
Citation: Lee, K.; Kim, H.

Two-Round Multi-Signatures from

Okamoto Signatures. Mathematics

2023, 11, 3223. https://doi.org/

10.3390/math11143223

Academic Editors: Tuan-Vinh Le,

Chien-Lung Hsu, Ming Hour Yang

and Chung-Fu Lu

Received: 27 June 2023

Revised: 19 July 2023

Accepted: 19 July 2023

Published: 22 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Two-Round Multi-Signatures from Okamoto Signatures
Kwangsu Lee 1,* and Hyoseung Kim 2

1 Department of Computer and Information Security, Sejong University, Neungdong-ro, Gwangjin-gu,
Seoul 05006, Republic of Korea

2 School of Cybersecurity, Korea University, Seoul 02841, Republic of Korea
* Correspondence: kwangsu@sejong.ac.kr

Abstract: Multi-signatures (MS) are a special type of public-key signature (PKS) in which multiple
signers participate cooperatively to generate a signature for a single message. Recently, applications
that use an MS scheme to strengthen the security of blockchain wallets or to strengthen the security
of blockchain consensus protocols are attracting a lot of attention. In this paper, we propose an
efficient two-round MS scheme based on Okamoto signatures rather than Schnorr signatures. To
this end, we first propose a new PKS scheme by modifying the Okamoto signature scheme and
prove the unforgeability of our PKS scheme under the discrete logarithm assumption in the algebraic
group model (AGM) and the non-programmable random oracle model (ROM). Next, we propose a
two-round MS scheme based on the new PKS scheme and prove the unforgeability of our MS scheme
under the discrete logarithm assumption in the AGM and the non-programmable ROM. Our MS
scheme is the first one to prove security among two-round MS based on Okamoto signatures.

Keywords: public-key signature; multi-signature; Okamoto signature; key aggregation; algebraic
group model

MSC: 94A60

1. Introduction

Multi-signatures (MS) are a special kind of public-key signature (PKS) in which multi-
ple signers who have individual public keys PK1, . . . , PKn can cooperatively participate to
create a signature for a single message and verify the signature by using the public keys of
all signers participating in the signature generation. An MS scheme becomes an interesting
MS scheme only when the size of the multi-signature is compact, regardless of the number
of cooperating signers, because an MS scheme can be easily built from the existing PKS
scheme in a simple way of attaching individual signatures of PKS schemes. Interactive MS
schemes can be constructed from the existing Fiat–Shamir-based signature schemes [1–3],
and non-interactive MS schemes also can be constructed based on bilinear groups [4–7].
In recent years, research on multi-signatures has been attracting a lot of attention because it
can be effectively used to enhance the security of blockchain wallets or to perform secure
consensus among multiple nodes in blockchains.

A popular way to design a PKS scheme is to convert an identification protocol into a
PKS scheme by using the Fiat–Shamir transformation [8]. The Schnorr signature scheme
is the famous example of this case [9]. A PKS scheme derived from this transformation
has the advantage of being widely implemented and used in various places because it
can be very efficient and proven under standard assumptions. One important way to
design an MS scheme is to convert a Fiat–Shamir-based PKS scheme to an MS scheme with
interactive signing. Bellare and Neven [1] have shown that a three-round MS scheme can be
constructed from the Schnorr signature scheme in the plain public-key model. Afterwards,
a number of two-round MS schemes that improve the rounds required in the interactive
signing process were proposed [10–12]. However, Drijvers et al. [13] showed that all of

Mathematics 2023, 11, 3223. https://doi.org/10.3390/math11143223 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11143223
https://doi.org/10.3390/math11143223
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-1910-8890
https://orcid.org/0000-0003-2908-5266
https://doi.org/10.3390/math11143223
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11143223?type=check_update&version=2

Mathematics 2023, 11, 3223 2 of 24

these two-round MS schemes can be attacked by using a parallel signing session attack
with the Wagner algorithm, and it is difficult to prove the security of these MS schemes by
using the meta-reduction technique. To solve this problem, a number of new two-round
MS schemes based on Schnorr signatures or trapdoor commitment schemes have been
proposed recently [13–17].

The Okamoto signature scheme is also one of the Fiat–Shamir-based PKS schemes [18].
An important feature of Okamoto signatures, different from Schnorr signatures, is that
Schnorr-based signatures use the zero-knowledge property to handle the signature queries
of an attacker, but Okamoto signatures use the witness indistinguishability to handle these
signature queries. Due to this difference, the simulation of the signature in the security
proof of Okamoto signatures can be easily processed using the private key selected by
a simulator. The Okamoto signature scheme can also be converted to a three-round MS
scheme by following the conversion method of Bellare and Neven [1]. To reduce the
number of rounds further, Ma et al. [11] proposed a two-round MS scheme from Okamoto
signatures, but this scheme is not secure against the parallel signing session attack, as shown
by Drijvers et al. [13]. There are many secure two-round MS schemes based on Schnorr
signatures or trapdoor commitments [13,15–17], but constructing a secure two-round MS
scheme based on Okamoto signatures is still an unsolved problem.

In this paper, we focus on the problem of constructing a two-round MS scheme based
on Okamoto signatures. Designing an MS scheme based on Okamoto signatures is an
interesting problem because it can present a new design direction for MS schemes different
from the existing design of two-round MS schemes. In addition, an MS scheme based
on Okamoto signatures can use a weaker random oracle model because it uses a non-
programmable random oracle model (NPROM) instead of a programmable random oracle
model (PROM).

1.1. Our Contributions

We first propose a PKS scheme suitable for multi-signatures by modifying Okamoto
signatures. The essential part of the modification is to set a commitment element in a
message-dependent way such as R = (gmh)r1(gm

2 h2)
r2 instead of R = gr1 gr2

2 . We prove that
the proposed PKS scheme is secure under the discrete logarithm (DL) assumption in the
algebraic group model (AGM) and the non-programmable random oracle model (NPROM).
Next, we propose a two-round MS scheme that supports the public key aggregation from
our PKS scheme based on Okamoto signatures. We also prove that our MS scheme is
unforgeable even when an attacker performs parallel signing session queries under the
DL assumption in the AGM and NPROM. Compared to other MS schemes, our proposed
MS scheme also has a compact public key, a succinct multi-signature, and efficient signing
and verification with the support of two-round signing and key aggregation. Although
our MS scheme does not provide improved efficiency compared to the most efficient
MuSig2 scheme, our MS scheme is the first two-round MS scheme based on Okamoto
signatures, and the security is proven under the weaker DL assumption in the weaker non-
programmable ROM. The detailed comparison of our MS scheme and other MS schemes is
given in Table 1.

Table 1. Comparison of Fiat–Shamir-based multi-signature schemes.

Scheme RN, KA PK MS Sign Verify Security

BN [1] 3, N G G+Zp 1E (n + 1)E DL, ROM
3, N 2G 2G+Zp 2E 2(n + 1)E DDH, ROM

MuSig [3] 3, Y G G+Zp 1E 2E DL, ROM

mBCJ [13] 2, N G+ 2Zp 2G+ 3Zp 5E 6E DL, ROM

MuSig-DN [14] 2, Y G G+Zp NIZK 2E DL, DDH, ZK,
PRF, ROM

Mathematics 2023, 11, 3223 3 of 24

Table 1. Cont.

Scheme RN, KA PK MS Sign Verify Security

MuSig2 [16] 2, Y G G+Zp 8E 2E AOMDL, ROM

2, Y G G+Zp 4E 2E AOMDL,
AGM + ROM

DWMS [15] 2, Y G G+Zp (2n + 2)E 2E OMDL + 2ES,
AGM + ROM

HBMS [17] 2, Y G G+ 2Zp 2E 3E XIDL, ROM or
DL, AGM + ROM

Ours 2, Y 2G 3Zp 4E 6E DL, AGM + ROM

Let n be the number of co-signers. We denote RN for the number of rounds, KA for key aggregation, PK for public
key, and MS for multi-signature. We use E for exponentiation and NIZK for zero-knowledge proof.

There are two issues to consider in the security proof of the two-round MS scheme:
the rogue-key attack [1] and parallel signing session attack [13]. In the rogue-key attack,
an attacker forges a multi-signature by manipulating a carefully crafted public key without
knowing the corresponding private key since the attacker can select the arbitrary public
key of a co-signer in the plain public-key model. For example, we consider a simple
Schnorr-based MS scheme in which the public keys of co-signers are simply multiplied.
Let X1 = gx1 be the public key of an honest party 1. If an adversary simply sets the public
key of party 2 as X2 = ga/X1 by selecting a random a, then it can forge a multi-signature
σ = (R = gr, z = r + ca) where c = H(R, M) since X1X2 = ga. Fortunately, by using
the key aggregation method of the MuSig scheme [3], this rogue-key attack can be easily
prevented in our MS scheme. The parallel signing session attack is a complicated attack
in which an attacker opens multiple signature query sessions in parallel in a two-round
MS scheme since the signing process is an interactive protocol, and then the attacker
manipulates the obtained signatures of parallel sessions to forge a multi-signature. This
parallel signing session attack is based on Wagner’s algorithm to solve the generalized
birthday problem, which is to find a set of queries {q1, . . . , q`} such that ∑`

i=1 H(qi) = t
when a fixed value t and access to random oracle H are given. In the case of ` ≤ 2, this
problem is equal to finding a pre-image or a collision in the random oracle. However, in the
case of ` > 2, this problem becomes easy for large `. The detailed explanation of this attack
in Schnorr-based signatures is given in the work [13,16]. Recall that many two-round MS
schemes proposed early can be attacked by using this parallel signing session attack [13].
To prevent this parallel signing session attack, our MS scheme generates a commitment
in the form R = (gmh)r1(gm

2 h2)
r2 where m is a message. As the commitment is configured

depending on the signature message, in this way, if an attacker performs the parallel
signing session attack, the commitments for the same message can be changed to a new
commitment, but these commitments cannot be converted to a new commitment for a
different message. The detailed explanation of the security proof is given in the security
analysis section.

1.2. Related Work

Multi-signatures (MS) are a kind of PKS in which multiple signers participate to
generate a signature for a common message and anyone can verify the signature with
the public keys of multiple signers. Early MS schemes were vulnerable to rogue-key
attacks, in which an attacker arbitrarily sets the public key of a signer participating in multi-
signature to perform a forgery attack. Bellare and Neven [1] introduced the plain public-key
model in which an attacker can freely set the public key of a signer without proving the
knowledge of a private key and proposed a three-round MS scheme that is secure against
the rogue-key attack by modifying Schnorr signatures. Since then, a number of two-round
MS schemes have been proposed to improve the round complexity of Fiat–Shamir-based
MS schemes [10–12]. However, Drijvers et al. [13] showed that these two-round MS schemes
are vulnerable to parallel signing session attack by using Wagner’s algorithm and proposed

Mathematics 2023, 11, 3223 4 of 24

a modified MS scheme by modifying the existing BCJ-MS scheme. Maxwell et al. [3]
presented the MuSig scheme in which the signers’ public keys are aggregated into one
short public key in the three-round MS scheme and showed that this MS scheme can be
used for Bitcoin. Recently, a number of secure two-round MS schemes, MuSig-DN, MuSig2,
DWMS, and HBMS, have been proposed [14–17]. Another way to design an MS scheme is
to convert an aggregate signature scheme into a non-interactive MS scheme by setting a
message to be the same for all signers. Using this idea, Boneh et al. [2] proposed an efficient
non-interactive MS scheme from the BLS short signature scheme and proved the security
in the plain public-key model. Drijvers et al. [7] proposed a non-interactive MS scheme
with forward security from a sequential aggregate signature scheme that can be used in
blockchain consensus protocols.

