add ∑k
i=1 ∑k

j=1〈g−1(vi,j), fi,0〉 to the first

term, add ∑k
i=1 ∑k

j=1〈g−1(vi,j), fi,1〉 and ∑k
i=1 ∑k

j=1〈g−1(cti,j), fi,2〉 to the last k entries, re-
spectively. In the iterative calculation of each term, 〈g−1(vi,j), fi,0〉 + 〈g−1(vi,j), fi,1〉 ·
ti ≈ vi,j · ri (mod q), 〈g−1(cti,jfi,2〉 · tj ≈ g−1(cti,j) · ri · a · tj + cti,j · ti · tj ≈ −vi,j · ri +

Mathematics 2023, 11, 3239 11 of 19

cti,j · ti · tj (mod q), so (〈g−1(vi,j), fi,0〉, 〈g−1(vi,j), fi,1〉, 〈g−1(cti,j), fi,2〉) · (1, ti, tj) ≈ cti,j ·
ti · tj (mod q) . The correctness of the ciphertext relinearization is calculated as follows:

〈ct
′
, (1, t)〉 =ct

′
0 +

k

∑
i=1

ct
′
i · ti = ct0,0 +

k

∑
i=1

k

∑
j=1
〈g−1(vi,j), fi,0〉

+(
k

∑
i=1

(cti,0 + ct0,i) +
k

∑
i=1

k

∑
j=1
〈g−1(vi,j), fi,1〉) · ti +

k

∑
i=1

k

∑
j=1
〈g−1(cti,j), fi,2〉 · tj

=ct0,0 +
k

∑
i=1

(cti,0 + ct0,i) · ti +
k

∑
i=1

k

∑
j=1

cti,j · ti · tj

=〈ct1 ⊗ ct2, (1, t)⊗ (1, t)〉 (mod q).

• Prod(ct, Fi, {bj}j∈[k]): Input multi-key RLWE ciphertext ct ∈ Rk+1
q and the ith party’s

uni-encryption ciphertext Fi ← UniEnc(m, ti) and k participants public keys {bj}j∈[k].
Assuming RLWE ciphertext ct = (ct0, ct1, . . . , ctk) ∈ Rk+1

q , let b0 = −a, for 0 ≤ i ≤ k.
The calculation follows the following method:
Let vj = 〈g−1(ctj), bj〉 (mod q), return the ciphertext after the hybrid product

ct
′
= (ct

′
0, ct

′
1, . . . , ct

′
k) ∈ R

k+1
q , where ct

′
0 = 〈g−1(ct0), fi,2〉 + ∑k

j=0〈g−1(vj), fi,0〉
(mod q), ct

′
i = 〈g−1(cti), fi,2〉+ ∑k

j=0〈g−1(vj), fi,1〉 (mod q) and ct
′
j = 〈g−1(ctj), fi,2〉

(mod q) for j ∈ [k]\{i}.

Proof. Assuming that the participants have a total of k parties, the concatenated key
is (1, t) = (t0 = 1, t1, . . . , tk) ∈ Rk+1

q . According to the component conditions, the first
term of the hybrid product output result is 〈g−1(ct0), fi,2〉+ ∑k

j=0〈g−1(vj), fi,0〉 (mod q),

the ith term is 〈g−1(cti), fi,2〉+ ∑k
j=0〈g−1(vj), fi,1〉 (mod q), the remaining (k− 1) terms

are 〈g−1(ctj), fi,2〉 (mod q), respectively. Because of the 〈g−1(vj), fi,0〉 + 〈g−1(vj), fi,1〉 ·
ti ≈ vj · ri (mod q), 〈g−1(cti), fi,2〉 · tj ≈ g−1(cti) · ri · a · tj + cti,j · m · tj ≈ −vj · ri + cti ·
m · tj (mod q), the correctness of the ciphertext hybrid product is computed as follows:

〈ct
′
, (1, t)〉 =

k

∑
j=0

ct
′
j · tj =

k

∑
j=0
〈g−1(ctj, fi,2〉 · tj +

k

∑
j=0
〈g−1(vj), fi,0〉+

k

∑
j=0
〈g−1(vj), fi,1〉 · ti

≈
k

∑
j=0

ctj ·m · tj = m · 〈ct, (1, t)〉 (mod q).

• CMux(ct1, ct2, Fi, {b}j∈[k]): Given two multi-key RLWE ciphertexts ct1, ct2 ∈ Rk+1
q ,

and the uni-encrypted ciphertext Fi of the ith party and the public keys {b}j∈[k] of the

k parties. Return the ciphertext ct
′
= ct1 + Prod(ct2 − ct1, Fi,

{
bj
}

j∈[k]).

As described above, our keys sampling follows a uniform binary distribution, and the
CMux gate chooses the output ct1 or ct2 according to the key ti ∈ B.

4. MKHE with Multi-Output Bootstrap
4.1. Description

This section describes the multi-key scheme with single bootstrapping and multi-
output for the proposed scheme.

• MKHE.Setup(1λ): Given the security parameter λ. Run Setup(1λ) to generate the LWE
public parameter pp = (n, χ, q, α, ε) and the RLWE public parameter
pp′ = (N, ψ, α, q, a). Return the public parameter pp′′ = (pp, pp′).

Mathematics 2023, 11, 3239 12 of 19

• MKHE.KeyGen(p′′): Suppose that each party independently generates its own keys
based on the input parameter pp′′ and follows the following method:

1. Run KeyGen(p′′) to generate the LWE secrets, RLWE secrets and public keys as the
triple (si, ti, bi). Assuming ti = ti,0 + ti,1X + . . . + ti,N−1XN−1, let
t
′
i = (ti,0, ti,1, . . . , ti,N−1) and PKi = bi. Return the LWE secret si.

