
Citation: Xu, J.; Hu, W.; Gu, W.; Yu,

Y. A Discrete JAYA Algorithm Based

on Reinforcement Learning and

Simulated Annealing for the

Traveling Salesman Problem.

Mathematics 2023, 11, 3221. https://

doi.org/10.3390/math11143221

Academic Editors: Takfarinas Saber

and Aman Singh

Received: 13 June 2023

Revised: 19 July 2023

Accepted: 19 July 2023

Published: 22 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

A Discrete JAYA Algorithm Based on Reinforcement Learning
and Simulated Annealing for the Traveling Salesman Problem
Jun Xu 1, Wei Hu 1 , Wenjuan Gu 2,* and Yongguang Yu 3

1 School of Systems Science, Beijing Jiaotong University, Beijing 100044, China; 21120754@bjtu.edu.cn (J.X.);
huwei@bjtu.edu.cn (W.H.)

2 School of Modern Post, Beijing University of Posts and Telecommunications, Beijing 100876, China
3 School of Mathematics and Statistics, Beijing Jiaotong University, Beijing 100044, China; ygyu@bjtu.edu.cn
* Correspondence: wenjuan.gu@bupt.edu.cn

Abstract: The JAYA algorithm is a population-based meta-heuristic algorithm proposed in recent
years which has been proved to be suitable for solving global optimization and engineering op-
timization problems because of its simplicity, easy implementation, and guiding characteristic of
striving for the best and avoiding the worst. In this study, an improved discrete JAYA algorithm
based on reinforcement learning and simulated annealing (QSA-DJAYA) is proposed to solve the
well-known traveling salesman problem in combinatorial optimization. More specially, firstly, the
basic Q-learning algorithm in reinforcement learning is embedded into the proposed algorithm such
that it can choose the most promising transformation operator for the current state to update the
solution. Secondly, in order to balance the exploration and exploitation capabilities of the QSA-DJAYA
algorithm, the Metropolis acceptance criterion of the simulated annealing algorithm is introduced to
determine whether to accept candidate solutions. Thirdly, 3-opt is applied to the best solution of the
current iteration at a certain frequency to improve the efficiency of the algorithm. Finally, to evaluate
the performance of the QSA-DJAYA algorithm, it has been tested on 21 benchmark datasets taken
from TSPLIB and compared with other competitive algorithms in two groups of comparative ex-
periments. The experimental and the statistical significance test results show that the QSA-DJAYA
algorithm achieves significantly better results in most instances.

Keywords: JAYA algorithm; traveling salesman problem; population-based meta-heuristics;
reinforcement learning; metropolis acceptance criterion

MSC: 90-08; 68R01; 68W50; 90C06; 90C10; 90C27

1. Introduction

In the real world, the essence of a large number of complex problems are combinatorial
optimization problems. The traveling salesman problem (TSP) is considered to be one
of the most common problems in the field of combinatorial optimization, especially in
logistics transportation and distribution. In this problem, the traveler starts from one city,
passes through all the cities, and finally returns to the starting city. Since Dantzig and
Ramser [1] proposed this problem in 1959, it has attracted increasing attention. However,
the TSP is an NP-hard problem [2,3], that is, there is no polynomial time algorithm to
solve this problem. Solving such problems is still full of challenge. It should be noted
that other combinatorial optimization problems, such as knapsack problems, assignment
problems, job-shop scheduling problems, and so on, are also NP-hard problems similar
to the TSP. If the TSP can be solved efficiently, it will also provide promising solutions for
other similar problems.

Generally speaking, most exact approaches to the TSP are based on the linear pro-
gramming algorithm, the branch-and-bound algorithm, and the dynamic programming
algorithm [4]. The basic idea of the exact algorithms is to find the optimal solution by

Mathematics 2023, 11, 3221. https://doi.org/10.3390/math11143221 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11143221
https://doi.org/10.3390/math11143221
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-3006-7903
https://orcid.org/0000-0002-9336-0376
https://doi.org/10.3390/math11143221
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11143221?type=check_update&version=2

Mathematics 2023, 11, 3221 2 of 23

traversing the entire solution space, which determines the high time complexity of the
above exact algorithms. Therefore, this kind of exact algorithms can only effectively solve
small-scale TSPs, but it is difficult to solve the medium and large-scale TSPs. The explosion
of the solution space caused by the increase in the scale is the most severe problem in the
process of solving the TSP. Traditional exact algorithms have prominent disadvantages in
the face of this difficulty, making it difficult to effectively solve this optimization problem [4].
To overcome this difficulty, researchers have designed many meta-heuristic algorithms
inspired by the laws of physical change and biological systems in nature, such as Genetic
Algorithm (GA) [5], Cuckoo Search (CS) [6], Particle Swarm Optimization (PSO) [7–9],
Bat Algorithm (BA) [2], Simulated Annealing (SA) [10], Ant Colony Optimization algo-
rithm (ACO) [8,11–14], Frog-Leaping Algorithm (FLA) [15], and Artificial Bee Colony
(ABC) [16–20]. Those kinds of meta-heuristic algorithms are simple in principle, are flexible
in mechanism, and easily find the approximate optimal solution in a short time.

The JAYA algorithm is a meta-heuristic algorithm, proposed by Rao in 2016, which
is used to solve constrained and unconstrained continuous optimization problems [21]. It
has been applied to solve different kinds of problems, such as flexible job-shop schedul-
ing [22], text clustering [23], solid oxide fuel cell parameter optimization [24], feature
selection [25], hydropower reservoir operation optimization [26], etc. Mesut Gunduz and
Murat Aslan [27] discretized the JAYA algorithm by modifying the encoding mode and
updating mechanism, and applied it to the TSP for the first time. Although the results on
the selected cases are good in terms of convergence speed and solution quality, it is still
inferior to the Discrete Tree-Seed Algorithm (DTSA) [28] used for comparison. Fortunately,
the traditional JAYA algorithm can be improved by combining it with other meta-heuristic
algorithms and introducing some advanced ideas such as reinforcement learning to mitigate
the problems of instability and easily falling into local optima.

In this paper, an improved discrete JAYA algorithm based on reinforcement learning
and SA, viz., the QSA-DJAYA algorithm, is proposed to solve the TSP. In the QSA-DJAYA
algorithm, six transformation operators are used for producing the candidate solutions.
Unlike the DJAYA algorithm of [27], which used roulette wheel selection to select transfor-
mation operators, the proposed QSA-DJAYA algorithm utilizes the Q-learning algorithm
in reinforcement learning to choose the most promising transformation operator. Then,
inspired by SA, we introduce the Metropolis acceptance criterion to determine whether
to accept the candidate solution. In addition, 3-opt is applied to the best solution of the
current iteration at a certain frequency to further improve the efficiency of this algorithm.
To evaluate the performance of the proposed approach, it was compared with four repre-
sentative algorithms developed by ourselves and eight efficient methods the from literature
on 21 instances from TSPLIB [29]. The experimental results and the statistical significance
test show the effectiveness of the proposed QSA-DJAYA algorithm. The main contributions
are as follows:

• A novel improved discrete JAYA algorithm for the TSP is designed.
• The Q-learning algorithm in reinforcement learning is embedded to adaptively select

the promising transformation operator.
• The Metropolis acceptance criterion of SA is introduced to help jump out of the local

optima.
• Compared with four typical algorithms developed by ourselves and eight efficient

methods from the literature, the proposed algorithm displays great superiority in
solving the TSP.

The remainder of this paper is organized as follows: Section 2 describes the related
work. In Section 3, the proposed QSA-DJAYA algorithm is introduced. Section 4 dis-
cusses the experimental results of the proposed algorithm and other advanced competing
algorithms on the TSP benchmark datasets. Section 5 draws conclusions and proposes
future work.

Mathematics 2023, 11, 3221 3 of 23

2. Related Work on TSP and JAYA Algorithm
2.1. Research on the Meta-Heuristic Algorithms of TSP
2.1.1. The Traveling Salesman Problem

The aim of the TSP is to look for a trip that ensures the salesman visits each city exactly
once and returns to the starting with the minimum total travel distance. The TSP can
be defined as a complete weighted graph G(V, E), where V = {1, 2, · · · , n} is the set of
vertices and E is the set of edges. Mathematically, the model of TSP can be formulated
as follows:

Min C =
n

∑
i=1

n

∑
j=1

dijxij, (1)

subject to:

n

∑
j=1

xij = 1 ∀i ∈ V, (2)

n

∑
i=1

xij = 1 ∀j ∈ V, (3)

∑
i∈S

∑
j∈S̄

xij > 1 ∀S ⊂ V, S 6= ∅, (4)

xij ∈ {0, 1} ∀i, j ∈ V, (5)

where n is the number of cities to be visited, and dij is the distance between city i and
city j. Equation (1) is the objective function that minimizes the total distance traveled.
Equations (2) and (3) ensure that each city is visited exactly once. Equation (4) is the
subtour elimination constraint. And, in Equation (5), xij is a binary variable, and it denotes
whether the arc from i to j is selected by the salesman.