Threshold signatures (TS) are a specific kind of PKS such that a threshold number of
signers cooperate to generate a signature on a message and the signature can be verified by a
compact verification key. Multi-signatures can also be viewed as a special form of threshold
signatures where the number of threshold is equal to the number of all signers. Since
the ECDSA scheme is a standard signature scheme that is widely used in cryptocurrency
such as Bitcoin, many studies have been conducted to convert the ECDSA scheme into
an efficient threshold ECDSA scheme [19–22]. Recently, efficient TS schemes have been
proposed by modifying Schnorr signatures [23–25]. An important difference between TS
schemes and MS schemes is the key generation process. In MS, signers can generate private
keys independently of each other. Contrary to this, TS schemes require the distribution of a
common secret key to multiple signers, so a rather complicated distributed key generation
protocol must be introduced. A distributed key generation (DKG) protocol allows the
sharing of a common secret to many signers without a trusted center. If a common secret
to be shared is a field element, a DKG protocol can be implemented by using a verifiable
secret sharing (VSS) scheme that can privately verify the validity of a shared secret [26].
If a common secret is a group element, a DKG protocol can be implemented by using
a public verifiable secret sharing (PVSS) scheme that can publicly verify the validity of
a shared secret [27]. Recently, Groth [28] proposed a PVSS scheme that can support a
field element by splitting a common secret into multiple chunks and constructed a non-
interactive DKG scheme by combining the PVSS scheme with a binary tree encryption
scheme with forward secrecy.

Aggregate signatures (AS) are a special type of PKS that allows multiple signers to
create signatures for different messages and aggregate them into a single signature. The con-
cept of aggregate signatures was introduced by Boneh et al. [29], and they constructed an
efficient AS scheme by modifying BLS signatures in bilinear groups. Since then, many AS
schemes based on bilinear groups and trapdoor functions have been proposed [5,6,30,31].
The security of AS schemes is proven in the knowledge of secret key (KOSK) model, which
requires the proof of secret key in the key registration process, and it is stronger than
the plain public-key model of multi-signatures. AS schemes are divided into three types,
full aggregation, sequential aggregation, and synchronized aggregation, according to the
method of aggregation. A full AS scheme is the most flexible type of AS schemes that allows
anyone to non-interactively aggregate individual signatures generated by different signers
on different messages into a succinct signature [29]. A sequential AS scheme supports for
a signer to sequentially add his signature to the previous aggregate signature received
from the previous signer [5,30]. A synchronized AS scheme is similar to the full AS scheme
except that all signers have the synchronized information and individual signatures with
the same synchronized information can be non-interactively aggregated [31]. As previously
described, a pairing-based non-interactive MS scheme can be constructed from an AS
scheme if the same message is used for all signers.

1.3. Subsequent Work

Subsequent to our work, Tessaro and Zhu [32] proposed another two-round MS
scheme based on Okamoto signatures and proved its security under the DL assumption in

Mathematics 2023, 11, 3223 5 of 24

ROM. They constructed an efficient MS scheme by combining the linear combination of
nonces used in the MuSig2 scheme with Okamoto signatures.

2. Public-Key Signature

In this section, we propose a new PKS scheme by modifying Okamoto signatures and
prove the security in the AGM and ROM.

2.1. Definition

The syntax of public-key signature (PKS) is generally composed of key generation,
signing, and verification algorithms. Because we consider a PKS scheme in which multiple
users share common public parameters, we add a setup algorithm to generate public
parameters. The detailed syntax of PKS is given as follows.

Definition 1 (Public-Key Signature). A public-key signature (PKS) scheme consists of four PPT
algorithms, Setup, GenKey, Sign, and Verify, which are defined as follows:

Setup(1λ). The setup algorithm takes as input the security parameters λ in unary and outputs
public parameters PP.

GenKey(PP). The key generation algorithm takes as input public parameters PP and outputs a
private key SK and a public key PK.

Sign(SK, M). The signing algorithm takes as input a message M and a private key SK and outputs
a signature σ.

Verify(PK, σ, M). The verification algorithm takes as input a signature σ, a message M, and a
public key PK and outputs 1 if the signature is valid and 0 otherwise.

The correctness requirement is that for PP output by Setup(1λ), any (SK, PK) output by
GenKey(PP) and any M, we have that Verify(PK, Sign(SK, M), M) = 1.

The standard security model of PKS is the unforgeability under chosen message
attack (UF-CMA). In this model, an attacker is initially given a challenge public key for
attack, and can request a signature query for any message and receive a signature. Finally,
the attacker outputs a forged signature for a message. The attacker is successful if the
forged signature passes the verification algorithm and the message has not been queried
before. The detailed security model of PKS is described as follows.

Definition 2 (Unforgeability). The security notion of a PKS scheme is unforgeability under
chosen message attack (UF-CMA), which is defined in terms of the following experiment between a
challenger C and a PPT adversary A:

1. Setup: C first generates PP by running Setup(1λ). Next, it obtains a key pair (SK, PK) by
running GenKey(PP). It gives PK to A.

2. Signature Query: A adaptively requests a signature on a message M to sign under the
challenge public key PK, and it receives a signature σ.

3. Output: Finally, A outputs a forged signature σ∗ on a message M∗ under the public key
PK. C outputs 1 if the forged signature satisfies the following two conditions, or outputs 0
otherwise: (1) Verify(PK, σ∗, M∗) = 1, and (2) the corresponding message M∗ must not
have been queried by A to the signing oracle.

The advantage of A is defined as AdvPKS
A (λ) = Pr[C = 1], where the probability is taken

over all the randomness of the experiment. A PKS scheme is UF-CMA-secure if all probabilistic
polynomial-time (PPT) adversaries have at most a negligible advantage in the above experiment
where a function f (λ) is negligible if f (λ) < 1/p(λ) for all polynomial p(λ) with a large enough
security parameter λ.

2.2. Construction

Our PKS scheme is a modification of Okamoto signatures [18]. The Okamoto PKS
scheme generates a commitment as R = gr1 gr2

2 where r1 and r2 are random exponents,

Mathematics 2023, 11, 3223 6 of 24

but our PKS scheme generates a commitment as R = (gmh)r1(gm
2 h2)

r2 to depend on a
message m. This modification helps to simplify the security proof of our PKS scheme in the
algebraic group model and it enables the construction of a secure multi-signature scheme
in the next section. The detailed description of our PKS scheme is given as follows:

PKS.Setup(1λ): It first generates a cyclic group G of prime order p where the bit size of p
is Θ(λ). It generates two random generators g, h ∈ G. It selects a random exponent
α ∈ Zp and sets g2 = gα, h2 = hα. It chooses cryptographic hash functions H1, H2 such
that H1 : {0, 1}∗ → Zp and H2 : {0, 1}∗ → Zp. Finally, it outputs public parameters
PP = (p,G, g, g2, h, h2, H1, H2).

PKS.GenKey(PP): It selects random x1, x2 ∈ Zp and computes X = gx1 gx2
2 , Y = hx1 hx2

2 . It
outputs a private key SK = (PP, x1, x2) and a public key PK = (PP, X, Y).

PKS.Sign(SK, M): Let SK = (PP, x1, x2). It first calculates a hash m = H1(M). Next,
it selects random r1, r2 ∈ Zp and computes R =

(
gmh

)r1
(

gm
2 h2

)r2 . It calculates
c = H2(R, M) and computes s1 = r1 + x1c mod p, s2 = r2 + x2c mod p. It outputs
a signature σ = (c, s1, s2).

PKS.Verify(PK, σ, M): Let σ = (c, s1, s2) and PK = (PP, X, Y). It first calculates
m = H1(M). Next, it computes R =

(
gmh

)s1
(

gm
2 h2

)s2 /
(
XmY

)c and checks that

c ?
= H2(R, M). If the equation holds, then it outputs 1. Otherwise, it outputs 0.

The correctness of this PKS scheme can be easily verified when m = H1(M) through
the following equation(

gmh
)s1

(
gm

2 h2
)s2 =

(
gmh

)r1+x1c(gm
2 h2

)r2+x2c

=
(

gmh
)r1

(
gm

2 h2
)r2

(
gmh

)x1c(gm
2 h2

)x2c

=
((

gmh
)r1

(
gm

2 h2
)r2

)((
gx1 gx2

2
)m(hx1 hx2

2
))c

= R
(
XmY

)c

where R = (gmh)r1(gm
2 h2)

r2 , X = gx1 gx2
2 , and Y = hx1 hx2

2 .

2.3. Security Analysis

Before we analyze the security of our scheme, we define an algebraic adversary,
the discrete logarithm assumption, and the Schwartz–Zippel Lemma, which are needed for
the security analysis.

Definition 3 (Algebraic Algorithm [33]). Let G be a group with order p. We say that an
algorithm Aalg is algebraic if it satisfies the following requirements: whenever Aalg outputs a group
element Z ∈ G, it also outputs a representation~z = (z1, . . . , z`) ∈ Z`

p such that Z = ∏`
k=1 Vzk

k
where V1, . . . , V` are group elements that are given to Aalg during its execution.

Assumption 1 (Discrete Logarithm). Let (p,G) be a description of the group of prime order p.
Let g be a generator of G. The discrete logarithm (DL) assumption is that if the challenge values D =
(p,G, g, gx) are given, no probabilistic polynomial-time (PPT) algorithm B can compute x with
more than a negligible advantage. The advantage of B is defined as AdvDL

B (λ) = Pr[B(D) = x]
where the probability is taken over the random choice of x ∈ Zp.

Lemma 1 (Schwartz–Zippel Lemma [34]). Let f (x1, . . . , xn) be a non-zero polynomial of
total degree d. Let S ⊆ F be any finite set. Then, if r1, . . . , rn are randomly chosen from S,
Pr[f (r1, . . . , xn) = 0] ≤ d/|S|.

In order to prove the security of our PKS scheme under the DL assumption, it is
needed to devise a method to simulate the signature query requested by an adversary and
to extract the discrete logarithm from a forged signature submitted by the adversary. One
nice feature of Okamoto signatures is that the signature simulation is very simple because

Mathematics 2023, 11, 3223 7 of 24

a simulator chooses a private key itself and generates a signature by using the private
key [18]. The signature simulation of our PKS scheme is also handled very simply, the
same as that of Okamoto signatures. In order to extract the discrete logarithm from the
forged signature, we take advantage of the fact that an algebraic adversary additionally
submits the representation of a group element when it submits the group element of the
forged signature.

In Schnorr-based signature schemes, a formula for discrete logarithm can be derived
using the representation of a group element and the verification equation of the scheme,
and the extraction of discrete logarithm is possible because the denominator of the formula
is not zero with high probability due to the randomness of the random oracle model.
However, unlike the Schnorr-based signature scheme, the Okamoto-based signature scheme
additionally includes a signature element submitted by an adversary in the denominator
of the discrete logarithm-related formula, so it is difficult to analyze that the denominator
is not zero by simply using the randomness of the random oracle model. To solve this
problem, we divide the adversary into three types. In the case of Type-1 and Type-2
adversaries, the discrete logarithm problem is simply planted to enable the extraction of
the discrete logarithm. In the case of Type-3 adversary, we will show that it is difficult for
the adversary to submit a valid forged signature due to the restriction of the security model
through probability analysis. The detailed security proof of our PKS scheme is given in the
following theorem.

Theorem 1. The above PKS scheme is UF-CMA-secure in the algebraic group model and the
random oracle model if the DL assumption holds. That is, for any PPT algebraic adversary Aalg,
there exists a PPT algorithm B such that AdvPKS

Aalg
(λ) ≤ 2AdvDL

B (λ) + negl(λ).