2. Run SwitchKeyGen(si, ti) to generate packing key-switching keys PKSKi =
{PKSi,j}j∈[n] and return.

3. Run RLKeyGen(ti) to generate the relinearization keys PLKi = [fi,0|fi,1|fi,2].
4. Run UniEnc(ti,j, ti) to generate Fi,j = [fi,j,0|fi,j,1|fi,j,2] for j ∈ [N], let BKi =

{Fi,j}j∈[N].

5. Run SwitchKeyGen(t
′
i, ti) to generate key-switching keys KSKi = {KSi,j}j∈[N].

Public the quadruples (PKi, PLKi, BKi, KSKi) of public keys, relinearization keys,
bootstrapping keys, and key-switching keys.

• MKHE.Enc(m, si, PKSKi): Take a message m ∈ Zq, secret si and packing key-switching
keys PKSKi. Run Enc(m, si) to generate LWE ciphertext ct∗i ∈ Zn+1

q , then run
PKSwitch({ct∗i }, {0}, PKSKi) to pack LWE ciphertext into a RLWE ciphertext, gener-
ate RLWE ciphertext cti = (bi, ai) ∈ R2

q.

In this paper, the ciphertext of the ith party is packed into the RLWE ciphertext, and
the index idi is 0 when there is only one LWE ciphertext. If each party has multiple LWE
ciphertexts, the product of multiple LWE ciphertexts can be achieved according to the
change idi. See [20] for more details.

• MKHE.Dec(ct, t1, . . . , tk): Given a ciphertext ct ∈ Rk+1
q and a set of keys t1, . . . , tk

of the associated partys, set key t = (1, t1, .., tk) ∈ Rk+1
q . Compute b 1

4 b〈ct, t〉eqe to
decrypt the RLWE ciphertext.

Next, the computation of the MKHE scheme will be described. Before this, the cipher-
text needs to be preprocessed, and the RLWE ciphertexts of all parties are extended to the
ciphertext under the concatenated key. By default, this paper preprocesses all the RLWE
ciphertext before homomorphic calculation. Assuming that the number of parties is k, the
extended ciphertext should satisfy the concatenated secret key t = (1, t1, .., tk) ∈ Rk+1

q .

Rearrange and combine the input ciphertext cti = (bi, ai,id1 , . . . , ai,idki
) ∈ Rki+1

q , the asso-

ciated index tuple is (id1, .., idki
) ∈ [k]ki , where ki ≤ k. Then the extended ciphertext is

cti =
(

bi, a
′
i,id1

, . . . , a
′
i,idk

)
∈ Rk+1

q , padding empty slots with zero.

So, a
′
i,j =

{
ai,idl

if j = idl for l ∈ [ki],
0 otherwise;

, for j ∈ [k]. We can conclude that

〈cti, t〉 = 〈cti, (1, tid1 , .., tidki
)〉.

• MKHE.Add(ct1, ct2): Given two RLWE ciphertexts ct1, ct2 ∈ Rk+1
q , comput the cipher-

text ct = ct1 + ct2 (mod q) and return ct.

• MKHE.Mult(ct1, ct2, {(RLKi, PKi)}i∈[k]): Given two RLWE ciphertexts ct1, ct2 ∈ Rk+1
q ,

relinearization keys and public keys {(RLKi, PKi)}i∈[k] by all parties involved. First

calculate ct
′
= b ct1⊗ct2

4 eq, then run ct← ReLin(ct
′
, {(RLKi, PKi)}i∈[k] and return ct.

After completing the homomorphic addition or multiplication of two ciphertexts, the
noise of the ciphertext will grow rapidly. In the next step, we reference the method of [14]
homomorphic accumulator to complete bootstrapping. That is, the decryption circuit of
the extended LWE ciphertext is evaluated to realize the refresh of the noise. We obtain the
ciphertext ct ∈ Rk+1

q after homomorphic calculation, and use the sample extract algorithm
to convert RLWE ciphertext into LWE ciphertext. Run SampleExtracti(ct). According to
the index extracted from the packed ciphertext, the key of the LWE ciphertext obtained is
the permutation and combination of the polynomial coefficients of the concatenated key t.
Finally, the LWE ciphertext ct

′
∈ ZkN+1

q is returned.

Mathematics 2023, 11, 3239 13 of 19

• MKHE.BS(ct
′
, {(PKi, BKi, KSKi)}i∈[k], P(f1,..., f2ε), ε): Given a multi-key LWE cipher-

text ct
′
= (b, a1, . . . , ak) ∈ ZkN+1

q , group {(PKi, BKi, KSKi)}i∈[k] formed by public
keys, bootstrapping keys and key-switching keys of the k parties, LUT functions
P(f1,..., f2ε) and modulus switching parameters ε.

1. Compute b
′
= bb · 2N

q · 2−εe · 2ε (mod 2N), a
′
i = bai · 2N

q · 2−εe · 2ε (mod 2N) for

i ∈ [k], where a
′
i = (a

′
i,1, . . . , a

′
i,N) ∈ ZN

2N .
2. According to the LUT function, P(f1,..., f2ε) generates a trivial RLWE ciphertext

ct = (4 · X−b
′
· P(f1,..., f2ε), 0) ∈ Rk+1

q .
3. Let BKi = {Fi,j = [fi,j,0|fi,j,1|fi,j,2]}j∈[N]. Given i ∈ [k] and j ∈ [N], recursive run

generation ct
′′
← CMux(ct, ct · X−a

′
i,j , Fi,j, {PKl}l∈[k]).

4. Given i ∈ [2ε], run SampleExtracti−1(ct
′′
) to iterative extraction and generate the

LWE ciphertext ci ∈ ZkN+1
q .