2.1.2. Related Work on TSP

For the TSP, as the size of the problem increases, the number of solutions increases
exponentially. And, the exact algorithm cannot give the optimal or approximate optimal
solution within a reasonable time. Inspired by natural phenomena, especially the collective
behavior of social animals, researchers begin to study various meta-heuristic algorithms to
solve the TSP efficiently. Some meta-heuristic algorithms are proposed earlier and studied
intensively, such as GA, ACO, PSO, ABC, and so on. Those kinds of meta-heuristic algo-
rithms are further adapted to improve their performance. Ebadinezhad [11] proposed an
adaptive ACO that can dynamically adjust the parameters in order to overcome the disad-
vantages of low convergence speed and easily falling into local optima. The mechanism
selected the starting point based on clustering to realize the shortest path. Zhong et al. [16]
proposed a hybrid discrete ABC with threshold acceptance criteria, in which employed
and onlooker bees decided whether to accept the newly generated solutions according
to the threshold acceptance criteria. This non-greedy acceptance strategy maintained the
population diversity. Choong et al. [17] used the modified selection function (MCF) to
automatically adjust the selection of neighborhood search heuristics adopted by the em-
ployed bees and the onlooker bees and improved the model performance by combining
the Lin–Kernighan local search strategy. Khan and Maiti [18] improved the ABC and
adopted multiple updating rules and the K-opt operation to solve the TSP. Karaboga and
Gorkemli [19] also proposed two new versions of the ABC. One was a combined version of
the standard ABC, and the other is a further refinement of the combined version.

In addition to the abovementioned meta-heuristic algorithms, a large number of other
meta-heuristic algorithms have been proposed in recent years. For example, Hatamlou [30]
studied the application of the Black Hole algorithm (BH) in solving the TSP, and the

Mathematics 2023, 11, 3221 4 of 23

experiments showed that the algorithm can find a solution with better quality in a shorter
time than the classical GA, ACO, and PSO. Similarly, Zhang and Han [31] proposed a
discrete sparrow search algorithm (DSSA) with a global perturbation strategy to solve the
TSP. Zheng et al. [32] solved a variant of the TSP, namely the multiple traveling salesmen
problem (mTSP). For this problem, they proposed an iterated two-stage heuristic algorithm
called ITSHA, whose first stage was an initialization phase aimed at generating high quality
and diverse initial solutions and the second stage was an improvement phase mainly
using novel Variable Neighborhood Search (VNS) methods they developed to optimize the
initial solutions. Liu et al. [33] studied an evolutionary algorithm to solve the multimodal
multiobjective traveling salesman problem (MMTSP), which had the potential to solve many
real-world problems. The proposed algorithm, where two new edge assembly crossover
operators were embedded, used a new environmental selection operator to maintain a
balance between the objective space diversity and decision space diversity. Tsai et al. [34]
developed a novel method to improve biogeography-based optimization (BBO) for solving
the TSP. The proposed method combined a greedy randomized adaptive search procedure
and the 2-opt algorithm. However, it was only tested on three datasets and the largest size
of the instances was 100.

However, when solving the TSP, a single meta-heuristic algorithm is more likely to
fall into the local optimal, which degrades the performance of the algorithm. Therefore,
many scholars have proposed hybrid meta-heuristic algorithms, which fuse two or more
algorithms together to make full use of the advantages of different algorithms. This balances
the exploration and exploitation capabilities of the algorithms and helps algorithms to
better solve complex problems. Baraglia et al. [35] solved the classical TSP by combining
GA with Lin–Kernighan local search. Similarly, Yang and Pei [7] proposed a hybrid method
based on ABC and PSO. Mahi et al. [8] proposed a hybrid algorithm by combining PSO,
ACO, and the 3-opt algorithm. Gulcu et al. [12] proposed a parallel cooperative hybrid
algorithm combining ACO and the 3-opt algorithm. Saji and Barkatou [2] combined the
random walk of Lévy flight with bat movement to improve the traditional BA to solve the
classic TSP. In order to improve the diversity and convergence of the population, a uniform
crossing operator in GA was embedded in the proposed algorithm. Yang et al. [9] proposed
a new method to solve the TSP with an arbitrary neighborhood. In the hybrid algorithm,
the outer loop used linear decreasing inertial weight PSO to search the continuous access
location, while the inner loop used GA to optimize the discrete visiting sequence. The
experiments showed that this hybrid algorithm can significantly reduce the search space
without lowering the quality of solutions and can find high-quality solutions in a reasonable
time. It can be seen that scientifically combining two or more meta-heuristic algorithms and
redesigning the algorithm by utilizing their advantages and discarding their disadvantages
to solve the TSP plays an important role in promoting the quality and efficiency of the
solution algorithm.

2.2. Research on JAYA Algorithm
2.2.1. The Basic JAYA Algorithm

JAYA is interpreted as victory in Sanskrit. The algorithm strives to achieve victory by
obtaining the optimal solution; hence, the algorithm was named the JAYA algorithm. Based
on the principle of continuous improvement, the JAYA algorithm approaches excellent
individuals while constantly moving away from poor ones, thus improving the quality of
solutions [21]. Unlike other evolutionary algorithms that require many parameters, the JAYA
algorithm only needs to adjust parameters of the iterative process for specific problems
such as random numbers, which can avoid the problem that too many parameters need to
be adjusted during the implementation of the algorithm. Therefore, compared with other
meta-heuristic algorithms, the JAYA algorithm has a unique orientation characteristic of
striving for the best and avoiding the worst. It has the advantages of few control parameters,
simple structure, flexible mechanism, and easy understanding and implementing, which
make it be suitable for solving diverse optimization problems.

Mathematics 2023, 11, 3221 5 of 23

In the basic JAYA algorithm, each individual in the population iteratively evolves to
obtain a new solution based on Equation (6), as follows:

x
′
k,i = xk,i + r1

(
xbest,i −

∣∣xk,i
∣∣)− r2

(
xworst,i −

∣∣xk,i
∣∣), (6)

where xk,i is the i-th dimensional variable of the k-th individual. xbest,i and xworst,i are the
i-th dimension variable of the individual with the best and the worst fitness values in the
current iteration, respectively. Both r1 and r2 are random numbers in the range [0,1]. x

′
k,i is

the updated value of the i-th dimension variable of the k-th individual. It can be seen from
Equation (6) that r1(xbest,i − |xk,i|) shows the evolution trend of the current solution to the
current best one and r2(xworst,i − |xk,i|) shows the evolution trend of the current solution
away from the worst one. Therefore, the core of JAYA algorithm is to approach the optimal
solution while staying away from the worst solution. The flowchart of the basic JAYA
algorithm is shown in Figure 1.

Figure 1. Flowchart of the basic JAYA algorithm.

2.2.2. Related Work on JAYA Algorithm

The traditional JAYA algorithm is a powerful meta-heuristic algorithm proposed by
Rao [21] in 2016. Rao proved its excellent performance by solving 30 unconstrained bench-
mark problems. According to the related literature, the JAYA algorithm has a unique
orientation characteristic of striving for the best and avoiding the worst. It has the advan-
tages of few control parameters, a simple structure, and a flexible mechanism, which make
it be suitable for solving diverse optimization problems. And, the JAYA algorithm has been
successfully applied in many fields such as in society and industry and has a wide range of
application scenarios. Aslan et al. [36] proposed a binary optimization algorithm based on
the JAYA algorithm, which replaced the updating rules of the traditional JAYA algorithm
with newly designed transformation operators for binary optimization. Rao and More [37]
proposed an adaptive JAYA algorithm to solve the design optimization and analysis of
selected thermal devices. Pradhan and Bhende [38] introduced linear inertia weights and
nonlinear inertia weights based on fuzzy logic, respectively, which effectively improved
the ability of the JAYA algorithm to solve complex problems. Wang et al. [39] proposed

Mathematics 2023, 11, 3221 6 of 23

a parallel JAYA algorithm based on graphics processors (GPUs) to estimate the model
parameters of lithium-ion batteries, which can not only accurately estimate the model
parameters of batteries but also greatly shorten the runtime. Xiong et al. [24] combined the
JAYA algorithm and differential evolution to propose a hybrid meta-heuristic optimization
algorithm, which has been successfully applied to the parameter optimization of solid oxide
fuel cells. Thirumoorthy and Muneeswaran [23] applied the hybrid JAYA optimization
algorithm to text document clustering, which achieved the highest quality clustering in
all selected benchmark instances. Gunduz and Aslan [27] improved upon the algorithm,
leading to the discrete JAYA algorithm,and applied it for the first time to solve the TSP. They
proved that the proposed DJAYA algorithm was a highly competitive and robust optimizer
for the TSP. Li et al. [22] once again verified the effectiveness of the JAYA algorithm by
solving the flexible job-shop scheduling problem with an improved JAYA algorithm.

3. The Proposed QSA-DJAYA Algorithm for TSP

As mentioned above, the JAYA algorithm was originally proposed by Rao to solve
continuous optimization problems [21]. By means of discretization, the JAYA algorithm has
been applied to solve flexible job-shop scheduling [22], text clustering [23], solid oxide fuel
cell parameter optimization [24], feature selection [25], the hydropower reservoir operation
optimization problem [26], the TSP [27], etc.

In the proposed algorithm, the initialization method is the same as that in [27], that
is, the first individual is constructed using the nearest neighbor algorithm and the rest
individuals in the population are generated via random permutation. Following the core of
the basic JAYA algorithm, two search trend parameters ST1 and ST2 are used to control
the selection of an individual among the best, worst, and current for solution updating.
And, this strategy is also taken from [27]. The selection of updating operators takes into
account the basic Q-learning algorithm in reinforcement learning, which will be introduced
in detail in Section 3.1. In addition, the characteristic of SA will be introduced in the
acceptance criteria of solutions, which is described in Section 3.2. Below, the proposed
algorithm is called the QSA-DJAYA algorithm.