Proof. Suppose there exists an algebraic adversary Aalg that forges the above PKS scheme
with non-negligible advantage ε. A reduction algorithm B that solves the DL assumption
is given as input for a challenge tuple D = (p,G, g, ga). Then, B that interacts with Aalg is
described as follows:
Setup: The algorithm B first chooses a random bit b ∈ {0, 1} to guess the type of an
adversary. If b = 0, then it selects a random exponent h′ ∈ Zp and sets g2 = ga, h = gh′ ,
h2 = gh′

2 . Otherwise, it selects a random exponent α ∈ Zp and sets g2 = gα, h = ga,
h2 = (ga)α. It sets public parameters PP = (p,G, g, g2, h, h2, H1, H2) where H1 and H2 are
two hash functions that are modeled as random oracles. Next, it selects random exponents
x1, x2 ∈ Zp and computes X = gx1 gx2

2 , Y = hx1 hx2
2 . It keeps SK = (PP, x1, x2) internally

and gives PK = (PP, X, Y) to Aalg.
Hash Query: IfAalg requests an H1 or H2 hash query, then B handles this query as follows:

• H1 hash query for (M): If (M, ·) ∈ LH1 , then it retrieves (M, m) from LH1 . Otherwise,
it selects random m ∈ Zp and adds (M, m) to LH1 . It gives m to Aalg.

• H2 hash query for (R, M): If (R, M, ·) ∈ LH2 , then it retrieves (R, M, c) from LH2 .
Otherwise, it selects random c ∈ Zp and adds (R, M, c) to LH2 . It gives c to Aalg.

Signature Query: If Aalg requests a signature query for a message M, then B adds
M to Q and generates a signature σ = (c, s1, s2) by running PKS.Sign(SK, M) since
it has SK. It gives σ to Aalg. Recall that Aalg is implicitly given a commitment R =(

gmh
)s1

(
gm

2 h2
)s2

(
XmY

)−c from the signature σ where m = H1(M).
Note that Aalg is an algebraic adversary that when it requests hash queries with a

group element Z ∈ G, it also submits a representation~z = (z1, . . . , z`) for the group element
Z such that Z = ∏`

i=1 Vzi
i and {Vi} are group elements given to Aalg. For the simplicity of

the notation, we do not describe representations for group elements in hash queries. We
assume that the representations of group elements submitted by Aalg are implicitly stored
in the lists maintained by B.
Output: Finally, Aalg outputs a forged signature σ∗ = (c∗, s∗1 , s∗2) on a message M∗. B
checks that PKS.Verify(PK, σ∗, M∗) = 1 and M∗ 6∈ Q.

Mathematics 2023, 11, 3223 8 of 24

From the verification algorithm of the PKS scheme, it can derive the commitment group
element R∗ of σ∗ by computing R∗ =

(
gm∗h

)s∗1
(

gm∗
2 h2

)s∗2
(
Xm∗Y

)−c∗ where m∗ = H1(M∗).
Next, it finds the representation ~z = (z1, . . . , z6, z7,1, . . . , z7,qS) of the element R∗ that is
implicitly stored in LH2 such as R∗ = gz1 gz2

2 hz3 hz4
2 Xz5Yz6 ∏

qS
k=1

(
R(k))z7,k where X = gx1 gx2

2 ,

Y = hx1 hx2
2 , and R(k) =

(
gm(k)

h
)r(k)1

(
gm(k)

2 h2
)r(k)2 is the commitment of k-th signature query.

By combining the above equations, it can derive the following equation

1 =
(

gm∗h
)s∗1

(
gm∗

2 h2
)s∗2

(
Xm∗Y

)−c∗R∗−1

=gm∗s∗1 hs∗1 gm∗s∗2
2 hs∗2

2

((
gx1 gx2

2
)m∗(hx1 hx2

2
))−c∗

·(
gz1 hz3 gz2

2 hz4
2
(

gx1 gx2
2
)z5

(
hx1 hx2

2
)z6

qS

∏
k=1

(
gm(k)

h
)r(k)1 z7,k

(
gm(k)

2 h2
)r(k)2 z7,k

)−1

=gm∗(s∗1−x1c∗)h(s
∗
1−x1c∗)gm∗(s∗2−x2c∗)

2 h(s
∗
2−x2c∗)

2 ·(
gz1+x1z5+∑

qS
k=1 m(k)r(k)1 z7,k hz3+x1z6+∑

qS
k=1 r(k)1 z7,k g

z2+x2z5+∑
qS
k=1 m(k)r(k)2 z7,k

2 h
z4+x2z6+∑

qS
k=1 r(k)2 z7,k

2

)−1

=gA1 hA2 gB1
2 hB2

2

where A1, A2, B1, and B2 are variables defined as

A1 :=m∗(s∗1 − x1c∗)−
(
z1 + x1z5 +

qS

∑
k=1

m(k)r(k)1 z7,k
)
,

A2 :=(s∗1 − x1c∗)−
(
z3 + x1z6 +

qS

∑
k=1

r(k)1 z7,k
)
,

B1 :=m∗(s∗2 − x2c∗)−
(
z2 + x2z5 +

qS

∑
k=1

m(k)r(k)2 z7,k
)
,

B2 :=(s∗2 − x2c∗)−
(
z4 + x2z6 +

qS

∑
k=1

r(k)2 z7,k
)
.

To solve the discrete logarithm, we classify algebraic adversaries into the following
three types depending on the conditions of variables:

• Type-1: an algebraic adversary is Type-1 if B1 + dlogg(h)B2 6≡ 0 mod p.
• Type-2: an algebraic adversary is Type-2 if B1 + dlogg(h)B2 ≡ 0 mod p and B2 6≡ 0

mod p.
• Type-3: an algebraic adversary is Type-3 if B1 + dlogg(h)B2 ≡ 0 mod p and B2 ≡ 0

mod p.

Let F be the event that an adversary succeeds to forge a multi-signature and Ti be
the event that an adversary is Type-i. Since the random bit b is hidden to the adversary
and b is independent to the type of the adversary, we have that Pr[b = 0∧ F|Ti] = Pr[b =
1∧ F|Ti] for each type of adversary. If the Type-1 adversary is successful to forge and the
guess of the reduction algorithm is correct (b = 0), then the reduction can compute the
discrete logarithm as dlogg(g2) = −(A1 + h′A2)/(B1 + h′B2) mod p since g2 = ga and

B1 + h′B2 6≡ 0 mod p. That is, Pr[b = 0 ∧ F|T1] ≤ AdvDL
B (λ). If the Type-2 adversary is

successful to forge and the guess of the reduction is correct (b = 1), then the reduction can
compute the discrete logarithm as dlogg2

(h2) = −B1/B2 mod p since g2 = gα, h2 = (ga)α,

B1 + dlogg(h)B2 ≡ 0 mod p, and B2 6≡ 0 mod p. That is, Pr[b = 1 ∧ F|T2] ≤ AdvDL
B (λ).

From Lemma 3, the probability of the Type-3 adversary to successfully forge is negligible.
That is, Pr[F|T3] ≤ negl(λ). Therefore, we obtain the following result

Mathematics 2023, 11, 3223 9 of 24

AdvUF-CMA
Aalg

(λ) = Pr[F ∧ T1] + Pr[F ∧ T2] + Pr[F ∧ T3]

= Pr[T1]Pr[F|T1] + Pr[T2]Pr[F|T2] + Pr[T3]Pr[F|T3]

= Pr[T1]
(

Pr[b = 0∧ F|T1] + Pr[b = 1∧ F|T1]
)
+

Pr[T2]
(

Pr[b = 0∧ F|T2] + Pr[b = 1∧ F|T2]
)
+ Pr[T3]Pr[F|T3]

≤ Pr[T1]2AdvDL
B (λ) + Pr[T2]2AdvDL

B (λ) + Pr[T3]negl(λ)

≤ Pr[T1]2AdvDL
B (λ) + (1− Pr[T1])2AdvDL

B (λ) + negl(λ)

≤ 2AdvDL
B (λ) + negl(λ).

This completes our proof.

Lemma 2. In the above PKS scheme, the private key exponents (x1, x2) and random exponents
{(r(k)1 , r(k)2)} for signature queries are statistically hidden to an algebraic adversary.

Proof. In order to show that the private key exponents (x1, x2) and random exponents
{(r(k)1 , r(k)2)} selected by the reduction algorithm are statistically hidden from the adversary,
we should show that these exponents can be changed to different exponents (x̃1, x̃2) and
{(r̃(k)1 , r̃(k)2)}while the public key group elements, the commitment group elements, and the
signatures given to the adversary are fixed.

Let (X, Y) be the challenge public key. If the private key exponents (x1, x2) can
be changed to different private key exponents (x̃1, x̃2), then we obtain the first relation
x1 + αx2 ≡ x̃1 + αx̃2 mod p from the following equation

X =
(

gx1 gx2
2
)
= gx1+αx2 = gx̃1+αx̃2 =

(
gx̃1 gx̃2

2
)
,

Y =
(
hx1 hx2

2
)
= hx1+αx2 = hx̃1+αx̃2 =

(
hx̃1 hx̃2

2
)
.

Let R(k) be the commitment element of the k-th signature query. If the random
exponents (r(k)1 , r(k)2) can be changed to different random exponents (r̃(k)1 , r̃(k)2), then we

obtain the second relation r(k)1 + αr(k)2 ≡ r̃(k)1 + αr̃(k)2 mod p from the following equation

R(k) =
(

gm(k)
h
)r(k)1

(
gm(k)

2 h2
)r(k)2 = g(m

(k)+h′)(r(k)1 +αr(k)2)

=g(m
(k)+h′)(r̃(k)1 +αr̃(k)2) =

(
gm(k)

h
)r̃(k)1

(
gm(k)

2 h2
)r̃(k)2 .

Let (s(k)1 , s(k)2) be the signature of the k-th signature query where s(k)1 = r(k)1 + x1c(k)

and s(k)2 = r(k)2 + x2c(k). If the random exponents (x1, x2) and (r(k)1 , r(k)2) can be changed to

different random exponents (x̃1, x̃2) and (r̃(k)1 , r̃(k)2), then we obtain the following third and
fourth relations

r(k)1 + x1c(k) ≡ r̃(k)1 + x̃1c(k) mod p,

r(k)2 + x2c(k) ≡ r̃(k)2 + x̃2c(k) mod p.

Mathematics 2023, 11, 3223 10 of 24

Now, we argue that new private key exponents and new random exponents can satisfy
the above four relations and these exponents are different from the original exponents.
From the above first, second, and third relations, we set the new exponents as follows

x̃1 ← Z∗p, x̃2 := x2 + (x1 − x̃1)α
−1 mod p,

r̃(k)1 := r(k)1 + (x1 − x̃1)c(k) mod p,

r̃(k)2 := r(k)2 + (r(k)1 − r̃(k)1)α−1 mod p.

Next, we show that these new exponents satisfy the fourth relation as follows

r(k)2 − r̃(k)2 + x2c(k) − x̃2c(k)

≡ −(r(k)1 − r̃(k)1)α−1 − (x1 − x̃1)α
−1c(k)

≡ −
(
(r(k)1 − r̃(k)1) + (x1 − x̃1)c(k)

)
α−1 ≡ 0 mod p.

This completes our proof.

Lemma 3. If the algebraic adversary is Type-3, then the advantage of the adversary in UF-CMA
game is negligible.

Proof. From Theorem 1, we have the equation gA1 hA2 gB1
2 hB2

2 = 1 where variables B1 and
B2 are defined as follows

B1 :=m∗(s∗2 − x2c∗)−
(
z2 + x2z5 +

qS

∑
k=1

m(k)r(k)2 z7,k
)
,

B2 :=(s∗2 − x2c∗)−
(
z4 + x2z6 +

qS

∑
k=1

r(k)2 z7,k
)
.

Now, we analyze the conditions to satisfy B2 ≡ 0 mod p. From Lemma 2, we know
that x2 and {r(k)2 } are statistically hidden to the adversary. To satisfy B2 ≡ 0 mod p,
the term x2c∗ of B2 that is not directly controlled by the adversary should be cancelled out.
To analyze this, we consider the following two cases:

• Case 1: Let BAD1 be an event that x2c∗ is cancelled by
(
z4 + x2z6 + ∑

qS
k=1 r(k)2 z7,k

)
.