5. Let KSKh = {KSh,l}l∈[N] for h ∈ [k], run cti ← MKSwitch(ci, {KSKh}h∈[k]}) for
i ∈ [2ε]. Return 2ε RLWE ciphertexts {cti}i∈[2ε] ∈ (Rk+1

q)2ε
with respect to the

concatenated keys.

Using ε bits, the least significant bits can be used as the index of the bootstrapping
function; thus, the plaintext message space will be correspondingly reduced, set plaintext
message space p = q

4·2ε+1 . LUT function P(f1,..., f2ε) ∈ Rq is a polynomial composed of 2ε

functions, where 0 < 2ε < 4′ for scaling factor4′ = 2N
p . Set ordinary RLWE ciphertext

ct as an accumulator and perform CMux gate operation on it. Fi,j is the uni-encryption

for ti,j ∈ B where i ∈ [k] and j ∈ [N]. Using Fi,j as the selection parameter, ct or ct · Xa
′
i,j

can be homomorphically selected by the method of mixed product. Let plaintext space
m ∈ [0, p− 1], t′ = (1, t

′
1, . . . , t

′
k) ∈ ZkN+1

q . The calculation shows that 〈ct′′, t′〉 ≈ 4 ·

P(f1,..., f2ε) · X−b
′−∑k

i=1 〈ai ,t
′
i 〉 ≈ 4 · P(f1,..., f2ε) · X−〈ct

′
,t
′ 〉 ≈ 4 · P(f1,..., f2ε) · X−4

′ ·m. Therefore,

the LUT function is rotated by 4′ ·m, and the entries of coefficients f1(m), ..., f2ε(m) are
moved to the first 2ε terms. Then the first 2ε LWE ciphertexts are extracted and they are the
result of homomorphic evaluation.

Finally, the ciphertext under the LWE key was replaced by the ciphertext under the
RLWE key in the key-switching, waiting for the next homomorphic decryption or the
multi-key ciphertext homomorphic calculation again. After bootstrapping, the ciphertext
ct ∈ ZkN+1

q satisfies 〈ct, t′〉 ≈ 4 · f (m) (mod q), the key is t′ = (1, t
′
1, . . . , t

′
k) ∈ ZkN+1

q .
Replace the LWE key with the RLWE key (1, t) = (1, t1, . . . , tk) ∈ Rk+1

q with the key-switching
keys. Then the corresponding ciphertext satisfies 〈ct, (1, t)〉 ≈ 4 · f (m) (mod q).
Security. This paper uses uni-encryption to generate bootstrapping keys and key-switching
keys. It has been indicated in Section 3.2 that the keys meet semantic security standards.
In order to enable the homomorphic encryption system to still have enough space for
homomorphic computation (homomorphic addition or homomorphic multiplication) after
a homomorphic computation of the decryption function, and to achieve any depth of
homomorphic computation, we need to use the bootstrapping keys cyclically. So, as with
many bootstrapping homomorphic encryption schemes, we propose an additional circular
security assumption. Because the generation of these keys meets the semantic security, it is
difficult to distinguish these ciphertexts from other ciphertexts. Consequently, we believe that
the circular security hypothesis is secure.

4.2. Distributed Decryption

In an ideal homomorphic encryption scheme, each party only has its own key and
does not know the keys of other parties. However, when decrypting a multi-key ciphertext,
all the keys of the parties are needed, so it is not practical to complete the decryption

Mathematics 2023, 11, 3239 14 of 19

without revealing the keys of all parties. In practical applications, such as MPC schemes,
efficient protocols can be designed for joint decryption. This paper cites [24] to implement a
simple distributed decryption based on noise flooding technology. Specific parameters and
security can be referred to in this paper. A noise distribution ϕ with variance larger than
the standard error distribution ψ of the basic scheme is first set, and a noise is added to the
calculation of each party. Distributed decryption is roughly divided into two parts. The
first part sends the items in RLWE ciphertext ct = (b, a1, . . . , ak) ∈ Rk+1

q except for those
with plaintext messages to the corresponding participants, and each participant partially
decrypts them and sends them out again. The second part is to connect the partially
decrypted messages. The specific structure is as follows:

• MKHE.PartDec(ai, ti): Given the (1 + i) term ai ∈ Rq of the RLWE ciphertext that
needs to be decrypted, as well as the RLWE key ti ∈ Rq of the ith party, sample an
error ei ← ϕ. Generate message mi = ai · ti + ei (mod q) and return.

• MKHE.Merge(b, {µi}i∈[k]): Provide the first item b ∈ Rq of RLWE ciphertext, {µi}i∈[k]
are the partially decrypted messages from all participants. Calculate µ = b+∑k

i=1 µi · ti
(mod q). Return m = bµ/4eq.

5. Analysis
5.1. Security

As mentioned above, the basic encryption method in this article is based on the LWE
and RLWE assumptions, using the uni-encryption method to generate relinearization keys
and bootstrapping keys to complete the calculation of multi-key ciphertext. Consequently,
the selected LWE parameters and RLWE parameters should meet the security level of at
least λ bits. The basic principle is to add the encoded plaintext to a random encryption
of zero to generate ciphertext, and then we can perform homomorphic evaluation on this
ciphertext. The security of encryption generated key-switching keys, relinearization keys,
and bootstrap keys methods are evaluated in Section 3.1.

• LWE problem. The LWE parameters (n, χ, q, α) are obtained according to the parameter
generation, secret s = (s1, . . . , sn) ← χn. Let Dα as an error distribution over Zq.
The decisional learning with errors problem is to distinguish distributions D0 and D1,
among them D0 = {(b, a) : a = (a1, . . . , an) ← U(Zn

q), e ← Dα, b = −∑n
i=1 ai · si +

e (mod q)}, D1 = {(b, a) : a← U(Zn
q), b← U(Zq)}.