3.1. Strategy Selection Based on Q-Learning Algorithm

Q-learning is an approximate value-based algorithm in reinforcement learning. When
an agent implements an action, the environment will give a corresponding reward R
according to the action. Q is Q(s, a), that is, the expected income obtained by taking action
a (a ∈ A) in a certain state s (s ∈ S). Therefore, the main idea of the algorithm is to build a
Q-table based on state and action to store Q-values and, then, to select the actions that can
obtain the maximum benefits according to the Q-values. Learning is a dynamic process,
and the action-value function Q(s, a) is iteratively updated by learning from the collected
experiences of the current policy [40]. The equation for updates uses the following method
of time difference:

Q(st+1, at) = Q(st, at) + α[Rt + γ max
a∈A

Q(st+1, a)−Q(st, at)], (7)

where α is the learning rate and γ is the rewarding decay coefficient. Usually, in the Q-
learning algorithm, the way to select an action is via the ε-greedy strategy, that is, the action
with the best Q-value for st+1 is selected in most cases, and an action is randomly selected in
a few cases. According to this strategy, the action that should be implemented in each step
can be selected through the iteratively updated Q-values. The actions obtained according
to this method can maximize the reward, so as to achieve the optimal policy. But, in order
to improve the efficiency, the strategy of selecting the optimal action using a combination
of the roulette and greedy strategy is adopted in the proposed QSA-DJAYA algorithm.
In order to promote the action with a large Q-value to have a high probability of being

Mathematics 2023, 11, 3221 7 of 23

selected, the calculation of the specified probability follows Equation (8). The pseudo-code
of Q-learning is shown in Algorithm 1.

prob(ak) =
exp (Q(s, ak))

∑k exp (Q(s, ak))
, (8)

where ak represents the k-th action. The exponential function for Q-values is to avoid the
denominator being 0.

Algorithm 1 Pseudo-code of Q-learning.

1: Initialize the Q-table
2: Initialize the initial state s0
3: repeat
4: if rand < ε then
5: Select an action at among the set of all actions A at random
6: else
7: Select an action at that satisfies max

at∈A
Q(st+1, a)

8: end if
9: Take action at, observe the reward Rt and state St

10: Update Q-values according to Equation (7)
11: until Termination condition satisfied

The QSA-DJAYA algorithm integrates the abovementioned basic idea of the Q-learning
algorithm into the discrete JAYA algorithm, obtaining a discrete JAYA algorithm based
on Q-learning. Specifically, the six operators—swap, shift, symmetry, insertion, reversion,
and 2-opt—are used as each action and each state, and the most appropriate updating
operator is selected through the Q-learning algorithm in the updating process of each
solution. A Q-table of the QSA-DJAYA algorithm is shown in Table 1.

Table 1. Q-table design of QSA-DJAYA algorithm.

Action 1 Action 2 Action 3 Action 4 Action 5 Action 6

State 1 Q(1,1) Q(1,2) Q(1,3) Q(1,4) Q(1,5) Q(1,6)

State 2 Q(2,1) Q(2,2) Q(2,3) Q(2,4) Q(2,5) Q(2,6)

State 3 Q(3,1) Q(3,2) Q(3,3) Q(3,4) Q(3,5) Q(3,6)

State 4 Q(4,1) Q(4,2) Q(4,3) Q(4,4) Q(4,5) Q(4,6)

State 5 Q(5,1) Q(5,2) Q(5,3) Q(5,4) Q(5,5) Q(5,6)

State 6 Q(6,1) Q(6,2) Q(6,3) Q(6,4) Q(6,5) Q(6,6)

In terms of operator selection, although the 3-opt operator has high efficiency, the time
cost of applying this operator is too high for the large-scale TSP. So, the 3-opt updating
operator is only applied to the current global optimal solution at a certain frequency. The six
operators used in the current link are swap, insertion, reversion, shift, symmetry, and 2-opt.
Brief descriptions of these operators are described below.

Swap: Two positions are randomly selected from the current route A (marked in
green), and then, the elements at these two positions are exchanged. The transformed route
is B. An example of a swap operation is shown diagrammatically in Figure 2.

Figure 2. An example of swap transformation for TSP.

Mathematics 2023, 11, 3221 8 of 23

Insertion: Two positions are randomly selected from the current route A (marked in
green), and the element at the first position is inserted after the second element. An example
of insertion operation is shown diagrammatically in Figure 3.

Figure 3. An example of insertion transformation for TSP.

Reversion: Two positions are randomly selected from the current route A (marked in
green), and then, the elements between these two positions are arranged in reverse order.
An example of reversion operation is shown diagrammatically in Figure 4.

Figure 4. An example of reversion transformation for TSP.

Shift: Two positions are randomly selected from the current route A, namely pos1
and pos2. Then, the element at pos1 (marked in green) is stored, and the first element on
the right side of the element at pos1 to the element at pos2 (marked in orange) is moved
one position to the left in the original order. Finally, the element at pos1 is placed at pos2.
An example of shift operation is shown diagrammatically in Figure 5.

Figure 5. An example of shift transformation for TSP.

Symmetry: According to the length of the current route A, a reasonable length of
single transformation segment L is randomly selected, and then, the starting point of
transformation is randomly selected on the premise that the route is reasonable. Two
consecutive segments of length L are randomly selected on A (marked in green and orange,
respectively), and the position of the two segments is switched first, and then, the sequence
reversal is carried out on the two segments after the exchange. An example of symmetry
operation is shown diagrammatically in Figure 6.

Figure 6. An example of symmetry transformation for TSP.

2-opt: 2-opt is a local search algorithm that basically operates by randomly selecting
two arcs from a route and swapping them if this results in a new shorter route. All possible
2-opt transformations for a route are tried, and then, the best 2-opt transformation is chosen.
An example of a 2-opt operation is shown diagrammatically in Figure 7 , the segment that
need to be reversed are marked in green.

Figure 7. An example of 2-opt transformation for TSP.

Mathematics 2023, 11, 3221 9 of 23

After updating the operation with the selected operator, the corresponding reward
is set according to the degree of improvement in the solution’s fitness. The reward is
calculated as Equation (9).

reward = max (1− f itnessnew

f itnessold
, 0), (9)

where f itnessnew represents the corresponding fitness of the new solution obtained after
updating the solution with the operator bound to the action. f itnessold represents the
original fitness of the solution before the implementation of the action. According to
the above equation, the reward must be a number not less than 0. And, the better the
improvement effect of the updating operator, the greater the reward.

Therefore, unlike [27], the QSA-DJAYA algorithm is inspired by the advanced idea of
reinforcement learning in terms of solution updating and uses the Q-learning algorithm to
dynamically select operators with superior performance to update the solution, making
the updating mechanism more reasonable.

3.2. Acceptance Strategy Based on SA

The SA is a stochastic optimization algorithm based on the Monte Carlo iterative
strategy. It is inspired by the annealing process of the solid matter in physics. SA is actually
a greedy algorithm, but its search process uses the Metropolis acceptance criterion. That is,
it accepts a solution worse than the current solution with a certain probability. Therefore, it
is possible to jump out of the local optimal solution to find the global optimal solution.

After evaluating the fitness of the new solution, the QSA-DJAYA algorithm also
introduces the Metropolis acceptance criterion to judge whether to accept the new solution,
and the acceptance probability is calculated as Equation (10).

p =

{
1, if f (xnew) < f (xold),

exp (− f (xnew)− f (xold)
T), if f (xnew) ≥ f (xold),

(10)

where f (xnew) denotes the fitness of the new solution and f (xold) denotes the fitness of the
current solution. T denotes the current temperature, T = rate ∗ T0, rate ∈ (0, 1), T0 is the
initial temperature. Therefore, according to the Metropolis criterion, if f (xnew) is less than
f (xold), the current solution is updated as a new solution with probability 1, that is, if the
new solution is found to be better, the new solution is accepted. If f (xnew) is greater than
or equal to f (xold), then the probability p needs to be calculated according to Equation (10).
When the random number r ∈ (0, 1) is less than p, the current solution will be updated to
the new solution.

3.3. The Proposed QSA-DJAYA Algorithm

As shown in Figure 8, the QSA-DJAYA algorithm starts by generating the initial popu-
lation containing N-1 individuals constructed via random permutation and 1 individual
constructed via the nearest neighbor algorithm. At each iteration, the best and worst solu-
tions in the current population, Best and Worst, are updated. According to the guidance of
ST1 and ST2, a solution is selected as the current solution for the updating operation from
Best, Worst and xk. Then, the ε-greedy strategy is followed, and either the transformation
operator is randomly chosen or the most promising transformation operator is chosen.
When the new solution is generated and its fitness value is evaluated, the acceptance of the
new solution is judged according to the Metropolis acceptance criterion. When the reward
R is calculated and the Q-table is updated, the current best solution is further improved by
3-opt at a certain frequency. Finally, it stops when the termination condition is satisfied.

Mathematics 2023, 11, 3221 10 of 23

Figure 8. Flowchart of the QSA-DJAYA algorithm.

4. Experimental Results

In order to evaluate the performance of the designed QSA-DJAYA algorithm, we
conducted two groups of comparative experiments. In experiment 1, we compared the
proposed algorithm with four other representative algorithms, viz., DJAYA, GA, ACO,
and SA, developed by ourselves to verify the excellence of the QSA-DJAYA algorithm’s
framework. In addition, we conducted a comparison with eight efficient methods from the
literature, which include ACO, PSO, GA, BH, ABC, the Hierarchic Approach (HA), DTSA,

Mathematics 2023, 11, 3221 11 of 23

and DJAYA in experiment 2. This section details the experimental settings, experimental
results, and comparative studies.

4.1. Experimental Settings

All experiments with the algorithms developed by us were run on an
Intel(R)Core(TM)i9-10900K 3.70GHz desktop with 64.0GB of memory. All codes were
implemented in MATLAB. The 21 test instances we selected were all the benchmark TSP
datasets obtained from TSPLIB [29]. The instances are listed in Table 2. In Table 2, the name
of the instance, the scale of the problem, and the best known solution are listed.

Table 2. List of experimental instances.