Recall that the term
(
z4 + x2z6 + ∑

qS
k=1 r(k)2 z7,k

)
is associated with the element R∗.

In the signing algorithm, c∗ is the output of a hash function H2 that takes R∗ as an
input, and H2 is modeled as a random oracle. Thus, c∗ is a random value independent
of R∗ by the property of the random oracle. This means that the probability of BAD1
is at most 1/p.

• Case 2: Let BAD2 be the event that the term x2c∗ is cancelled by s∗2 . Recall that the
term s∗2 is the output of the adversary as the forged signature and x2 is statistically
hidden to the adversary. The only way to cancel out this term is for the adversary to
construct a forged signature by combining the simulated signatures {(s(k)1 , s(k)2)} given
from the signature queries since the reduction algorithm simply constructs a signature
s(k)2 = r(k)2 + x2c(k) by using the hidden private key element x2. In this case, the term

(s∗2 − x2c∗) additionally contains a statistically hidden random exponent r(k)2 from the
commitment R(k) for some k. Thus, there should exist an index k ∈ {1, . . . , qS} such
that z7,k 6≡ 0 mod p sinceAalg is an algebraic adversary that submits a group element
with a representation of group elements given to the adversary.

Mathematics 2023, 11, 3223 11 of 24

From the conditions B1 + dlogg(h)B2 ≡ 0 mod p and B2 ≡ 0 mod p of the Type-3
adversary, we have that B1 ≡ B2 ≡ 0 mod p. By combining B1 and B2, we have the
following equation

−B1 + m∗B2 ≡
(

z2 + x2z5 −m∗(z4 + x2z6) +
qS

∑
k=1

(m(k) −m∗)r(k)2 z7,k

)
≡ 0 mod p.

Since z7,k 6≡ 0 mod p for some k and r(k)2 is statistically hidden to the adversary,

the above equation can be reshaped as a degree-one polynomial C1r(k)2 + C0 ≡ 0
mod p where a coefficient C1 is expressed as C1 = (m(k) −m∗)z7,k. By the Schwartz–

Zippel lemma, the probability of the above polynomial to be zero is at most 1/p if r(k)2
is randomly selected and C1 6≡ 0 mod p. By the restrictions of the security model 2,
we have M∗ 6∈ Q. Thus the probability that m(k) −m∗ ≡ 0 mod p for some k when
M∗ 6∈ Q is bounded by qS/p since H1 is modeled as a random oracle. This means that
the probability of BAD2 is at most (qS + 1)/p.

The success probability of the adversary is bounded by the probability of all bad
events, and the probability of all bad events are bounded as

Pr[BAD] ≤ Pr[BAD1] + Pr[BAD2] ≤ (qS1 + 2)/p.

This completes our proof.

2.4. Discussion

Multi-User Security. In the security proof, we analyzed the security of our PKS scheme
in the single-user setting. In the multi-user setting, many public keys PK1, . . . , PKn are
given to an adversary where n is bounded by a polynomial, and the adversary forges a
signature for one of these public keys. In general, a PKS scheme that provides the single-
user security also satisfies the multi-user security, but the security reduction is not tight
since it has a loss of a factor n. In the security proof of our PKS scheme, a simulator can
freely select the private key of each user. Thus, it is possible to prove the multi-user security
of our PKS scheme with tight proof.

3. Multi-Signature

In this section, we propose a two-round MS scheme supporting public-key aggregation
based on the PKS scheme in the previous section and prove that it is secure in the DL
assumption in the AGM and ROM.

3.1. Definition

Multi-signature (MS) is a special kind of PKS in which multiple signers participate to
generate a multi-signature for a message, and the multi-signature can be verified by using
all public keys of the signers participating in the signature generation. We define the syntax
of MS that supports the aggregation of the public keys of the signers into a single public
key. The detailed syntax of MS supporting public key aggregation is given as follows.

Definition 4 (Multi-Signature). A multi-signature (MS) scheme with key aggregation consists of
five PPT algorithms Setup, GenKey, AggKey, Sign, and Verify, which are defined as follows:

Setup(1λ). The setup algorithm takes as input the security parameters λ in unary and outputs
public parameters PP.

GenKey(PP). The key generation algorithm takes as input public parameters PP and outputs a
private key SK and a public key PK.

AggKey(LK). The key aggregation algorithm takes as input a list of public keys
LK = (PK1, . . . , PKn) and outputs an aggregated public key AK.

Mathematics 2023, 11, 3223 12 of 24

Sign(SKi, LK, M). The signing algorithm takes as input a private key SKi, a list of public keys
LK, and a message M and outputs a multi-signature σ.

Verify(LK, σ, M). The verification algorithm takes as input a list of public keys LK, a signature σ,
and a message M and outputs either 1 or 0 depending on the validity of the signature.

The correctness requirement is that for PP output by Setup(1λ), (SKi, PKi) output by
GenKey(PP), and any M, we have that Verify(LK, Sign(SKi, LK, M), M) = 1.

The security model of MS extends the standard security model of PKS to the multi-user
setting, which is called the plain public-key model [1]. In this plain public-key model, it
is possible for an attacker to freely select the public keys of co-signers except the target
public key. Because of this relaxation, the attacker can create a fake public key without
knowing the private key of that public key, which is called a rogue-key attack. Additionally,
if the signing protocol is composed of multiple rounds, the attacker can request parallel
signing queries for multiple signatures when querying the signature. Finally, the attacker
succeeds in forgery if the target public key is included in the final multi-signature and a
target message has not been queried before in the signing queries. The detailed security
model of MS is defined as follows.

Definition 5 (Unforgeability). The security notion of an MS scheme in the plain public-key model
is unforgeability under a chosen message attack (MS-UF-CMA), which is defined in terms of the
following experiment between a challenger C and a PPT adversary A:

1. Setup: C obtains public parameters PP by running Setup(1λ) and obtains a challenge key
pair (SK∗, PK∗) by running GenKey(PP). It gives PK∗ to A.

2. Signature Query: A adaptively requests a multi-signature on a message M to sign under
the challenge public key PK, and it receives a multi-signature σ.

3. Output: Finally, A outputs a forged multi-signature σ∗ on a message M∗ under public keys
LK∗ = (PK1, . . . , PKn). C outputs 1 if the forged multi-signature satisfies the following three
conditions, or outputs 0 otherwise: (1) Verify(LK∗, σ∗, M∗) = 1, (2) the challenge public
key PK∗ must exist in LK∗, and (3) the message M∗ must not have been queried by A to the
signing oracle.

The advantage of A is defined as AdvMS
A (λ) = Pr[C = 1] where the probability is taken over

all the randomness of the experiment. An MS scheme is MS-UF-CMA-secure if all PPT adversaries
have at most a negligible advantage in the above experiment where a function f (λ) is negligible if
f (λ) < 1/p(λ) for all polynomial p(λ) with a large enough security parameter λ.

3.2. Construction

In order to design a secure two-round MS scheme, it is necessary to design a method to
be secure against the Wagner algorithm using parallel signing query as shown in previous
studies [13]. To do this, we change the random commitment element dependent on the
signature message. That is, a commitment element is formed as R = (gmh)r1(gm

2 h2)
r2 where

m is a message and r1, r2 are random exponents. The advantage of message-dependent
commitment such as this is that even if an attacker obtains multiple commitment elements
by requesting parallel signing queries, it is difficult for the attacker to derive another
commitment for a new message because the commitment elements can be converted only
for the same message. To perform such a commitment, the MS scheme needs to include h
and h2 elements in addition to g and g2 elements in public parameters. Each private key of
a user is set to the same x1 and x2 field elements as the Okamoto signature scheme, and
the public key is set to X = gx1 gx2

2 and Y = hx1 hx2
2 due to additional public parameters.

Note that the public key of the Okamoto signature scheme consists of one group element
X, but our MS scheme consists of two group elements X and Y. The method of supporting
the public key aggregation follows the previous method [3], and the aggregated public
key consists of two group elements. The detailed description of our MS scheme is given
as follows:

Mathematics 2023, 11, 3223 13 of 24

MS.Setup(1λ): It first generates a cyclic group G of prime order p of bit size Θ(λ). It
chooses random generators g, h ∈ G. It selects a random exponent α ∈ Zp and sets
g2 = gα, h2 = hα. Next, it chooses cryptographic hash functions H1, H2, H3 such that
H1 : {0, 1}∗ → Zp, H2 : {0, 1}∗ → Zp, and H3 : {0, 1}∗ → Zp. It outputs public
parameters PP = (p,G, g, g2, h, h2, H1, H2, H3).

MS.GenKey(PP): It chooses random xi,1, xi,2 ∈ Zp and computes Xi = gxi,1 gxi,2
2 ,

Yi = hxi,1 hxi,2
2 . It outputs a private key SKi = (PP, xi,1, xi,2) and a public key

PKi = (PP, Xi, Yi).

MS.AggKey(LK): Let LK = (PK1, . . . , PKn) be the list of public keys where
PKi = (PP, Xi, Yi). It calculates ai = H3(LK, PKi) for all i ∈ {1, . . . , n}. Next, it
computes AX = ∏n

i=1 Xai
i and AY = ∏n

i=1 Yai
i . It outputs an aggregated public key

AK = (PP, AX, AY).

MS.Sign(SKi, LK, M): Let SKi = (PP, xi,1, xi,2) and LK = (PK1, . . . , PKn) where
PKi = (PP, Xi, Yi). It obtains AK by running MS.AggKey(LK) and calculates
ai = H3(LK, PKi).

1. It calculates a hash m = H1(M). It selects random ri,1, ri,2 ∈ Zp and computes
Ri =

(
gmh

)ri,1
(

gm
2 h2

)ri,2 . Next, it broadcasts Ri to all co-signers.
2. It receives {Rj}1≤j 6=i≤n from the co-signers. It computes AR = ∏n

i=1 Ri. It
calculates c = H2(AK, AR, M). Next, it computes si,1 = ri,1 + xi,1aic mod p
and si,2 = ri,2 + xi,2aic mod p. It broadcasts (si,1, si,2) to all co-signers.

3. It receives {(sj,1, sj,2)}1≤j 6=i≤n from the co-signers. Next, it sets s1 = ∑n
i=1 si,1

mod p and s2 = ∑n
i=1 si,2 mod p. It outputs a multi-signature σ = (c, s1, s2).

MS.Verify(LK, σ, M): Let σ = (c, s1, s2) be a multi-signature on a message M under the list
of public keys LK. It obtains AK = (PP, AX, AY) by running MS.AggKey(LK). It
calculates a hash m = H1(M). Next, it derives

AR =
(

gmh
)s1

(
gm

2 h2
)s2 /

(
AXm AY

)c

and checks that c ?
= H2(AK, AR, M). If the equation holds, then it outputs 1. Other-

wise, it outputs 0.

The correctness of this MS scheme can be easily verified when m = H1(M) through
the following equation(

gmh
)s1

(
gm

2 h2
)s2 =

(
gmh

)∑n
i=1(ri,1+xi,1aic)(gm

2 h2
)∑n

i=1(ri,2+xi,2aic)

=
(

gmh
)∑n

i=1 ri,1
(

gm
2 h2

)∑n
i=1 ri,2

(
gmh

)∑n
i=1 xi,1aic(gm

2 h2
)∑n

i=1 xi,2aic

=
n

∏
i=1

((
gmh

)ri,1
(

gm
2 h2

)ri,2
)
·

n

∏
i=1

((
gmh

)xi,1ai
(

gm
2 h2

)xi,2ai
)c

=
n

∏
i=1

Ri ·
n

∏
i=1

((
gxi,1 gxi,2

2
)aim(hxi,1 hxi,2

2
)ai

)c

=
n

∏
i=1

Ri ·
(n

∏
i=1

Xaim
i

n

∏
i=1

Yai
i

)c
= AR ·

(
AXm AY

)c.