• RLWE problem. The RLWE parameters (N, ψ, α, q) are obtained according to the
parameter generation, secret t ← ψ. Let ωα as an error distribution over Rq. The
decisional ring learning with errors problem is to distinguish distributions D0 and D1,
among them D0 = {(b, a) : a ← U(Rq), e ← ωα, b = −a · t + e (mod q)},
D1 = {(b, a) : a← U(Rq), b← U(Rq).

We base security on the LWE assumption. Firstly, if the adversary can distinguish
between LWE encrypted vectors and uniform random vectors on Zn+1

q , then the adversary
can solve the LWE problem. However, when the security level is at least λ bits, the LWE
problem is hard, so the adversary cannot distinguish effectively. Secondly, if the adversary
can effectively select the LWE encryption vector on Zn+1

q , but ciphertext generated by this
encryption is independent of the plaintext message, making it difficult for the adversary
to find plaintext messages from the ciphertext. The same holds for the RLWE assumption,
and the adversary cannot solve the RLWE problem efficiently.

5.2. Noise Analysis

In Section 2.3 we introduced the base B and degree d of the gadget decomposition tool,
and we know that the decomposition vectors are uniformly distributed over the interval

(− 1
B , 1

B] ∩Z. Set the variance to B =

{
1/12 ·

(
B2 − 1

)
for B is odd,

1/12 ·
(

B2 + 2
)

for B is even;
. Applying the decom-

position will produce errors that are uniformly distributed in the interval (− 1
2·Bd , 1

2·Bd],
and we set the variance to ξ2 = 1

12·B2d . Gadget decomposition tools are used in the key

Mathematics 2023, 11, 3239 15 of 19

switching and uni-encryption of the proposed scheme. We assume that the coefficients of
the polynomial have the same independent random distribution, and noise estimates are
provided next.

LWE encryption. To encrypt a message m ∈ Zp, obtain ciphertext ct = (b, a) ∈ Zn+1
q

where samples a ← U(Zn
q), e ← Dα and b = −〈a, s〉+ e +4 · m (mod q). Calculating

phase ϕs(ct) = e +4 ·m (mod q). Hence, the noise of LWE encryption eLWEenc = e. The
variance is VLWEenc = α2.

LWE ciphertext packing. According to Section 3.1, RLWE ciphertext ct = (b, a) ∈ R2
q

is generated by packing ciphertext. The calculating phase is

ϕt(ct) =
p

∑
i=1

bi · Xidi +
p

∑
i=1

n

∑
j=1
〈g−1(ai,j) ·KSj, (1, t)〉 · Xidi

=
p

∑
i=1

(bi +
n

∑
j=1
〈g−1(ai,j) · (−Ajt + sj · g + ej, Aj), (1, t)〉) · Xidi

=
p

∑
i=1

(bi +
n

∑
j=1

(ai,j · sj + g−1(ai,j) · ej)) · Xidi

=
p

∑
i=1

(ei +4 ·mi +
n

∑
j=1

(e
′
i,j · sj + g−1(ai,j) · ej)) · Xidi (mod q).

Then, ∑
p
i=1 eiXidi is the noise-generated polynomial of p LWE ciphertext, ∑

p
i=1 ∑n

j=1(e
′
i,j ·

sj + g−1(ai,j) · ej) ·Xidi is the noise added by the packed ciphertext. e
′
i,j = 〈g−1(ai,j), g〉− ai,j

is the noise created by decomposition; it is concluded that packaging ciphertext ∑
p
i=1 miXidi

noise variance for Vpk = α2 + n(1
2 ξ2 +Bdα2).

Relinearization. According to Section 3.2, the multi-key ciphertext ct
′
= (ct

′
0, ct

′
1, . . . ,

ct
′
k) ∈ R

k+1
q is generated by relinearizing the ciphertext ct = (cti,j)0≤i,j≤k ∈ R

(k+1)×(k+1)
q .

In each iteration of uni-encryption, 〈g−1(vi,j), fi,0〉 + 〈g−1(vi,j), fi,1〉 · ti = vi,j · ri + e
′
i,j +

g−1(vi,j) · ei,0 (mod q), 〈g−1(cti,j), fi,2〉 · tj = −vi,j · ri + 〈g
−1(cti,j), ej · ri + ei,2 · tj〉 +

(cti,j + e
′′
i,j) · ti · tj (mod q). Where e

′
i,j = 〈g−1(vi,j), g〉 − vi,j and e

′′
i,j = 〈g−1(cti,j), g〉 −

cti,j denote the noise generated by the decomposition. The phase ϕt(ct
′
) = ϕt⊗t(ct) +

∑k
i=1 ∑k

j=1(e
′
i,j + g−1(vi,j) · ei,0 + 〈g−1(cti,j), ej · ri + ei,2 · tj〉+ e

′′
i,j · ti · tj) (mod q) is calcu-

lated by summing the two equations. To obtain noise variance, Vrelin = k2(ξ2 + (N +

N2)B · d · α2 + N2

4 ξ2) ≈ k2N2(Bdα2 + ξ2).
Multiplication. Given two RLWE ciphertexts ct1, ct2 ∈ Rk+1

q , calculate 〈cti, t
′〉 =

4 · mi + ei + q · Hi for i ∈ {1, 2}, where Hi = b 〈cti ,t
′ 〉

q e. So, the variance var(Hi) = 1
q2 ·

q2−1
12 · (1 +

1
2 · k · N) ≈ kN

24 . Next, calculate the ciphertext tensor product 〈ct1, t
′〉 · 〈ct2, t

′〉 =
(4 ·m1 + e1 + q · H1) · (4 ·m2 + e2 + q · H2) = 4 · (4 ·m1m2 + m1e2 + m2e1) + e1e2 + q ·
(4 ·m1H2 + e1H2 +4 ·m2H1 + e2H1 + q · H1H2) (mod 4 · q) before taking the module.
Then, divide it by 4 and round it to get the phase ϕt′ (ct1 ⊗ ct2) = 4 · m1m2 + m1e2 +

m2e1 +
e1e2
4 + q(m1H2 + m2H1 +

q
4 · H1H2) +

q
4 (e1H2 + e2H1) + er (mod q) of tensor prod-

uct, where q(m1H2 + m2H1 +
q
4 · H1H2) overlaps the module q, er is the rounding error.