Number Name N BKS

1 gr17 17 2085
2 bayg29 29 1610
3 bays29 29 2020
4 oliver30 30 420
5 swiss42 42 1273
6 eil51 51 426
7 berlin52 52 7542
8 st70 70 675
9 pr76 76 108,159
10 eil76 76 538
11 rat99 99 1211
12 kroA100 100 21,282
13 kroB100 100 22,141
14 kroC100 100 20,749
15 kroD100 100 21,294
16 kroE100 100 22,068
17 eil101 101 629
18 lin105 105 14,379
19 pr124 124 59,030
20 ch150 150 6528
21 tsp225 225 3919

In the comparative experiment 1, the algorithm was run 30 times for each instance.
While in experiment 2, the number of runs was consistent with the experimental settings
of the literature compared for a fair comparison. Over these test replicates, the shortest
tour length obtained from each run and the computational time to obtain the shortest tour
length were recorded. For each algorithm, we sorted out the best value, the worst value,
the average value, the standard deviation, and the Gap value obtained in these replicates
of each instance through the experimental results. The Gap value is a percentage and is
calculated as shown in Equation (11).

Gap(%) =
Average− BKS

BKS
× 100, (11)

where Average is the average of the shortest tour length, and BKS is the currently best
known solution of the instance. So, the optimization performance of each algorithm can be
evaluated using this index.

4.2. Parameter Tuning

The values of ST1 and ST2 were the same as those in [27], viz., ST1 = ST2 = 0.5.
And, although 3-opt is an efficient operator, for computation time reasons, the frequency of
applying 3-opt µ was set to 100 in all experiments. Except for these two parameters, there
are five parameters in the QSA-DJAYA algorithm that needed to be adjusted. In order to
determine these parameters, the instance kroC100 was chosen as a test instance to carry

Mathematics 2023, 11, 3221 12 of 23

out parameter tuning experiments. For each parameter tuning experiment, the algorithm
stopped when the maximum number of function evaluations (MaxF) reached 300,000.

The first parameter tuning experiment was performed for the population size popsize.
The popsize was set to 10∼100, the learning factor in reinforcement learning was α = 0.9,
the discount factor in reinforcement learning was γ = 0.8, the probability of escaping from
the local optimal in reinforcement learning was ε = 0.1, and the initial temperature in
SA was T0 = 0.045. The row corresponding to popsize in Table 3 shows the experimental
results of the QSA-DJAYA algorithm on the instance kroC100 under different popsize. It
can be seen that when the popsize was set to 10, the average value of the shortest tour
length obtained over the 10 runs was the smallest, so popsize was determined to be 10 in
subsequent experiments.

Table 3. Results of parameter tuning.

Parameter Value Average Std Gap (%)

popsize

10 21,012.30 138.55 1.27
20 21,066.90 175.61 1.53
30 21,198.10 39.09 2.16
40 21,161.20 65.40 1.99
50 21,187.60 13.80 2.11
60 21,183.00 0.00 2.09
70 21,183.00 0.00 2.09
80 21,183.00 0.00 2.09
90 21,183.00 0.00 2.09

100 21,183.00 0.00 2.09

α

0.1 20,933.00 114.30 0.89
0.2 21,033.90 128.93 1.37
0.3 21,008.50 89.24 1.25
0.4 20,921.70 163.11 0.83
0.5 20,971.50 159.76 1.07
0.6 20,999.10 173.70 1.21
0.7 20,926.90 150.25 0.86
0.8 20,902.70 118.09 0.74
0.9 21,012.30 138.55 1.27

γ

0.1 21,036.20 140.78 1.38
0.2 21,000.00 164.05 1.21
0.3 20,960.80 154.05 1.02
0.4 20,910.50 141.26 0.78
0.5 21,006.80 180.07 1.24
0.6 21,036.50 131.14 1.39
0.7 20,984.80 224.06 1.14
0.8 20,902.70 118.09 0.74
0.9 21,060.60 170.80 1.50

ε

0.1 20,902.70 118.09 0.74
0.2 21,095.50 157.97 1.67
0.3 20,998.60 164.42 1.20
0.4 20,950.20 195.06 0.97
0.5 20,940.00 181.61 0.92

T0

0.01 21,179.30 22.03 2.07
0.02 20,995.40 129.59 1.19
0.03 21,073.80 217.49 1.57
0.04 21,028.60 227.02 1.35
0.05 20,925.10 98.58 0.85

The second parameter tuning experiment was carried out for α, and α was set to
0.1∼0.9. According to the first parameter tuning experiment, the popsize in this experiment
was set to 10. The row corresponding to α in Table 3 shows the experimental results of the

Mathematics 2023, 11, 3221 13 of 23

QSA-DJAYA algorithm on the instance kroC100 under different α. The results show that
the result was best when α was set to 0.8.

The third parameter tuning experiment was carried out for γ, and γ was set to 0.1∼0,9.
According to the first and second experiments, the popsize in this experiment was set to 10
and the α was set to 0.8. The row corresponding to γ in Table 3 shows the experimental
results of the QSA-DJAYA algorithm on the instance kroC100 under different γ. The results
show that γ should be set to 0.8.

The fourth is carried out for ε, and ε was set to 0.1∼0.5. According to the previous
three parameter tuning experiments, the popsize in this experiment was set to 10, the α
was set to 0.8, and the γ was set to 0.8. The row corresponding to ε in Table 3 shows the
experimental results of the QSA-DJAYA algorithm on the instance kroC100 under different
ε. The results show that ε should be set to 0.1.

The last parameter tuning experiment was carried out for the T0, and T0 was set to
0.01∼0.05. According to the previous parameter tuning experiments, the popsize in this
experiment was set to 10, the α was set to 0.8, the γ was set to 0.8, and the ε was set to 0.1.
The row corresponding to T0 in Table 3 shows the experimental results of the QSA-DJAYA
algorithm on the instance kroC100 under different T0. According to the experimental
results, T0 should be set to 0.05 to optimize the performance of the QSA-DJAYA algorithm.

In summary, the parameter in the following experiments were set as population size
popsize = 10, learning factor in reinforcement learning was α = 0.8, discount factor in
reinforcement learning was γ = 0.8, escape local optimal probability in reinforcement
learning was ε = 0.1, initial temperature in SA was T0 = 0.05.

4.3. Experimental Results and Statistical Analysis

In this section, we first show the results of experiments 1 and 2. Then, the compar-
ative analysis carried out according to these experimental results and the significance of
the obtained results verified using the non-parametric Friedman statistical test and non-
parametric Mann–Whitney test are presented. It should be noted that the DJAYA algorithm
in experiment 1 is different from that in [27] because it is embedded with the same six
operators as those in the QSA-DJAYA algorithm in order to avoid the loss of fairness caused
by different operator efficiencies.

4.3.1. Results of Experiment 1

According to the experimental scheme determined in Section 4.1 and the parameter
settings determined in Section 4.2, we conducted experiment 1 on a set of TSP bench-
mark instances containing a total of 20 instances. On the basis of the size of the instance,
the instances were divided into two sets. The first set of small-scale instances included six
instances with the number of cities ranging from 17 to 52. The second set of large-scale
instances included fourteen examples with the number of cities ranging from 70 to 225. Due
to the difference in scale, the stopping criterion was the MaxF, which was set to N × 500. N
is the number of cities involved in the instance. The basic experimental results of small-scale
and large-scale instances are shown in Tables 4 and 5, respectively.

Table 4. Results of five representative compared algorithms on small-scale instances.

Name Algorithm Best Worst Median Average Std Gap (%) Time (s)

gr17

GA 2238 2489 2376.0 2377.53 60.52 14.03 0.24
ACO 2085 2149 2115.0 2114.67 23.30 1.42 0.77
SA 2085 2090 2087.5 2087.50 2.50 0.12 0.09

DJAYA 2085 2088 2085.0 2085.70 1.27 0.03 0.80
QSA-DJAYA 2085 2085 2085.0 2085.00 0.00 0.00 0.50

Mathematics 2023, 11, 3221 14 of 23

Table 4. Cont.

Name Algorithm Best Worst Median Average Std Gap (%) Time (s)

bayg29

GA 2378 2698 2531.0 2539.03 70.30 57.70 0.50
ACO 1638 1672 1661.5 1657.83 6.58 2.97 3.90
SA 1610 1683 1622.0 1626.47 19.64 1.02 0.15

DJAYA 1615 1674 1634.0 1637.73 15.69 1.72 2.68
QSA-DJAYA 1610 1646 1610.0 1618.83 12.32 0.55 2.08

bays29

GA 2858 3360 3213.5 3175.40 134.26 57.20 0.49
ACO 2020 2062 2020.0 2024.60 9.44 0.23 3.79
SA 2020 2082 2033.0 2038.43 19.58 0.91 0.15

DJAYA 2026 2035 2026.0 2028.70 3.57 0.43 2.69
QSA-DJAYA 2020 2034 2026.0 2028.40 3.68 0.42 2.09

swiss42

GA 2380 2710 2593.0 2587.63 84.98 103.27 0.87
ACO 1287 1303 1299.0 1297.93 3.53 1.96 6.67
SA 1273 1391 1335.5 1329.87 35.51 4.47 0.23

DJAYA 1273 1274 1273.0 1273.23 0.42 0.02 6.93
QSA-DJAYA 1273 1273 1273.0 1273.00 0.00 0.00 6.12

eil51

GA 881 984 921.0 921.70 22.17 116.36 1.22
ACO 437 457 447.0 447.37 4.98 5.02 11.26
SA 428 454 441.0 440.97 6.36 3.51 0.29

DJAYA 428 438 432.0 432.30 3.68 1.48 12.26
QSA-DJAYA 426 434 434.0 432.73 2.38 1.58 10.92

berlin52

GA 13705 16367 15563.0 15550.57 505.02 106.19 1.27
ACO 7662 7767 7679.0 7683.53 24.27 1.88 11.84
SA 7542 8317 7988.5 7954.83 190.78 5.47 0.29

DJAYA 7542 7711 7657.0 7641.27 41.95 1.32 12.68
QSA-DJAYA 7542 7798 7542.0 7557.33 57.19 0.20 11.74

Table 5. Results of five representative compared algorithms on large-scale instances.