3.3. Security Analysis

The overall strategy to prove the security of our MS scheme is mostly similar to
the strategy to prove the security of our PKS scheme in the previous section. That is,
the simulator of security proof processes the signature query of an adversary by using a
self-selected private key and divides the algebraic adversaries into three types to derive
discrete logarithms from the forged signature of the adversary. First, in the case of Type-1
and Type-2 adversaries, if the challenge element of the discrete logarithm assumption is

Mathematics 2023, 11, 3223 14 of 24

embedded in g2 and h, respectively, it is possible for the simulator to extract the discrete
logarithm without difficulty by using the forged signature submitted by the adversary
and the representation of a group element in the forged signature. The difficult part of
the proof is to show that a Type-3 adversary has a negligible probability of succeeding in
forgery. To do this, we take advantage of the fact that the private key elements and the
random commitment exponents are statistically hidden from the adversary, which is the
important characteristic of Okamoto signatures. In this case, we use the condition that the
target message m∗ is different from a message m(k) queried in the signing query, which is
the security constraint of the MS-UF-CMA security model. In this case, it can be shown
that the probability of successful forgery of the Type-3 adversary is negligible. Additionally,
in the case of our MS scheme, the Type-3 adversary analysis is somewhat complicated
because the final commitment element is aggregated from individual commitment elements
generated by co-signers. The detailed security proof of our MS scheme is given in the
following theorem.

Theorem 2. The above MS scheme is MS-UF-CMA-secure in the algebraic group model if the DL
assumption holds. That is, for any PPT algebraic adversary Aalg, there exist PPT algorithms B
such that AdvMS

Aalg
(λ) ≤ 2AdvDL

B (λ) + negl(λ).

Proof. Suppose there exists an algebraic adversary Aalg that forges the above MS scheme
with non-negligible advantage ε. A reduction algorithm B that solves the DL assumption
is given as input for a challenge tuple D = (p,G, g, ga). Then, B that interacts with Aalg is
described as follows:
Setup: The algorithm B first chooses a random bit b ∈ {0, 1} to guess the type of an
adversary. If b = 0, then it selects a random exponent h′ ∈ Zp and sets g2 = ga, h = gh′ ,
h2 = gh′

2 . Otherwise, it selects a random exponent α ∈ Zp and sets g2 = gα, h = ga,
h2 = (ga)α. It sets public parameters PP = (p,G, g, g2, h, h2, H1, H2) where H1 and H2 are
hash functions that are modeled as random oracles. Next, it selects random exponents

x∗1 , x∗2 ∈ Zp and computes X∗ = gx∗1 gx∗2
2 , Y∗ = hx∗1 hx∗2

2 . It sets a challenge private key
SK∗ = (PP, x∗1 , x∗2) and a challenge public key PK∗ = (PP, X∗, Y∗). It keeps SK∗ internally
and gives PK1 = PK∗ to Aalg.
Hash Query: If Aalg requests an H1, H2, or H3 hash query, then B handles this query
as follows:

• H1 hash query for (M): If (M, ·) ∈ LH1 , then it retrieves (M, m) from LH1 . Otherwise,
it selects random m ∈ Zp and adds (M, m) to LH1 . It gives m to Aalg.

• H2 hash query for (AK, AR, M): If (AK, AR, M, ·) ∈ LH2 , then it retrieves
(AK, AR, M, c) from LH2 . Otherwise, it selects random c ∈ Zp and adds (AK, AR, M, c)
to LH2 . It gives c to Aalg.

• H3 hash query for (LK, PKi): If (LK, PKi, ·) ∈ LH3 , then it retrieves (LK, PKi, ai) from
LH3 . Otherwise, it selects random ai ∈ Zp and adds (LK, PKi, ai) to LH3 . It gives ai
to Aalg.

Signature Query: If Aalg requests a first-round or second-round signature query, then B
handles this query as follows:

• First-round signature query for (M): It adds M to Q and calculates m = H1(M). It
selects random exponents r1,1, r1,2 ∈ Zp and computes R1 = (gmh)r1,1(gm

2 h2)
r1,2 . It

adds (M, R1, r1,1, r1,2) to LS1 . It gives R1 to Aalg.
• Second-round signature query for (LK, M, {Ri}n

i=1) where LK = (PK1, . . . , PKn): If
(M, R1, ·, ·) 6∈ LS1 or PK1 6= PK∗, then it returns 0. It retrieves (M, R1, r1,1, r1,2) from
LS1 . It computes AR = ∏n

i=1 Ri. It obtains AK by running MS.AggKey(LK) and
calculates a1 = H3(LK, PK1). It calculates c = H2(AK, AR, M). Next, it computes
s1,1 = r1,1 + x∗1 a1c mod p and s1,2 = r1,2 + x∗2 a1c mod p. It adds
(LK, M, {Ri}n

i=1, AR, c, s1,1, s1,2, r1,1, r1,2) to LS2 . It gives (s1,1, s1,2) to Aalg.

Mathematics 2023, 11, 3223 15 of 24

Note that Aalg is an algebraic adversary that when it requests hash and signature
queries with a group element Z ∈ G, it also submits a representation~z = (z1, . . . , z`) for
the group element Z such that Z = ∏`

i=1 Vzi
i and {Vi} are group elements given to Aalg.

For the simplicity of the notation, we do not describe representations for group elements
in hash and signature queries. We assume that the representations of group elements
submitted by Aalg are implicitly stored in the lists maintained by B.
Output: Finally,Aalg outputs a forged multi-signature σ∗ = (c∗, s∗1 , s∗2) on a message M∗ un-
der a list of public keys LK∗ = (PK1, . . . , PKn). B checks that
MS.Verify(LK∗, σ∗, M∗) = 1, PK1 = PK∗, and M∗ 6∈ Q.

From the verification algorithm of the MS scheme, it can derive the following equation

AR∗ =
(

gm∗h
)s∗1

(
gm∗

2 h2
)s∗2

(
AXm∗AY

)−c∗

= gm∗s∗1 hs∗1 gm∗s∗2
2 hs∗2

2

(
Xa1

1

n

∏
i=2

Xai
i

)−m∗c∗(
Ya1

1

n

∏
i=2

Yai
i

)−c∗

where X1 = gx∗1 gx∗2
2 and Y1 = hx∗1 hx∗2

2 . Next, it finds representations~z = (z1, . . . , z7,1, . . . , z7,qS1
)

of the group element AR∗, ~u(i) = (u(i)
1 , . . . , u(i)

7,1, . . . , u(i)
7,qS1

) of the group element Xi, and

~v(i) = (v(i)1 , . . . , v(i)7,1, . . . , v(i)7,qS1
) of the group element Yi that are implicitly stored in hash

lists such as

AR∗ = gz1 gz2
2 hz3 hz4

2 Xz5
1 Yz6

1

qS1

∏
k=1

(
R(k)

1
)z7,k ,

Xi = gu(i)
1 gu(i)

2
2 hu(i)

3 h
u(i)

4
2 X

u(i)
5

1 Y
u(i)

6
1

qS1

∏
k=1

(
R(k)

1
)u(i)

7,k ,

Yi = gv(i)1 gv(i)2
2 hv(i)3 h

v(i)4
2 X

v(i)5
1 Y

v(i)6
1

qS1

∏
k=1

(
R(k)

1)v(i)7,k

where R(k)
1 =

(
gm(k)

h
)r(k)1,1

(
gm(k)

2 h2
)r(k)2,2 is the commitment of the k-th first-round signature

query.
By combining above equations, it can derive the following simplified equation

gA1 hA2 gB1
2 hB2

2 = gA1+dlogg(h)A2 g
B1+dlogg(h)B2

2 = 1

where A1, A2, B1, B2 are variables defined by the forged signature (c∗, s∗1 , s∗2), the representa-

tions~z, {~u(i),~v(i)}, private key elements x∗1 , x∗2 , random exponents {r(k)1,1 , r(k)1,2}, and message
hashes m∗, {m(k)}.

To solve the discrete logarithm, we classify algebraic adversaries into the following
three types depending on the conditions of variables:

• Type-1: an algebraic adversary is Type-1 if B1 + dlogg(h)B2 6≡ 0 mod p.
• Type-2: an algebraic adversary is Type-2 if B1 + dlogg(h)B2 ≡ 0 mod p and B2 6≡ 0

mod p.
• Type-3: an algebraic adversary is Type-3 if B1 + dlogg(h)B2 ≡ 0 mod p and B2 ≡ 0

mod p.

Let F be the event that an adversary succeeds to forge a multi-signature and Ti be the
event that an adversary is Type-i. Since the random bit b is hidden to the adversary and b is
independent of the type of the adversary, we have that Pr[b = 0∧ F|Ti] = Pr[b = 1∧ F|Ti]
for each type of the adversary. If the Type-1 adversary is successful to forge and the
guess of the reduction algorithm is correct (b = 0), then the reduction can compute the
discrete logarithm as dlogg(g2) = −(A1 + h′A2)/(B1 + h′B2) mod p since g2 = ga and

B1 + h′B2 6≡ 0 mod p. That is, Pr[b = 0 ∧ F|T1] ≤ AdvDL
B (λ). If the Type-2 adversary is

Mathematics 2023, 11, 3223 16 of 24

successful to forge and the guess of the reduction is correct (b = 1), then the reduction can
compute the discrete logarithm as dlogg2

(h2) = −B1/B2 mod p since g2 = gα, h2 = (ga)α,

B1 + dlogg(h)B2 ≡ 0 mod p, and B2 6≡ 0 mod p. That is, Pr[b = 1 ∧ F|T2] ≤ AdvDL
B (λ).

From Lemma 5, the probability of the Type-3 adversary to successfully forge is negligible.
That is, Pr[F|T3] ≤ negl(λ). Therefore, we obtain the following result

AdvMS-UF-CMA
Aalg

(λ) = Pr[F ∧ T1] + Pr[F ∧ T2] + Pr[F ∧ T3]

= Pr[T1]Pr[F|T1] + Pr[T2]Pr[F|T2] + Pr[T3]Pr[F|T3]

= Pr[T1]
(

Pr[b = 0∧ F|T1] + Pr[b = 1∧ F|T1]
)
+

Pr[T2]
(

Pr[b = 0∧ F|T2] + Pr[b = 1∧ F|T2]
)
+ Pr[T3]Pr[F|T3]

≤ Pr[T1]2AdvDL
B (λ) + Pr[T2]2AdvDL

B (λ) + Pr[T3]negl(λ)

≤ Pr[T1]2AdvDL
B (λ) + (1− Pr[T1])2AdvDL

B (λ) + negl(λ)

≤ 2AdvDL
B (λ) + negl(λ).

This completes our proof.

Lemma 4. In the above MS scheme, the private key exponents (x∗1 , x∗2) and random exponents

{(r(k)1,1 , r(k)1,2)} for first-round signature queries are statistically hidden to an algebraic adversary.

Proof. In order to show that the private key exponents (x∗1 , x∗2) and random exponents

{(r(k)1,1 , r(k)1,2)} selected by the reduction algorithm are statistically hidden from the adversary,
we should show that these exponents can be changed to different exponents (x̃∗1 , x̃∗2) and

{(r̃(k)1,1 , r̃(k)1,2)}while the public key group elements, the commitment group elements, and the
partial signatures given to the adversary are fixed.

Let (X1, Y1) be the challenge public key. If the private key exponents (x∗1 , x∗2) can
be changed to different private key exponents (x̃∗1 , x̃∗2), then we obtain the first relation
x∗1 + αx∗2 ≡ x̃∗1 + αx̃∗2 mod p from the following equation

X1 =
(

gx∗1 gx∗2
2
)
= gx∗1+αx∗2 = gx̃∗1+αx̃∗2 =

(
gx̃∗1 gx̃∗2

2
)
,

Y1 =
(
hx∗1 hx∗2

2
)
= hx∗1+αx∗2 = hx̃∗1+αx̃∗2 =

(
hx̃∗1 hx̃∗2

2
)
.