Then, the total noise term is emulti = m1e2 +m2e1 +
e1e2
4 ++ q

4 (e1H2 + e2H1) + er. Compute

the major term q
4 (e1H2 + e2H1) and obtain the noise variance Vmulti ≈

kN2q2

24·42 (α
2
1 + α2

2).
Bootstrapping. As described in Section 4.1, suppose that RLWE ciphertext ct =

(ct0, ct1, . . . , ctk) ∈ Rk+1
q encapsulates 2ε plaintext function values, which are noise free. To

refresh the noise of LWE ciphertext ct
′
= (b, a1, . . . , ak) ∈ ZkN+1

q , it is necessary to calculate
kN times hybrid product.

Mathematics 2023, 11, 3239 16 of 19

1. Hybrid product. The bootstrapped ciphertext is a uni-encrypted set of LWE keys t ∈ B,
and the phase ϕt(ct) = ∑k

j=0 〈g−1(ctj), f2〉 · tj +∑k
j=0〈g−1(vj), f0〉+∑k

j=0〈g−1(vj), f1〉 ·
ti (mod q) is computed. Among them ∑k

j=0 〈g−1(ctj), f2〉 · tj = ∑k
j=0 〈g−1(ctj), (r · a+

t · g + e2) · tj〉 = ∑k
j=0 〈g−1(ctj), (r · (−b + e) + t · g · tj + e2 · tj)〉 = t ·∑k

j=0 ctj · tj −
∑k

j=0 vj · r+∑k
j=0〈g−1(ctj), (r · e + t · e′ · tj + e2 · tj)〉 (mod q), and ∑k

j=0〈g−1(vj), f0〉+
∑k

j=0〈g−1(vj), f1〉 · ti = ∑k
j=0〈g−1(vj),−ti · f1 + r · g + e1〉 + ∑k

j=0〈g−1(vj), f1〉 · ti =

∑k
j=0〈g−1(vj), r · g + e1〉 = ∑k

j=0 vj · r + ∑k
j=0〈g−1(vj), (r · e′′ + e1)〉 (mod q). Hence,

ϕt(ct) = t ·∑k
j=0 ctj · tj + ∑k

j=0〈g−1(ctj), (r · e + t · e′ · tj + e2 · tj)〉+ ∑k
j=0〈g−1(vj), (r·

e′′ + e1)〉 (mod q). To obtain the calculated noise, we use the following equation:
ehybrid = ∑k

j=0〈g−1(ctj), (r · e + e2 · tj)〉 + ∑k
j=0(t · e

′ · tj + r · e′′) + ∑k
j=0〈g−1(vj), e1〉.

e′ and e′′ are noises generated by the decomposition. So, it is necessary to complete
the noise variance Vhybrid ≈ kN(NBdα2 + ξ2) of the hybrid product once.

2. CMux gate. Since the secret keys are sampled from a uniform binary distribution,

ct = ct ·X−a
′
i,j ·ti,j = ct+ ti,j · (ct ·X−a

′
i,j − ct) are computed iteratively for i ∈ [k], j ∈ [N].

Then, the uni-encrypted ciphertext of ti,j is used for homomorphic computation. Let

c = ct · X−a
′
i,j − ct = (c0, c1, . . . , ck) ∈ Rk+1

q , calculate the hybrid product once to get
the phase ϕt(ct) = ∑k

j=0 ctj · tj + ti,j · ∑k
j=0 cj · tj + ehybrid. c is regarded as the result

of the homomorphic addition of two RLWE keys. Since the initial RLWE ciphertext
is noise-free, the amount of noise increase after each run of the CMux gate can be
considered as ehybrid. Run the CMux gate kN times in a bootstrapping operation; then,
the final noise variance is VCMux ≈ 3kNVhybrid ≈ 3k2N2(NBdα2 + ξ2).

3. Key Switching. The above computation is then extracted to generate LWE ciphertexts.
Let one of them be c ∈ ZkN+1

q , and the key switching converts it into RLWE ciphertexts
c′ ∈ Rk+1

q . So there’s

〈c′, (1, t)〉 =b +
k

∑
i=1

b
′
i +

k

∑
i=1

a
′
iti = b +

k

∑
i=1

N

∑
j=1

g−1(ai,j) ·KSi,j · (1, ti)

=b +
k

∑
i=1

N

∑
j=1
〈g−1(ai,j), (−Ai,j · ti + si,j · g + ei,j, Ai,j · ti)〉

=b +
k

∑
i=1

N

∑
j=1
〈g−1(ai,j), (si,j · g + ei,j)〉

=b +
k

∑
i=1

N

∑
j=1

ai,j·si,j +
k

∑
i=1

N

∑
j=1

(e
′
i,j · si,j + 〈g−1(ai,j), ei,j〉) (mod q),

where e
′
i,j is the noise generated by the decomposition. Then, the noise variance of the

key exchange is Vswith = kN(1
2 ξ2 + NBdα2).

The noise variance of the final bootstrapping operation is approximately Vboot =
VCMux + Vswith ≈ 3k2N2(NBdα2 + ξ2).