Name Algorithm Best Worst Median Average Std Gap (%) Time (s)

st70

GA 1888 2093 2005.5 1994.07 51.53 195.42 2.01
ACO 708 734 718.0 718.83 6.37 6.49 25.68
SA 684 744 706.5 709.00 15.55 5.04 0.41

DJAYA 687 714 703.0 701.90 8.87 3.99 39.36
QSA-DJAYA 684 703 684.0 686.80 4.85 1.75 29.46

pr76

GA 306,770 329,482 322,696.5 320,291.60 6367.43 196.13 2.36
ACO 115,846 121,443 118,745.5 118,676.93 1172.13 9.72 30.59
SA 109,872 120,095 113,747.5 114,336.93 2762.89 5.71 0.46

DJAYA 109,190 110,684 110,684.0 110,564.07 383.17 2.22 57.08
QSA-DJAYA 108,159 110,858 109,653.0 109,530.73 907.21 1.27 38.73

eil76

GA 1335 1498 1425.0 1420.47 37.08 164.03 2.32
ACO 558 568 565.0 564.57 2.08 4.94 32.23
SA 553 585 567.0 567.43 8.53 5.47 0.47

DJAYA 553 563 558.0 558.90 2.94 3.88 56.18
QSA-DJAYA 540 553 551.0 550.60 2.23 2.34 38.34

rat99

GA 4120 4633 4474.0 4467.73 113.72 268.93 3.74
ACO 1287 1337 1313.0 1312.17 11.30 8.35 61.79
SA 1257 1349 1307.5 1307.33 25.28 7.95 0.65

DJAYA 1253 1257 1256.0 1255.83 0.69 3.70 182.15
QSA-DJAYA 1230 1256 1253.0 1253.20 4.52 3.48 95.56

Mathematics 2023, 11, 3221 15 of 23

Table 5. Cont.

Name Algorithm Best Worst Median Average Std Gap (%) Time (s)

kroA100

GA 83,919 93,133 90,348.5 89,856.23 2208.86 322.22 3.74
ACO 22,428 23,318 22,748.5 22,760.13 238.53 6.95 67.86
SA 21,829 23,595 22,495.0 22,610.57 513.41 6.24 0.65

DJAYA 21,319 21,578 21,514.0 21,498.97 43.24 1.02 191.85
QSA-DJAYA 21,292 21389 21,292.0 21,295.37 17.40 0.06 97.56

kroB100

GA 83,257 92,138 89,154.5 88,831.47 2269.08 301.21 3.81
ACO 22,901 23,446 23,256.5 23,254.00 114.49 5.03 67.49
SA 22,647 24,310 23,691.5 23,670.10 402.66 6.91 0.65

DJAYA 22,258 23,162 22,762.0 22,739.27 154.60 2.70 190.28
QSA-DJAYA 22,220 22,724 22,708.0 22,635.70 130.59 2.23 96.98

kroC100

GA 83,948 94,564 88,964.0 89,056.27 2414.13 329.21 3.84
ACO 21,511 21,775 21,680.0 21,661.67 68.92 4.40 67.93
SA 21,449 24,221 22,067.5 22,282.13 593.60 7.39 0.66

DJAYA 21,185 21,309 21,206.0 21,212.37 29.33 2.23 188.90
QSA-DJAYA 20,965 21,331 21,183.0 21,180.80 48.06 2.08 97.18

kroD100

GA 81680 89459 86842.0 86690.60 1873.05 307.11 3.80
ACO 22,572 23,360 23,020.0 23,007.33 159.53 8.05 68.44
SA 21,822 24,076 22,701.0 22,741.30 523.69 6.80 0.67

DJAYA 21,620 22,863 22,001.0 22,060.23 299.54 3.60 187.00
QSA-DJAYA 21495 21,896 21,575.0 21,583.57 79.89 1.36 97.08

kroE100

GA 85,061 93,912 90,908.5 90,557.90 1932.14 310.36 3.83
ACO 23,196 23,877 23,667.0 23,661.23 142.12 7.22 68.02
SA 22,712 24,138 23,354.0 23,364.07 360.65 5.87 0.65

DJAYA 22,509 22,679 22,547.0 22,562.10 49.78 2.24 187.80
QSA-DJAYA 22,130 22,475 22,466.0 22,429.53 74.21 1.64 94.22

eil101

GA 1872 2021 1963.0 1958.70 42.85 211.40 3.88
ACO 677 705 693.0 693.70 6.24 10.29 66.95
SA 647 689 667.0 666.73 10.50 6.00 0.67

DJAYA 642 664 650.0 650.27 5.52 3.38 190.78
QSA-DJAYA 630 646 635.0 635.27 3.02 1.00 99.91

lin105

GA 58,391 67,943 63,848.0 63,722.03 1998.94 343.16 4.18
ACO 14,902 15,150 15,054.0 15,050.50 71.47 4.67 87.30
SA 14,767 16,061 15,484.5 15,461.77 347.25 7.53 0.71

DJAYA 14,576 15,071 14,877.5 14,856.93 118.66 3.32 233.07
QSA-DJAYA 14379 14,660 14,438.0 14,451.43 84.12 0.50 115.69

pr124

GA 339,211 373,718 362,675.0 360,680.93 8077.14 511.01 5.63
ACO 60,590 63,297 61,714.5 61,795.57 570.39 4.69 114.72
SA 60,220 69,852 62,575.0 62,844.47 2128.64 6.46 0.87

DJAYA 59,246 59,792 59,246.0 59,350.17 194.25 0.54 510.69
QSA-DJAYA 59,030 59,792 59,548.0 59,454.43 270.90 0.72 207.90

ch150

GA 30,083 32,150 31,169.5 31,084.30 479.35 376.17 8.46
ACO 6758 6850 6824.0 6824.60 19.99 4.54 210.20
SA 6862 7533 7241.5 7223.60 180.03 10.66 1.16

DJAYA 6598 6633 6629.0 6625.07 9.38 1.49 1259.00
QSA-DJAYA 6566 6624 6598.0 6596.73 10.44 1.05 372.08

tsp225

GA 22,763 24,184 23,645.0 23,618.03 368.21 502.65 19.53
ACO 4225 4380 4293.5 4291.07 37.70 9.49 658.87
SA 4313 4542 4388.0 4412.00 58.10 12.58 2.10

DJAYA 4038 4069 4056.0 4054.80 8.11 3.47 11,326.09
QSA-DJAYA 3994 4059 4012.0 4013.77 11.85 2.42 1715.49

In Tables 4 and 5, the Best, Worst, Median, Average, and Std columns represent the best
value, worst value, median value, average value, and standard deviation of the shortest
tour length over 30 independent runs on each instance, respectively. For the Best, Worst,

Mathematics 2023, 11, 3221 16 of 23

Median and Average columns, the smaller the value is, the stronger the search ability of
the algorithm is. For the Std column, the smaller the value is, the higher the reliability
and stability of the algorithm is. The calculation of each value in the Gap column follows
Equation (11). Since the currently best known solution of most instances is already the
optimal solution of the instance, a small value for the Gap value indicates that the efficiency
of the algorithm is high. The best shortest tour length for the same instance in the Average
and Median columns is shown in bold. In Table 4, except for the instance eil51, the QSA-
DJAYA algorithm shows the best performance for the median and average. The DJAYA
algorithm performs optimally on the instances eil51, which confirms the effectiveness of
the compared algorithms. In Table 5, in terms of the median and average, the proposed
algorithm also performs best on all large-scale instances except pr124. For instance pr124,
the DJAYA algorithm obtains the best median and average value but does not find the
best known solution, while the QSA-DJAYA algorithm finds it. Although the QSA-DJAYA
algorithm does not achieve the minimum standard deviation on all instances, the standard
deviation of it on seven instances is all minimal. Thus, the stability is better than the
compared algorithms. In addition, it can be noted that the calculation time of both the QSA-
DJAYA algorithm and the DJAYA algorithm is longer than that of the other algorithms due
to the time-consuming calculation of the operators embedded in both algorithms. However,
under the premise of the same operator, it can be observed that the calculation time of the
QSA-DJAYA algorithm is much less than that of the DJAYA algorithm. Moreover, it can
be seen that under the premise of fair comparison, the QSA-DJAYA algorithm obtains the
currently best known solution on nine instances. For one small-scale numerical instance and
three large-scale numerical instances, the graphical presentations of tours corresponding to
the best solutions are presented in Figure 9.

0 200 400 600 800 1000 1200 1400 1600 1800

Km

0

200

400

600

800

1000

1200

K
m

(a) The best route for the berlin52 instance.

0 5000 10,000 15,000 20,000

Km

0

2000

4000

6000

8000

10,000

12,000

14,000

K
m

(b) The best route for the pr76 instance.

0 500 1000 1500 2000 2500 3000 3500

Km

0

200

400

600

800

1000

1200

1400

K
m

(c) The best route for the lin105 instance.

4000 6000 8000 10,000 12,000 14,000

Km

0

2000

4000

6000

8000

10,000

12,000

K
m

(d) The best route for the pr124 instance.

Figure 9. Tours correspondingto the best solutions found by QSA-DJAYA.