Let R(k)
1 be the commitment element of the k-th signature query. If the random

exponents (r(k)1,1 , r(k)1,2) can be changed to different random exponents (r̃(k)1,1 , r̃(k)1,2), then we

obtain the second relation r(k)1,1 + αr(k)1,2 ≡ r̃(k)1,1 + αr̃(k)1,2 mod p from the following equation

R(k)
1 =

(
gm(k)

h
)r(k)1,1

(
gm(k)

2 h2
)r(k)1,2 = g(m

(k)+h′)(r(k)1,1+αr(k)1,2)

=g(m
(k)+h′)(r̃(k)1,1+αr̃(k)1,2) =

(
gm(k)

h
)r̃(k)1,1

(
gm(k)

2 h2
)r̃(k)1,2 .

Let (s(k)1,1 , s(k)1,2) be the partial signature of the k-th signature query where

s(k)1,1 = r(k)1,1 + x∗1 a1c(k) and s(k)1,2 = r(k)1,2 + x∗2 a1c(k). If the random exponents (x∗1 , x∗2) and

(r(k)1,1 , r(k)1,2) can be changed to different random exponents (x̃∗1 , x̃∗2) and (r̃(k)1,1 , r̃(k)1,2), then we
obtain the following third and fourth relations

r(k)1,1 + x∗1 a1c(k) ≡ r̃(k)1,1 + x̃∗1 a1c(k) mod p,

r(k)1,2 + x∗2 a1c(k) ≡ r̃(k)1,2 + x̃∗2 a1c(k) mod p.

Mathematics 2023, 11, 3223 17 of 24

Now, we argue that new private key exponents and new random exponents can satisfy
the above four relations and that these exponents are different than the original exponents.
From the above first, second, and third relations, we set the new exponents as follows

x̃∗1 ← Z∗p, x̃∗2 := x∗2 + (x∗1 − x̃∗1)α
−1 mod p,

r̃(k)1,1 := r(k)1,1 + (x∗1 − x̃∗1)a1c(k) mod p,

r̃(k)1,2 := r(k)1,2 + (r(k)1,1 − r̃(k)1,1)α
−1 mod p.

Next, we show that these new exponents satisfy the fourth relation as follows

r(k)1,2 − r̃(k)1,2 + x∗2 a1c(k) − x̃∗2 a1c(k)

≡ −(r(k)1,1 − r̃(k)1,1)α
−1 − (x∗1 − x̃∗1)α

−1a1c(k)

≡ −
(
(r(k)1,1 − r̃(k)1,1) + (x∗1 − x̃∗1)a1c(k)

)
α−1 ≡ 0 mod p.

This completes our proof.

Lemma 5. If the algebraic adversary is Type-3, then the advantage of the adversary in MS-UF-CMA
game is negligible.

Proof. Let AR∗ be the group element derived from a forged multi-signature σ∗. From the
verification algorithm, the forged signature σ∗ = (c∗, s∗1 , s∗2) with the element AR∗ satisfies
the following equation

1 =
(

gm∗h
)s∗1

(
gm∗

2 h2
)s∗2 AR∗−1(AXm∗AY

)−c∗

= gm∗s∗1 hs∗1 gm∗s∗2
2 hs∗2

2 AR∗−1
(n

∏
i=1

Xai
i

)−m∗c∗(n

∏
i=1

Yai
i

)−c∗

= gm∗s∗1 hs∗1 gm∗s∗2
2 hs∗2

2 · X
−a1m∗c∗
1 Y−a1c∗

1 · AR∗−1 ·
n

∏
i=2

X−m∗aic∗
i

n

∏
i=2

Y−aic∗
i

= gm∗s∗1 hs∗1 gm∗s∗2
2 hs∗2

2 · (gx∗1 gx∗2
2)−a1m∗c∗(hx∗1 hx∗2

2)−a1c∗ · AR∗−1 ·
n

∏
i=2

X−m∗aic∗
i

n

∏
i=2

Y−aic∗
i

= gm∗s∗1−m∗x∗1 a1c∗hs∗1−x∗1 a1c∗gm∗s∗2−m∗x∗2 a1c∗

2 hs∗2−x∗2 a1c∗

2 · AR∗−1 ·
n

∏
i=2

X−m∗aic∗
i

n

∏
i=2

Y−aic∗
i .

Next, we find the representation~z = (z1, . . . , z6, z7,1, . . . , z7,k) from LH2 for the group
element AR∗ such as

AR∗ = gz1 gz2
2 hz3 hz4

2 Xz5
1 Yz6

1

qS1

∏
k=1

(
R(k)

1
)z7,k

= gz1 gz2
2 hz3 hz4

2 (gx∗1 gx∗2
2)z5(hx∗1 hx∗2

2)z6

qS1

∏
k=1

(
(gm(k)

h)r(k)1,1 (gm(k)

2 h2)
r(k)1,2

)z7,k

= gz1 gz2
2 hz3 hz4

2 gx∗1 z5 gx∗2 z5
2 hx∗1 z6 hx∗2 z6

2 g∑
qS1
k=1 m(k)r(k)1,1 z7,k h∑

qS1
k=1 r(k)1,1 z7,k g

∑
qS1
k=1 m(k)r(k)1,2 z7,k

2 h
∑

qS1
k=1 r(k)1,2 z7,k

2

= gz1+x∗1 z5+∑
qS1
k=1 m(k)r(k)1,1 z7,k hz3+x∗1 z6+∑

qS1
k=1 r(k)1,1 z7,k g

z2+x∗2 z5+∑
qS1
k=1 m(k)r(k)1,2 z7,k

2 h
z4+x∗2 z6+∑

qS1
k=1 r(k)1,2 z7,k

2 .

We can also find the representations ~u(i) = (u(i)
1 , . . . , u(i)

6 , u(i)
7,1, . . . , u(i)

7,k),

~v(i) = (v(i)1 , . . . , v(i)6 , v(i)7,1, . . . , v(i)7,k) from LH2 for the group elements Xi, Yi, respectively,
such as

Mathematics 2023, 11, 3223 18 of 24

Xi = gu(i)
1 gu(i)

2
2 hu(i)

3 h
u(i)

4
2 X

u(i)
5

1 Y
u(i)

6
1

qS1

∏
k=1

(
R(k)

1
)u(i)

7,k

= gu(i)
1 +x∗1 u(i)

5 +∑
qS1
k=1 m(k)r(k)1,1 u(i)

7,k hu(i)
3 +x∗1 u(i)

6 +∑
qS1
k=1 r(k)1,1 u(i)

7,k

g
u(i)

2 +x∗2 u(i)
5 +∑

qS1
k=1 m(k)r(k)1,2 u(i)

7,k
2 h

u(i)
4 +x∗2 u(i)

6 +∑
qS1
k=1 r(k)1,2 u(i)

7,k
2 ,

Yi = gv(i)1 gv(i)2
2 hv(i)3 h

v(i)4
2 X

v(i)5
1 Y

v(i)6
1

qS1

∏
k=1

(
R(k)

1
)v(i)7,k

= gv(i)1 +x∗1 v(i)5 +∑
qS1
k=1 m(k)r(k)1,1 v(i)7,k hv(i)3 +x∗1 v(i)6 +∑

qS1
k=1 r(k)1,1 v(i)7,k

g
v(i)2 +x∗2 v(i)5 +∑

qS1
k=1 m(k)r(k)1,2 v(i)7,k

2 h
v(i)4 +x∗2 v(i)6 +∑

qS1
k=1 r(k)1,2 v(i)7,k

2 .

By combining the above equations, we can derive the equation gA1 hA2 gB1
2 hB2

2 = 1,
where variables B1 and B2 are defined as follows

B1 =m∗(s∗2 − x∗2 a1c∗)−
(

z2 + x∗2z5 +

qS1

∑
k=1

m(k)r(k)1,2 z7,k

)
−

n

∑
i=2

(
u(i)

2 + x∗2u(i)
5 +

qS1

∑
k=1

m(k)r(k)1,2 u(i)
7,k

)
(m∗aic∗)−

n

∑
i=2

(
v(i)2 + x∗2v(i)5 +

qS1

∑
k=1

m(k)r(k)1,2 v(i)7,k

)
(aic∗),

B2 =(s∗2 − x∗2 a1c∗)−
(

z4 + x∗2z6 +

qS1

∑
k=1

r(k)1,2 z7,k

)
−

n

∑
i=2

(
u(i)

4 + x∗2u(i)
6 +

qS1

∑
k=1

r(k)1,2 u(i)
7,k

)
(m∗aic∗)−

n

∑
i=2

(
v(i)4 + x∗2v(i)6 +

qS1

∑
k=1

r(k)1,2 v(i)7,k

)
(aic∗).

Now, we analyze the conditions to satisfy B2 ≡ 0 mod p. From Lemma 4, we know
that x∗2 and {r(k)1,2} are statistically hidden to the adversary. To satisfy B2 ≡ 0 mod p,
the term x∗2 a1c∗ of B2 that is not directly controlled by the adversary should be cancelled
out. To analyze this, we consider the following three cases:

• Case 1: Let BAD1 be an event that x∗2 a1c∗ is cancelled by
(
z4 + x∗2z6 + ∑

qS1
k=1 r(k)1,2 z7,k

)
.

Recall that the term
(
z4 + x∗2z6 + ∑

qS1
k=1 r(k)1,2 z7,k

)
is associated with the group element

AR∗. In the signing algorithm, c∗ is the output of a hash function H2 that takes AR∗

as an input, and H2 is modeled as a random oracle. Thus, c∗ is a random value
independent of AR∗ by the property of the random oracle. This means that the
probability of BAD1 is at most 1/p.

• Case 2: Let BAD2 be the event that x∗2 a1c∗ is cancelled by

∑n
i=2

(
u(i)

4 + x∗2u(i)
6 +∑

qS1
k=1 r(k)1,2 u(i)

7,k
)
(m∗aic∗)+∑n

i=2
(
v(i)4 + x∗2v(i)6 +∑

qS1
k=1 r(k)1,2 v(i)7,k

)
(aic∗).

Recall that the terms
(
u(i)

4 + x∗2u(i)
6 + ∑

qS1
k=1 r(k)1,2 u(i)

7,k
)

and
(
v(i)4 + x∗2v(i)6 + ∑

qS1
k=1 r(k)1,2 v(i)7,k

)
are associated with the group elements Xi and Yi, respectively. In the key aggregation
algorithm, a1 is the output of a hash function H2 that takes LK = (PK1, . . . , PKn) and
PKi = (PP, Xi, Yi) as inputs, and H3 is modeled as a random oracle. Thus, a1 is a
random value independent of LK and PKi by the property of the random oracle. This
means that the probability of BAD2 is at most 1/p.