5.3. Performance Analysis

The MKHE scheme proposed in this paper is an extension of the multi-key TFHE
scheme. The main purpose is to extend the functionality of bootstrap in the multi-key
homomorphic encryption scheme, that is, to evaluate multiple functions homomorphically
under a single refresh noise. At the same time, as much as possible, the computational
efficiency is not degraded. Therefore, this paper mainly compares with the scheme [14].
Table 2 will list the comparison results.

Mathematics 2023, 11, 3239 17 of 19

Table 2. Comparison of main parameters of multi-key TFHE scheme. Where k is the number of
parties, n is the dimension assumed by (R)LWE, ε is the number of output function bits and ε ≥ 0.

Scheme
Ciphertext

Space
Complexity

Homomorphic
Evaluation

Time
Complexity

Bootstrapping
Time

Complexity

The Number of
PBS Outputs

CCS19 [14] Õ(kn) Õ(k2n2) Õ(k2n2) 1
Ours Õ(kn) Õ(k2n) Õ(k2n2) 2ε

From the table comparison analysis, we can see that the space and time performance
of bootstrapping in this paper is consistent with the scheme of CCS19. Since each com-
putation of the NAND gate of CCS19 requires a bootstrap, their homomorphic operation
time complexity coincides with the bootstrap time complexity. In this paper, the homo-
morphic operation is separated from bootstrapping, so bootstrapping is not required after
each homomorphic operation.The plaintext space of the CCS19 scheme is binary, and the
utilization of the test polynomial encoded by LUT in bootstrapping is only 2

n . The plaintext
space of this paper is p, which is no longer restricted to binary values. According to the
reasonable setting of parameter ε, the proposed scheme can evaluate 2ε functions at the
same time in a bootstrap operation without adding additional noise, and the utilization
of the LUT-encoded test polynomial is improved to p·2ε

n . Therefore, in the scenario of
multi-party joint computation, when homomorphically computing the same number of
functions, the proposed scheme can be implemented with fewer bootstrapping operations,
which will effectively reduce the computational overhead.

6. Discussion

This scheme is a multi-key variant of the TFHE scheme, based on [20]. The selection of
parameters can be referred to in this paper. This scheme is a basic multi-key scheme, which
realizes the packing of ciphertext, homomorphic addition, tensor product and bootstrap-
ping method of multi-output functions. We prove that the homomorphic calculation and
bootstrapping method of ciphertext are effective, so it is easy to expand more homomorphic
encryption functions and optimize based on this scheme.

A bootstrapping scheme without padding. Scheme [20] implements a high-precision
homomorphic encryption scheme. Their bootstrapping method allows the most significant
bit of the ciphertext to be non-zero, thereby increasing the plaintext message space and
enabling the encryption of larger plaintexts. The basic function of this scheme is based
on [20], so it is easy to expand the unfilled multi-key bootstrapping method in our scheme.
The disadvantage is that their no-fill scheme requires more bootstrapping operations, while
the bootstrapping operation in the homomorphic encryption scheme is quite expensive,
thus greatly increasing the time and computational complexity. One improvement direction
is to increase the number of bits in the plaintext space while simultaneously reducing
computational complexity.

Faster evaluation LUT. This scheme applies LUT in the bootstrapping module.
Two methods of packaging and calculating the LUT in the TFHE bootstrapping scheme
are implemented in paper [15]. The ciphertext construction in this paper is in line with
the TFHE scheme. Therefore, their LUT packing technique can be referred to in order to
achieve a faster bootstrapping calculation of our scheme.

A faster MKHE scheme. The multi-key ciphertext homomorphic computation and
bootstrapping method of this scheme are based on [14,22]. The hybrid product of [14] and
the relinearization algorithm of [22] were optimized in [25,26], respectively, to improve
the computational speed. It is easy to see that our scheme can also use their optimization
schemes to improve the computation speed of the ciphertext multiplication and bootstrap-
ping part of the homomorphic encryption.

Mathematics 2023, 11, 3239 18 of 19

7. Conclusions

The homomorphic encryption scheme can calculate the ciphertext. So, it can effectively
reduce the risk of data leakage of the data holder in the cloud computing environment.
However, most of the current homomorphic encryption schemes are designed for a single
key. In practical scenarios, many outsourced computing requires homomorphic operations
of data provided by different owners. Therefore, it is not limited to encrypting messages
with a single key. In the existing MKHE schemes which support PBS, there are problems
that a ciphertext can only encrypt binary message and only one function can be output at
a time with PBS. In this paper, we specifically describe the MKHE scheme that supports
multi-output PBS, so that multi-key ciphertexts can store high-precision plaintext messages.
The tensor product and its relinearization are added to the computation of the multi-key
ciphertexts. We separate the homomorphic operation from bootstrapping and implement
a fast bootstrapping function similar to TFHE. At the same time, multiple functions can
be homomorphically evaluated in a bootstrapping calculation, which enables faster ho-
momorphic computation when there are multiple computing requirements. Our scheme
also supports the packing technique of ciphertexts. Finally, we present the performance
analysis. The results show that the scheme has better application scenarios.

In the discussion section, we discuss some improvement directions of this scheme. In
addition, we can also consider how to homomorphically evaluate multiple functions at the
bootstrapping time without reducing the plaintext space. Based on the concepts presented
in this paper, we propose a CRS-free multi-key homomorphic encryption scheme. This
scheme can be effectively applied in multi-party computation (MPC) or neural networks
for enhanced privacy and security.