Mathematics 2023, 11, 3221 17 of 23

In summary, Tables 4 and 5 show that the QSA-DJAYA algorithm outperforms all the
compared algorithms. However, it is worth mentioning that some compared algorithms
such as GA and SA consumed less computational time under the same MaxF, although they
achieved poor-quality solutions. The comprehensive consideration of solution quality and
computational time is important to evaluate the performance of algorithms. Therefore,
additional subexperiments of experiment 1 were performed with the same execution time.
Detailed execution times and experimental results are provided in Table 6. From Table 6,
it is clearly seen that QSA-DJAYA can achieve higher-quality solutions with the same
execution time. This comparative experiment once again confirms the superiority of the
proposed QSA-DJAYA in terms of solution quality and efficiency.

Table 6. Results of five representative compared algorithms on large-scale instances.

Name Algorithm Best Worst Median Average Std Gap (%) Time (s)

swiss42

GA 2350 2632 2515.0 2514.80 74.42 97.55 2.00
ACO 1287 1303 1299.0 1298.07 3.53 1.97 2.00
SA 1273 1398 1332.5 1332.07 34.51 4.64 2.00

DJAYA 1273 1293 1281.0 1281.07 6.79 0.63 2.00
QSA-DJAYA 1273 1274 1273.0 1273.03 0.18 0.00 2.00

berlin52

GA 13,727 15,744 15,078.5 15,033.30 385.67 99.33 10.00
ACO 7547 7791 7679.0 7676.30 44.08 1.78 10.00
SA 7542 8534 7970.0 7970.93 226.49 5.69 10.00

DJAYA 7542 7657 7657.0 7633.30 38.79 1.21 10.00
QSA-DJAYA 7542 7798 7542.0 7563.60 61.42 0.29 10.00

pr76

GA 276,734 314,038 305,579.5 303,113.67 7994.43 180.25 60.00
ACO 114,953 120,653 117,885.5 117,736.00 1530.89 8.85 60.00
SA 109,265 120,582 113,844.5 113,985.27 2870.60 5.39 60.00

DJAYA 109,190 111,336 110,684.0 110,489.73 530.23 2.15 60.00
QSA-DJAYA 108,159 111,464 109,190.0 109,429.10 1015.60 1.17 60.00

kroA100

GA 81,263 88,952 87,087.5 86,860.57 1506.34 308.14 120.00
ACO 22,317 23,110 22,592.5 22,647.50 206.69 6.42 120.00
SA 21,438 23,949 22,136.0 22,359.70 648.97 5.06 120.00

DJAYA 21,292 21,389 21,389.0 21,385.77 17.41 0.49 120.00
QSA-DJAYA 21,292 21,711 21,292.0 21,333.70 106.19 0.24 120.00

lin105

GA 57,147 63,181 60,680.5 60,620.53 1229.44 321.59 120.00
ACO 14,844 15,203 15,042.5 15,037.40 79.55 4.58 120.00
SA 14,988 16,029 15,296.0 15,323.40 265.98 6.57 120.00

DJAYA 14,438 14,849 14,743.0 14,698.77 112.30 2.22 120.00
QSA-DJAYA 14,379 14,706 14,463.5 14,473.60 96.34 0.66 120.00

pr124

GA 331,771 356,698 346,274.0 346,512.67 6497.63 487.01 120.00
ACO 60,726 62,930 61,742.5 61,829.87 571.21 4.74 120.00
SA 59,354 64,857 61,227.0 61,409.57 1364.10 4.03 120.00

DJAYA 59,246 59,792 59,246.0 59,431.53 252.66 0.68 120.00
QSA-DJAYA 59,076 59,792 59,246.0 59,396.73 246.66 0.62 120.00

ch150

GA 28,719 30,887 30,384.0 30,316.60 421.04 364.41 120.00
ACO 6792 6889 6825.0 6828.03 21.07 4.60 120.00
SA 6697 7147 6974.5 6961.63 124.89 6.64 120.00

DJAYA 6624 6705 6692.5 6689.07 19.00 2.47 120.00
QSA-DJAYA 6574 6625 6605.0 6601.83 10.05 1.13 120.00

tsp225

GA 22,872 23,777 23,375.5 23,342.80 257.03 495.63 120.00
ACO 4261 4420 4330.5 4329.63 30.21 10.48 120.00
SA 4060 4312 4183.0 4178.93 63.93 6.63 120.00

DJAYA 4178 4196 4190.0 4189.13 3.12 6.89 120.00
QSA-DJAYA 4037 4146 4093.0 4090.37 18.31 4.37 120.00

Mathematics 2023, 11, 3221 18 of 23

Further, to observe the difference in the results obtained by the above five algorithms
on the same problem more intuitively, the boxplots were drawn, as shown in Figure 10.
The selected comparison data are the Gap values obtained via each algorithm on each
instance , and the red plus signs in Figure 10 represent several outliers. This is beneficial to
compare the stability of the search abilities of each algorithm. It should be noted that the
experimental results of GA are very poor compared with those of the other four algorithms,
so only the other four algorithms are compared here. Through the distribution and range
of Gap values presented in the box graphs, it is proved that QSA-DJAYA is better than GA,
ACO, SA, and DJAYA.

(a) (b)

Figure 10. Boxplots of Gap values for the four algorithms. (a) Boxplot for the first subexperiment of
experiment 1. (b) Boxplot for the second subexperiment of experiment 1.

4.3.2. Results of Experiment 2

In experiment 2, a comparison of our proposed method with eight efficient methods
from literature was performed. Specifically, the performance of QSA-DJAYA was compared
with those of ACO, PSO, GA, and BH in the first subexperiment. The experimental results
of ACO, PSO, GA, and BH on seven instances were taken from [30]. In the second subexper-
iment, we compared QSA-DJAYA with the methods proposed in some studies [27,28,41].
The experimental results of ACO, ABC, and HA were taken from [41], those of DTSA were
taken from [28], and those of DJAYA were taken from [27]. For providing a fair comparison,
the experimental scheme of experiment 2 was the same as that of the compared methods.
Compared results of the first and the second subexperiment are depicted in Tables 7 and 8.

Table 7. The compared results of QSA-DJAYA with the ACO, PSO, GA, and BH algorithms.

Name Algorithm Best Worst Average Std

bays29

ACO 9239.1973 11,014.4483 9823.20 722.42
PSO 9120.3388 9498.1711 9195.91 168.97
GA 9751.4255 10,513.9142 10,015.23 319.88
BH 9396.475 9507.1701 9463.25 60.96

QSA-DJAYA 2020 2026 2024.80 2.40

bayg29

ACO 9447.4929 11,033.5484 9882.22 675.83
PSO 9329.251 11,332.7224 9947.03 799.41
GA 9579.1234 10,411.1991 9771.95 127.11
BH 9375.4418 9375.4418 9375.44 0.00

QSA-DJAYA 1610 1626 1616.40 7.84

eil51

ACO 454.3895 469.0531 461.02 6.30
PSO 469.1551 737.5258 574.80 107.24
GA 448.8397 462.1142 453.48 9.42
BH 437.893 526.8977 458.93 38.64

QSA-DJAYA 427 434 432.60 2.80

Mathematics 2023, 11, 3221 19 of 23

Table 7. Cont.

Name Algorithm Best Worst Average Std

berlin52

ACO 7757.0263 10,541.1228 8522.90 1152.20
PSO 9218.4682 14,279.4331 11,089.53 2067.93
GA 8779.7559 9565.3744 9288.45 1301.21
BH 8188.0714 9356.7483 8455.83 508.99

QSA-DJAYA 7542 7596 7552.80 21.60

st70

ACO 711.6515 855.2032 757.75 59.61
PSO 1030.8484 1756.1227 1321.81 269.28
GA 1112.3078 1242.2011 1158.85 52.17
BH 723.2691 1081.1087 797.57 125.23

QSA-DJAYA 683 697 686.60 5.24

eil76

ACO 574.2404 665.9995 594.14 40.22
PSO 804.2667 1195.9021 975.64 152.41
GA 619.2262 679.7864 652.06 122.10
BH 566.243 925.8417 659.10 152.18

QSA-DJAYA 551 551 551.00 0.00

eil101

ACO 725.0996 868.2047 763.92 59.97
PSO 1158.704 1973.8192 1499.99 319.75
GA 828.8806 854.4381 838.83 9.96
BH 720.3838 1249.8684 897.38 210.14

QSA-DJAYA 634 638 636.00 1.67

Table 8. The compared results of QSA-DJAYA with the ACO, ABC, HA, DTSA, and DJAYA
algorithms.

Name Algorithm Average Std Gap (%)

oliver30

ACO 424.68 1.41 0.22
ABC 462.55 12.47 9.16
HA 423.74 0.00 0.00

DTSA 428.50 4.21 1.12
DJAYA 426.88 2.74 0.74

QSA-DJAYA 423.65 2.94 0.87

eil51

ACO 457.86 4.07 6.76
ABC 590.49 15.79 37.69
HA 443.39 5.25 3.39

DTSA 443.93 4.04 3.51
DJAYA 440.18 4.95 2.64

QSA-DJAYA 432.30 2.69 1.48

berlin52

ACO 7659.31 38.70 1.52
ABC 10,390.26 439.69 37.72
HA 7544.37 0.00 0.00

DTSA 7545.83 21.00 0.02
DJAYA 7580.30 80.60 0.48

QSA-DJAYA 7552.20 43.33 0.14

st70

ACO 709.16 8.27 4.73
ABC 1230.49 41.79 81.73
HA 700.58 7.51 3.47

DTSA 708.65 6.77 4.66
DJAYA 702.30 9.56 3.72

QSA-DJAYA 686.70 3.95 1.73

Mathematics 2023, 11, 3221 20 of 23

Table 8. Cont.