Mathematics 2023, 11, 3223 19 of 24

• Case 3: Let BAD3 be the event that the term x∗2 a1c∗ is cancelled by s∗2 . Recall that
the term s∗2 is the output of the adversary as the forged multi-signature and x∗2 is
statistically hidden to the adversary. The only way to cancel out this term is for the
adversary to construct a forged multi-signature by combining the simulated signatures
{(s(k)1,1 , s(k)1,2)} given from the second-round signature queries since the reduction algo-

rithm simply constructs a partial signature s(k)2 = r(k)1,2 + x∗2 a1c(k) by using the hidden
private key element x∗2 . In this case, the term (s∗2 − x∗2 a1c∗) additionally contains a

statistically hidden random exponent r(k)1,2 from the commitment R(k)
1 for some k. Thus,

there should exist an index k ∈ {1, . . . , qS1} such that z7,k 6≡ 0 mod p since Aalg is
an algebraic adversary that submits a group element with a representation of group
elements given to the adversary.
From the conditions B1 + dlogg(h)B2 ≡ 0 mod p and B2 ≡ 0 mod p of the Type-3
adversary, we have that B1 ≡ B2 ≡ 0 mod p. By combining B1 and B2, we have the
following equation

− B1 + m∗B2

≡
(

z2 + x∗2z5 −m∗(z4 + x∗2z6) +

qS1

∑
k=1

(m(k) −m∗)r(k)1,2 z7,k

)
+

n

∑
i=2

(
u(i)

2 + x∗2u(i)
5 −m∗(u(i)

4 + x∗2u(i)
6) +

qS1

∑
k=1

(m(k) −m∗)r(k)1,2 u(i)
7,k

)
(m∗aic∗)+

n

∑
i=2

(
v(i)2 + x∗2v(i)5 −m∗(v(i)4 + x∗2v(i)6) +

qS1

∑
k=1

(m(k) −m∗)r(k)1,2 v(i)7,k

)
(aic∗)

≡ 0 mod p.

Since z7,k 6≡ 0 mod p for some k and r(k)1,2 is statistically hidden to the adversary,

the above equation can be reshaped as a degree-one polynomial C1r(k)1,2 + C0 ≡ 0
mod p where a coefficient C1 is expressed as

C1 = (m(k) −m∗)
(

z7,k +
n

∑
i=2

u(i)
7,k(m

∗aic∗) +
n

∑
i=2

v(i)7,k(aic∗)
)

.

By the Schwartz–Zippel lemma, the probability of the above polynomial to be zero is
at most 1/p if r(k)1,2 is randomly selected and C1 6≡ 0 mod p. By the restrictions of the
security model 5, we have M∗ 6∈ Q. The probability that m(k) −m∗ ≡ 0 mod p for
some k when M∗ 6∈ Q is bounded by qS1 /p since H1 is modeled as a random oracle.

The probability that z7,k + ∑n
i=2 u(i)

7,k(m
∗aic∗) + ∑n

i=2 v(i)7,k(aic∗) ≡ 0 mod p is bounded
by 1/p since c∗ is the output of H2 when AR∗, Xi, and Yi are given as inputs where
z7,k, u(i)

7,k, v(i)7,k are associated with AR∗, Xi, Yi, respectively. Thus, the probability that
C1 ≡ 0 mod p is bounded by (qS1 + 1)/p. This means that the probability of BAD3
is at most (qS1 + 2)/p.

The success probability of the adversary is bounded by the probability of all bad
events, and the probability of all bad events are bounded as

Pr[BAD] ≤Pr[BAD1] + Pr[BAD2] + Pr[BAD3] ≤ (qS1 + 4)/p.

This completes our proof.

3.4. Discussion

Multi-Signatures with Proofs of Possession. Our MS scheme requires 2n exponentia-
tions to aggregate the public keys of co-signers. As suggested by the previous studies [35],

Mathematics 2023, 11, 3223 20 of 24

if public keys additionally include the proofs of possession of private keys, it is possible to
simply aggregate all public keys of co-signers by multiplying these public keys without
using expensive exponentiations. At this time, the security model that requires the proof of
possession of a private key is a weaker model than the plain public-key model.

Synchronized Multi-Signature. If co-signers participating in multi-signature share the
same information that is synchronized with each other, such as time or session count, it
is possible for co-signers to create a commitment by using the synchronized information
instead of using a message [31]. As an example, in the consensus protocol of a blockchain,
the information of a previous block can be used as synchronization information. If such
synchronized information exists, the signers can compute the commitment in advance and
share it before a message to be signed is provided.

4. Performance Analysis

In this section, we analyze the public key and signature size of our MS scheme on a
popular elliptic curve and estimate the performance of the algorithms of our MS scheme.
To estimate the performance of basic operations in the elliptic curve, we use a laptop with
Intel Core i7-1185G7 3.0 GHz CPU and 16.0 GB RAM running the Windows 11 operating
system. That is, we first measure the performance of basic operations in the laptop and
estimate the performance of the algorithms of our MS scheme based on this.

For the underlying elliptic curve, we choose secp256k1 used in Bitcoin because it
allows for efficient computation compared to other elliptic curves and less possibility of
backdoors. In this elliptic curve, the prime order p is 256 bits in size, the uncompressed
generator g is 512 bits in size, and the compressed generator g is 257 bits in size. We use the
secp256kfun library implemented in Rust language to measure the performance of group
multiplication and exponentiation of the secp256k1 elliptic curve. Additionally, we use the
sha2 library implemented in Rust language to measure the performance of a hash function.
The details of the elliptic curve groups and the benchmark of basic operations are given in
Table 2.

Table 2. Elliptic curve group sizes and basic operations.

Curve Zp G M E H

secp256k1 256-bit 257-bit 0.003 0.758 0.003
We use M for multiplication, E for exponentiation, and H for sha256 hash. All operations are measured in
milliseconds.

The asymptotic comparison of our MS scheme with other MS schemes is given in
Table 3. For this comparison, we select the MuSig scheme of Maxwell et al. [3] since it is
the first three-round MS scheme that supports key aggregation and the MuSig2 scheme of
Nick et al. [16] since it is the most efficient two-round MS scheme with key aggregation.
In our MS scheme, a public key PK consists of two elements in G and an aggregate key
AK consists of two elements in G. A signing algorithm is a protocol in which multiple
co-signers participate. A partial signature PS that must be transmitted to other co-signers
consists of one element in G and two elements in Zp, and the final multi-signature MS
consists of three elements in Zp. Thus, PK and AK are 66 bytes each, and MS is 96 bytes.
In MuSig and MuSig2 schemes, a public key consists of one element in G and a multi-
signature consists of one element in G and one element in Zp. Thus, PK and MS of the
MuSig and MuSig2 schemes are 33 bytes and 65 bytes, respectively. Compared to other MS
schemes, our MS scheme has a slightly larger size in the public key and multi-signature.

Mathematics 2023, 11, 3223 21 of 24

Table 3. Key size, signature size, and algorithm analysis of MS schemes.

Scheme PK AK PS MS GenKey AggKey Sign Verify

MuSig [3] G G G+ 2Zp G+Zp 1E nE + nM + nH 1E + nM 2E
MuSig2 [16] G G 2G+Zp G+Zp 1E nE + nM + nH 4E + nM 2E

Ours 2G 2G G+ 2Zp 3Zp 4E 2nE + 2nM + nH 4E + nM 6E

Let n be the number of co-signers. We denote PK for public key, AK for aggregated key, PS for partial signature
of a co-signer in the signing process, and MS for multi-signature. We use symbols M for multiplication, E for
exponentiation, and H for hash.

Our MS scheme consists of four main algorithms: GenKey, AggKey, Sign, and Verify.
In Table 3, we analyze the approximate performance of these algorithms in terms of the
number of co-signers and basic operations. In our MS scheme, the GenKey algorithm
consists of 4 exponentiations, and the AggKey algorithm consists of 2n exponentiations,
2n multiplications, and n hashes, so the number of basic operations increases linearly
depending on the number of co-signers. The Sign algorithm consists of 4 exponentiations
and n multiplications, excluding the communication overhead between co-signers since the
communication overhead varies depending on the network environment, and the Verify
algorithm consists of 6 exponentiations. In this case, we assume that the aggregation key is
given as an input to the Sign and Verify algorithms, so these algorithms do not calculate
the aggregation key again.

In Table 4, we analyze how the performance of the algorithms of our MS scheme
and the MuSig2 scheme change as the number of co-signers changes. To this end, we
estimate the performance of these algorithms by combining the performance analysis of
the basic operation in Table 2 and the algorithm analysis in Table 3. In our MS scheme,
the estimated running time of the GenKey and Verify algorithms are 3.032 milliseconds
and 4.548 milliseconds, respectively, since they are independent of the number of co-signers.
The estimated running time of the AggKey algorithm that generates an aggregate key of
co-signers increases in proportion to the number of co-signers, but it can be done within
1.525 s even for n = 1000. Therefore, it is not a problem since the generated aggregate key
can be reused again without needing to regenerate it. The estimated running time of the
Sign algorithm is efficient because it takes 6.032 milliseconds even for n = 1000, excluding
the communication overhead between co-signers.

Table 4. Estimated algorithm performance analysis of MS schemes.

Scheme Co-Signers n 20 50 100 200 500 1000

MuSig2 [16]

GenKey 0.758 0.758 0.758 0.758 0.758 0.758
AggKey 15.28 38.2 76.4 152.8 382 764

Sign 3.092 3.182 3.332 3.632 4.532 6.032
Verify 1.516 1.516 1.516 1.516 1.516 1.516

Ours

GenKey 3.032 3.032 3.032 3.032 3.032 3.032
AggKey 30.5 76.25 152.5 305 762.5 1525

Sign 3.092 3.182 3.332 3.632 4.532 6.032
Verify 4.548 4.548 4.548 4.548 4.548 4.548

Let n be the number of co-signers. We estimate the performance in milliseconds.

5. Conclusions

In this paper, we proposed a new PKS scheme and a two-round MS scheme by
modifying the Okamoto signature scheme. In addition, we proved the unforgeability of
these PKS and MS schemes under the discrete logarithm assumption in the AGM and the
non-programmable ROM. Our proposed MS scheme is the first two-round MS scheme from
Okamoto signatures. One drawback of our MS scheme is that the tight security reduction
is proven in the AGM. Thus, it is an interesting problem to devise an efficient two-round
MS scheme with tight security reduction without relying on the AGM.

Mathematics 2023, 11, 3223 22 of 24

Author Contributions: Conceptualization, K.L. and H.K.; methodology, K.L.; formal analysis, K.L.
and H.K.; writing—original draft preparation, K.L. and H.K.; writing—review and editing, K.L.;
project administration, K.L.; funding acquisition, K.L. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported by the Institute of Information & Communications Technology
Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No. 2021-0-00518,
Blockchain privacy preserving techniques based on data encryption).

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript,
or in the decision to publish the results.

References
1. Bellare, M.; Neven, G. Multi-signatures in the plain public-key model and a general forking lemma. In Proceedings of the ACM

Conference on Computer and Communications Security, CCS 2006, Alexandria, VA, USA, 30 October–3 November 2006; Juels, A.,
Wright, R.N., di Vimercati, S.D.C., Eds.; ACM: New York, NY, USA, 2006; pp. 390–399.

2. Boneh, D.; Drijvers, M.; Neven, G. Compact multi-signatures for smaller blockchains. In Advances in Cryptology—ASIACRYPT,
Proceedings of the 24th International Conference on the Theory and Application of Cryptology and Information Security, Brisbane, QLD,
Australia, 2–6 December 2018; Peyrin, T., Galbraith, S.D., Eds.; Lecture Notes in Computer Science; Springer: Cham, Switzerland,
2018; Volume 11273, pp. 435–464.

3. Maxwell, G.; Poelstra, A.; Seurin, Y.; Wuille, P. Simple Schnorr multi-signatures with applications to Bitcoin. Des. Codes Cryptogr.
2019, 87, 2139–2164. [CrossRef]

4. Boldyreva, A. Threshold signatures, multisignatures and blind signatures based on the gap-Diffie-Hellman-group signature
scheme. In Public-Key Cryptography—PKC 2003, Proceedings of the 6th International Workshop on Theory and Practice in Public Key
Cryptography, Miami, FL, USA, 6–8 January 2003; Desmedt, Y., Ed.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg,
Germany, 2003; Volume 2567, pp. 31–46.

5. Lu, S.; Ostrovsky, R.; Sahai, A.; Shacham, H.; Waters, B. Sequential aggregate signatures and multisignatures without random
oracles. In Advances in Cryptology—EUROCRYPT 2006, Proceedings of the 25th International Conference on the Theory and Applications
of Cryptographic Techniques, St. Petersburg, Russia, 28 May–1 June 2006; Vaudenay, S., Ed.; Lecture Notes in Computer Science;
Springer: Berlin/Heidelberg, Germany, 2006; Volume 4004, pp. 465–485.