Author Contributions: Conceptualization, L.L. and R.H.; methodology, L.L.; validation, L.L. and
R.H.; formal analysis, L.L.; writing—original draft, L.L.; funding acquisition, R.H. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation Project of China
under Grant No. 62062009 and the Guangxi Innovation-driven Development Project under Grant
Nos. AA17204058-17 and AA18118047-7.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Gentry, C. Fully Homomorphic Encryption Using Ideal Lattices. In Proceedings of the 41st ACM Symposium on Theory of

Computing, STOC ‘09, New York, NY, USA, 31 May–2 June 2009; pp. 169–178. [CrossRef]
2. Brakerski, Z.; Gentry, C.; Vaikuntanathan, V. (Leveled) Fully Homomorphic Encryption without Bootstrapping. ACM Trans.

Comput. Theory 2014, 6, 1–36. [CrossRef]
3. Brakerski, Z. Fully Homomorphic Encryption without Modulus Switching from Classical GapSVP. In Proceedings of the

Advances in Cryptology—CRYPTO 2012, Santa Barbara, CA, USA, 19–23 August 2012; Safavi-Naini, R., Canetti, R., Eds.; Springer:
Berlin/Heidelberg, Germany, 2012; pp. 868–886. [CrossRef]

4. Fan, J.; Vercauteren, F. Somewhat Practical Fully Homomorphic Encryption. IACR Cryptology ePrint Archive. Paper 2012/144.
2012. Available online: https://eprint.iacr.org/2012/144 (accessed on 10 May 2023).

5. Gentry, C.; Sahai, A.; Waters, B. Homomorphic Encryption from Learning with Errors: Conceptually-Simpler, Asymptotically-
Faster, Attribute-Based. In Proceedings of the Advances in Cryptology—CRYPTO 2013, Santa Barbara, CA, USA, 18–22 August
2013; Canetti, R., Garay, J.A., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 75–92. [CrossRef]

6. Chillotti, I.; Gama, N.; Georgieva, M.; Izabachène, M. Faster Fully Homomorphic Encryption: Bootstrapping in Less Than 0.1
Seconds. In Proceedings of the Advances in Cryptology—ASIACRYPT 2016, Hanoi, Vietnam, 4–8 December 2016; Cheon, J.H.,
Takagi, T., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 3–33. [CrossRef]

7. Cheon, J.H.; Kim, A.; Kim, M.; Song, Y. Homomorphic Encryption for Arithmetic of Approximate Numbers. In Proceedings
of the Advances in Cryptology—ASIACRYPT 2017, Hong Kong, China, 3–7 December 2017; Takagi, T., Peyrin, T., Eds.; Springer:
Cham, Switzerland, 2017; pp. 409–437. [CrossRef]

8. López-Alt, A.; Tromer, E.; Vaikuntanathan, V. On-the-Fly Multiparty Computation on the Cloud via Multikey Fully Homo-
morphic Encryption. In Proceedings of the Forty-Fourth Annual ACM Symposium on Theory of Computing, STOC ‘12,
New York, NY, USA, 19–22 May 2012; pp. 1219–1234. [CrossRef]

http://doi.org/10.1145/1536414.1536440
http://dx.doi.org/10.1145/2633600
http://dx.doi.org/10.1007/978-3-642-32009-5_50
https://eprint.iacr.org/2012/144
http://dx.doi.org/10.1007/978-3-642-40041-4_5
http://dx.doi.org/10.1007/978-3-662-53887-6_1
http://dx.doi.org/10.1007/978-3-319-70694-8_15
http://dx.doi.org/10.1145/2213977.2214086

Mathematics 2023, 11, 3239 19 of 19

9. Clear, M.; McGoldrick, C. Multi-identity and Multi-key Leveled FHE from Learning with Errors. In Proceedings of the
Advances in Cryptology—CRYPTO 2015, Santa Barbara, CA, USA, 16–20 August 2015; Gennaro, R., Robshaw, M., Eds.; Springer:
Berlin/Heidelberg, Germany, 2015; pp. 630–656. [CrossRef]

10. Mukherjee, P.; Wichs, D. Two Round Multiparty Computation via Multi-key FHE. In Proceedings of the Advances in Cryptology—
EUROCRYPT 2016, Vienna, Austria, 8–12 May 2016; Fischlin, M., Coron, J.S., Eds.; Springer: Berlin/Heidelberg, Germany, 2016;
pp. 735–763. [CrossRef]

11. Peikert, C.; Shiehian, S. Multi-key FHE from LWE, Revisited. In Proceedings of the Theory of Cryptography, Tel Aviv, Israel,
10–13 January 2016; Hirt, M., Smith, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 217–238. [CrossRef]

12. Brakerski, Z.; Perlman, R. Lattice-Based Fully Dynamic Multi-key FHE with Short Ciphertexts. In Proceedings of the
Advances in Cryptology—CRYPTO 2016, Santa Barbara, CA, USA, 14–18 August 2016; Robshaw, M., Katz, J., Eds.; Springer:
Berlin/Heidelberg, Germany, 2016; pp. 190–213. [CrossRef]

13. Chen, L.; Zhang, Z.; Wang, X. Batched Multi-hop Multi-key FHE from Ring-LWE with Compact Ciphertext Extension. In
Proceedings of the Theory of Cryptography, Baltimore, MD, USA, 12–15 November 2017; Kalai, Y., Reyzin, L., Eds.; Springer:
Cham, Switzerland, 2017; pp. 597–627. [CrossRef]

14. Chen, H.; Chillotti, I.; Song, Y. Multi-Key Homomorphic Encryption from TFHE. In Proceedings of the Advances in Cryptology—
ASIACRYPT 2019, Kobe, Japan, 8–12 December 2019; Galbraith, S.D., Moriai, S., Eds.; Springer: Cham, Switzerland, 2019;
pp. 446–472. [CrossRef]