Name Algorithm Average Std Gap (%)

eil76

ACO 561.98 3.50 3.04
ABC 931.44 24.86 70.78
HA 557.98 4.10 2.31

DTSA 578.58 3.93 6.09
DJAYA 573.17 6.33 5.10

QSA-DJAYA 550.40 2.65 2.30

pr76

ACO 116,321.22 885.79 7.55
ABC 205,119.61 7379.16 89.65
HA 115,072.29 742.90 6.39

DTSA 14,930.03 1545.64 6.26
DJAYA 113,258.29 1711.93 4.71

QSA-DJAYA 109,417.35 944.67 1.16

kroA100

ACO 22,880.12 235.18 7.49
ABC 53,840.03 2198.36 152.94
HA 22,435.31 231.34 5.40

DTSA 21,728.40 358.13 2.08
DJAYA 21,735.31 331.33 2.13

QSA-DJAYA 21,297.05 21.11 0.07

eil101

ACO 693.42 6.80 7.96
ABC 1315.95 35.28 104.88
HA 683.39 6.56 6.40

DTSA 689.91 4.47 7.41
DJAYA 677.37 4.87 5.46

QSA-DJAYA 635.50 3.22 1.03

ch150

ACO 6702.87 20.73 2.61
ABC 21,617.48 453.71 230.93
HA 6677.12 19.30 2.22

DTSA 6748.99 32.63 3.32
DJAYA 6638.63 52.79 1.63

QSA-DJAYA 6596.30 9.97 1.05

tsp225

ACO 4176.08 28.34 8.22
ABC 17,955.12 387.35 365.28
HA 4157.85 26.27 7.74

DTSA 4230.45 58.76 9.93
DJAYA 4095.02 42.54 6.12

QSA-DJAYA 4011.10 8.61 2.35

As seen from Table 7, QSA-DJAYA performed optimally on all seven instances as far
as the average is concerned. Additionally, Table 8 reveals that QSA-DJAYA also achieved a
shorter route length in all instances, shown in bold. The obtained results from QSA-DJAYA
for all numerical instances are satisfactory in terms of the best, worst, and average values.
However, we cannot compare the median values of each algorithm because the relevant
results are not provided in the literature.

4.3.3. Results of Statistical Tests

In order to compare the algorithms’ performance of experiments 1 and 2 statistically,
the non-parametric Friedman statistical test is applied. In experiment 1, for the average
tour length obtained using each algorithm over 30 runs, the p values of the first and the
second subexperiments are 1.9810× 10−14 and 6.7936× 10−6, respectively. In experiment
2, the p value of the first subexperiment is 9.2960× 10−4, and the p value of the second
subexperiment is 6.0690× 10−7. Therefore, the statistical test results returned by the Fried-
man statistical test confirm that there are significant differences between the experimental
results obtained using the competing algorithms. Meanwhile, statistical significance testing
was also performed via the non-parametric Mann–Whitney U test. The null hypothesis was

Mathematics 2023, 11, 3221 21 of 23

that there was no significant difference between the Average values of the two algorithms
on the instances participating in the comparison with a 95% confidence level. The results
of the Mann–Whitney U test of all comparative experiments based on the Average values
with a 95% confidence level are summarized in Table 9. Although the QSA-DJAYA is not
significantly better than some algorithms at the 95% confidence level, it outperforms all
competing methods derived from the literature in terms of solution quality.

Table 9. Results returned by the Mann–Whitney U test in two groups of comparative experiments.

Experiments Algorithm Umin Uα Decision

Experiment 1-1

QSA-DJAYA vs. GA 65 127 Negate the null hypothesis.
QSA-DJAYA vs. ACO 101 127 Negate the null hypothesis.
QSA-DJAYA vs. SA 100 127 Negate the null hypothesis.

QSA-DJAYA vs. DJAYA 100 127 Negate the null hypothesis.

Experiment 1-2

QSA-DJAYA vs. GA 21 13 Retain the null hypothesis.
QSA-DJAYA vs. ACO 14 13 Retain the null hypothesis.
QSA-DJAYA vs. SA 15 13 Retain the null hypothesis.

QSA-DJAYA vs. DJAYA 14 13 Retain the null hypothesis.

Experiment 1-2

QSA-DJAYA vs. GA 21 13 Retain the null hypothesis.
QSA-DJAYA vs. ACO 14 13 Retain the null hypothesis.
QSA-DJAYA vs. SA 15 13 Retain the null hypothesis.

QSA-DJAYA vs. DJAYA 14 13 Retain the null hypothesis.

Experiment 2-1

QSA-DJAYA vs. ACO -2 8 Negate the null hypothesis.
QSA-DJAYA vs. PSO 8 8 Retain the null hypothesis.
QSA-DJAYA vs. GA -2 8 Negate the null hypothesis.
QSA-DJAYA vs. BH -2 8 Negate the null hypothesis.

Experiment 2-2

QSA-DJAYA vs. ACO 27 23 Retain the null hypothesis.
QSA-DJAYA vs. ABC 19 23 Negate the null hypothesis.
QSA-DJAYA vs. HA 27 23 Retain the null hypothesis.

QSA-DJAYA vs. DTSA 26 23 Retain the null hypothesis.
QSA-DJAYA vs. DJAYA 27 23 Retain the null hypothesis.

5. Conclusions and Future Work

In this paper, we proposed an improved discrete JAYA algorithm based on reinforce-
ment learning and SA (QSA-DJAYA) to solve the TSP. The QSA-DJAYA algorithm has
been mainly modified in two aspects. On the one hand, the basic Q-learning algorithm in
reinforcement learning was introduced to choose the transformation operator when the
solution needs to be updated. On the other hand, the SA was introduced in the solution
acceptance criterion. The core was to accept poor solutions with a certain probability to
balance the exploration and exploitation capabilities of the algorithm. The performance
of the QSA-DJAYA algorithm was tested on 21 widely used benchmark instances in the
TSPLIB. The comparison results show that the QSA-DJAYA algorithm has significant com-
petitiveness.

Our possible future work is to analyze the applicability of the QSA-DJAYA algorithm
to other routing problems, especially variants of the TSP. We may improve the QSA-DJAYA
algorithm by combining advanced ideas in reinforcement learning and transfer learning to
solve more complex vehicle routing problems in practical applications.

Author Contributions: Conceptualization, J.X., W.H., W.G. and Y.Y.; Methodology, J.X., W.H., W.G.
and Y.Y.; Validation, J.X., W.H., W.G. and Y.Y.; Investigation, J.X., W.H., W.G. and Y.Y.; Writing—
review & editing, J.X., W.H., W.G. and Y.Y.; Supervision, W.H., W.G. and Y.Y.; Funding acquisition,
W.H., W.G. and Y.Y. All authors have read and agreed to the published version of the manuscript.

Mathematics 2023, 11, 3221 22 of 23

Funding: This work was supported by the Fundamental Research Funds for the Central Universities
under Grant 2023JBMC042, the Double First-class Talent Introduction Project of China under Grant
No. 505022102 (505021149) and the National Natural Science Foundation of China under Grants
62173027 and 72288101.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Dantzig, G.B.; Ramser, J.H. The Truck Dispatching Problem. Manag. Sci. 1959, 6, 80–91. [CrossRef]
2. Saji, Y.; Barkatou, M. A discrete bat algorithm based on Lévy flights for Euclidean traveling salesman problem. Expert Syst. Appl.

2021, 172, 114639. [CrossRef]
3. Arora, S. Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems. J. ACM 1998,

45, 753–782. [CrossRef]
4. Laporte, G. The traveling salesman problem: An overview of exact and approximate algorithms. Eur. J. Oper. Res. 1992,

59, 231–247. [CrossRef]
5. Potvin, J.Y. Genetic algorithms for the traveling salesman problem. Ann. Oper. Res. 1996, 63, 337–370. [CrossRef]
6. Zhang, Z.; Yang, J. A discrete cuckoo search algorithm for traveling salesman problem and its application in cutting path

optimization. Comput. Ind. Eng. 2022, 169, 108157. [CrossRef]
7. Yang, W.; Pei, Z. Hybrid ABC/PSO to solve travelling salesman problem. Int. J. Comput. Sci. Math. 2013, 4, 214–221. [CrossRef]
8. Mahi, M.; Baykan, Ö.K.; Kodaz, H. A new hybrid method based on Particle Swarm Optimization, Ant Colony Optimization and

3-Opt algorithms for Traveling Salesman Problem. Appl. Soft Comput. 2015, 30, 484–490. [CrossRef]
9. Yang, Z.; Xiao, M.Q.; Ge, Y.W.; Feng, D.L.; Zhang, L.; Song, H.F.; Tang, X.L. A double-loop hybrid algorithm for the traveling

salesman problem with arbitrary neighbourhoods. Eur. J. Oper. Res. 2018, 265, 65–80. [CrossRef]
10. Geng, X.; Chen, Z.; Yang, W.; Shi, D.; Zhao, K. Solving the traveling salesman problem based on an adaptive simulated annealing

algorithm with greedy search. Appl. Soft Comput. 2011, 11, 3680–3689. [CrossRef]
11. Ebadinezhad, S. DEACO: Adopting dynamic evaporation strategy to enhance ACO algorithm for the traveling salesman problem.

Eng. Appl. Artif. Intell. 2020, 92, 103649. [CrossRef]
12. Gülcü, Ş.; Mahi, M.; Baykan, Ö.K.; Kodaz, H. A parallel cooperative hybrid method based on ant colony optimization and 3-Opt

algorithm for solving traveling salesman problem. Soft Comput. 2018, 22, 1669–1685. [CrossRef]
13. Zhang, Z.; Xu, Z.; Luan, S.; Li, X.; Sun, Y. Opposition-based ant colony optimization algorithm for the traveling salesman problem.