6. Boldyreva, A.; Gentry, C.; O’Neill, A.; Yum, D.H. Ordered Multisignatures and Identity-Based Sequential Aggregate Signatures,
with Applications to Secure Routing. Cryptology ePrint Archive, Report 2007/438. 2010. Available online: http://eprint.iacr.org/
2007/438 (accessed on 1 June 2023).

7. Drijvers, M.; Gorbunov, S.; Neven, G.; Wee, H. Pixel: Multi-signatures for consensus. In Proceedings of the USENIX Security 2020,
Boston, MA, USA, 12–14 August 2020; Capkun, S., Roesner, F., Eds.; USENIX Association: Berkeley, CA, USA, 2020; pp. 2093–2110.

8. Fiat, A.; Shamir, A. How to prove yourself: Practical solutions to identification and signature problems. In Advances in Cryptology—
CRYPTO’ 86, Proceedings of the 6th Annual International Cryptology Conference, Santa Barbara, CA, USA, 1986; Odlyzko, A.M., Ed.;
Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 1986; Volume 263, pp. 186–194.

9. Schnorr, C. Efficient signature generation by smart cards. J. Cryptol. 1991, 4, 161–174. [CrossRef]
10. Bagherzandi, A.; Cheon, J.H.; Jarecki, S. Multisignatures secure under the discrete logarithm assumption and a generalized

forking lemma. In Proceedings of the ACM Conference on Computer and Communications Security (CCS), Alexandria, VA, USA,
27–31 October 2008; Ning, P., Syverson, P.F., Jha, S., Eds.; ACM: New York, NY, USA, 2008; pp. 449–458.

11. Ma, C.; Weng, J.; Li, Y.; Deng, R.H. Efficient discrete logarithm based multi-signature scheme in the plain public key model. Des.
Codes Cryptogr. 2010, 54, 121–133. [CrossRef]

12. Syta, E.; Tamas, I.; Visher, D.; Wolinsky, D.I.; Jovanovic, P.; Gasser, L.; Gailly, N.; Khoffi, I.; Ford, B. Keeping authorities “honest or
bust” with decentralized witness cosigning. In Proceedings of the IEEE Symposium on Security and Privacy (SP), San Jose, CA,
USA, 22–26 May 2016; IEEE Computer Society: Washington, DC, USA, 2016; pp. 526–545.

13. Drijvers, M.; Edalatnejad, K.; Ford, B.; Kiltz, E.; Loss, J.; Neven, G.; Stepanovs, I. On the security of two-round multi-signatures.
In Proceedings of the IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 19–23 May 2019; pp. 1084–1101.

14. Nick, J.; Ruffing, T.; Seurin, Y.; Wuille, P. MuSig-DN: Schnorr multi-signatures with verifiably deterministic nonces. In Proceedings
of the ACM Conference on Computer and Communications Security (CCS ‘20), Online, 9–13 November 2020; Ligatti, J., Ou, X.,
Katz, J., Vigna, G., Eds.; ACM: New York, NY, USA, 2020; pp. 1717–1731.

15. Alper, H.K.; Burdges, J. Two-round trip Schnorr multi-signatures via delinearized witnesses. In Advances in Cryptology—CRYPTO
2021; Malkin, T., Peikert, C., Eds.; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2021; Volume 12825,
pp. 157–188.

http://doi.org/10.1007/s10623-019-00608-x
http://eprint.iacr.org/2007/438
http://eprint.iacr.org/2007/438
http://dx.doi.org/10.1007/BF00196725
http://dx.doi.org/10.1007/s10623-009-9313-z

Mathematics 2023, 11, 3223 23 of 24

16. Nick, J.; Ruffing, T.; Seurin, Y. MuSig2: Simple two-round Schnorr multi-signatures. In Advances in Cryptology—CRYPTO 2021,
Proceedings of the 41st Annual International Cryptology Conference, Online, 16–20 August 2021; Malkin, T., Peikert, C., Eds.; Lecture
Notes in Computer Science; Springer: Cham, Switzerland, 2021; Volume 12825, pp. 189–221.

17. Bellare, M.; Dai, W. Chain reductions for multi-signatures and the HBMS scheme. In Advances in Cryptology—ASIACRYPT
2021, Proceedings of the 27th International Conference on the Theory and Application of Cryptology and Information Security, Singapore,
6–10 December 2021; Tibouchi, M., Wang, H., Eds.; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2021;
Volume 13093, pp. 650–678.

18. Okamoto, T. Provably secure and practical identification schemes and corresponding signature schemes. In Advances in Cryptology—
CRYPTO’ 92, Proceedings of the 12th Annual International Cryptology Conference, Santa Barbara, CA, USA, 16–20 August 1992; Brickell,
E.F., Ed.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 1992; Volume 740, pp. 31–53.

19. Gennaro, R.; Goldfeder, S.; Narayanan, A. Threshold-optimal DSA/ECDSA signatures and an application to Bitcoin wallet
security. In Applied Cryptography and Network Security, Proceedings of the 14th International Conference (ACNS 2016), Guildford, UK,
19–22 June 2016; Manulis, M., Sadeghi, A., Schneider, S.A., Eds.; Lecture Notes in Computer Science; Springer: Cham, Switzerland,
2016; Volume 9696, pp. 156–174.

20. Lindell, Y. Fast secure two-party ECDSA signing. In Advances in Cryptology—CRYPTO 2017, Proceedings of the 37th Annual
International Cryptology Conference, Santa Barbara, CA, USA, 20–24 August 2017; Katz, J., Shacham, H., Eds.; Lecture Notes in
Computer Science; Springer: Cham, Switzerland, 2017; Volume 10402, pp. 613–644.

21. Gennaro, R.; Goldfeder, S. Fast multiparty threshold ECDSA with fast trustless setup. In Proceedings of the ACM Conference on
Computer and Communications Security (CCS), Toronto, ON, Canada, 15–19 October 2018; Lie, D., Mannan, M., Backes, M.,
Wang, X., Eds.; ACM: New York, NY, USA, 2018; pp. 1179–1194.

22. Lindell, Y.; Nof, A. Fast secure multiparty ECDSA with practical distributed key generation and applications to cryptocurrency
custody. In Proceedings of the ACM Conference on Computer and Communications Security (CCS), Toronto, ON, Canada, 15–19
October 2018; Lie, D., Mannan, M., Backes, M., Wang, X., Eds.; ACM: New York, NY, USA, 2018; pp. 1837–1854.

23. Komlo, C.; Goldberg, I. FROST: Flexible round-optimized Schnorr threshold signatures. In Selected Areas in Cryptography,
Proceedings of the 27th International Conference (SAC 2020), Halifax, NS, Canada, 21–23 October 2020; Dunkelman, O., Jacobson, M.J.,
Jr., O’Flynn, C., Eds.; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2020; Volume 12804, pp. 34–65.

24. Crites, E.; Komlo, C.; Maller, M. How to Prove Schnorr Assuming Schnorr: Security of Multi- and Threshold Signatures.
Cryptology ePrint Archive, Paper 2021/1375. 2021. Available online: https://eprint.iacr.org/2021/1375 (accessed on 1 June 2023).

25. Bellare, M.; Crites, E.C.; Komlo, C.; Maller, M.; Tessaro, S.; Zhu, C. Better than advertised security for non-interactive threshold
signatures. In Advances in Cryptology—CRYPTO 2022, Proceedings of the 42nd Annual International Cryptology Conference, CRYPTO
2022, Santa Barbara, CA, USA, 15–18 August 2022; Dodis, Y., Shrimpton, T., Eds.; Lecture Notes in Computer Science; Springer:
Cham, Switzerland, 2022; Volume 13510, pp. 517–550.

26. Gennaro, R.; Jarecki, S.; Krawczyk, H.; Rabin, T. Secure distributed key generation for discrete-log based cryptosystems. J. Cryptol.
2007, 20, 51–83. [CrossRef]

27. Gurkan, K.; Jovanovic, P.; Maller, M.; Meiklejohn, S.; Stern, G.; Tomescu, A. Aggregatable distributed key generation. In
Advances in Cryptology—EUROCRYPT 2021, Proceedings of the 40th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Zagreb, Croatia, 17–21 October 2021; Canteaut, A., Standaert, F., Eds.; Lecture Notes in Computer Science;
Springer: Cham, Switzerland, 2021; Volume 12696, pp. 147–176.

28. Groth, J. Non-Interactive Distributed Key Generation and Key Resharing. Cryptology ePrint Archive, Paper 2021/339. 2021.
Available online: https://eprint.iacr.org/2021/339 (accessed on 1 June 2023).

29. Boneh, D.; Gentry, C.; Lynn, B.; Shacham, H. Aggregate and verifiably encrypted signatures from bilinear maps. In Advances in
Cryptology—EUROCRYPT 2003, Proceedings of the International Conference on the Theory and Applications of Cryptographic Techniques,
Warsaw, Poland, 4–8 May 2003; Biham, E., Ed.; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2003; Volume 2656,
pp. 416–432.

30. Lysyanskaya, A.; Micali, S.; Reyzin, L.; Shacham, H. Sequential aggregate signatures from trapdoor permutations. In Advances
in Cryptology—EUROCRYPT 2004, Proceedings of the International Conference on the Theory and Applications of Cryptographic
Techniques, Interlaken, Switzerland, 2–6 May 2004; Cachin, C., Camenisch, J., Eds.; Lecture Notes in Computer Science; Springer:
Berlin/Heidelberg, Germany, 2004; Volume 3027, pp. 74–90.

31. Gentry, C.; Ramzan, Z. Identity-based aggregate signatures. In Public-Key Cryptography—PKC 2006, Proceedings of the 9th
International Conference on Theory and Practice in Public-Key Cryptography, New York, NY, USA, 24–26 April 2006; Yung, M., Dodis, Y.,
Kiayias, A., Malkin, T., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2006; Volume 3958,
pp. 257–273.

32. Tessaro, S.; Zhu, C. Threshold and multi-signature schemes from linear hash functions. In Advances in Cryptology—EUROCRYPT
2023, Proceedings of the 42nd Annual International Conference on the Theory and Applications of Cryptographic Techniques, Lyon, France,
23–27 April 2023; Hazay, C., Stam, M., Eds.; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2023; Volume 14008,
pp. 628–658.

33. Fuchsbauer, G.; Kiltz, E.; Loss, J. The algebraic group model and its applications. In Advances in Cryptology—CRYPTO 2018,
Proceedings of the 38th Annual International Cryptology Conference, Santa Barbara, CA, USA, 19–23 August 2018; Shacham, H.,
Boldyreva, A., Eds.; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2018; Volume 10992, pp. 33–62.

https://eprint.iacr.org/2021/1375
http://dx.doi.org/10.1007/s00145-006-0347-3
https://eprint.iacr.org/2021/339

Mathematics 2023, 11, 3223 24 of 24

34. Schwartz, J.T. Fast probabilistic algorithms for verification of polynomial identities. J. ACM 1980, 27, 701–717. [CrossRef]
35. Ristenpart, T.; Yilek, S. The power of proofs-of-possession: Securing multiparty signatures against rogue-key attacks. In

Advances in Cryptology—EUROCRYPT 2007, Proceedings of the 26th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Barcelona, Spain, 20–24 May 2007; Naor, M., Ed.; Lecture Notes in Computer Science; Springer:
Berlin/Heidelberg, Germany, 2007; Volume 4515, pp. 228–245.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1145/322217.322225

	Introduction
	Our Contributions
	Related Work
	Subsequent Work

	Public-Key Signature
	Definition
	Construction
	Security Analysis
	Discussion

	Multi-Signature
	Definition
	Construction
	Security Analysis
	Discussion

	Performance Analysis
	Conclusions
	References