15. Chillotti, I.; Gama, N.; Georgieva, M.; Izabachène, M. Faster Packed Homomorphic Operations and Efficient Circuit Bootstrapping
for TFHE. In Proceedings of the Advances in Cryptology—ASIACRYPT 2017, Hong Kong, China, 3–7 December 2017; Takagi, T.,
Peyrin, T., Eds.; Springer: Cham, Switzerland, 2017; pp. 377–408. [CrossRef]

16. Chillotti, I.; Gama, N.; Georgieva, M.; Izabachène, M. TFHE: Fast Fully Homomorphic Encryption Over the Torus. J. Cryptol.
2020, 33, 34–91. [CrossRef]

17. Regev, O. On Lattices, Learning with Errors, Random Linear Codes, and Cryptography. J. ACM 2009, 56. [CrossRef]
18. Lyubashevsky, V.; Peikert, C.; Regev, O. On Ideal Lattices and Learning with Errors over Rings. J. ACM 2013, 60, 1–35. [CrossRef]
19. Chillotti, I.; Joye, M.; Ligier, D.; Orfila, J.B.; Tap, S. CONCRETE: Concrete Operates oN Ciphertexts Rapidly by Extending TfhE.

In Proceedings of the WAHC 2020—8th Workshop on Encrypted Computing & Applied Homomorphic Cryptography, Virtual,
15 December 2020. Available online: https://inria.hal.science/hal-03926650 (accessed on 20 April 2023)

20. Chillotti, I.; Ligier, D.; Orfila, J.B.; Tap, S. Improved Programmable Bootstrapping with Larger Precision and Efficient Arith-
metic Circuits for TFHE. In Proceedings of the Advances in Cryptology—ASIACRYPT 2021, Singapore, 6–10 December 2021;
Tibouchi, M., Wang, H., Eds.; Springer: Cham, Switzerland, 2021; pp. 670–699. [CrossRef]

21. Li, N.; Zhou, T.; Yang, X.; Han, Y.; Liu, W.; Tu, G. Efficient Multi-Key FHE With Short Extended Ciphertexts and Directed
Decryption Protocol. IEEE Access 2019, 7, 56724–56732. [CrossRef]

22. Chen, H.; Dai, W.; Kim, M.; Song, Y. Efficient Multi-Key Homomorphic Encryption with Packed Ciphertexts with Application to
Oblivious Neural Network Inference. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications
Security, CCS ‘19, New York, NY, USA, 11–15 November 2019; pp. 395–412. [CrossRef]

23. Brakerski, Z.; Vaikuntanathan, V. Fully Homomorphic Encryption from Ring-LWE and Security for Key Dependent Messages. In
Proceedings of the Advances in Cryptology—CRYPTO 2011, Santa Barbara, CA, USA, 14–18 August 2011; Rogaway, P., Ed.;
Springer: Berlin/Heidelberg, Germany, 2011; pp. 505–524. [CrossRef]

24. Asharov, G.; Jain, A.; López-Alt, A.; Tromer, E.; Vaikuntanathan, V.; Wichs, D. Multiparty Computation with Low Communi-
cation, Computation and Interaction via Threshold FHE. In Proceedings of the Advances in Cryptology—EUROCRYPT 2012,
Cambridge, UK, 15–19 April 2012; Pointcheval, D., Johansson, T., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 483–501.
[CrossRef]

25. Kwak, H.; Min, S.; Song, Y. Towards Practical Multi-Key TFHE: Parallelizable, Key-Compatible, Quasi-Linear Complexity.
IACR Cryptology ePrint Archive, Paper 2022/1460. 2022. Available online: https://eprint.iacr.org/2022/1460 (accessed on 12
March 2023).

26. Kim, T.; Kwak, H.; Lee, D.; Seo, J.; Song, Y. Asymptotically Faster Multi-Key Homomorphic Encryption from Homomorphic Gadget
Decomposition. IACR Cryptology ePrint Archive, Paper 2022/347. 2022. Available online: https://eprint.iacr.org/2022/347
(accessed on 15 March 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/978-3-662-48000-7_31
http://dx.doi.org/10.1007/978-3-662-49896-5_26
http://dx.doi.org/10.1007/978-3-662-53644-5_9
http://dx.doi.org/10.1007/978-3-662-53018-4_8
http://dx.doi.org/10.1007/978-3-319-70503-3_20
http://dx.doi.org/10.1007/978-3-030-34621-8_16
http://dx.doi.org/10.1007/978-3-319-70694-8_14
http://dx.doi.org/10.1007/s00145-019-09319-x
http://dx.doi.org/10.1145/1568318.1568324
http://dx.doi.org/10.1145/2535925
https://inria.hal.science/hal-03926650
http://dx.doi.org/10.1007/978-3-030-92078-4_23
http://dx.doi.org/10.1109/ACCESS.2019.2913943
http://dx.doi.org/10.1145/3319535.3363207
http://dx.doi.org/10.1007/978-3-642-22792-9_29
http://dx.doi.org/10.1007/978-3-642-29011-4_29
https://eprint.iacr.org/2022/1460
https://eprint.iacr.org/2022/347

	Introduction
	Contributions
	Methodology Overview
	Related Works
	Organization

	Background Knowledge
	Notation
	LWE and RLWE
	Part of the Components of TFHE
	Gadget Decomposition
	Modulus Switching
	Sample Extract
	Look-Up Table

	Multi-Key Homomorphic Encryption

	The Building Blocks of Basic Scheme
	Basic Modules for LWE Ciphertext and RLWE Ciphertext
	Relinearization and Hybrid Product

	MKHE with Multi-Output Bootstrap
	Description
	Distributed Decryption

	Analysis
	Security
	Noise Analysis
	Performance Analysis

	Discussion
	Conclusions
	References