Mathematics 2020, 8, 1650. [CrossRef]
14. Shahadat, A.S.B.; Akhand, M.; Kamal, M.A.S. Visibility Adaptation in Ant Colony Optimization for Solving Traveling Salesman

Problem. Mathematics 2022, 10, 2448. [CrossRef]
15. Dong, Y.; Wu, Q.; Wen, J. An improved shuffled frog-leaping algorithm for the minmax multiple traveling salesman problem.

Neural Comput. Appl. 2021, 33, 17057–17069. [CrossRef]
16. Zhong, Y.; Lin, J.; Wang, L.; Zhang, H. Hybrid discrete artificial bee colony algorithm with threshold acceptance criterion for

traveling salesman problem. Inf. Sci. 2017, 421, 70–84. [CrossRef]
17. Choong, S.S.; Wong, L.P.; Lim, C.P. An artificial bee colony algorithm with a Modified Choice Function for the traveling salesman

problem. Swarm Evol. Comput. 2019, 44, 622–635. [CrossRef]
18. Khan, I.; Maiti, M.K. A swap sequence based Artificial Bee Colony algorithm for Traveling Salesman Problem. Swarm Evol.

Comput. 2019, 44, 428–438. [CrossRef]
19. Karaboga, D.; Gorkemli, B. Solving Traveling Salesman Problem by Using Combinatorial Artificial Bee Colony Algorithms. Int. J.

Artif. Intell. Tools 2019, 28, 1950004. [CrossRef]
20. Pandiri, V.; Singh, A. A hyper-heuristic based artificial bee colony algorithm for k-Interconnected multi-depot multi-traveling

salesman problem. Inf. Sci. 2018, 463-464, 261–281. [CrossRef]
21. Venkata Rao, R. Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization

problems. Int. J. Ind. Eng. Comput. 2016, 7, 19–34. [CrossRef]
22. Li, J.Q.; Deng, J.W.; Li, C.Y.; Han, Y.Y.; Tian, J.; Zhang, B.; Wang, C.G. An improved Jaya algorithm for solving the flexible job

shop scheduling problem with transportation and setup times. Knowl.-Based Syst. 2020, 200, 106032. [CrossRef]
23. Thirumoorthy, K.; Muneeswaran, K. A hybrid approach for text document clustering using Jaya optimization algorithm. Expert

Syst. Appl. 2021, 178, 115040. [CrossRef]
24. Xiong, G.; Zhang, J.; Shi, D.; Zhu, L.; Yuan, X. Optimal identification of solid oxide fuel cell parameters using a competitive

hybrid differential evolution and Jaya algorithm. Int. J. Hydrogen Energy 2021, 46, 6720–6733. [CrossRef]
25. Chaudhuri, A.; Sahu, T.P. A hybrid feature selection method based on Binary Jaya algorithm for micro-array data classification.

Comput. Electr. Eng. 2021, 90, 106963. [CrossRef]

http://doi.org/10.1287/mnsc.6.1.80
http://dx.doi.org/10.1016/j.eswa.2021.114639
http://dx.doi.org/10.1145/290179.290180
http://dx.doi.org/10.1016/0377-2217(92)90138-Y
http://dx.doi.org/10.1007/BF02125403
http://dx.doi.org/10.1016/j.cie.2022.108157
http://dx.doi.org/10.1504/IJCSM.2013.057246
http://dx.doi.org/10.1016/j.asoc.2015.01.068
http://dx.doi.org/10.1016/j.ejor.2017.07.024
http://dx.doi.org/10.1016/j.asoc.2011.01.039
http://dx.doi.org/10.1016/j.engappai.2020.103649
http://dx.doi.org/10.1007/s00500-016-2432-3
http://dx.doi.org/10.3390/math8101650
http://dx.doi.org/10.3390/math10142448
http://dx.doi.org/10.1007/s00521-021-06298-8
http://dx.doi.org/10.1016/j.ins.2017.08.067
http://dx.doi.org/10.1016/j.swevo.2018.08.004
http://dx.doi.org/10.1016/j.swevo.2018.05.006
http://dx.doi.org/10.1142/S0218213019500040
http://dx.doi.org/10.1016/j.ins.2018.06.027
http://dx.doi.org/10.5267/j.ijiec.2015.8.004
http://dx.doi.org/10.1016/j.knosys.2020.106032
http://dx.doi.org/10.1016/j.eswa.2021.115040
http://dx.doi.org/10.1016/j.ijhydene.2020.11.119
http://dx.doi.org/10.1016/j.compeleceng.2020.106963

Mathematics 2023, 11, 3221 23 of 23

26. Chong, K.L.; Lai, S.H.; Ahmed, A.N.; Wan Jaafar, W.Z.; El-Shafie, A. Optimization of hydropower reservoir operation based on
hedging policy using Jaya algorithm. Appl. Soft Comput. 2021, 106, 107325. [CrossRef]

27. Gunduz, M.; Aslan, M. DJAYA: A discrete Jaya algorithm for solving traveling salesman problem. Appl. Soft Comput. 2021,
105, 107275. [CrossRef]

28. Cinar, A.C.; Korkmaz, S.; Kiran, M.S. A discrete tree-seed algorithm for solving symmetric traveling salesman problem. Eng. Sci.
Technol. Int. J. 2020, 23, 879–890. [CrossRef]

29. Reinelt, G. TSPLIB—A Traveling Salesman Problem Library. ORSA J. Comput. 1991, 3, 376–384. [CrossRef]
30. Hatamlou, A. Solving travelling salesman problem using black hole algorithm. Soft Comput. 2018, 22, 8167–8175. [CrossRef]
31. Zhang, Z.; Han, Y. Discrete sparrow search algorithm for symmetric traveling salesman problem. Appl. Soft Comput. 2022,

118, 108469. [CrossRef]
32. Zheng, J.; Hong, Y.; Xu, W.; Li, W.; Chen, Y. An effective iterated two-stage heuristic algorithm for the multiple Traveling Salesmen

Problem. Comput. Oper. Res. 2022, 143, 105772. [CrossRef]
33. Liu, Y.; Xu, L.; Han, Y.; Zeng, X.; Yen, G.G.; Ishibuchi, H. Evolutionary Multimodal Multiobjective Optimization for Traveling

Salesman Problems. IEEE Trans. Evol. Comput. 2023. [CrossRef]
34. Tsai, C.H.; Lin, Y.D.; Yang, C.H.; Wang, C.K.; Chiang, L.C.; Chiang, P.J. A Biogeography-Based Optimization with a Greedy

Randomized Adaptive Search Procedure and the 2-Opt Algorithm for the Traveling Salesman Problem. Sustainability 2023, 15,
5111. [CrossRef]

35. Baraglia, R.; Hidalgo, J.; Perego, R. A hybrid heuristic for the traveling salesman problem. IEEE Trans. Evol. Comput. 2001,
5, 613–622. [CrossRef]

36. Aslan, M.; Gunduz, M.; Kiran, M.S. JayaX: Jaya algorithm with xor operator for binary optimization. Appl. Soft Comput. 2019,
82, 105576. [CrossRef]

37. Rao, R.; More, K. Design optimization and analysis of selected thermal devices using self-adaptive Jaya algorithm. Energy
Convers. Manag. 2017, 140, 24–35. [CrossRef]

38. Pradhan, C.; Bhende, C.N. Online load frequency control in wind integrated power systems using modified Jaya optimization.
Eng. Appl. Artif. Intell. 2019, 77, 212–228. [CrossRef]

39. Wang, L.; Zhang, Z.; Huang, C.; Tsui, K.L. A GPU-accelerated parallel Jaya algorithm for efficiently estimating Li-ion battery
model parameters. Appl. Soft Comput. 2018, 65, 12–20. [CrossRef]

40. Mazyavkina, N.; Sviridov, S.; Ivanov, S.; Burnaev, E. Reinforcement learning for combinatorial optimization: A survey. Comput.
Oper. Res. 2021, 134, 105400. [CrossRef]

41. Gündüz, M.; Kiran, M.S.; Özceylan, E. A hierarchic approach based on swarm intelligence to solve the traveling salesman
problem. Turk. J. Electr. Eng. Comput. Sci. 2015, 23, 103–117. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.asoc.2021.107325
http://dx.doi.org/10.1016/j.asoc.2021.107275
http://dx.doi.org/10.1016/j.jestch.2019.11.005
http://dx.doi.org/10.1287/ijoc.3.4.376
http://dx.doi.org/10.1007/s00500-017-2760-y
http://dx.doi.org/10.1016/j.asoc.2022.108469
http://dx.doi.org/10.1016/j.cor.2022.105772
http://dx.doi.org/10.1109/TEVC.2023.3239546
http://dx.doi.org/10.3390/su15065111
http://dx.doi.org/10.1109/4235.974843
http://dx.doi.org/10.1016/j.asoc.2019.105576
http://dx.doi.org/10.1016/j.enconman.2017.02.068
http://dx.doi.org/10.1016/j.engappai.2018.10.003
http://dx.doi.org/10.1016/j.asoc.2017.12.041
http://dx.doi.org/10.1016/j.cor.2021.105400
http://dx.doi.org/10.3906/elk-1210-147

	Introduction
	Related Work on TSP and JAYA Algorithm
	Research on the Meta-Heuristic Algorithms of TSP
	The Traveling Salesman Problem
	Related Work on TSP

	Research on JAYA Algorithm
	The Basic JAYA Algorithm
	Related Work on JAYA Algorithm

	The Proposed QSA-DJAYA Algorithm for TSP
	Strategy Selection Based on Q-Learning Algorithm
	Acceptance Strategy Based on SA
	The Proposed QSA-DJAYA Algorithm

	Experimental Results
	Experimental Settings
	Parameter Tuning
	Experimental Results and Statistical Analysis
	Results of Experiment 1
	Results of Experiment 2
	Results of Statistical Tests

	Conclusions and Future Work
	References

